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Gene expression variability across cells 
and species shapes innate immunity
Tzachi Hagai1,2*, Xi Chen1, Ricardo J. Miragaia1,3, Raghd Rostom1,2, Tomás Gomes1, Natalia Kunowska1, Johan Henriksson1,  
Jong-Eun Park1, Valentina Proserpio4,5, Giacomo Donati4,6, Lara Bossini-Castillo1, Felipe A. Vieira Braga1,7, Guy Naamati2,  
James Fletcher8, Emily Stephenson8, Peter Vegh8, Gosia Trynka1, Ivanela Kondova9, Mike Dennis10, Muzlifah Haniffa8,11,  
Armita Nourmohammad12,13, Michael Lässig14 & Sarah A. Teichmann1,2,15*

As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell 
to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped 
the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response’s 
transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell 
transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, 
we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode 
cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved 
in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between 
species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed 
across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced 
response.

The innate immune response is a cell-intrinsic defence program that is 
rapidly upregulated upon infection in most cell types. It acts to inhibit 
pathogen replication while signalling the pathogen’s presence to other 
cells. This programme involves the modulation of several cellular path-
ways, including production of antiviral and inflammatory cytokines, 
upregulation of genes that restrict pathogens, and induction of cell 
death1,2.

An important characteristic of the innate immune response is  
the rapid evolution that many of its genes have undergone along  
the vertebrate lineage3,4. This rapid evolution is often attributed to  
pathogen-driven selection5–7.

Another hallmark of this response is its high level of heterogeneity 
among responding cells: there is extensive cell-to-cell variability in 
response to pathogen infection8,9 or to pathogen-associated molecular  
patterns (PAMPs)10,11. The functional importance of this variability 
is unclear.

These two characteristics—rapid divergence in the course of  
evolution and high cell-to-cell variability—seem to be at odds with 
the strong regulatory constraints imposed on the host immune 
response: the need to execute a well-coordinated and carefully bal-
anced programme to avoid tissue damage and pathological immune 
conditions12–15. How this tight regulation is maintained despite rapid 
evolutionary divergence and high cell-to-cell variability remains 
unclear, but it is central to our understanding of the innate immune 
response and its evolution.

Here, we study the evolution of this programme using two cells 
types—fibroblasts and mononuclear phagocytes—in different mam-
malian clades challenged with several immune stimuli (Fig. 1a).

Our main experimental system uses primary dermal fibroblasts, 
which are commonly used in immunological studies8,13. We compare 
the response of fibroblasts from primates (human and macaque) and 
rodents (mouse and rat) to polyinosinic:polycytidylic acid (poly(I:C)), 
a synthetic double-stranded RNA (dsRNA; Fig. 1a, left). Poly(I:C) is 
frequently used to mimic viral infection as it rapidly elicits an antiviral 
response16.

We comprehensively characterize the transcriptional changes 
between species and among individual cells in their innate immune 
response. We use population (bulk) transcriptomics to investigate tran-
scriptional divergence between species, and single-cell transcriptomics 
to estimate cell-to-cell variability in gene expression. Using promoter 
sequence analyses along with chromatin immunoprecipitation with 
sequencing (ChIP–seq), we study how changes in the expression of 
each gene between species and across cells relate to the architecture 
of its promoter. Furthermore, we examine the relationship between 
cross-species divergence in gene coding sequence and expression and 
constraints imposed by host–pathogen interactions.

Additionally, we use a second system—bone marrow-derived mon-
onuclear phagocytes from mouse, rat, rabbit and pig challenged with 
lipopolysaccharide (LPS), a commonly used PAMP of bacterial origin 
(Fig. 1a, right).

Together, these two systems provide insights into the architecture of 
the immune response across species, cell types and immune challenges.

Transcriptional divergence in immune response
First, we studied the transcriptional response of fibroblasts to stimula-
tion with dsRNA (poly(I:C)) across the four species (human, macaque, 
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rat and mouse). We generated bulk RNA-sequencing (RNA-seq) data 
for each species after 4 h of stimulation, along with respective controls 
(see Fig. 1a and Methods).

In all species, dsRNA treatment induced rapid upregulation of genes 
that encode expected antiviral and inflammatory products, including 
IFNB, TNF, IL1A and CCL5 (see also Supplementary Table 3). Focusing 
on one-to-one orthologues, we performed correlation analysis between 
species and observed a similar transcriptional response (Spearman 
correlation, P < 10−10 in all comparisons; Extended Data Fig. 1), as 
reported in other immune contexts17–19. Furthermore, the response 
tended to be more strongly correlated between closely related species 
than between more distantly related species, as in other expression 
programmes20–24.

We characterized the differences in response to dsRNA between  
species for each gene, using these cross-species bulk transcriptomics 
data. While some genes, such as those encoding the NF-κB subunits  
RELB and NFKB2, respond similarly across species, other genes 
respond differently in the primate and rodent clades (Fig. 1b, left). For 
example, Ifi27 (which encodes a restriction factor against numerous 
viruses) is strongly upregulated in primates but not in rodents, whereas 

Daxx (which encodes an antiviral transcriptional repressor) exhibits 
the opposite behaviour.

Similarly, in our second experimental system, which consists of 
lipopolysaccharide (LPS)-stimulated mononuclear phagocytes from 
mouse, rat, rabbit, and pig (Fig. 1b, right), some genes responded sim-
ilarly across species (for example, Nfkb2), whereas others were highly 
upregulated only in specific clades (for example, Phlda1).

To quantify transcriptional divergence in immune responses between 
species, we focused on genes that were differentially expressed during 
the stimulation (see Methods). For simplicity, we refer to these genes 
as ‘responsive genes’ (Fig. 1c). In this analysis, we study the subset of 
these genes with one-to-one orthologues across the studied species. 
There are 955 such responsive genes in dsRNA-stimulated human 
fibroblasts and 2,336 in LPS-stimulated mouse phagocytes. We define a 
measure of response divergence by calculating the differences between 
the fold-change estimates while taking the phylogenetic relationship 
into account (Methods, Supplementary Figs. 1–7 and Supplementary 
Table 4).

For subsequent analyses, we split the 955 genes that were responsive 
in fibroblasts into three groups on the basis of their level of response 
divergence: (1) high-divergence dsRNA-responsive genes (the top 
25% of genes with the highest divergence values in response to dsRNA 
across the four studied species); (2) low-divergence dsRNA-responsive 
genes (the bottom 25%); and (3) genes with medium divergence across 
species (the middle 50%; Fig. 1c). We performed an analogous proce-
dure for the 2,336 LPS-responsive genes in phagocytes.

Promoter architecture of diverging genes
Next, we tested whether divergence in transcriptional responses is 
reflected in the conservation of promoter function and sequence. 
Using ChIP–seq, we profiled active histone marks in the fibroblasts of 
all species. The presence of trimethylation of lysine 4 on histone H3 
(H3K4me3) in promoter regions of high-divergence genes was sig-
nificantly less conserved between humans and rodents than was the 
presence of H3K4me3 in promoters of low-divergence genes (Extended 
Data Fig. 2).

We then used the human H3K4me3 ChIP–seq peaks to define active 
promoter regions of the responsive genes in human fibroblasts. The 
density of transcription factor binding motifs (TFBMs) was signifi-
cantly higher in the active promoter regions of high-divergence genes 
than in low-divergence genes (Fig. 2a). Notably, when comparing 
the conservation of the core promoter regions in high- versus low- 
divergence dsRNA-responsive genes, we found that genes that diverge 
highly in response to dsRNA show higher sequence conservation in 
this region (Fig. 2b).

This unexpected discordance may be related to the fact that  
promoters of high- and low-divergence genes have distinctive archi-
tectures, associated with different constraints on promoter sequence 
evolution18,25,26. Notably, promoters containing TATA-box elements 
tend to have most of their regulatory elements in regions immediately 
upstream of the transcription start site (TSS). These promoters are thus 
expected to be more conserved. The opposite is true for CpG island 
(CGI)26,27 promoters. Indeed, we found that TATA-boxes are associated 
with higher transcriptional divergence, while genes with CGIs diverge 
more slowly, both in fibroblasts and phagocytes (Fig. 2c; Extended 
Data Fig. 3). Thus, a promoter architecture enriched in TATA-boxes 
and depleted of CGIs is associated with higher transcriptional diver-
gence, while entailing higher sequence conservation upstream of these 
genes18,26,27.

Transcriptional divergence of cytokines
We next investigated whether different functional classes among 
responsive genes are characterized by varying levels of transcriptional 
divergence. To this end, we divided responsive genes into categories 
according to function (such as cytokines, transcriptional factors and 
kinases) or the processes in which they are known to be involved (such 
as apoptosis or inflammation).

Fig. 1 | Response divergence across species in innate immune response. 
a, Study design. Left, primary dermal fibroblasts from mouse, rat, human 
and macaque stimulated with dsRNA or controls. Samples were collected 
for bulk and single-cell RNA-seq and ChIP–seq. Right, primary bone 
marrow-derived mononuclear phagocytes from mouse, rat, rabbit and 
pig stimulated with LPS or controls. Samples were collected for bulk and 
single-cell RNA-seq. b, Left, fold-change (FC) in dsRNA stimulation 
in fibroblasts for sample genes across species (edgeR exact test, based 
on n = 6, 5, 3 and 3 individuals from human, macaque, rat and mouse, 
respectively). Right, fold-change in LPS stimulation in phagocytes for 
sample genes across species (Wald test implemented in DESeq2, based 
on n = 3 individuals from each species). False discovery rate (FDR)-
corrected P values are shown (***P < 0.001, **P < 0.01, *P < 0.05). c, Top, 
estimating each gene’s level of cross-species divergence in transcriptional 
response to dsRNA stimulation in fibroblasts. Using differential expression 
analysis, fold-change in dsRNA response was assessed for each gene 
in each species. We identified 1,358 human genes as differentially 
expressed (DE) (FDR-corrected q < 0.01), of which 955 had one-to-one 
orthologues across the four studied species. For each gene with one-to-
one orthologues across all species, a response divergence measure was 
estimated using: response divergence = log[1/4 × ∑i,j(log[FC primatei] 
− [logFC rodentj])2]. Genes were grouped into low, medium and high 
divergence according to their response divergence values for subsequent 
analysis. Bottom, estimating each gene’s level of cross-species divergence in 
LPS response in mononuclear phagocytes. A response divergence measure 
was estimated using: response divergence = log[1/3 × ∑j(log[FC pig] 
− log[FC glirej])2] (where glires are mouse, rat and rabbit).
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Genes related to cellular defence and inflammation—most notably 
cytokines, chemokines and their receptors (hereafter ‘cytokines’)—
tended to diverge in response significantly faster than genes involved 
in apoptosis or immune regulation (chromatin modulators, transcrip-
tion factors, kinases and ligases) (Fig. 2d, e, Extended Data Fig. 4, 
Supplementary Fig. 1).

Cytokines also had a higher transcriptional range in response to 
immune challenge (a higher fold-change). Regressing the fold-change 
from the divergence estimates resulted in reduction of the relative 

divergence of cytokines versus other responsive genes, but the differ-
ence still remained (Supplementary Fig. 2). Cytokine promoters are 
enriched in TATA-boxes (17% versus 2.5%, P = 1.1 × 10−3, Fisher’s 
exact test) and depleted of CGIs (14% versus 69%, P = 1.6 × 10−9), sug-
gesting that this promoter architecture is associated both with greater 
differences between species (response divergence) and larger changes 
between conditions (transcriptional range).

Cell-to-cell variability in immune response
Previous studies have shown that the innate immune response displays 
high variability across responding cells28,29. However, the relationship 
between cell-to-cell transcriptional variability and response divergence 
between species is not well understood.

To study heterogeneity in gene expression across individual cells, we 
performed single-cell RNA-seq in all species in a time course following 
immune stimulation. We estimated cell-to-cell variability quantitatively 
using an established measure for variability: distance to median (DM)30.

We found a clear trend in which genes that were highly divergent 
in response between species were also more variable in expression 
across individual cells within a species (Fig. 3a). The relationship 
between rapid divergence and high cell-to-cell variability held true 
in both the 955 dsRNA-responsive genes in fibroblasts and the 2,336  
LPS-responsive genes in phagocytes. This can be observed across the 
stimulation time points and in different species (Extended Data Figs. 5, 6).  
We analysed in depth the relationship between transcriptional diver-
gence and cell-to-cell variability by using additional immune stimula-
tion protocols (Supplementary Figs. 8, 9), and different experimental 
and computational approaches (Extended Data Fig. 7, Supplementary 
Figs. 10–13). Notably, the trends we observed are not a result of  
technical biases due to low expression levels in either the bulk or the 
single-cell RNA-seq data (Supplementary Figs. 14, 15).

Next, we examined the relationship between the presence of  
promoter elements (CGIs and TATA-boxes) and a gene’s cell-to-cell var-
iability. Genes that are predicted to have a TATA-box in their promoter  
had higher transcriptional variability, whereas CGI-containing genes 
tended to have lower variability (Fig. 3b), in agreement with previous 
findings31. Thus, both transcriptional variability between cells (Fig. 3b) 
and transcriptional divergence between species (Fig. 2c) are associated 
with the presence of specific promoter elements.

Transcriptional variability of cytokines
We subsequently compared the response divergence across species with 
the transcriptional cell-to-cell variability of three groups of responsive 
genes with different functions: cytokines, transcription factors, and 
kinases and phosphatases (hereafter ‘kinases’; Fig. 3c, Extended Data 
Fig. 8). In contrast to kinases and transcription factors, many cytokines 
display relatively high levels of cell-to-cell variability (Extended Data 
Fig. 9), being expressed only in a small subset of responding cells 
(Extended Data Fig. 10). This has previously been reported for several 
cytokines29. For example, IFNB is expressed in only a small fraction 
of cells infected with viruses or challenged with various stimuli8,11,32. 
Here, we find that cells show high levels of variability in expression of 
cytokines from several families (for example, IFNB, CXCL10 and CCL2).

Cell-to-cell variability of cytokines remains relatively high in  
comparison to kinases and transcription factors during a time course 
of 2, 4 and 8 h after dsRNA stimulation of fibroblasts (Extended Data 
Fig. 9). This pattern is similar across species, and can also be observed 
in LPS-stimulated phagocytes (Extended Data Fig. 9). Thus, the high 
variability of cytokines and their expression in a small fraction of  
stimulated cells across all time points is evolutionarily conserved.

Cytokines tended to be co-expressed in the same cells, raising the 
possibility that their expression is coordinated (see Supplementary 
Information and Supplementary Fig. 16). We also identified genes 
whose expression was correlated with cytokines in human fibro-
blasts and showed that their orthologues tend to be co-expressed with 
cytokines in other species. This set is enriched with genes known to be 
involved in cytokine regulation (Supplementary Table 5).

Fig. 2 | Transcriptionally divergent genes have unique functions 
and promoter architectures. a, TFBM density in active promoters 
and response divergence. For each gene studied in fibroblast dsRNA 
stimulation, the total number of TFBM matches in its H3K4me3 histone 
mark was divided by the length of the mark (human marks were used; 
n = 879 differentially expressed genes with ChIP–seq data). High-
divergence genes have higher TFBM density than low-divergence genes 
(one-sided Mann–Whitney test). b, Promoter sequence conservation 
and response divergence in fibroblast dsRNA stimulation. Sequence 
conservation values are estimated with phyloP7 for 500 base pairs 
upstream of the transcription start site (TSS) of the human gene. Mean 
conservation values of each of the 500 base pairs upstream of the TSS are 
shown for high-, medium- and low-divergence genes (n = 840 genes). 
Genes that are highly divergent have higher sequence conservation 
(one-sided Kolmogorov–Smirnov test). The 95% confidence interval 
for predictions from a linear model computed by geom_loess function 
is shown in grey. c, Comparison of divergence in response of genes with 
and without a TATA-box and a CGI in fibroblast dsRNA stimulation and 
phagocyte LPS stimulation. TATA-box matches and CGI overlaps were 
computed with respect to the TSS of human genes in fibroblasts (n = 955 
genes), and to the TSS of mouse genes in phagocytes (n = 2,336).  
d, Distributions of divergence values of 9,753 expressed genes in fibroblasts, 
955 dsRNA-responsive genes and different functional subsets of the dsRNA-
responsive genes (each subset is compared with the set of 955 genes using a 
one-sided Mann–Whitney test and FDR-corrected P values are shown).  
e, Distributions of divergence values of 6,619 expressed genes in phagocytes, 
2,336 LPS-responsive genes and different functional subsets of the LPS-
responsive genes (each subset is compared with the set of 2,336 genes using 
a one-sided Mann–Whitney test and FDR-corrected P values are shown). 
Violin plots show the kernel probability density of the data. Boxplots 
represent the median, first quartile and third quartile with lines extending to 
the furthest value within 1.5 of the interquartile range (IQR).
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As an example, we focused on the genes whose expression is posi-
tively correlated with the chemokine CXCL10 in at least two species 
(Fig. 3d). This set includes four cytokines co-expressed with CXCL10 
(in purple), as well as known positive regulators of the innate immune 
response and cytokine production (in blue), such as the viral sensors 
IFIH1 (also known as MDA5) and RIG-I (also known as DDX58) 
This is in agreement with previous evidence that IFNB expression is 
limited to cells in which important upstream regulators are expressed 
at sufficiently high levels8,11,32. Here, we show that this phenomenon 

of co-expression with upstream regulators applies to a wider set of 
cytokines and is conserved across species. Notably, cytokines were 
co-expressed not only with their positive regulators but also with genes 
that are known to act as negative regulators of cytokine expression or 
cytokine signalling (in red), suggesting that cytokine expression and 
function is tightly controlled at the level of individual cells.

The evolutionary landscape of innate immunity
Many immune genes, including several cytokines and their receptors, 
have been shown to evolve rapidly in coding sequence3,33. However, 
it is not known how divergence in coding sequence relates to tran-
scriptional divergence in innate immune genes. Using the set of 955 
dsRNA-responsive genes in fibroblasts, we assessed coding sequence 
evolution in the three subsets of low-, medium- and high-divergence 
genes (as defined in Fig. 1c).

We compared the rate at which genes evolved in their coding 
sequences with their response divergence by considering the ratio of 
non-synonymous (dN) to synonymous (dS) nucleotide substitutions. 
Genes that evolved rapidly in transcriptional response had higher  
coding sequence divergence (higher dN/dS values) than dsRNA- 
responsive genes with low response divergence (Fig. 4a).

Rapid gene duplication and gene loss have been observed in several 
important immune genes34–39 and are thought to be a result of pathogen- 
driven pressure40,41. We therefore tested the relationship between a 
gene’s divergence in response and the rate at which the gene’s family 
has expanded and contracted in the course of vertebrate evolution. We 
found that transcriptionally divergent dsRNA-responsive genes have 
higher rates of gene gain and loss (Fig. 4b) and consequently are also 
evolutionarily younger (Fig. 4c, Supplementary Fig. 17).

Previous reports have suggested that proteins encoded by younger 
genes tend to have fewer protein–protein interactions (PPIs) within 
cells42. Indeed, we found that rapidly diverging genes tend to have fewer 
PPIs (Fig. 4d). Together, these results suggest that transcriptionally diver-
gent dsRNA-responsive genes evolve rapidly through various mecha-
nisms, including fast coding sequence evolution and higher rates of gene 
loss and duplication events, and that their products have fewer inter-
actions with other cellular proteins than those of less divergent genes.

The interaction between pathogens and the host immune system 
is thought to be an important driving force in the evolution of both 
sides. We therefore investigated the relationship between transcrip-
tional divergence and interactions with viral proteins by compiling a 
data set of known host–virus interactions in humans6,43,44. Notably, 
genes whose products had no known viral interactions showed higher 
response divergence than genes encoding proteins with viral interac-
tions (Fig. 4e). Furthermore, the transcriptional divergence of genes 
targeted by viral immunomodulators45—viral proteins that subvert 
the host immune system—was lower still (Fig. 4e). These observations  
suggest that viruses have evolved to modulate the immune system 
by interacting with immune proteins that are relatively conserved in 
their response. Presumably, these genes cannot evolve away from viral  
interactions, unlike host genes that are less constrained46.

The summary of our results in Fig. 4f highlights the differences in 
both regulatory and evolutionary characteristics between cytokines 
and other representative dsRNA-responsive genes. Cytokines evolve 
rapidly through various evolutionary mechanisms and have higher 
transcriptional variability across cells. By contrast, genes that are 
involved in immune response regulation, such as transcription factors 
and kinases, are more conserved and less heterogeneous across cells. 
These genes encode proteins that have more interactions with other 
cellular proteins, suggesting that higher constraints are imposed on 
their evolution. This group of conserved genes is more often targeted 
by viruses, revealing a relationship between host–pathogen dynamics 
and the evolutionary landscape of the innate immune response.

Discussion
Here, we have charted the evolutionary architecture of the innate 
immune response. We show that genes that diverge rapidly between 

Fig. 3 | Cell-to-cell variability in immune response corresponds to 
response divergence. a, Comparison of divergence in response across 
species with transcriptional variability between individual cells. Top, 
fibroblast dsRNA stimulation (variability measured in n = 55 human 
cells, following 4 h dsRNA stimulation). Bottom, phagocyte LPS 
stimulation (variability measured in n = 3,293 mouse cells, following 4 h 
LPS stimulation). Genes classified as high-, medium- or low-divergence 
according to level of response divergence. Cell-to-cell variability values of 
high-divergence genes were compared with those of low-divergence genes 
(one-sided Mann–Whitney test). b, Comparison of cell-to-cell variability 
of genes with and without a TATA-box and a CGI, in fibroblast dsRNA 
stimulation and phagocyte LPS stimulation (one-sided Mann–Whitney 
test). Cell-to-cell variability values are from DM estimations of human 
fibroblasts stimulated with dsRNA for 4 h (n = 55 cells) and from mouse 
phagocytes stimulated with LPS for 4 h (n = 3,293 cells). c, Scatter plot 
showing divergence in response to dsRNA in fibroblasts across species and 
transcriptional cell-to-cell variability in human cells following 4 h of dsRNA 
stimulation (n = 684 dsRNA-responsive genes). Purple, cytokines; green, 
transcription factors; beige, kinases. The distributions of divergence and 
variability values of these groups are shown above and to the right of the 
scatter plot, respectively. d, A network showing genes that correlate positively 
in expression with the chemokine gene CXCL10 across cells (Spearman 
correlation, ρ > 0.3), in at least two species (one of which is human), 
following dsRNA treatment in fibroblasts (based on n = 146, 74, 175 and 170 
human, macaque, rat and mouse cells, respectively). Purple, cytokines; red, 
positive regulators of cytokine expression; blue, negative regulators. Colours 
of lines, from light to dark grey, reflect the number of species in which this 
pair of genes was correlated. Boxplots represent the median, first quartile and 
third quartile with lines extending to the furthest value within 1.5 × IQR.
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species show higher levels of variability in their expression across indi-
vidual cells than genes that diverge more slowly. Both of these charac-
teristics are associated with a similar promoter architecture, enriched 
in TATA-boxes and depleted of CGIs. Notably, such promoter archi-
tecture is also associated with the high transcriptional range of genes 
during the immune response. Thus, transcriptional changes between 
conditions (stimulated versus unstimulated), species (transcrip-
tional divergence), and individual cells (cell-to-cell variability) may 
all be mechanistically related to the same promoter characteristics. In 
yeast, TATA-boxes are enriched in promoters of stress-related genes,  
displaying rapid transcriptional divergence between species and high 
variability in expression30,47. This finding suggests intriguing analogies  
between the mammalian immune and yeast stress responses—two  

systems that have been exposed to continuous changes in external  
stimuli during evolution.

We have also shown that genes involved in regulation of the immune 
response—such as transcription factors and kinases—are relatively con-
served in their transcriptional responses. These genes might be under 
stronger functional and regulatory constraints, owing to their roles 
in multiple contexts and pathways, which would limit their ability to 
evolve. This limitation could represent an Achilles’ heel that is used by 
pathogens to subvert the immune system. Indeed, we found that viruses 
interact preferentially with conserved proteins of the innate immune 
response. Cytokines, on the other hand, diverge rapidly between 
species, owing to their promoter architecture and because they have 
fewer constraints imposed by intracellular interactions or additional 
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Fig. 4 | Relationship of response divergence and other evolutionary 
modes. a–d, dsRNA-responsive genes in fibroblasts are divided by level of 
response divergence into three groups, as in Fig. 1c. a, Coding sequence 
divergence, as measured using dN/dS values across 29 mammals. Higher 
dN/dS values denote faster coding sequence evolution (n = 567 genes). 
b, Rate at which genes were gained and lost within the gene family across 
the vertebrate clade (plotted as –logP). Higher values denote faster gene 
gain and loss rate (n = 955 genes). c, Evolutionary age (estimated with 
Panther7 phylogeny and Wagner reconstruction algorithm). Values denote 
the branch number with respect to human (distance from human in the 
phylogenetic tree); higher values indicate greater age (n = 931 genes). 
d, Number of known physical interactions with other cellular proteins 
(n = 955 genes). e, Distribution of transcriptional response divergence 
values among dsRNA-responsive genes whose protein products do 

not interact with viral proteins, interact with at least one viral protein, 
or interact with viral immunomodulators (n = 648, 307 and 25 genes, 
respectively). a–e, One-sided Mann–Whitney tests. f, A scaled heat map 
showing values of response divergence (as in Fig. 1c), cell-to-cell 
variability (as in Fig. 3a), coding sequence divergence (dN/dS values, as 
in a), gene age (as in c; younger genes have darker colours), number of 
cellular PPIs (as in d) and number of host–virus interactions (as in e), 
for example genes from three functional groups: cytokines, transcription 
factors, and kinases. Values are shown in a normalized scale between 0 
and 100, with the gene with the highest value assigned a score of 100. 
Missing values are shown in white. Boxplots represent the median, first 
quartile and third quartile with lines extending to the furthest value within 
1.5 × IQR. Violin plots show the kernel probability density of the data.
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non-immune functions. We therefore suggest that cytokines represent 
a successful host strategy to counteract rapidly evolving pathogens as 
part of the host–pathogen evolutionary arms race.

Cytokines also display high cell-to-cell variability and tend to 
be co-expressed with other cytokines and cytokine regulators in a 
small subset of cells, and this pattern is conserved across species. As  
prolonged or increased cytokine expression can result in tissue  
damage48–50, restriction of cytokine production to only a few cells 
may enable a rapid, but controlled, response across the tissue to avoid 
long-lasting and potentially damaging effects.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0657-2.
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Methods
Ethical compliance. This project was approved by the Wellcome Sanger Institute 
Animal Welfare and Ethical Review Body, and complied with all relevant  
ethical regulations regarding animal research and human studies. Human cells 
were obtained from the Hipsci project51, where they were collected from volunteers 
recruited from the NIHR Cambridge BioResource (written consent was given). 
Human skin profiling was performed in accordance with protocols approved 
by the Newcastle Research Ethics Committee (REC approval 08/H0906/95+5). 
Macaque skin samples were obtained from animals assigned to unrelated non- 
infectious studies, provided by Public Health England’s National Infection Service 
in accordance with Home Office (UK) guidelines and approved by the Public 
Health England Ethical Review Committee under an appropriate UK Home Office 
project license.
Cross-species dermal fibroblast stimulation with dsRNA and IFNB. Tissue  
culture. We cultured primary dermal fibroblasts from low passage cells (below 
10) that originated from females from four different species (human (European 
ancestry), rhesus macaque, C57BL/6 (black 6) mouse and brown Norway rat). 
All skin samples were taken from shoulders. Stimulation experiments and library 
preparations were done in identical conditions across all species and for all genom-
ics techniques. Details on the numbers of individuals used in each technique are 
listed in each technique’s section and in Supplementary Table 1.

Human cells were obtained from the Hipsci project51 (http://www.hipsci.org/). 
Rhesus macaque cells were extracted from skin tissues that were incubated for 2 h 
with 0.5% collagenase B (Roche; 11088815001) after mechanical processing, and 
then filtered through 100-µm strainers before being plated and passaged before 
cryo-banking. Rodent cells were obtained from PeloBiotech where they were 
extracted using a similar protocol. In vitro cultured fibroblasts from all four spe-
cies resemble a particular in vivo cluster of dermal fibroblasts (see Supplementary 
Information). Cells were not tested for mycoplasma contamination.

Prior to stimulation, cells were thawed and grown for several days in ATCC 
fibroblast growth medium (Fibroblast Basal Medium (ATCC, ATCC-PCS-201-030) 
with Fibroblast Growth Kit-Low serum (ATCC, PCS-201-041) (supplemented with 
Primocin (Invivogen, ant-pm-1) and penicillin/streptomycin (Life Technologies, 
15140122)) - a controlled medium that has proven to provide good growing con-
ditions for fibroblasts from all species, with slightly less than 24 h doubling times. 
About 18 h before stimulation, cells were trypsinized, counted and seeded into 
6-well plates (100,000 cells per well). Cells were stimulated as follows: (1) stimu-
lated with 1 μg/ml high-molecular mass poly(I:C) (Invivogen,tlrl-pic) transfected 
with 2 μg/ml Lipofectamin 2,000 (ThermoFisher, 11668027); (2) mock transfected 
with Lipofectamin 2,000; (3) stimulated with 1,000 IU of IFNB for 8 h (human 
IFNB: 11410-2 (for human and macaque cells); rat IFNB: 13400-1; mouse IFNB: 
12401-1; all IFNs were obtained from PBL, and had activity units based on similar 
virological assays); or (4) left untreated. Interferon stimulation was used as a con-
trol, to study how genes that were upregulated in the secondary wave of the innate 
immune response diverge between species.

Additional human and mouse samples were stimulated with 1,000 IU of 
cross-mammalian IFN (CMI, or Universal Type I IFN Alpha, PBL, 11200-1). 
The latter stimulation was done to assess the effects of species-specific and batch- 
specific IFNB.

In all of the above-mentioned stimulations, we used a longer time course for 
single-cell RNA-seq than for bulk RNA-seq, for two main reasons: (1) in the bulk, 
we chose to focus on one main stimulation time point for simplicity and to obtain 
an intuitive fold-change between stimulated and unstimulated conditions; (2) in 
single cells, when studying cell-to-cell variability, we chose to profile, in addition 
to the main stimulation time point, cells in earlier and later stages of the response. 
This is important for studying how the dynamics and magnitude of the response 
affect gene expression variability between responding cells.

The poly(I:C) we used tested negative for the presence of bacterial beta-endotoxin  
using a coagulation test (PYROGENT Plus, 0.06 EU/ml sensitivity, N283-06).
Bulk RNA-seq: library preparation and sequencing. For bulk transcriptomics 
analysis, cells from individuals from different species were grown in parallel and 
stimulated with dsRNA, IFNB (and cross-mammalian IFN) and their respective 
controls. In total, samples from 6 humans, 6 macaques, 3 mice and 3 rats were used. 
Total RNA was extracted using the RNeasy Plus Mini kit (Qiagen, 74136), using 
QIAcube (Qiagen). RNA was then measured using a Bioanalyzer 2100 (Agilent 
Technologies), and samples with RIN < 9 were excluded from further analysis (one 
macaque sample stimulated with poly(I:C) and its control).

Libraries were produced using the Kapa Stranded mRNA-seq Kit (Kapa 
Biosystems, KK8421). The Kapa library construction protocol was modified 
for automated library preparation by Bravo (Agilent Technologies). cDNA was 
amplified in 13 PCR cycles, and purified using Ampure XP beads (Beckman 
Coulter, A63882) (1.8× volume) using Zephyr (Perkin Elmer). Pooled samples  
were sequenced on an Illumina HiSeq 2500 instrument, using paired-end  
125-bp reads.

ChIP–seq: library preparation and sequencing. Samples from three individuals from 
each of the four species were grown and stimulated (with poly(I:C) for 4 h or left 
untreated, as described above) in parallel to samples collected for bulk RNA-seq.  
Following stimulation, samples were crosslinked in 1% HCHO (prepared in  
1× DPBS) at room temperature for 10 min, and HCHO was quenched by the 
addition of glycine at a final concentration of 0.125 M. Cells were pelleted at 
4 °C at 2,000g, washed with ice-cold 1× DPBS twice, and snap-frozen in liquid 
nitrogen. Cell pellets were stored at –80 °C until further stages were performed. 
ChIPmentation was performed according to version 1.0 of the published proto-
col52 with a few modifications (see additional details in Supplementary Methods).

Library preparation reactions contained the following reagents: 10 μl puri-
fied DNA (from the above procedure), 2.5 μl PCR Primer Cocktails (Nextera kit, 
Illumina, FC-121-1030), 2.5 μl N5xx (Nextera index kit, Illumina FC-121-1012), 
2.5 μl N7xx (Nextera index kit, Illumina, FC-121-1012), 7.5 μl NPM PCR Master 
Mix (Nextera kit, Illumina, FC-121-1030). PCR cycles were as follows: 72 °C, 5 min; 
98 °C, 2 min; [98 °C, 10 s, 63 °C, 30 s, 72 °C, 20 s] × 12; 10 °C hold.

Amplified libraries were purified by double AmpureXP bead purification: first 
with 0.5× bead ratio, keep supernatant, second with 1.4× bead ratio, keep bound 
DNA. Elution was done in 20 μl Buffer EB (QIAGEN).

One microlitre of library was run on a Bioanalyzer (Agilent Technologies) to 
verify normal size distribution. Pooled samples were sequenced on an Illumina 
HiSeq 2000 instrument, using paired-end 75-bp reads.
Flow cytometry for single-cell RNA-seq. For scRNA-seq, we performed two biologi-
cal replicates, with each replicate having one individual from each of the four stud-
ied species. A time course of dsRNA stimulation of 0, 4, and 8 h was used in one 
replicate (divided into two technical replicates), while the second replicate included 
a time course of 0, 2, 4, and 8 h. Poly(I:C) transfection was done as described above. 
In the case of sorting with IFNLUX, we used rhodamine-labelled poly(I:C).

Cells were sorted with either Beckman Coulter MoFlo XDP (first replicate) 
or Becton Dickinson INFLUX (second replicate) into wells containing 2 μl lysis 
buffer (1:20 solution of RNase Inhibitor (Clontech, 2313A) in 0.2% v/v Triton 
X-100 (Sigma-Aldrich, T9284)), spun down and immediately frozen at –80 °C.

When sorting with MoFlo, a pressure of 15 psi was used with a 150-µm nozzle, 
using the ‘Single’ sort purity mode. Dead or late-apoptosis cells were excluded 
using propidium iodide at 1 µg/ml (Sigma, Cat Number P4170) and single 
cells were selected using FSC W versus FSC H. When sorting with INFLUX, a  
pressure of 3 psi was used with a 200-µm nozzle, with the ‘single’ sort mode. Dead 
or late-apoptosis cells were excluded using 100 ng/ml DAPI (4′,6-diamidino-2- 
phenylindole) (Sigma, D9542). DAPI was detected using the 355-nm laser  
(50 mW), using a 460/50 nm bandpass filter. Rhodamine was detected using 
the 561-nm laser (50mW), using a 585/29 nm bandpass filter. Single cells were  
collected using FSC W versus FSC H.
Library preparation from full-length RNA from single cells and sequencing. 
Sorted plates were processed according to the Smart-seq2 protocol53. Oligo-dT 
primer (IDT), dNTPs (ThermoFisher, 10319879) and ERCC RNA Spike-In Mix 
(1:25,000,000 final dilution, Ambion, 4456740) were added to each well, and 
reverse transcription (using 50 U SmartScribe, Clontech, 639538) and PCR were 
performed following the original protocol with 25 PCR cycles. cDNA libraries were 
prepared using Nextera XT DNA Sample Preparation Kit (Illumina, FC-131-1096), 
according to the protocol supplied by Fluidigm (PN 100-5950 B1). Quality Checks 
on cDNA were done using a Bioanalyser 2100 (Agilent Technologies). Libraries 
were quantified using the LightCycler 480 (Roche), pooled and purified using 
AMPure XP beads (Beckman Coulter) with Hamilton 384 head robot (Hamilton 
Robotics). Pooled samples were sequenced on an Illumina HiSeq 2500 instrument, 
using paired-end 125-bp reads.
Read mapping to annotated transcriptome. For bulk RNA-seq samples, adaptor 
sequences and low-quality score bases were first trimmed using Trim Galore 
(version 0.4.1) (with the parameters ‘–paired–quality 20–length 20 -e 0.1–adapter 
AGATCGGAAGAGC’). Trimmed reads were mapped and gene expression was 
quantified using Salmon (version 0.6.0)54 with the following command: ‘salmon 
quant -i [index_file_directory] -l ISR -p 8–biasCorrect–sensitive–extraSensitive 
-o [output_directory] -1 -g [ENSEMBL_transcript_to_gene_file]–useFSPD–
numBootstraps 100’. Each sample was mapped to its respective species’ annotated 
transcriptome (downloaded from ENSEMBL, version 84: GRCh38 for human, 
MMUL_1 for macaque, GRCm38 for mouse, Rnor_6.0 for rat). We included only 
the set of coding genes (*.cdna.all.fa files). We removed annotated secondary hap-
lotypes of human genes by removing genes with ‘CHR_HSCHR’.
Quantifying differential gene expression in response to dsRNA. To quantify differen-
tial gene expression between treatment and control for each species and for each 
treatment separately, we used edgeR (version 3.12.1)55 using the rounded estimated 
counts from Salmon. This was done only for genes that had a significant level of 
expression in at least one of the four species (TPM >3 in at least N – 1 libraries, 
where N is the number of different individuals we have for this species with libraries  
that passed quality control, and TPM is transcripts per million). Differential 
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expression analysis was performed using the edgeR exact test, and P values were 
adjusted for multiple testing by estimating the false discovery rate (FDR).
Conservation and divergence in immune response: fold-change-based analysis. We 
compared the overall change in response to treatment (dsRNA or IFNB) between 
pairs of species, by computing the Spearman correlation of the fold-change in 
response to treatment across all one-to-one orthologues that were expressed in 
at least one species (Extended Data Fig. 1a–h). Fold-change was calculated with 
edgeR, as described above. Spearman correlations of all expressed genes appear 
in grey. Correlations of the subset of differentially expressed genes (genes with 
FDR-corrected P < 0.01 in at least one of the compared species) appear in black.

In Extended Data Fig. 1a–c, we show comparisons in response to dsRNA. In 
Extended Data Fig. 1d–f, we show comparisons in response to IFNB, which we use 
here to study the similarity of the secondary immune response between species.

We constructed a tree based on a gene’s change in expression in response to 
dsRNA and to IFNB, using expressed genes that had one-to-one orthologues across 
all four species and were expressed in at least one species in at least one condition 
(Extended Data Fig. 1i). We used hierarchical clustering, with the hclust com-
mand from the stats R package, with the distance between samples computed as 
1 – ρ, where ρ is the pairwise Spearman correlation between each pair of species 
mentioned above (a greater similarity, reflected in a higher correlation, results in 
a smaller distance) and ‘average’ as the clustering method.

The above-mentioned analyses focus on one-to-one orthologues between the 
compared species. In Supplementary Table 6, we quantify the similarity in response 
between species (based on Spearman correlations) when adding genes with  
one-to-many orthologues.
Quantifying gene expression divergence in response to immune challenge. To quantify 
transcriptional divergence in immune response between species, we focus on genes 
that have annotated one-to-one orthologues across the studied species (human, 
macaque, mouse and rat). 9,753 of the expressed genes have annotated one-to-one 
orthologues in all four species, out of which 955 genes are differentially expressed 
in human in response to dsRNA treatment (genes with an FDR-corrected P < 0.01).

We define a measure of response divergence (based on a previous study56) by 
calculating the differences between the fold-change estimates across the ortho-
logues: response divergence = log[1/4 × ∑i,j(log[FC primatei] − log[FC rodentj])2]. 
This measure takes into account the structure of the phylogeny, and gives a relative 
measure of divergence in response across all genes with one-to-one orthologues.

To consider differences between species, we focus on between-clade differences 
(primates versus rodents), rather than on within-clade differences. In this way, 
we map the most significant macro-evolutionary differences along the longest 
branches of our four-species phylogeny. In addition, averaging within clades acts 
as a reduction of noise56.

We compared this divergence measure to two other measures that use models  
(and incorporate both between- and within-clade divergence) and found a 
strong correlation between the divergence estimates across the three approaches 
(Supplementary Figs. 3, 4).

In most of the subsequent analyses, we focus on the 955 dsRNA-responsive 
genes: genes that were differentially expressed in response to dsRNA (genes that 
have an FDR-corrected P < 0.01 in human, and have annotated one-to-one ortho-
logues in the other three species). For some of the analyses, we split these 955 genes 
based on quartiles, into genes with high, medium and low divergence (Fig. 1c).

We also studied how imprecisions in the fold-change estimates affected the 
response divergence estimates and subsequent analyses (Supplementary Figs. 5, 6).
Comparison of response divergence between different functional groups. To compare 
the divergence rates between sets of dsRNA-responsive genes that have different 
functions in the innate immune response, we split these 955 genes into the fol-
lowing functional groups (all groups are mutually exclusive, and any gene that 
belongs to two groups was excluded from the latter group; human gene annota-
tions were used).

We first grouped genes by annotated molecular functions: viral sensors (genes 
that belong to one of the GO categories: GO:0003725 (dsRNA binding), GO:0009597 
(detection of virus), and GO:0038187 (pattern recognition receptor activity)); 
cytokines, chemokines and their receptors (GO:0005125 (cytokine activity),  
GO:0008009 (chemokine activity), GO:0004896 (cytokine receptor activity), and 
GO:0004950 (chemokine receptor activity)); transcription factors (taken from the 
Animal Transcription Factor DataBase (version 2.0)57); chromatin modulators  
(GO:0016568 (chromatin modification), GO:0006338 (chromatin remodelling), 
GO:0003682 (chromatin binding), and GO:0042393 (histone binding)); kinases 
and phosphatases (GO:0004672 (protein kinase activity) and GO:0004721  
(phosphoprotein phosphatase activity)); ligases and deubiquitinases (GO:0016579 
(protein deubiquitination), GO:0004842 (ubiquitin-protein transferase activity) and 
GO:0016874 (ligase activity)); and other enzymes (mostly involved in metabolism  
rather than regulation: GO:0003824 (catalytic activity)). The divergence response 
values of these functional subsets were compared to the entire group of 955  
dsRNA-responsive genes (Fig. 2d, e).

Next, we grouped genes by biological processes that are known to be important 
in the innate immune response: antiviral defence (GO:0051607 (defence response 
to virus)); inflammation (GO:0006954 (inflammatory response)); apoptosis 
(GO:0006915 (apoptotic process)); and regulation (GO annotations related to 
regulation of innate immune response pathways include only few genes. We thus 
used as the group of genes related to regulation, the merged group of genes that are 
annotated as transcription factors, chromatin modulators, kinases and phosphates 
or ligases and deubiquitinases, since all these groups include many genes that are 
known to regulate the innate immune response.)

Gene lists belonging to the mentioned GO annotations were downloaded using 
QuickGo58. The distribution of response divergence values for each of the func-
tional groups was compared with the distribution of response divergence of the 
entire set of dsRNA-responsive genes. Cytokines, chemokines and their receptors 
are merged in Fig. 2d, e, 3c. Analogous comparisons of functional groups in IFNB 
response (with 841 IFNB-responsive genes) are shown in Supplementary Fig. 1. 
See additional analyses in Supplementary Information.
Alignment and peak calling of ChIP–seq reads. ChIP–seq reads were trimmed using 
trim_galore (version 0.4.1) with ‘–paired–trim1–nextera’ flags. The trimmed reads 
were aligned to the corresponding reference genome (hg38 for human, rheMac2 
for macaque, mm10 for mouse, rn6 for rat; all these genomes correspond to the 
transcriptomes used for RNA-seq mapping) from the UCSC Genome Browser59 
using bowtie2 (version 2.2.3) with default settings60. In all four species, we removed 
the Y chromosome. In the case of human, we also removed all alternative haplotype 
chromosomes. Following alignment, low-confident mapped and improperly paired 
reads were removed by samtools61 with ‘-q 30 –f 2’ flags.

Enriched regions (peaks) were called using MACS2 (v.2.1.1)62 with a corrected 
P value cutoff of 0.01 with ‘-f BAMPE -q 0.01 -B–SPMR’ flags, using input DNA 
as control. The genome sizes (the argument for ‘-g’ flag) used were ‘hs’ for human, 
‘mm’ for mouse, 3.0 × 109 for macaque and 2.5 × 109 for rat. Peaks were consid-
ered reproducible when they were identified in at least two of the three biological 
replicates and overlapped by at least 50% of their length (non-reproducible peaks 
were excluded from subsequent analyses). Reproducible peaks were then merged to 
create consensus peaks from overlapping regions of peaks from the three replicates 
by using mergeBed from the bedtools suite63.
Gene assignment and conservation of active promoters and enhancers. We subse-
quently linked human peaks with the genes they might be regulating as follows: 
H3K4me3 consensus peak was considered the promoter region of a given gene if 
its centre was between 2 kb upstream and 500 bp downstream of the annotated 
TSS of the most abundantly expressed transcript of that gene.

Similarly, H3K27ac was considered the enhancer region of a given gene if  
its centre was in a distance above 1 kb and below 1 Mb, and there was no overlap 
(of 1 bp or more) with any H3K4me3 peak.

In each case where, based on the distance criteria, more than a single peak was 
linked to a gene (or more than a single gene was linked to a peak), we took only 
the closest peak–gene pair (ensuring that each peak will have up to one gene and 
vice versa).

To compare active promoters and enhancers between species, we excluded any 
human peak that could not be uniquely mapped to the respective region in the 
other species. This was done by looking for syntenic regions of human peaks in 
the other three species by using liftOver64, and removing peaks that had either 
unmapped regions or more than one mapped region in the compared species. 
We considered syntenic regions with at least 70% sequence similarity between the 
species (minMatch = 0.7, and 0.8 in the case of human-macaque comparison), 
with a minimal length (minSizeQ and minSizeT) corresponding to the length of 
the shortest peak (128 bp in H3K4 and 142 bp in H3K27).

We defined an active human promoter or enhancer as conserved if a peak 
was identified in the corresponding region of the other species (we repeated this  
analysis by comparing human with each of the other three species separately). We 
compared the occurrence of conserved promoters and enhancers in genes that 
are highly divergent in response to dsRNA with low-divergence genes, and used 
Fisher’s exact test to determine the statistical significance of the observed differ-
ences between high- and low-divergence genes (Extended Data Fig. 2).
Promoter sequence analysis. To calculate the total number of transcription factor  
binding motifs in a gene’s active promoter region, we downloaded the non- 
redundant JASPAR core motif matrix (pfm_vertebrates.txt) from the JASPAR 2016 
server65 and searched for significant matches for these motifs using FIMO66 in 
human H3K4me3 peaks. The TFBM density of peaks was calculated by dividing 
the total number of motif matches in a peak by the peak’s length. TBFM density 
values in human H3K4me3 peaks linked with high- and low-divergence genes 
were compared (Fig. 2a).

PhyloP7 values were used to assess promoter sequence conservation67. Sequence 
conservation quantification was performed by taking the estimated nucleotide sub-
stitution rate for each nucleotide along the promoter sequence (500 bp upstream of 
the TSS of the relevant human gene). When several annotated transcripts existed, 
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the TSS of the most abundantly expressed transcript was used (based on bulk RNA 
data). The substitution rate values from all genes were aligned, based on their TSS 
position, and a mean for each of the 500 positions was calculated separately for the 
group of genes with high, medium and low response divergence. The two-sample 
Kolmogorov–Smirnov test was used to compare the paired distribution of rates 
between the means of the high-divergence and low-divergence sets of genes. To plot 
the mean values of the three sets of divergent genes, the geom_smooth function 
from the ggplot2 R package was used with default parameters (with loess as the 
smoothing method) (Fig. 2b).

Human CGI annotations were downloaded from the UCSC genome table 
browser (hg38), and CGI genes were defined as those with a CGI overlapping 
their core promoter (300 bp upstream of the TSS reference position, and 100 bp 
downstream of it, as suggested previously18). Genes were defined as having a TATA 
box if they had a significant match to the Jaspar TATA box matrix (MA0108.1) in 
the 100 bp upstream of their TSS by FIMO66 with default settings (we used a 100 bp  
window owing to possible inaccuracies in TSS annotations). We note that only 
28 out of 955 dsRNA-responsive genes had a matching TATA-box motif in this 
region. For both TATA and CGI analyses, the promoter sequences of the human 
orthologues were used.
Read mapping and quality control of scRNA-seq (full-length RNA). Gene expression 
was quantified in a manner similar to the quantification for bulk transcriptom-
ics libraries described above. Low-quality cells were filtered using quality control 
criteria (cells with at least 100,000 mapped reads, with at least 2,000 expressed 
genes with TPM > 3, with ERCC < 10% and MT < 40%, where ERCC and MT 
refer to reads mapped to synthetic RNA Spike-In genes and mitochondrial genes). 
This quality control filtering resulted in 240 cells from a first biological replicate, 
including two technical replicates (with a time course of 0, 4, 8 h). In a second larger 
biological replicate (with a dsRNA stimulation time course of 0, 2, 4, 8 h), 728 cells 
passed quality control. Results throughout the manuscript relate to the second 
cross-species biological replicate in which a higher proportion of cells passed QC, 
and the lower-quality first replicate data were not considered further.
Cell-to-cell variability analysis. To quantify the biological cell-to-cell variability 
of genes, we applied the DM (Distance to Median) approach—an established 
method, which calculates the cell-to-cell variability in gene expression while 
accounting for confounding factors such as gene expression level30. This is done 
by first filtering out genes that are expressed at low levels: for Smart-seq2 data 
we included only genes that had an average expression of at least 10 size-factor  
normalized reads (except for Extended Data Fig. 9a, in which we reduced the 
threshold to 5, to allow a larger number of genes to be included in the comparisons). 
This procedure was done to filter genes that displayed higher levels of technical  
variability between samples owing to low expression. Second, to account for gene 
expression level, the observed cell-to-cell variability of each gene was compared 
with its expected variability, based on its mean expression across all samples and 
in comparison with a group of genes with similar levels of mean expression. This 
DM value is also corrected by gene length (in the case of Smart-seq2 data), yield-
ing a value of variability that can be compared across genes regardless of their 
length and mean expression values68. As a second approach, we used BASiCS69,70 
(see Supplementary Information).

We note that the relationship observed in Fig. 3a between response diver-
gence and cell-to-cell variability is not an artefact, stemming from differences in 
expression levels: (A) With respect to cell-to-cell variability, a gene’s expression 
level is controlled for by DM calculations, where expression level is regressed by 
using a running median (Supplementary Fig. 14). (B) Similarly, we can regress 
the expression level measured in bulk RNA-seq from the quantified response 
divergence by subtracting the running median of expression from the divergence 
estimates. When repeating the analysis comparing cell-to-cell variability versus 
regressed response divergence, the relationship between the two is maintained 
(Supplementary Fig. 15).
Cytokine co-expression analysis. For the chemokine gene CXCL10, we built a 
network (using CytoScape71) of genes that correlate with CXCL10 in dsRNA- 
stimulated human fibroblasts and in at least one more species, using genes 
with a Spearman correlation value above 0.3 (see Fig. 3d and Supplementary 
Information).
Coding sequence evolution analysis. The ratio dN/dS (non-synonymous to syn-
onymous codon substitutions) of human genes across the mammalian clade was 
obtained from a previous study that used orthologous genes from 29 mammals72. 
Distributions of dN/dS values were computed for each of the three groups of genes 
with low, medium and high divergence in response to dsRNA, and are plotted in 
Fig. 4a.
Rate of gene gain and loss analysis. The significance at which a gene’s family has 
experienced a higher rate of gene gain and loss in the course of vertebrate evolu-
tion, in comparison with other gene families, was retrieved from ENSEMBL73. 
The statistics provided by ENSEMBL are calculated using the CAFE method74, 
which estimates the global birth and death rate of gene families and identifies gene 

families that have accelerated rates of gain and loss. Distributions of the P values 
from this statistic were computed for each of the three groups of genes with low, 
medium and high divergence in response to dsRNA and are plotted as the negative 
logarithm values in Fig. 4b.
Gene age analysis. Gene age estimations were obtained from ProteinHistorian75. 
To ensure that the results were not biased by a particular method of ancestral pro-
tein family reconstruction or by specific gene family assignments, we used eleven 
different estimates for mammalian genes (combining five different databases of 
protein families with two different reconstruction algorithms for age estimation, 
as well as an estimate from the phylostratigraphic approach). For each gene, age 
was defined with respect to the species tree, where a gene’s age corresponds to the 
branch in which its family is estimated to have appeared (thus, larger numbers 
indicate evolutionarily older genes).

Data for gene age in comparison with divergence in response to dsRNA are 
shown in Fig. 4c (using Panther7 phylogeny and Wagner reconstruction algorithm) 
and in Supplementary Fig. 17a (for all 11 combinations of gene family assignments 
and ancestral family reconstructions). See additional analyses in Supplementary 
Information.
Cellular protein–protein interaction analysis. Data on the number of experimen-
tally validated PPIs for human genes were obtained from STRING (version 10)76. 
Distributions of PPIs for genes with low, medium and high divergence in response 
to dsRNA are plotted in Fig. 4d.
Host–virus interaction analysis. Data on host–virus protein–protein interactions 
were downloaded from the VirusMentha database43, and combined with two addi-
tional studies that have annotated host–virus protein–protein interactions6,44. We 
split the 955 dsRNA-responsive genes into genes with known viral interactions 
(genes whose protein products were reported to interact with at least one viral 
protein), and genes with no known viral interactions: ‘viral interactors’ and ‘no 
viral interactions’, respectively, in Fig. 4e. In addition, we define a subset of genes 
within the viral interactors set: those known to interact with viral proteins that 
are immunomodulators (proteins known to target the host immune system and 
modulate its response45).

We note that the results presented in Fig. 4e are in agreement with previous 
analyses that are based on all human genes and on coding sequence evolution46. 
However, the overlap in the sets of genes between the previous analyses and the 
one presented here is small (for example, in one published study46 there were 535 
human genes with known interactions with pathogens, 57 of which overlap with 
the 955 genes that are the basis of the current analysis).
Additional experiments with human fibroblasts and human skin tissue. 
Additional experiments were performed with human dermal fibroblasts and 
with cells extracted from human skin tissues to study in greater detail the  
relationship between response divergence across species and cell-to-cell variability. 
See Supplementary Methods and Supplementary Discussion for details.
Cross-species bone marrow-derived phagocyte stimulation with LPS and 
dsRNA. Tissue culture. Primary bone marrow-derived mononuclear phagocytes 
originating from females of four different species (black 6 mouse, brown Norway 
rat, rabbit and pig) and cultured with GM-CSF, were obtained from PeloBiotech. 
Twenty-four hours before the start of the stimulation time course, cells were thawed 
and split into 12-well plates (500,000 cells per well). Cells were stimulated with: 
(1) 100 ng/ml LPS (Invivogen, tlrl-smlps), or with (2) 1 μg/ml high-molecular 
mass poly(I:C) (Invivogen, tlrl-pic) transfected with 2 μl/ml Lipofectamin 2,000 
(ThermoFisher, 11668027). LPS stimulation time courses of 0, 2, 4, 6 h were  
performed for all species. Poly(I:C) stimulations were performed for rodents for 
0, 2, 4, 6 h. We also processed cells for bulk RNA-seq for 0 and 4 h stimulation  
time points. Details on the individuals used in each technique are listed in 
Supplementary Table 2.
Library preparation for single cells using microfluidic droplet cell capture. Following 
stimulation, cells were collected using Cell Dissociation Solution Non-enzymatic 
(Sigma-Aldrich, C5914), washed and resuspended in 1 × PBS with 0.5% (w/v) 
BSA. Cells were then counted and loaded on the 10x Chromium machine aiming 
for a targeted cell recovery of 5,000 cells according to the manual. Libraries were 
prepared following the Chromium Single Cell 3′ v2 Reagent Kit Manual77. Libraries 
were sequenced on an Illumina HiSeq 4000 instrument with 26 bp for read 1 and 
98 bp for read 2.
Library preparation and sequencing for bulk RNA-seq. Total RNA was extracted and 
libraries were prepared as described in the fibroblasts section. Pooled samples were 
sequenced on an Illumina HiSeq 4000 instrument, using paired-end 75-bp reads.
Quantifying gene expression in bulk RNA-seq data. Adaptor sequences and 
low-quality score bases were trimmed using Trim Galore (version 0.4.1). Trimmed 
reads were mapped and gene expression was quantified using Salmon: (version 
0.9.1)54 with the following command: ‘salmon quant -i [index_file_directory] / 
-l ISR -p 8–seqBias–gcBias–posBias -q -o [output_directory] -1 -g [ENSEMBL_
transcript_to_gene_file]–useVBOpt–numBootstraps 100’. Mouse samples were 
mapped to mouse transcriptome (ENSEMBL, version 84). We note that we used 
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the bulk data only for TSS analysis. For differential expression analysis, we used 
an in silico bulk from the single-cell data (see below).
Quantifying gene expression in microfluidic droplet cell capture data. Microfluidic 
droplet cell capture data was first quantified using 10x Genomics’ Cell Ranger 
Single-Cell Software Suite (version 2.0, 10× Genomics Inc.)77 against the  
relevant genome (ENSEMBL, version 84). We removed cells with fewer than  
200 genes or more than 10% mitochondrial reads. To remove potential doublets, 
we excluded the top 10% of cells expressing the highest numbers of genes. Genes 
expressed in less than 0.5% of the cells were excluded from the calculations. 
We then filtered cells that expressed fewer than 10% of the total number of 
filtered genes.

Since bone marrow-derived phagocytes may include secondary cell  
populations, we focused our analysis on the major cell population. We identified 
clusters within each data set, using the Seurat78 functions RunPCA, followed 
by FindClusters (using 20 dimensions from the PCA, default perplexity and a  
resolution of 0.1) and have taken the cells belonging to the largest cluster for 
further analysis, resulting in a less heterogeneous population of cells. A lower  
resolution of 0.03 was used for rabbit-LPS4, rabbit-LPS2, mouse-PIC2, mouse-PIC4;  
and 0.01 for rabbit-LPS6.
Quantifying gene expression divergence in response to immune challenge. We cre-
ated an in silico bulk table by summing up the UMIs of the post-QC single cells 
belonging to the largest cluster of cells, in each of the samples. We then used the 
three replicates in unstimulated conditions and in 4 h LPS stimulation to per-
form a differential expression analysis using DESeq279 Wald test, and P values 
were adjusted for multiple testing by estimating the FDR. A similar procedure was  
performed with mouse and rat dsRNA stimulation (with 4 h dsRNA stimulation 
versus unstimulated conditions).

To quantify transcriptional divergence in immune response between species, we 
focused on genes that have annotated one-to-one orthologues across the studied 
species.

We define a measure of response divergence by calculating the differences 
between the fold-change estimates across the orthologues: response diver-
gence = log[1/3 × ∑j(log[FC pig] − log[FC glirej])2]. For each gene, the fold-change 
in the outer group (pig), is subtracted from the fold-change in the orthologues of 
the three glires (mouse, rat and rabbit), and the average of the square values of these 
subtractions is taken as the response divergence measure. In most of the analyses, 
we focus on the 2,336 LPS-responsive genes—genes that are differentially expressed 
in response to LPS (genes that have an FDR-corrected P < 0.01 in mouse, and have 
annotated one-to-one orthologues in the other three species).
Promoter elements, gene function and cell-to-cell variability analyses. Promoter ele-
ments (TATA and CGIs), gene function and cell-to-cell variability analyses were 
performed as described in the fibroblasts section. Mouse genes were used as the 
reference for gene function and TSS annotations. For variability analysis, we used 
one representative replicate out of three.
Statistical analysis and reproducibility. Statistical analyses were done with 
R version 3.3.2 for Fisher’s exact test, two-sample Kolmogorov–Smirnov test 
and Mann–Whitney test. Data in boxplots represent the median, first quartile  
and third quartile with lines extending to the furthest value within 1.5 of the  
interquartile range (as implemented by the R function geom_boxplot). Violin plots 
show the kernel probability density of the data (as implemented by the R function 
geom_violin).

All cross-species bulk RNA-seq replicates were successful, except for one 
macaque individual in which the treated sample had a low RNA quality and was 
removed from the analysis (along with the matching control). All cross-species 
ChIP–seq replicates were successful. Cross-species scRNA-seq of fibroblasts was 
performed in two biological replicates. Results throughout the manuscript relate 
to the second cross-species biological replicate, for which a higher proportion of 
cells passed technical quality control. Three out of three replicates for each species 
and condition were successful when preparing single-cell libraries for mononu-
clear phagocytes, except for two libraries that failed at the emulsion preparation 
stage. Two out of two replicates of single-cell in situ RNA hybridization assay were 
performed and both are shown.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Code availability. Scripts for major analyses are available at https://github.com/
Teichlab/innate_evo.

Data availability
Sequencing data have been deposited in ArrayExpress with the following 
accessions: E-MTAB-5918, E-MTAB-5919, E-MTAB-5920, E-MTAB-6754, 
E-MTAB-6773, E-MTAB-5988, E-MTAB-5989, E-MTAB-6831, E-MTAB-6066, 
E-MTAB-7032, E-MTAB-7037, E-MTAB-7051 and E-MTAB-7052.
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Extended Data Fig. 1 | Fibroblast response to dsRNA and IFNB across 
species. To study the similarity in response to treatment across species, 
we plotted the fold-change values of all expressed genes (with one-to-one 
orthologues) between pairs of species (human–macaque, mouse–rat and 
human–mouse) in response to dsRNA (poly(I:C)) (a–c). As a control, 
we performed the same procedure with IFNB stimulations (d–f). Fold-
changes were inferred from differential expression analyses, determined 
by the exact test in the edgeR package6 and based on n = 6, 5, 3 and 3 
individuals from human, macaque, rat and mouse, respectively. Spearman 
correlations between all expressed one-to-one orthologues are shown in 
grey, Spearman correlations between the subset of differentially expressed 

genes (FDR-corrected P < 0.01 in at least one species) appear in black. 
Number of genes shown is n = 11,035, 11,005, 11,137, 10,851, 10,826 
and 10,957 in a–f, respectively. Genes are coloured blue if they were 
differentially expressed (FDR-corrected P < 0.01) in both species, purple 
if they were differentially expressed in only one species, or red if they were 
not differentially expressed. g, h, Density plots of ratio of fold-change 
in response to dsRNA or to IFNB. g, Comparison between human and 
macaque orthologues in dsRNA response. h, Comparison between human 
and mouse orthologues in IFNB response. i, Dendrogram based on the 
fold-change in response to dsRNA or to IFNB across 9,835 one-to-one 
orthologues in human, macaque, rat and mouse.
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Extended Data Fig. 2 | Correspondence of transcriptional divergence 
and divergence of active promoters and enhancers. Comparison of 
divergence in transcriptional response to dsRNA with divergence of active 
chromatin marks in active promoters (a, profiled using H3K4me3 in 
proximity to gene’s TSS) and enhancers (b, H3K27ac without overlapping 
H3K4me3). Chromatin marks were linked to genes on the basis of their 
proximity to the gene’s TSS. Chromatin marks were obtained from n = 3 
individuals in each of the four species, from fibroblasts stimulated with 
dsRNA or left untreated. The statistics are based on n = 855, 818 and 813 
human genes that have a linked H3K4me3 mark with a syntenic region 
in macaque, rat and mouse, respectively (a); and on n = 326, 241 and 242 
human genes that have a linked H3K27ac mark with a syntenic region in 
macaque, rat and mouse, respectively (b). Each panel shows the fraction of 
conserved marks between human and macaque, rat or mouse, in genes that 

have high, medium and low divergence in their transcriptional response. 
In each column, the histone mark’s signal was compared between human 
and the syntenic region in one of the three other species. If an active mark 
was found in the corresponding syntenic region, the linked gene was 
considered to have a conserved active mark (promoter or enhancer). The 
fractions of genes with conserved promoters (or enhancers) in each pair 
of species were compared between high- and low-divergence genes using 
a one-sided Fisher’s exact test. When comparing active promoter regions 
of high- versus low-divergence genes, we observe that low-divergence 
genes have a significantly higher fraction of conserved marks in rodents. 
This suggests an agreement between divergence at the transcriptional and 
chromatin levels in active promoter regions. In active enhancer regions, we 
do not observe these patterns, suggesting that the major contribution to 
divergence comes from promoters.
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Extended Data Fig. 3 | Comparison of response divergence of genes 
containing various promoter elements. Comparison of response 
divergence between genes with and without a TATA-box and a CGI. Left, 
fibroblasts (n = 14, 14, 633 and 294 differentially expressed genes with 
only TATA-box element, with both CGI and TATA-box elements, with 
only CGI, and with neither element in their promoters, respectively); right, 
phagocytes (n = 13, 29, 1,718 and 576 differentially expressed genes with 
only a TATA-box element, with both CGI and TATA-box elements, with 

only a CGI, and with neither element in their promoters, respectively). 
Genes with a TATA-box without a CGI have higher response divergence 
than genes with both elements. Genes with a CGI but without a TATA-
box diverge more slowly than genes with both elements. Genes with both 
elements do not differ significantly in their divergence from genes lacking 
both elements (one-sided Mann–Whitney test). Data in boxplots represent 
the median, first quartile and third quartile with lines extending to the 
furthest value within 1.5 of the IQR.
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Extended Data Fig. 4 | Response divergence of molecular processes 
upregulated in immune response. Left, distributions of divergence values 
of n = 955 dsRNA-responsive genes in fibroblasts and subsets of this group 
belonging to different biological processes. For each functional subset, the 
distribution of divergence values is compared with the set of 955 dsRNA-
responsive genes using a one-sided Mann–Whitney test. FDR-corrected 
P values are shown above each group and group size is shown inside each 
box. Right, distributions of divergence values of n = 2,336 LPS-responsive 

genes in mononuclear phagocytes and subsets of this group belonging to 
different biological processes. For each functional subset, the distribution 
of divergence values is compared with the set of 2,336 LPS-responsive 
genes. FDR-corrected P values (one-sided Mann–Whitney test) are 
shown above each group and group size is shown inside each box. Data in 
boxplots represent the median, first quartile and third quartile with lines 
extending to the furthest value within 1.5 of the IQR.
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Extended Data Fig. 5 | Cell-to-cell variability versus response 
divergence across species and conditions in fibroblasts after dsRNA 
stimulation. Cell-to-cell variability values, as measured with DM across 
individual cells, compared with response divergence between species 
(grouped into low, medium and high divergence). Variability values are 
based on n = 29, 56, 55, 35 human cells, n = 20, 32, 29, 13 rhesus cells, 
n = 33, 70, 65, 40 rat cells, and n = 53, 81, 59, 30 mouse cells, stimulated 

with dsRNA for 0, 2, 4 and 8 h, respectively. Rows represent different 
dsRNA stimulation time points (0, 2, 4 and 8 h), and columns represent 
different species as shown. High-divergence genes were compared with 
low-divergence genes using a one-sided Mann–Whitney test. Data in 
boxplots represent the median, first quartile and third quartile with lines 
extending to the furthest value within 1.5 of the IQR.
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Extended Data Fig. 6 | Cell-to-cell variability versus response 
divergence across species and conditions in mononuclear phagocytes 
after LPS stimulation. Cell-to-cell variability values, as measured with 
DM across cells, compared with response divergence between species 
(grouped into low, medium and high divergence). Variability values are 
based on n = 3,519, 4,321, 3,293, 2,126 mouse cells, n = 2,266, 2,839, 1,963, 
1,607 rat cells, n = 3,275, 1,820, 1,522, 1,660 rabbit cells, and n = 1,748, 

1,614, 1,899, 1,381 pig cells, stimulated with LPS for 0, 2, 4 and 6 h, 
respectively. Rows represent different LPS stimulation time points  
(0, 2, 4 and 6 h), and columns represent different species as shown.  
High-divergence genes were compared with low-divergence genes using 
a one-sided Mann–Whitney test. Data in boxplots represent the median, 
first quartile and third quartile with lines extending to the furthest value 
within 1.5 of the IQR.

© 2018 Springer Nature Limited. All rights reserved.



Article RESEARCH

b

IFNB

CXCL10

BRD2

ADAM32

ATXN2L

ADAMTSL3

Replicate #1

Replicate #2

Replicate #1

Replicate #2

IFNB

BRD2

IFNB

BRD2

CXCL10

ADAM32

CXCL10

ADAM32

a

Extended Data Fig. 7 | Cell-to-cell variability of cytokine expression 
in single cell in situ RNA hybridization assay combined with flow 
cytometry (PrimeFlow). PrimeFlow measurement of two cytokine genes 
(IFNB and CXCL10) that show high cell-to-cell variability in scRNA-
seq. As controls, two genes matched on expression levels (ATXN2L 
and ADAM32) but that show low cell-to-cell variability in scRNA-seq 
data are shown. As the expression of cytokines is at the low end of the 
distribution, we also chose two genes with middle-range expression values 
(ADAMTSL3 and BRD2) as additional controls. The experiment was 
performed in n = 2 independent replicates, originating from the same 
individual. Both replicates are shown. a, Pseudocolour contour plot for 
RNA target expression in dsRNA-stimulated human fibroblasts. The x-axis 

shows area of side scatter (SSC-A) and the y-axis shows fluorescent signal 
for target RNA probes. RNA targets detected by the same fluorescent 
channel are displayed together. Top, IFNB and control genes BRD2 and 
ATXN2L, type 1 probe, Alexa FluorTM 647. Bottom, CXCL10 and control 
genes ADAMTSL3 and ADAM32, type 10 probe, Alexa FluorTM 568. The 
cytokine genes display a broader range of fluorescence signal than the 
controls. b, Histograms comparing fluorescence of cytokine and control 
pairs (IFNB–BRD2 for type 1 probe and CXCL10–ADAM32 for type 10 
probe). The histograms show a bimodal distribution of expression signal 
for the two cytokine genes (IFNB and CXCL10, red), but not for controls 
(blue). This agrees with scRNA-seq data in which CXCL10 and IFNB 
display high levels of cell-to-cell variability.
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Extended Data Fig. 8 | Cell-to-cell variability levels and response 
divergence of cytokines, transcription factors and kinases in response 
to LPS stimulation of phagocytes. A scatter plot showing divergence in 
response to LPS across species and transcriptional cell-to-cell variability 
in mouse mononuclear phagocytes following 4 h of LPS treatment, in 
n = 2,262 LPS-responsive genes. Purple, cytokines; green, transcription 
factors; beige, kinases. The distributions of divergence values and cell-
to-cell variability values of each of the three functional groups are shown 
above and to the right of the scatter plot, respectively.
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Extended Data Fig. 9 | Cell-to-cell variability levels in cytokines, 
transcription factors and kinases across species and stimulation time 
points. Violin plots showing the distribution of cell-to-cell variability 
values (DM) of cytokines, transcription factors and kinases during 
immune stimulation. Left, fibroblast dsRNA stimulation time course. 
Number of cells used in each species (at 2, 4, 8 h dsRNA, respectively): 
human, 56, 55, 35; macaque, 32, 29, 13; rat, 70, 65, 40; mouse, 81, 59, 30. 

Right, phagocyte LPS stimulation time course. Number of cells used in 
each species (at 2, 4, 6 h LPS, respectively): mouse, 4,321, 3,293, 2,126; rat, 
2,839, 1,963, 1,607; rabbit, 1,820, 1,522, 1,660; pig, 1,614, 1,899, 1,381. For 
both panels, colours as in Fig. 3c. Comparisons between groups of genes 
were performed using one-sided Mann–Whitney tests. Violin plots show 
the kernel probability density of the data.

© 2018 Springer Nature Limited. All rights reserved.
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Extended Data Fig. 10 | Percentage of cells expressing cytokines, 
transcription factors and kinases. Histograms showing the percentage of 
fibroblasts expressing cytokines (top), transcription factors (middle) and 
kinases (bottom) following 4 h dsRNA stimulation, in human, macaque, 
rat and mouse cells (based on n = 55, 29, 65 and 59 cells, respectively). 

The percentage of expressing cells is divided into 13 bins (x-axis). The 
y-axis represents the fraction of genes from this gene class (for example, 
cytokines) that are expressed in each bin (for example, in human, 
nearly 30% of the cytokine genes (y-axis) are expressed in the first bin, 
corresponding to expression in fewer than 8% of cells).

© 2018 Springer Nature Limited. All rights reserved.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Software used include: edgeR, Salmon, Trim Galore, DESeq2, Bowtie2, MACS2, liftOver, FIMO, BASiCS, 10X Genomics’ Cell Ranger, 
Seurat, as well as R version 3.3.2 (2016-10-31) and Perl to run many of the mentioned programs. Detailed parameters of each of the 
programs are mentioned in relevant sections in Methods.

Data analysis Software used include: edgeR, Salmon, Trim Galore, DESeq2, Bowtie2, MACS2, liftOver, FIMO, BASiCS, 10X Genomics’ Cell Ranger, 
Seurat, as well as R version 3.3.2 (2016-10-31) and Perl to run many of the mentioned programs. Detailed parameters of each of the 
programs are mentioned in relevant sections in Methods.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Sequencing data are deposited in ArrayExpress with the following accessions: E-MTAB-5918, E-MTAB-5919, E-MTAB-5920, E-MTAB-6754, E-MTAB-6773, E-
MTAB-5988, E-MTAB-5989, E-MTAB-6831, E-MTAB-6066, E-MTAB-7032, E-MTAB-7037, E-MTAB-7051, E-MTAB-7052. 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. We followed ENCODE guidelines and standards in the field.

Data exclusions Low quality samples were removed (i.e. - cells with low number of mapped reads; bulk RNA samples with RIN<9; batch with low fraction of 
high quality cells) -  exclusion criteria for each case are comprehensively detailed in the relevant Methods section.

Replication All cross-species bulk RNA-Seq replicates were successful, except for one macaque individual where the treated sample had a low RNA quality 
and was removed from the analysis (along with the matching control). All cross-species ChIP-Seq replicates were successful. Cross-species 
scRNA-seq of fibroblasts was performed in two biological replicates. Results throughout the manuscript relate to the second cross-species 
biological replicate where a higher proportion of cells passed technical QC. Three out of three replicates for each species and condition were 
successful when preparing single-cell libraries for mononuclear phagocytes, except for two libraries that failed at the emulsion preparation 
stage. Two out of two replicates of single-cell in situ RNA hybridization assay were performed and both are shown.

Randomization Individuals from each species were randomly allocated to each cross-species experimental batch.   

Blinding Systematic blinding was not performed. It was deemed unnecessary for this study since all samples were processed in parallel.   

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Antibodies used for ChiP-seq :  

Diagenode, C15410003-50, H3K4me3 polyclonal antibody - Premium 
Diagenode, C15410196, H3K27ac polyclonal antibody - Premium

Validation Antibodies were purchased from Diagenode. The antibodies have been validated by the company using dot plot, western blot, 
immunofluorescence, ChIP-qPCR on known loci and full-scale ChIP-seq experiments - see information regarding H3K4me3  
antibody here: https://www.diagenode.com/en/p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul. The validation 
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information regarding H3K27ac can be found here: https://www.diagenode.com/en/p/h3k27ac-polyclonal-antibody-
premium-50-mg-18-ml

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals No experiments were performed using lab animals. Dermal fibroblast cells were isolated from sexually-mature female individuals 
including rhesus macaques (12 year old), C57BL/6 mice (8 week old) and brown Norway rats (8 week old). Bone marrow-derived 
phagocytes were derived from 8-week old female individuals from C57BL/6 mouse, brown Norway rat, and rabbit and from 2-3 
week old female pigs.

Wild animals No wild animals were used.

Field-collected samples No samples were field-collected.

Human research participants
Policy information about studies involving human research participants

Population characteristics Human samples for cross-species comparisons were derived from healthy adult  females of European ancestry from the Hipsci 
consortium, with the age range of 40-49. For the large human cohort, we used samples derived from healthy adults (28 males 
and 42 and females) of European ancestry from the Hipsci consortium, with the age range of 30-79 (see details for each 
individual in E-MTAB-7032).

Recruitment Human cells were obtained from the Hipsci project, where they were collected from consented research volunteers recruited 
from the NIHR Cambridge BioResource. There was no self-selection bias involved. 

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

Data is uploaded to ArrayExpress: 
Experiment: E-MTAB-5918

Files in database submission 104 files  - 2 fastq files for each of the 52 samples, including three biological replicates from each of the species and each 
condition, for H3K27ac and for H3K4me3: 
HS3_H3K4me3_UNST 
HS3_H3K27ac_UNST 
RH3_H3K4me3_UNST 
RH3_H3K27ac_UNST 
BR3_H3K4me3_UNST 
BR3_H3K27ac_UNST 
MM3_H3K4me3_UNST 
MM3_H3K27ac_UNST 
HS3_H3K4me3_PIC4 
HS3_H3K27ac_PIC4 
RH3_H3K4me3_PIC4 
RH3_H3K27ac_PIC4 
BR3_H3K4me3_PIC4 
BR3_H3K27ac_PIC4 
MM3_H3K4me3_PIC4 
MM3_H3K27ac_PIC4 
HS4_H3K4me3_UNST 
HS4_H3K27ac_UNST 
RH4_H3K4me3_UNST 
RH4_H3K27ac_UNST 
BR4_H3K4me3_UNST 
BR4_H3K27ac_UNST 
MM4_H3K4me3_UNST 
MM4_H3K27ac_UNST 
HS4_H3K4me3_PIC4 
HS4_H3K27ac_PIC4 
RH4_H3K4me3_PIC4 
RH4_H3K27ac_PIC4 
BR4_H3K4me3_PIC4 
BR4_H3K27ac_PIC4 
MM4_H3K4me3_PIC4 
MM4_H3K27ac_PIC4 
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HS5_H3K4me3_UNST 
HS5_H3K27ac_UNST 
RH5_H3K4me3_UNST 
RH5_H3K27ac_UNST 
BR5_H3K4me3_UNST 
BR5_H3K27ac_UNST 
MM5_H3K4me3_UNST 
MM5_H3K27ac_UNST 
HS5_H3K4me3_PIC4 
HS5_H3K27ac_PIC4 
RH5_H3K4me3_PIC4 
RH5_H3K27ac_PIC4 
BR5_H3K4me3_PIC4 
BR5_H3K27ac_PIC4 
MM5_H3K4me3_PIC4 
MM5_H3K27ac_PIC4 
HS5_CTRL 
RH5_CTRL 
BR5_CTRL 
MM5_CTRL

Genome browser session 
(e.g. UCSC)

A link to the UCSC genome browser session is available at: 
http://ec2-34-223-252-194.us-west-2.compute.amazonaws.com:8001/#/base/experiment/5/chromatin

Methodology

Replicates 3 biological replicates for each condition (control and dsRNA treatment) and each of the 4 species (human, macaque, mouse 
and rat); ChIP-seq data of two histone marks - H3K4me3 and H3K27ac.

Sequencing depth On average, 10 million pair-end reads for each experiment

Antibodies Diagenode, C15410003-50, H3K4me3 polyclonal antibody - Premium 
Diagenode, C15410196, H3K27ac polyclonal antibody - Premium

Peak calling parameters macs2 callpeak function with "--nomodel -f BAMPE -B --SPMR -g xx" flags, see Methods section in the manuscript for the 
values of "xx".

Data quality (A) Number of peaks with q<0.01 in each of the libraries is > 25,000. (B) Visual inspection of signal on UCSC genome 
browser. These can be observed for all samples in our website: https://teichlab.sanger.ac.uk/#/base/experiment/5/ 
chromatin

Software MACS2, FIMO, Bowtie2, and visualization using UCSC genome browser , as detailed in Methods.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Human fibroblasts were treated with poly I:C for 4 hrs to induce innate immune response. Cells were harvested and centrifuged, 
and subject to the The PrimeFlowTM RNA assay (Affymetrix eBioscience) according to the manufacturer’s protocol to stain for 
target mRNAs.

Instrument BD LSRFortessa

Software BD FACS software was used for collection and FlowJo v10.3 was used for analysis.

Cell population abundance 10^4 -10^5 cells per sample were obtained.

Gating strategy No gating was performed; only the debris was removed based on very low FSC and SSC.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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