
PCA analysis of the X dataset 

Wine chemical characterization by Near Infrared 
Spectroscopy and chemometric analysis 

Amaral, AL1,2, Genisheva, Z2, Quintelas, C2, Mesquita, DP2, Ferreira, EC2 and 
Oliveira, JM2  

 
1Instituto Politécnico de Coimbra, Instituto Superior de Engenharia de Coimbra, Rua Pedro 

Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal 
2CEB – Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal 

This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and 
BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa 
Operacional Regional do Norte. The authors also acknowledge the financial support to Cristina Quintelas through the postdoctoral grant 
(SFRH/BPD/101338/2014) and Zlatina Genisheva trough the postdoctoral grant (SFRH/BPD/108868/2015) provided by FCT . 

SCOPE 
• To examine the potential of near infrared spectroscopy (NIR)  spectroscopy, a rapid and non-destructive 

technique with minimal sample processing prior to analysis, to determine the concentration of 10 
different compounds in white wines. The collected NIR spectra ranged from 5435 cm 1 to 6357 cm 1.  

• Initially a boxplot analysis, regarding the dependent variables (Y), was performed resulting in Y outliers 
identification and removal. Next, a PCA–X analysis was carried out, regarding the independent variables 
(X) for the identification of distinct clusters and possible X outliers.  

• This led to 4 different datasets fed to the PLS analysis: [1] – ensemble with no X outliers removed; [2] – 
ensemble with X outliers removed; [3] – dataset divided in 3 clusters (1, 2 and 3) with no X outliers 
removed; and [4] – dataset divided in 3 clusters with X outliers removed.  

• An iterative PLS method was then applied, first determining the weights of each wavelength, next 
grouping the wavelength values together according to weight similarity and, finally, recalculating the 
PLS with the averaged wavelength values.  

RESULTS AND CONCLUSIONS 
• The PCA analysis allowed to identify 3 different clusters 
• The PLS analysis allowed to model all compounds with R2 

above 0.94 and RMSE values bellow 15% of the sample 
average values for 9 out of 10 compounds 

R2, RMSE and number of PLS components (n) of the PLS analysis Best model results for the studied compounds 

Compound [1] [2] [3] [4] 
R2 RMSE n R2 RMSE n R2 RMSE n1, n2, n3 R2 RMSE n1, n2, n3 

ethyl acetate 0.88 7.2 25 0.79 8.7 15 0.95 4.8 10, 10, 9 0.91 6.1 13, 9, 7 
methanol  0.90 4.3 18 0.92 3.7 24 0.96 2.7 8, 10, 9 0.92 3.7 11, 7, 7 
2-methyl-1-butanol 0.96 0.7 23 0.96 0.6 19 0.92 0.9 9, 9, 9 0.91 0.9 11, 8, 7 
3-methyl-1-butanol 0.96 5.0 20 0.95 5.8 18 0.92 7.2 9, 9, 8 0.91 7.3 9, 8, 7 
2-phenylethanol 0.97 1.0 19 0.94 1.2 17 0.92 1.4 10, 7, 8 0.91 1.5 11, 9, 7 
3-methylbutyl acetate  0.96 120.1 21 0.96 120.1 27 0.95 134.4 10, 9, 8 0.83 221.8 11, 9, 6 
ethyl lactate  0.90 44.4 18 0.94 35.0 21 0.95 32.2 9, 10, 7 0.96 27.0 12, 8, 7 
ethyl octanoate 0.91 37.7 18 0.94 32.3 19 0.92 37.1 8, 8, 9 0.93 34.2 11, 9, 7 
diethyl succinate  0.97 310.8 20 0.94 417.4 22 0.92 470.1 8, 8, 10 0.92 461.0 8, 9, 7 
diethyl malate 0.95 916.1 16 0.95 859.6 20 0.93 1081.1 7, 8, 9 0.95 873.4 9, 7, 7 


