Mycotoxigenic fungi in plant-based supplements and medicines
Fábio Rocha-Miranda¹,² and Armando Venâncio¹

The increasing consumption of plant-based products for health promotion or for disease treatment has generated public health concerns, since herbs or plants are in direct contact with soils and may easily be colonized by fungi. Many studies have shown the contamination of plant-based supplements and drugs with mycotoxigenic fungal species. Aspergillus and Penicillium species have been reported as the most frequent and dominant ones, with records of the occurrence of many mycotoxigenic species. The presence of different species raises the concern of multimycotoxin occurrence, while the increased consumption of these products increases exposure. This review aims to present updated data on the natural occurrence of mycotoxigenic fungi and their mycotoxins in plant-based supplements and medicines.

Addresses
¹ CEB – Centre of Biological Engineering, Gualtar Campus, University of Minho, Braga 4710-057, Portugal
² Brazilian Health Regulatory Agency, Brasilia/DF 71.205.050, Brazil

Corresponding author: Venâncio, Armando (avenan@deb.uminho.pt)

Current Opinion in Food Science 2018, 30:27–31
This review comes from a themed issue on Food safety
Edited by Marciane Magnani

https://doi.org/10.1016/j.coef.2018.08.003
2214-7993/© 2018 Published by Elsevier Ltd.

Introduction
Phytotherapy is a field of science that uses plants either to treat diseases or as health-promoting agents [1]. These plant drugs are crude preparations of dried plants or any part thereof, such as leaf, stem, root, flower, or seed [2,3,4]. Plant-based dietary supplements (concentrated sources of vitamins, minerals, and other biologically active substances) are mostly formulated as infusions, oils, tablets and capsules containing dried ethanolic extracts of active compounds, which are used for health promotion or to aid drug treatments.

According to the World Health Organization [4], the use of phytotherapy is popular and the primary source of health care in countries with lower accessibility to conventional medicine — Africa and some developing countries, but also in developed countries due to cultural influence — as in some Asian countries [4] — or as complementary therapy — being used by about 70% of the Australians and one third of the Americans [5,6]. The medicinal plants global market size is expanding and was valued at USD 71.19 billion in 2016 by Hexa Research [7]. This growth may be attributed to the belief that these products do not cause overdose toxicity and have fewer side effects.

However, it is important to highlight that plant-based products may also present toxicity and contamination (chemical, biological, radiological, and so on), since herbs and plants are in direct contact with soil, and common practices employed for their production do not avoid potential contamination. Plants and herbs can be contaminated with fungi either in the pre-harvest or in the post-harvest and storage stages [8,9], which may produce mycotoxins that remain in the product even after complete destruction of the fungi.

Mycotoxins are secondary metabolites produced by different fungi, mainly by toxigenic species of the genus Alternaria, Aspergillus, Fusarium and Penicillium. According to Do et al. [10], aflatoxins (AFs), ochratoxin A (OTA), fumonisins (FB), zearalenone (ZEN) and deoxynivalenol (DON) are the most frequently detected in herbal medicines and can cause severe health problems like immuno-suppression, carcinogenesis, genotoxic, hepatotoxic and nephrotoxic effects [11,12].

The present review addresses the occurrence of toxigenic fungi and their mycotoxins in plant-based supplements and medicines, to better understand the risk of multimycotoxin exposure from the consumption of these products.

Fungal occurrence in plant-based supplements and medicines
Since the middle of the 20th century, researchers have identified the presence of fungi in herbal drugs [13,14]. Hitokoto et al. [15] evaluated 49 powdered herbal drugs for their mycobiota, being Aspergillus and Penicillium the dominant ones. Aspergillus niger group was the most frequently isolated and most widely distributed group (24.6% of the isolates), mostly occurring in powdered coptis (number of isolates of 3438/g), powdered scutellaria roots (2241/g), powdered Japanese peony roots (1523/g), and powdered cininidium (1133/g).
A survey on the fungal contamination of sun dried herbal drugs from Nigeria revealed a severe fungal contamination [16,17], where twenty-eight fungal species were isolated, with A. niger, Aspergillus flavus, Fusarium verticilloides, Trichoderma viride, Penicillium expansum and Mucor fragilis being the dominant ones.

The mycobiotand mycotoxin contamination of herbal drugs from Japan and India was also reported. Yamazaki et al. [18] found fungal infection in 17 out of 30 samples in Japan, and detected aflatoxin B1 (AFB1) and sterigmatocystin (STC). Aspergillus and Fusarium species (54 and 24%, respectively) were the most frequently isolated ones from Indian drugs, and mycotoxins were detected in 43% and 64% of the crude herbal drugs and of their finished commercial products, respectively [19]. AFB1 was the most frequently detected mycotoxin and was detected above tolerance levels fixed by the World Health Organization-WHO.

Halt [20] analysed the level of toxigenic moulds in 62 samples of medicinal plants and 11 samples of herbal tea. The dominant fungi detected were Aspergillus, Penicillium, Mucor, Rhizopus, Absidia, Alternaria, Cladosporium and Trichoderma species. A. flavus, a known producer of aflatoxins, was present in 11 (18%) and in 1 (9%) of the medicinal plants and herbal tea samples, respectively.

Medicinal plants (peppermint, chamomile flowers, tilo, anise and caraway) from the Egyptian market also presented contamination by A. niger, Fusarium spp. and Penicillium spp. which were detected with a frequency of 77% in packed tilo and 56% in caraway samples [21]. A. flavus was detected in all tested medicinal plants with the exception of packed tilo, and the highest percentage of infection was in peppermint (15.8%) followed by non-packed tilo (15.4%), as well as non-packed caraway (13.5%). Abou Donia [22] also identified Aspergillus, Fusarium and Penicillium in Egyptian medicinal plants, but aflatoxins were not detected.

In an evaluative study of the predominant mycobiotand contamination of 65 different medicinal plants from Brazil, Bugno et al. [23] identified 10 fungal genera and 55% of the samples exceeded the maximum fungal count limit determined by the US Pharmacopoeia (10^2 CFU/g). The genus Aspergillus was the most frequent one (179 isolates) followed by Penicillium (44 isolates), and these two genera were found in 90% and 40% of the samples analysed, respectively. Isolated strains included A. flavus, A. niger, Aspergillus ochraceus, Aspergillus parasiticus, Penicillium citrinum and Penicillium chrysogenum. Almost 22% of these isolates were able to produce mycotoxins: 42.9% were aflatoxigenic strains, 22.4% were ochratoxigenic strains and 34.7% were citrinin-producing strains.

Ahmad et al. [24] screened plants from Pakistan and detected fungal contamination in 90% of tested samples, of which 70% exceeded the permissible limits; being opium poppy, liquorice root, and Indian rennet the most contaminated medicinal plants. The predominant fungal strains isolated belonged to Aspergillus (A. flavus, A. niger and A. parasiticus) and Penicillium species, and 31% of the 47 isolates tested were found to be toxigenic. The authors highlighted that these results could give rise to trade barriers, since 12% of Pakistani flora is used in medicines and more than 300 medicinal plants are traded all over the world [25].

Fungi were isolated from all samples of Pu-erh tea (made from the leaves and stems of the Camellia sinensis plant) which contains small amounts of lovastatin, a well-known medicine used for lowering cholesterol. A concentration of colony forming units of 10 to 2.6 × 10^6/g was found, from 19 genera and 31 species. The most prevalent species were Aspergillus acicuus and Aspergillus fumigatus [26].

Wu et al. [27] studied a previously isolated Alternaria tenuissima strain from the stem of Tribulus terrestris L., a medicinal plant and a dietary supplement used to lose weight all over the world, and found it to be a producer of mycotoxins (altertoxins II and IV).

Chinese functional foods presented 124 fungal strains distributed over four different genera [28], being Aspergillus and Penicillium strains the dominant ones, with an incidence of 66% and 15%, respectively. Aspergillus section Nigri (57%) was isolated more often, followed by Aspergillus sections Flavi (50%) and Circumdati (21%), with the most contaminated samples being Coix seeds. The latter three Aspergillus sections are well known for their mycotoxigenic potential.

Chen et al. [29] assessed internal and superficial fungal contamination and multi-mycotoxin occurrence in medicinal seeds used as food in China. The superficial mycobiota on seed surfaces included 34 species (17 genera). A. niger and Penicillium polonicum were predominant (12% and 15%, respectively). The internal fungal incidence was also very high, with the isolation of 352 fungal strains, belonging to 12 genera and 27 species. Chaetomium globosporum was the most commonly identified fungus (23% of the internal fungal isolates), followed by Microsporum trigonocephalum and Alternaria alternata (12% and 9% of total internal fungal counts, respectively). Total fungal counts ranged from 6.5 × 10^4 to 8.1 × 10^7/g on seed surfaces, being Aspergillus, Penicillium, Mucor, and Fusarium the four most predominant genera detected in association with all medicinal seeds (exception for spider flower seed), representing about 41%, 29%, 6% and 5% of the isolated strains, respectively.
In a recent study, Su et al. [29**] investigated the occurrence of fungi in eight root herbs used as medicines, dietary supplements and functional foods in China and other countries, and found that all 48 samples tested were contaminated with fungi (1844 isolates belonging to 25 genera). Aspergillus and Penicillium presented a frequency of 10% and 25%, respectively. The fungal counts ranged from 12 to \(2.5 \times 10^6/g\). Notoginseng and liquorice were highly contaminated (fungal counts > \(10^5/g\)); however, the fungal counts did not exceed the maximum limit of \(10^3/g\) set by the WHO. The authors also reported that among the 13 isolates of A. flavus, five isolates from Chinese yam, ginseng, astragalus, and liquorice were found to produce AFB1 and AFB2.

A comprehensive review on the occurrence of mycotoxigenic fungi in plant-based products is presented in supplementary Table S1.

Mycotoxin occurrence in plant-based supplements and medicines

The occurrence of mycotoxins in plant drugs has been widely published in several countries but Chinese medicines are the most studied [30].

Figure 1 presents data on the prevalence of different mycotoxins in reports published from 2000 [2**,11,24,29**,31–37,38**,39–55]. The main mycotoxins identified in plant-based supplements and medicines have been AFs, OTA, mycophenolic acid (MPA), STC and trichoecenes.

Discussion and conclusions

The technological advances of synthetic pharmacology in the last decades overlapped the use of natural medicine especially in American and European countries. However, in recent years, there was a progressive increase in the demand of herbs and preparations of botanical origin (dietary supplements or drugs) as alternative or complementary medicine due to economic, social and cultural factors [1].

However, the use of natural herbal/plant products also has its associated risks, and among them fungal contamination and mycotoxins are public health concerns. Overall, many studies have shown that fungal contamination in plant-based supplements and medicinal herbs is quite frequent. Potential toxigenic species of Aspergillus and Penicillium have been reported as the most frequent and dominant ones, but the presence of toxigenic species of Alternaria and Fusarium may not be overlooked.

A. flavus and A. niger, known producers of aflatoxins and ochratoxin A, respectively, were often found with high incidence. In some studies, A. niger group represented more than 57% of the isolates, followed by A. section Flavi (50%) [28].

The levels of fungi and mycotoxin contamination found in plant-based ingredients throw light on the need for proper care and effective screening before their use. Thus, it is essential to highlight the need for deeper knowledge on the presence of fungi and mycotoxins (including masked forms and emergent metabolites) in plant-based raw materials widely used as ingredients by pharmaceutical companies or food industries.

Although there appeared to be a low risk to the consumers who occasionally use plant-based supplements and medicinal drugs, it is important to draw special attention to the potential risk of cumulative effects [56*]. The toxic effects resulting from the co-occurrence of multiple mycotoxins can be both additive and even synergistic, that is, the overall toxicity might be higher than the sum of individual toxicities [57]. These mycotoxin ‘cocktails’ have an underestimated toxicological hazard.

Figure 1

Finally, the risk of mycotoxin contamination in natural products, infected or not with fungi, associated with increased consumption of this type of products, impose the need to discuss appropriate standards for toxigenic moulds and mycotoxins in crude herbal drugs, medicinal plants and plant-based supplements in order to reduce the risks for consumers.

Conflict of interest statement
Nothing declared.

Acknowledgements
We would like to acknowledge the Brazilian Health Regulatory Agency—ANVISA for their financial support. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BizTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020—Programa Operacional Regional do Norte.

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cofs.2018.08.003,

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

● of special interest
●● of outstanding interest

3. A timely and important article with co-occurrence of aflatoxins (AFB1, B2, G1, G2) and OTA in medicinal seeds from China.
5. An original paper that explores the impact of health regulations on plant-based drugs, describing the situation of herbal medicines products licensed in Brazil.

An original paper that explores the occurrence of AFs in medicinal plants sold in the European Union.
27. An original paper that explores the occurrence of mycotoxigenic fungi in medicinal plants sold.

Recent review on fungi and mycotoxins on Chinese root herbs that are one of the most frequent sources for herbal medicines. The study
highlighted that AF contamination of ginseng, polygala, and liquorice must increase the awareness of the public health authorities for the safety of these herbs or medicinal foods.

Innovative study using ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) for the analysis of 57 mycotoxins in plant-based dietary supplements, including emergent toxins. This pilot study provides results about the co-occurrence of multiple toxins and discusses the associated health risk.

Special interest article because the authors summarized mycotoxin contamination level in different food and feed products facilitating the analysis of potential cumulative effects through different goods.