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In this work, the difficulties inherent to perturbative calculations in the velocity gauge are ad-
dressed. In particular, it is shown how calculations of nonlinear optical responses in the independent
particle approximation can be done to any order and for any finite band model. The procedure and
advantages of the velocity gauge in such calculations are described. The addition of a phenomeno-
logical relaxation parameter is also discussed. As an illustration, the nonlinear optical response of
monolayer graphene is numerically calculated using the velocity gauge.

I. INTRODUCTION

A common approach to understanding nonlinear opti-
cal effects in atomic and condensed matter systems comes
from a perturbation theory where the electric current is
expanded in powers of an external applied electric field1,
assumed to be sufficiently weak for the expansion to be
physically meaningful. In this framework, one attempts
to calculate nonlinear optical response functions, usually
second or third order susceptibilities, the different fre-
quency components of which describe a variety of physi-
cal phenomena like the Kerr effect, harmonic generation,
electro-optic effect, etc.

The theory was first developed for atomic systems and,
in the early nineties2,3, extended to crystalline systems,
characterized by electronic bands and the correspond-
ing Bloch functions. The simpler calculations follow two
essential assumptions which will be adopted through-
out this work: the independent particle approximation,
where explicit electron-electron interactions are disre-
garded (except possibly in the determination of the elec-
tron bands, as in Density Functional Theory), and the
electric dipole approximation, where the response func-
tions are taken to be local in space, a consequence of the
long wavelength limit of the applied electric field.

Even in this simple approach, however, difficulties were
found regarding different ways to describe the perturba-
tion. We can write the complete Hamiltonian of the crys-
tal under the influence of the external field in two ways,
either in the length gauge,

H(t) = H0(r,p)− q r ·E(t), (1)

or in the velocity gauge or minimal coupling Hamiltonian,

H(t) = H0(r,p− qA(t)), (2)

where H0 is the unperturbed crystal Hamiltonian, q =
−e is the charge of the electron and A(t) the vector

potential, chosen so that E(t) = −∂tA(t). These two
descriptions can easily be shown to be equivalent and
related by a time-dependent unitary transformation4.

The first attempts at computing nonlinear optical re-
sponses in crystals made use of the minimal coupling
method2,5, since it has the advantage of retaining the
translation symmetry of the Hamiltonian, only coupling
states with the same Bloch vector k. However, it pre-
sented some serious difficulties as it seemed that response
functions computed in the velocity gauge diverged in
the limit of low frequencies, even for the case of zero
temperature insulators, where such divergences should
clearly be absent. A more detailed analysis of the lin-
ear response showed that these were only apparent diver-
gences that could be removed by careful manipulations
and sum rules2. As presented, these procedures were
cumbersome and not easily generalizable to higher order
response functions.

This led to a preference for the length gauge in non-
linear optical response calculations3,6–9. This gauge
presents its own difficulties, the most notorious one be-
ing that the matrix elements of the position operator in
the Bloch basis are ill-defined until the thermodynamic
limit is taken and, even then, they can be defined only
as a distribution. Inspired by Blount’s work10, Aversa et
al.3 pointed out that the position operator will appear
in the calculations only inside commutators whose ma-
trix elements are well defined and successfully developed
the theory in the length gauge. This formalism has since
been applied to various systems6,8,9,11–13.

More recently, and still within the length gauge ap-
proach, simple expressions for the nonlinear conductivity
to arbitrary order in the electric field were derived by
the present authors, making use of the covariant deriva-
tive notation4. These expressions are useful for inspec-
tion and reduced the calculation procedure to a fairly
straightforward expansion of commutators. Although the
idea of a “generalized derivative” was already around in
the literature3, it involved separating the intra and inter-
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band components of the position operator and response
functions. The emphasis on these distinctions, originally
motivated by the intent of applying the equations to the
special case of clean, cold semiconductors and to make
analogies with atomic and free electron systems, made
the calculations less transparent, in our view.

In this same work4, similar and equivalent expressions
were derived using the velocity gauge, for the Hamilto-
nian

H0(r,p) =
p2

2m
+ VL(r), (3)

where the second term is the periodic lattice potential.
It was shown that, in the form derived from the velocity
gauge, the expressions for the nonlinear optical coeffi-
cients lose their validity if only a finite number of bands
around the Fermi level are taken into account. This diffi-
culty was recognized early on3,14, and, together with the
apparent infrared divergences, led to the velocity gauge
being less adopted. The reasons for the failure of these
expressions under a truncation in band space were also
understood3,15 and recently subjected to a more quan-
titative analysis16. One of the arguments3 consisted in
noting that the sum rules that connected the expressions
in the two gauges seem to rely on commutator identities
such as

[
rα, vβ

]
=
i~
m
δαβ (4)

(r and v, position and velocity operators), which require
an infinite number of bands to hold. This led to a com-
mon misconception that the velocity gauge could only be
properly implemented if an infinite number of bands is
taken into account3,8,14,16–18. In fact, sum rules of greater
generality have been constructed which remain true even
under truncation of the bands4. Nonetheless, various au-
thors have indicated that the velocity gauge, if employed,
would lead to different, unphysical, predictions16,17.

The fundamental difference between the two gauges
that seems not to have been properly appreciated con-
cerns the form of the perturbation. In the velocity gauge,
the form of the perturbation depends explicitly on H0,
unlike in the case of the length gauge. Expressions for
the nonlinear coefficients derived from the Hamiltonian
in Eq. 3, cannot be truncated to a finite set of bands. A
truncation of H0 implies a different form of the perturba-
tion, and leads to different expressions for the nonlinear
conductivities in the velocity gauge, but not in the length
gauge.

In order to build the theory in its most general form,
we will make no assumptions on the form of H0, other
than it has the periodicity of some Bravais lattice, so
that Bloch’s theorem applies and there is a well defined
First Brillouin Zone (FBZ). The derived forms for the
nonlinear conductivities will be completely equivalent to

the ones obtained from the length gauge and can be ap-
plied to any finite band model; no commutator identities
of the kind of Eq. 4 are assumed.

In the next section, the equivalence of the two gauges
is revisited, starting from an Hamiltonian with a finite
set of bands, and some formal concepts behind the ve-
locity gauge formulation are reviewed. In section III, the
equation of motion for the reduced density matrix in the
velocity gauge is introduced in a form more general than
previously presented. Recursively solving the equation
of motion leads to the nonlinear conductivities. The ad-
vantages and subtleties of using this gauge are discussed
in Section IV, where it is argued that the velocity gauge
should prove more efficient for numerical computations.
In Section V, the introduction of a phenomenological re-
laxation parameter is addressed, and proves to be less
trivial than expected. As an example, in Section VI
the formalism is applied to third harmonic generation
in graphene, in a full Brillouin zone calculation, and a
comparison is made with already existing results in the
literature. Section VII contains some closing remarks.

II. DENSITY MATRIX FORMALISM

In very general terms, which do not exclude finite band
models, the single particle unperturbed Hamiltonian H0

can be written as

H0 =
∑
s

∫
ddk

(2π)d
|ψks〉 [H0]kss 〈ψks| , (5)

where |ψks〉 are the Bloch band states and [H0]kss′ ≡
εksδss′ , with εks the band energies.

To represent the scalar potential, −qE ·r, in the Bloch
basis, we require from the start the infinite volume limit.
We define the normalization of the Bloch wave functions
as

〈ψk′s′ |ψks〉 = (2π)
d
δss′δ (k− k′) . (6)

where d is the dimensionality of the system. Using
Blount’s results for the matrix elements of the position
operator10,

〈ψks| r |ψk′s′〉 = (2π)d [δss′(−i)∇k′δ(k′ − k)

+ δ(k− k′) ξkss′ ] , (7)

where ξkss′ is the Berry connection19,20, one obtains for
the single particle perturbed Hamiltonian in the length
gauge4(see Appendix B)

HE =

∫
ddk

(2π)d

∑
s,s′

|ψks〉 [δss′εks − iqE(t) ·Dkss′ ] 〈ψks′ |

(8)
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where the covariant derivative, Dkss′ , is defined by

Dkss′ ≡ δss′∇k − iξkss′ . (9)

In our previous paper4, we discussed the equivalence
of the length and velocity gauges, starting from a the-
ory with an infinite number of bands (Eq. 3); we showed
that a suitable truncation of final expressions for the non-
linear optical response functions to a finite set of bands
leads to a reasonable approximation only in the length
gauge. Therefore, if we want to formulate correctly a
velocity gauge calculation with a finite set of bands, we
should take Eqs. 8 and 9 as our starting point, and ob-
tain the single particle velocity gauge Hamiltonian, HA,
from a time dependent unitary transformation of HE . In
this fashion, we preserve the equivalence of both descrip-
tions, even when the sum over band indexes is finite. In
appendix B we derive

HA =
∑
s,s′

∫
ddk

(2π)
d
|ψks〉HA

kss′ 〈ψks′ | (10)

with

HA
kss′ = εks δss′ + Vkss′(t), (11)

the time dependent perturbation, Vkss′(t), being ex-
pressed as a power series in the vector potential,

Vkss′(t) =

∞∑
n=1

(−q)nAα1
(t) . . . Aαn

(t)

n!
hα1...αn

kss′ , (12)

where

hα1...αn

kss′ ≡ ~−n [Dαn

k , [. . . , [Dα1

k , H0]] ...]
ss′
. (13)

An implicit summation over repeated Cartesian compo-
nents αi is henceforth assumed. The coefficients in the
expansion are written explicitly in Eq. 13 in terms of
commutators involving covariant derivatives.

If we take the coefficient of the first order term in the
expansion of Eq. 13 as an example,

hαkss′ = ~−1 [Dα
k , H0]ss′ =

1

~
∂εks
∂kα

δss′−
i

~
ξαkss′(εks′−εks)

(14)
These are the unperturbed velocity matrix elements,
since

v
(0)
kss′ = −i~−1 [r, H0]kss′ = ~−1 [Dk, H0]ss′ = hkss′ .

(15)
Had we started from the Hamiltonian of Eq. 3, the

perturbation expansion of Eq. 12 would be reduced to
the linear term in A(t); the second order term would

have been a k independent constant, irrelevant for the
dynamics, and all higher order terms would have been
zero4. But to proceed in more general terms and ensure
equivalence between length and velocity gauges for finite
band models, we must, for now, retain all the terms in
the series.

For the analysis of the steady state response of the elec-
tric current density, J, it is useful to rewrite the pertur-
bation of Eq. 12 in frequency space, where the connection
can already be made with the electric field components
by E(ω) = iωA(ω),

Vkss′(ω) =

∞∑
n=1

∫ +∞

−∞

dω1

2π
...
dωn
2π

× (iq)nEα1
(ω1) . . . Eαn

(ωn)

n! ω1 . . . ωn
hα1...αn

kss′

×(2π) δ(ω − ω1 − · · · − ωn) (16)

Having carefully defined the perturbation in the veloc-
ity gauge, we can turn to the nonlinear optical response
functions, defined in frequency space by a similar expan-
sion,

〈Jα〉(ω) =

∫
dω1

2π
σ
(1)
αβ (ω1)Eβ(ω1) (2π) δ(ω − ω1)

+

∫
dω1

2π

dω2

2π
σ
(2)
αβγ(ω1, ω2)Eβ(ω1)Eγ(ω2)

× (2π) δ(ω − ω1 − ω2)

+ . . . (17)

The ensemble average of the electric current density, as
for any observable, is given in terms of the density matrix
ρ,

〈J 〉(t) = Tr[J ρ(t)] = q

∫
ddk

(2π)d

∑
ss′

vkss′ Tr
[
c†kscks′ρ(t)

]
= q

∫
ddk

(2π)d

∑
ss′

vkss′ρks′s(t) (18)

where the reduced density matrix (RDM) is defined as a
the expectation of a product of a creation and a destruc-
tion operator in Bloch states:

ρks′s(t) ≡ Tr
[
c†kscks′ρ(t)

]
= 〈c†kscks′〉. (19)

The standard density matrix formalism computes the
nonlinear conductivities by expanding the RDM in pow-
ers of the electric field. In the velocity gauge, however,
the electric current is an explicitly time and field depen-
dent observable. The velocity matrix elements are defined
by −i~−1

[
r, HA

]
= ~−1

[
D, HA

]
and also have to be ex-

panded in powers of the electric field:
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vβkss′(ω) =

∞∑
n=0

∫ +∞

−∞

dω1

2π
...
dωn
2π

× (iq)nEα1
(ω1) . . . Eαn

(ωn)

n! ω1 . . . ωn
hβα1...αn

kss′

×(2π) δ(ω − ω1 − · · · − ωn) (20)

The expansion must therefore be done in the density ma-
trix and the velocity matrix elements simultaneously. In
the absence of an external field, the current is

〈J〉(0) = q

∫
ddk

(2π)d

∑
ss′

v
(0)
kss′ρ

(0)
ks′s. (21)

The first order response is

〈J〉(1) = q

∫
ddk

(2π)d

∑
ss′

(
v
(1)
kss′ρ

(0)
ks′s + v

(0)
kss′ρ

(1)
ks′s

)
, (22)

and, in general,

〈J〉(n) = q

∫
ddk

(2π)d

n∑
p=0

∑
ss′

v
(n−p)
kss′ ρ

(p)
ks′s (23)

The expansion of the velocity matrix elements in the
external field is already defined in Eq. 20. The expan-
sion of the reduced density matrix involves solving its
equation of motion recursively.

III. RECURSIVE SOLUTIONS TO THE
EQUATION OF MOTION

In the absence of scattering, the equation of motion for
the reduced density matrix is

i~ ∂tρkss′ =
[
HA, ρ

]
kss′

(24)

We can isolate the perturbation on the right hand side,

(i~ ∂t −∆εkss′)ρkss′ = [V, ρ]kss′ (25)

where ∆εkss′ ≡ εks − εks′ .
To solve the equation of motion perturbatively, it will

be written in frequency space, order by order in the elec-
tric field, using the expansion of Eq. 16. For every order

n, the reduced density matrix will be expressed in terms
of its lower order terms. To alleviate notation and make
the recursion relation clearer, we factorize the electric
fields and other common factors by defining,

ρ
(n)
kss′(ω) ≡

∫
dω1

2π
. . .

dωn
2π

(iq)nEα1
(ω1) . . . Eαn

(ωn)

ω1 . . . ωn
× (2π) δ(ω − ω1 − · · · − ωn) ρα1...αn

kss′ (ω1, . . . , ωn)
(26)

The goal is now to express the recursion relation be-
tween objects of the form ρα1...αn

kss′ (ω1, . . . , ωn). In the
absence of a perturbation, the reduced density matrix is
simply the Fermi-Dirac distribution,

ρ
(0)
kss′ = f(εks) δss′ =

δss′

1 + exp
(
εks−µ
kBT

) , (27)

which, when replaced in Eq. 21, implies 〈J〉(0) = 0, as
expected.

The first order term is

ραkss′(ω) =

[
hαk , ρ

(0)
k

]
ss′

~ω −∆εkss′
, (28)

and the second order,

ραβkss′(ω1, ω2) =
1

~ω1 + ~ω2 −∆εkss′

×
([
hαk , ρ

β
k(ω2)

]
ss′

+
1

2

[
hαβk , ρ

(0)
k

]
ss′

)
(29)

The pattern is already becoming clear. As an addi-
tional example, the third order term has the form,

ραβγkss′(ω1, ω2, ω3) =
1

~ω1 + ~ω2 + ~ω3 −∆εkss′
×([

hαk , ρ
βγ
k (ω2, ω3)

]
ss′

+
1

2

[
hαβk , ργk(ω3)

]
ss′

+
1

3!

[
hαβγk , ρ

(0)
k

]
ss′

)
(30)

Finally, to general order n, the perturbative solution
to the equation of motion is recursively expressed as
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ρα1...αn

kss′ (ω1, . . . , ωn) =
1

~ω1 + · · ·+ ~ωn −∆εkss′

n∑
m=1

1

m!

[
hα1...αm

k , ρ
αm+1...αn

k (ωm+1, . . . , ωn)
]
ss′

(31)

This recursion relation can be unfolded into lengthy ex-
pressions and its structure analyzed in more detail. How-
ever, we shall see that the real value of these expressions
lies in their numerical evaluation, for which a recursion

relation is sufficient.
Applying Eq. 20 and Eq. 26 to the Eq. 23, the general

form of the nonlinear optical response functions in the
velocity gauge is obtained,

σ
(n)
βα1...αn

(ω1, . . . , ωn) =
inqn+1

ω1 . . . ωn

∫
ddk

(2π)d

∑
ss′

n∑
p=0

h
βα1...αp

kss′

p!
ρ
αp+1...αn

ks′s (ωp+1, . . . , ωn) (32)

This form of the nonlinear optical response functions will
still have to undergo the usual symmetrization procedure
to ensure intrinsic permutation symmetry 11. Albeit triv-
ial, this last step is a bit cumbersome to write down and
will be left implicit.These expressions are equivalent to
the ones we derived in a previous work4 using the length
gauge. Although far more complicated, they have their
advantages, which we will discuss in the next section.

The equivalence of the results of the two approaches,
length and velocity gauges, is guaranteed by their being
related by a unitary transformation (see Appendix B). It
can also be explicitly shown by using very general sum
rules to map the expressions for the nonlinear conductiv-
ities in the velocity gauge to those of the length gauge,
order by order, as shown in an appendix of our previous
work4. The proof for first order responses is nonetheless
presented in appendix A, as an example of these sum
rules, which generalize those derived in earlier works2,
no longer rely on commutator identities (Eq. 4), and are
valid for a model with a finite number of bands.

IV. LENGTH VS VELOCITY GAUGE

As usual, there are advantages and disadvantages as-
sociated with any particular choice of gauge. By con-
sidering the (exactly equivalent) forms of the nonlinear
conductivities derived in the two gauges, the strengths
and weaknesses of each can be analyzed.

A first look at Eq. 32 will immediately bring out the
usual concerns with infrared divergences in the velocity
gauge form, due to all the inverse frequency factors. We

1 It is a consequence of the definition in Eq. 17 that only the sym-
metric part of the response functions contributes to the integral
and is therefore physical.

emphasize again, however, that this expression is equiva-
lent to the one obtained from the length gauge and there-
fore these divergences are only apparent. Manipulating
the expressions in the velocity gauge and using a series of
sum rules, it can be shown that Eq. 32 is divergence free.
This approach was the one originally pursued2, but this
use of sum rules became rather pointless after the length
gauge formulation had been developed3. If the sum rules
are employed in the velocity gauge to remove apparent
divergences, one will simply arrive at the same expression
as obtained more straightforwardly in the length gauge.
This equivalence through sum rules4 does not demand an
infinite number of bands, but it does put a constraint on
the use of Eq. 32, namely that the integration must be
done over the full FBZ to cancel divergences. An effec-
tive continuum Hamiltonian describing a portion of the
FBZ—like the Dirac Hamiltonian for graphene—, will
not suffice, since these sum rules rely on the periodicity
in k space of the quantities involved.

Having clarified this point, it can still be noted that
the velocity gauge form is considerably more elaborate;
less useful not only for inspection, but in an actual ana-
lytical calculation. As an example, the expression of the
second harmonic generation with all components along
the x axis, in the length gauge4, is 2,

σ(2)
xxx(ω, ω) =− q3

∫
ddk

(2π)d

∑
ss′

hxkss′

2~ω −∆εks′s

×
[
Dx

k,
1

~ω −∆ε
◦
[
Dx

k, ρ
(0)
k

]]
s′s

(33)

while in the velocity gauge,

2 The symbol ◦ stands for the Hadamard product: (A ◦ B)ss′ =
Ass′Bss′
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σ(2)
xxx(ω, ω) = − q

3

ω2

∫
ddk

(2π)d

∑
ss′

(
hxkss′ρ

xx
ks′s(ω, ω)

+hxxkss′ρ
x
ks′s(ω) +

1

2
hxxxkss′ρ

(0)
ks′s

)
(34)

where we still have to write the density matrix compo-
nents,

ρxkss′(ω) =

[
hxk, ρ

(0)
k

]
kss′

~ω −∆εkss′
(35)

ρxxkss′(ω, ω) =
1

2~ω −∆εkss′

×
(

[hxk, ρ
x
k(ω)]kss′ +

1

2

[
hxxk , ρ

(0)
k

]
ss′

)
(36)

This simple example illustrates that there is no advan-
tage in doing the analytical calculations in the velocity
gauge, although inspection of previous equations shows
an interesting point: there are only simple poles in the
velocity gauge form (~ω − ∆ε)−1, while in the length
gauge, by differentiation, higher order poles emerge.
Still, for analytical calculations, we would advocate the
more transparent and simpler length gauge approach3,4.

The strength of the velocity gauge form lies in the dif-
ferent arrangement of the commutators. The covariant
derivatives are no longer applied to the density matrix
in its recursion relation3. Instead, they operate only on
the unperturbed Hamiltonian H0 in the determination
of the functions hkss′ (Eq. 13), which are independent of
frequency, temperature and chemical potential.

A careful look at the algorithm of the previous sec-
tion, shows that for the nonlinear conductivity of order
n, there are n + 1 such functions to compute by suc-
cessively applying a covariant derivative: hα1...αm

kss′ with
m = 1, ..., n+ 1. In the previous example of second har-
monic generation, these would be hxkss′ , h

xx
kss′ and hxxxkss′ .

Further reducing this algorithm to its fundamental in-
gredients, we note that these calculations demand only a
knowledge of two objects, which fully define the system
under consideration: the dispersion relation εks and the
Berry connection ξkss′ .

Once these hα1...αn

kss′ functions are analytically deter-
mined, the integrand in Eq. 32 or in Eq. 34 can be nu-
merically evaluated at each k value, independently and
quite easily. In fact, the procedure involves evaluating
the analytic hα1...αn

kss′ functions and the Fermi-Dirac dis-
tribution at the k point and then computing simple com-
mutators and traces of numeric matrices. It has no nu-
merical derivatives at all. This is in contrast with the

3 In this aspect, the approach here has similarities with the one
employed in18.

length gauge, where either the full expression of the re-
sponse function is analytically calculated or numerical
derivatives have to be applied in each step of the density
matrix recursion relation. Either way, via the product
rule and higher order poles, the number of complicated
terms to evaluate grows very fast with n in the length
gauge approach.

For this reason, the form of the nonlinear conductivity
in Eq. 32, derived from the velocity gauge, should provide
a more efficient numerical approach. The authors have
implemented numerically the expressions in both gauges
and done calculations on the nonlinear conductivity of
monolayer graphene and observed that the computation
times were indeed considerably smaller when Eq. 32 was
used. The velocity gauge results are presented in Sec-
tion VI.

V. PHENOMENOLOGICAL RELAXATION
PARAMETERS

In Eq. 32, like in all previous equations, the addition of
the usual infinitesimal imaginary part to the frequencies,
ω → ω + i 0+, is always implicit, as imposed by causal-
ity. This provide us with well defined relaxation free
expressions. From the numerical standpoint, the imagi-
nary part must always be finite, but can be taken to be
smaller than any other energy scale in the problem.

However, one is also interested in modeling relaxation
processes due to scattering of electrons with impurities,
phonons and other electrons. A simple phenomenological
approach is to add one or more relaxation parameters to
the frequency poles. A common justification for the addi-
tion of a relaxation parameter γ comes from considering
a scattering term in equation of motion21,

i~ ∂tρkss′ = [H, ρ]kss′ − iγ(ρkss′ − ρeqkss′) (37)

If the perturbation is turned off, the density matrix
relaxes to the equilibrium distribution ρeq. In the length
gauge approach, ρeq = ρ(0). A simple rearrangement4,

(i~ ∂t + iγ −∆εkss′)ρkss′ = [V, ρ]kss′ + iγρ
(0)
kss′ (38)

makes clear how this will impact the nonlinear conduc-
tivities. The second term on the right hand side of Eq. 38
is not relevant to any order n 6= 0, implying that the only
alteration will be to add an imaginary constant to each
pole in frequency space,

i~ ∂t + iγ −∆εkss′ → ~ω + iγ −∆εkss′ (39)

4 V here is not the same as in Eq. 20. It stands for the perturbation
in the length gauge: Vkss′ (t) = −iqEα(t)Dα

kss′
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Again, using the second harmonic generation as an ex-
ample, the scattering term will induce the following sim-
ple modification of the expression in Eq. 33,

σ(2)
xxx(ω, ω) = −q3

∫
ddk

(2π)d

∑
ss′

hxkss′

2~ω + iγ −∆εks′s

×
[
Dx

k,
1

~ω + iγ −∆ε
◦
[
Dx

k, ρ
(0)
k

]]
s′s

(40)

In the case of the velocity gauge, this change is much
more complicated, since the equilibrium distribution de-
pends on the perturbation. Having in mind the connec-
tion between the two gauges, it is easy to see that the
equivalent ρeq in the velocity gauge equation of motion
should be obtained by an unitary transformation4 of the
Fermi-Dirac distribution5. This again translates into an
expansion in the vector potential,

ρeqkss′(t) =

∞∑
n=0

(−q)nAα1
(t) . . . Aαn

(t)

n! ~n

×
[
Dαn

k ,
[
. . . ,

[
Dα1

k , ρ
(0)
k

]]
...
]
ss′

(41)

If this equilibrium distribution is used, the results ob-
tained will, indeed, be equivalent to the ones from the
length gauge. Nevertheless, as discussed in the previous
section, the main advantage of using the velocity gauge
comes from the absence of derivatives acting on the den-
sity matrix, and once the term in Eq. 41 is added to
the equation of motion, that advantage, and the greater
numerical efficiency of this approach, are lost.

As a consequence, we will follow a different phe-
nomenology, more appropriate for our computations. To
each frequency ωj we shall add a constant imaginary
part6: ~ωj → ~ωj + iγ. This method comes naturally
from considering the adiabatic switching of the external
fields. It looks similar to the previous method, but the
expression for second harmonic generation (as would be
obtained in the length gauge)

σ(2)
xxx(ω, ω) = −q3

∫
ddk

(2π)d

∑
ss′

hxkss′

2~ω + 2iγ −∆εks′s

×
[
Dx

k,
1

~ω + iγ −∆εk
◦
[
Dx

k, ρ
(0)
]]
s′s

(42)

has now a factor of two in the relaxation parameter that
appears in one of the poles. This might seem like a slight

5 The use of the Fermi-Dirac distribution as ρeq in the velocity
gauge leads to erroneous results, as already noted in22, such as
the appearance of a nonzero electric current in the absence of
an applied electric field, by means of choosing a constant vector
potential.

6 This corresponds to choosing Γ(n) = nγ in the relaxation pa-
rameters in Cheng et. al.12.

difference, but is a distinct phenomenology and, as we
shall see, even for low values of γ it can lead to completely
different results for very low frequencies ~ω � γ and in
a region of width γ around resonances.

VI. NUMERICAL IMPLEMENTATION: THIRD
HARMONIC GENERATION IN GRAPHENE

In this section, the velocity gauge approach is tested
numerically, by computing the third order conductivity of
a material whose nonlinear optical properties have been
the subject of intensive research in recent years: mono-
layer graphene11,12,18,22–27.

Monolayer graphene is a two dimensional sheet of car-
bon atoms, displayed in an honeycomb lattice. It has two
atoms per Bravais lattice site. Here, we shall consider
only the simplest nearest neighbor tight binding model
that describes the electronic properties of graphene28,

H0 = t

[
0 φ(k)

φ∗(k) 0

]
(43)

where

φ(k) = 1 + e−ik·a1 + e−ik·a2 = |φ(k)| e−iθ(k) (44)

with t being the hopping parameter and a1 =
(1/2,

√
3/2) a and a2 = (−1/2,

√
3/2) a the basis vectors

of the Bravais lattice. From this model Hamiltonian, the
dispersion relation and the Berry connection can be com-
puted,

εks = s t |φ(k)| (45)

ξkss′ = −ss
′

2
∇kθ (46)

with band index s = ±1 (−1 for valence and +1 for
conduction band) 7.

The knowledge of the dispersion relation and the
Berry connection is sufficient for a calculation of the
nonlinear conductivity, independently of the gauge. It
can be shown that a single independent component

σ
(3)
xxxx(ω, ω, ω) describes third harmonic generation. We

shall confine ourselves to the study of this frequency com-
ponent of the third order nonlinear conductivity.

Results obtained from the standard length gauge ap-
proach are presented in Fig. 1, for frequencies near the

7 Under the approximation of no overlap between the Wannier or-
bitals. Also, an additional constant term in the Berry connection
is neglected, since it is not relevant for frequencies near the Dirac
point.
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FIG. 1: Frequency dependence of the third order non-
linear conductivity of graphene, normalized to σ0 =
3 q4a2t2/16π~µ4 (same normalization used in21), at zero tem-
perature. The parameters used were: (a) µ/t = 0.1, γ/t =
0.011; (b) and µ/t = 0.1, γ/t = 0.001. The curves were
obtained from a length gauge approach, with the relaxation
parameter γ introduced via a scattering term in the equation
of motion (Eq. 38).
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FIG. 2: Anomalous feature of the third order nonlinear con-
ductivity of graphene from Fig. 1(b), in a region near the
three photon resonance 3~ω = 2µ.

Dirac point. In this case, the analytical form of the third
order conductivity in the Dirac point approximation was
calculated and then plotted. Also, γ is introduced via
the additional scattering term in the equation of motion
(first type of phenomenological treatment described in
the previous section), as in Mikhailov’s work21.

These results are in agreement with analogous calcula-
tions already in the literature12,18,21, with the strongest
feature present at the three photon resonance 3~ω = 2µ.
In particular, Fig. 1(a) is identical to Fig. 3(b) and
Fig. 5 in refs18 and21, respectively. Fig. 1(b) shows a
very anomalous behavior at the resonance, which is al-
ways present in a region |3~ω − 2µ| ≤ γ for small but
finite γ. Fig. 2 shows a close-up of this region. This
strange feature near resonance is analyzed in detail in21,
where it is regarded as a prominent feature of potential
interest, since in practice γ is always finite. However,
a more careful analysis shows that despite the unusual
shape of this feature, in the limit γ → 0+, the scattering
free result in18 is indeed obtained (see Appendix C).

To do the same calculations with the velocity gauge
approach developed here, we evaluate analytically not
the full third order conductivity but only the following
functions

hxkss′ =
a sin

(
kxa
2

)
Css′

~
√

3 + 2 cos (kxa) + 4 cos
(
kxa
2

)
cos
(√

3kya
2

)
(47)

hxxkss′ =
a2 cos

(
kxa
2

)
Css′

2~2
√

3 + 2 cos (kxa) + 4 cos
(
kxa
2

)
cos
(√

3kya
2

)
(48)

hxxxkss′ = − a2

4~2
hxkss′ hxxxxkss′ = − a2

4~2
hxxkss′ (49)

C ≡ t

×

2 cos
(
kxa
2

)
+ cos

(√
3kya
2

)
−i sin

(√
3kya
2

)
i sin

(√
3kya
2

)
−2 cos

(
kxa
2

)
+ cos

(√
3kya
2

)
(50)

All these analytical functions follow from direct evalu-
ation of the commutators (Eq. 13) using Eqs. 45 and 46.
At this point, the expression in Eq. 32 for the nonlin-
ear conductivity (with n = 3) can be evaluated by nu-
merical integration over the full FBZ. The phenomenol-
ogy adopted here is the one that follows from adiabatic
switching, for the reasons discussed in the previous sec-
tion.

The velocity gauge results are in Fig. 3. The curves
are markedly different than the ones obtained from the
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FIG. 3: Frequency dependence of the third order non-
linear conductivity of graphene, normalized to σ0 =
3 q4a2t2/16π~µ4 (same normalization used in21), at zero tem-
perature. The parameters used were: (a) µ/t = 0.1, γ/t =
0.011; (b) µ/t = 0.1, γ/t = 0.001. The solid curves were ob-
tained from a length gauge approach and the dashed ones
from a velocity gauge calculation. The results are identi-
cal. The relaxation parameter γ was introduced by adiabatic
switching, simply replacing ~ω → ~ω + iγ.

length gauge, especially for large γ. This should came
with no surprise, since a different phenomenological
treatment is adopted. To prove that the difference be-
tween the two curves is only due to the way the relaxation
parameters are introduced, the length gauge calculations
were performed again, now with this second type phe-
nomenological treatment (using the third order analogue
of Eq. 42) and included in the plots of Fig. 3. The results
obtained in the two gauges are identical.

Of course, as we take the relaxation free limit γ → 0+

the results of both phenomenological treatments also co-
incide. However, for finite γ it may lead to some consider-
ably different behavior of the nonlinear conductivity. In
particular, we note that in the phenomenology adopted
here (~ωi → ~ωi + iγ), those anomalous features seen in
Fig. 1 and discussed in21 are not present. Instead, a more
plausible smooth curve is seen at the resonances.

As a final remark, we emphasize that the results pre-
sented here for the velocity gauge involved a complete
two-band tight binding model and an integration over

the full FBZ, not an effective Dirac Hamiltonian, as in
the case of the length gauge results. This has some con-
sequences. First, it had been suggested that a possible
source for the two order of magnitude discrepancy be-
tween theoretical and experimental results in graphene
could be the use of an effective Hamiltonian18. The
agreement displayed in Fig. 3 establishes that the Dirac
point approximation is valid for the range of frequencies
adopted in previous studies12,18,21. Second, the use of
complete bands will allow us to proceed towards higher
frequencies and study spectral regions where the Dirac
Hamiltonian does not give an accurate description.

VII. CONCLUSIONS

In summary, a velocity gauge approach to calculations
of nonlinear optical conductivities was developed in this
work, within the density matrix formalism. It was shown
that, contrary to common belief, the results are the same
as those from the length gauge, as demanded by gauge in-
variance. No difficulties come from applying this velocity
gauge formalism to finite band models.

The velocity gauge provides an efficient algorithm for
computing nonlinear conductivities. The dispersion re-
lation and the Berry connection of a crystal are the pre-
requisites and define the crystalline system under study.
A series of commutators (Eq. 13) can then be analyt-
ically computed. From these, the conductivity can be
numerically evaluated for any frequencies, temperature,
chemical potential, relaxation parameter and to any or-
der, without using any numerical derivatives.

Previously, studies of nonlinear conductivities often
involved writing down analytical expressions for the
full conductivity. For third order, this already be-
comes rather cumbersome. Analytically, it is only re-
ally tractable for simple effective continuum Hamiltoni-
ans (such as the Dirac Hamiltonian). The velocity gauge
approach developed here does not have such complica-
tions, is easily generalizable to higher orders and is always
applied to complete bands. This gauge provide us with
a simple yet powerful method to compute the nonlinear
optical response functions of crystalline systems.

Appendix A: Equivalence of linear responses

As an illustration of the general sum rules implicit in
a velocity gauge treatment, the expression for the linear
conductivity in the velocity gauge

σ
(1)
αβ (ω) =

iq2

ω

∫
ddk

(2π)d

∑
ss′

hβkss′
[
hαk , ρ

(0)
k

]
s′s

~ω −∆εks′s
+ hβαkss′ρ

(0)
ks′s


(A1)

will be shown to be equivalent to the one obtained from
a length gauge approach,



10

σ
(1)
αβ (ω) = −iq2

∫
ddk

(2π)d

∑
ss′

hβkss′
[
Dα

k , ρ
(0)
k

]
s′s

~ω −∆εks′s
(A2)

To begin, the Jacobi identity is used to move the covari-
ant derivative to the density matrix

~
[
hαk , ρ

(0)
k

]
=
[
[Dα

k , H0] , ρ
(0)
k

]
=
[[
Dα

k , ρ
(0)
k

]
, H0

]
+
[
Dα

k ,
[
H0, ρ

(0)
k

]]
=
[[
Dα

k , ρ
(0)
k

]
, H0

]
(A3)

where in the last step we took into account that the com-

mutator of two diagonal matrices is zero
[
H0, ρ

(0)
k

]
= 0.

This leads to

[
hαk , ρ

(0)
k

]
ss′

= ~−1
[
Dα

k , ρ
(0)
k

]
ss′

∆εks′s (A4)

The first term in in parenthesis of Eq. A1, dropping the
k index for simplicity, becomes

hβss′
[
hα, ρ(0)

]
s′s

~ω −∆εs′s
=
hβss′ ~−1

[
Dα, ρ(0)

]
s′s

∆εss′

~ω −∆εs′s

=hβss′ ~
−1
[
Dα, ρ(0)

]
s′s

−
ω hβss′

[
Dα, ρ(0)

]
s′s

~ω −∆εs′s
(A5)

The second term when replaced in Eq. A1 will give the
length gauge result in Eq. A2. The remaining contribu-
tions must therefore be zero and form our sum rule,

iq2

ω

∫
ddk

(2π)d

∑
ss′

(
hβkss′ ~

−1
[
Dα

k , ρ
(0)
k

]
s′s

+ hβαkss′ρ
(0)
ks′s

)
= 0

(A6)
This can be further simplified through

hβαss′ ≡ ~−1
[
Dα, hβ

]
ss′

(A7)

to

∑
ss′

(
hβss′ ~

−1
[
Dα, ρ(0)

]
s′s

+ hβαss′ρ
(0)
s′s

)
(A8)

=~−1
∑
s

[
Dα, hβρ(0)

]
ss

(A9)

leading to the form

iq2

~ω

∫
ddk

(2π)d

∑
s

[
Dα

k , h
β
kρ

(0)
k

]
ss

= 0 (A10)

which can be recognized as a particular case of the sum
rules identified in the appendix A of4. The commutator
with Dα can be broken into two pieces, one involving the
Berry connection which is trivially zero (the trace of a
proper commutator is always zero) and another involving
a conventional derivative,

iq2

~ω

∫
ddk

(2π)d

∑
s′

∂

∂kα

(
hβkss′ρ

(0)
ks′s

)
= 0 (A11)

This condition is always true since the functions h and
ρ(0) are periodic in reciprocal space. The sum rule (and
therefore the equivalence between the results in the two
gauges) is therefore trivially satisfied as long as the inte-
gral is performed over the full FBZ.

Appendix B: Expansion of HA
0 on the vector

potential

In our previous paper4, we discussed in detail the
equivalence of the length and velocity gauges in the con-
text of the unperturbed Hamiltonian of Eq. 3. In this ap-
pendix, we review this equivalence, using from the start
a representation of the crystal Hamiltonian in terms of a
set of bands that can be finite.

The representation of the position operator in the
Bloch basis4,10requires the thermodynamic limit. We
choose the following normalization for the Bloch states

〈ψk′s′ |ψks〉 = (2π)
d
δ (k− k′) δss′ (B1)

with the corresponding resolution of the identity∑
s

∫
ddk

(2π)
d
|ψks〉 〈ψks| = 1̂ (B2)

where the sum over s may be over a finite set of bands.
The unperturbed crystal Hamiltonian is

H0 =
∑
s′,s

∫
ddk

(2π)
d
|ψks〉 [H0]kss′ 〈ψks′ | (B3)

with [H0]kss′ = εksδss′ , and εks the band energies. The
perturbation in the length gauge involves the position
operator,

HE = H0 − qE(t) · r (B4)

Using Blount’s result for r in the thermodynamic limit10,
we showed in our previous paper that4

〈ψks| r |ψ〉 =
∑
s′

iDkss′〈ψks′ |ψ〉 (B5)

where the covariant derivative is defined by Eq. 9.
From Eq. B5, we can give the position operator the

following representation:

r =
∑
s,s′

∫
ddk

(2π)
d
|ψks〉 iDkss′ 〈ψks′ | . (B6)
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On first inspection, this equation might suggest that this
operator is diagonal in Bloch momentum; it is not be-
cause of the presence of the gradient with respect to k.
Any observable that can be written as a differential op-
erator acting on the wave function in a continuous basis
will have a similar representation 8.

The full single particle Hamiltonian in the length gauge
is, therefore,

HE =
∑
s,s′

∫
ddk

(2π)
d
|ψks〉 [δss′εks − iqE(t) ·Dkss′ ] 〈ψks′ |

(B7)
The velocity gauge is obtained by a time dependent uni-
tary transformation,

|ψA(t)〉 = S(t) |ψE(t)〉 (B8)

S(t) =
∑
s,s′

∫
ddk

(2π)
d
|ψks′〉

[
e−

q
~A(t)·Dk

]
s′s
〈ψks| . (B9)

The time evolution in this gauge is

〈ψks| i~
d

dt
|ψA(t)〉 = 〈ψks|S(t)ĤES

†(t) |ψA(t)〉

+ 〈ψks| i~
dS(t)

dt
S†(t) |ψA (t)〉 . (B10)

The second term is seen to cancel the scalar potential
term in the Hamiltonian,

〈ψks| i~
dS(t)

dt
S†(t) |ψA(t)〉 = −i

∑
s′

q
dA

dt
·Dkss′〈ψks′ |ψA(t)〉

= i
∑
s′

qE(t) ·Dkss′〈ψks′ |ψA(t)〉

(B11)

The velocity gauge Hamiltonian therefore becomes

HA =
∑
s,s′

∫
ddk

(2π)
d
|ψks〉HA

kss′ 〈ψks′ | (B12)

with

HA
kss′ ≡

∑
r,r′

[
e−

q
~A(t)·Dk

]
sr

[H0]krr′
[
e

q
~A(t)·Dk

]
r′s′

At this point, we make use of the following identity for
any two operators B̂ and Ĉ,

eĈ B̂ e−Ĉ = B̂ +
[
Ĉ, B̂

]
+

1

2!

[
Ĉ,
[
Ĉ, B̂

]]
+ . . . (B13)

and apply it to Eq. B12 with B̂ = H0 and Ĉ =
− q

~A(t) ·Dk, to get

HA
kss′ =

∞∑
n=0

(−q)nAα1
(t) . . . Aαn

(t)

~n n!

× [Dαn

k , [. . . , [Dα1

k , H0]] ...]
ss′

=εksδss′

+

∞∑
n=1

(−q)nAα1
(t) . . . Aαn

(t)

~n n!

× [Dαn

k , [. . . , [Dα1

k , H0]] ...]
ss′

(B14)

Appendix C: Brief note on a phenomenological
feature

In21, Mikhailov pointed out that the feature observed
in Fig. 2 was due mainly to a term of the form

∼ Im
γ

(3~ω − 2µ+ iγ)2
(C1)

In the limit γ → 0, this should be considered a distribu-
tion, to be integrated over frequency. One knows that

lim
γ→0

Im
1

3~ω − 2µ+ iγ
(C2)

corresponds to a Dirac delta function, so one may ask
to what distribution corresponds Eq. C1. Since we can
write

lim
γ→0

Im
γ

(3~ω − 2µ+ iγ)2
=
−1

3~
lim
γ→0

Im ∂ω
γ

3~ω − 2µ+ iγ
(C3)

upon integration with a test function f(ω), we obtain a
contribution ∝ lim

γ→0
γ f ′(2µ/3~) which is always zero. In

this limit, the term in Eq. C1 has no weight at all. It will
not show up in an integration over ω. Similar remarks can
be made concerning the other resonances in the nonlinear
conductivity, computed via the standard phenomenolog-
ical approach; this is how the two phenomenologies dis-
cussed in Section V yield different results for any finite γ,
yet, nevertheless, become identical in the γ → 0+ limit.
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8 The more familiar case is that of the momentum px =
−i~

∫
dx |x〉 ∂x 〈x| .
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