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Abstract. In this work we present a new approach to learn, detect and predict 
unusual and abnormal behaviors of people, groups and vehicles in real-time. 
The proposed OBSERVER video surveillance system acquires images from a 
stationary color video camera and applies state-of-the-art algorithms to segment 
and track moving objects. The segmentation is based in a background subtrac-
tion algorithm with cast shadows, highlights and ghost’s detection and removal. 
To robustly track objects in the scene, a technique based on appearance models 
was used. The OBSERVER is capable of identifying three types of behaviors 
(normal, unusual and abnormal actions). This achievement was possible due to 
the novel N-ary tree classifier, which was successfully tested on synthetic data. 

Keywords: Moving object detection, Tracking, Behavior detection. 

1   Introduction 

In the 70’s, Tickner and Poulton, two researchers from the psychology field published 
a study [1] about the efficacy of human surveillance when dealing with a large number 
of cameras. The study has demonstrated that the level of attention and the accuracy of 
abnormal event detection decreases along the time. The authors also verified that hu-
man factors, such age and sex, can influence the reliability of incident detection. 

A recent work [2] from the Department of Experimental Psychology, at the Uni-
versity of Bristol, was dedicated to study if potentially antisocial or criminal behavior 
could be predicted by humans when viewing real images recorded in CCTV. The 
outcome of a signal-detection analysis established that the estimates of the perceived 
magnitude of the evidence in favor of an incident were very similar for surveillance 
experts and novices, with an average true positive detection rate of 81%. The study 
suggests that prediction of future events is indeed possible, although it is imperfect. 
Moreover, the authors pointed out to the possibility of developing automatic units to 
detect abnormal events. 

Some attempts to automatically detect and predict abnormal behaviors have been 
already presented. The ADVISOR system [3], aiming to detect vandalism acts, 
crowding situations and street fights, was one of the most relevant works in this field. 
It made use of a 3D model of a monitored area, where abnormal actions were previ-
ously defined by security experts, who described those acts using a predefined de-
scription language. This sort of approach led to a context dependent detection system, 
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where all the objects from the scene and relations between those objects need to be 
defined. 

Alessandro Mecocci in [4] introduces an architecture for an automatic real-time 
video surveillance system, capable of autonomously detecting anomalous behavioral 
events. The proposed system automatically adapts to different scenarios without any 
human intervention, and uses self-learning techniques to learn the typical behavior of 
the targets in each specific environment. Anomalous behaviors are detected if the 
observed trajectories deviate from the typical learned prototypes. Despite the signifi-
cant contribution of Mecocci’s work, it does not accomplish the particular features of 
a surveillance system, where typically the monitored area comprises different levels 
of security, i.e. the existence of restricted and public areas. Also, Mecocci made use 
of only spatial information, which is a significant lack of attributes for describing 
actions. 

To overcome the identified problems, a project called OBSERVER, which is de-
scribed in this paper, was started in 2004, aiming to automatically learn, detect and 
predict abnormal behaviors in public areas. 

The paper is organized as follows. In section 2, the segmentation process, based on 
an adaptive background subtraction algorithm, which includes shadow, highlight and 
ghost detection techniques, is described. In section 3, we present the tracking algo-
rithm and describe the appearance model approach. Then, in section 4, the main fea-
tures of the automatic dataset generation are explained. The proposed method to  
predict abnormal behaviors and the creation of the N-ary tree classifier are also de-
scribed. Finally, experimental results are presented in section 5 and, in section 6, we 
draw some conclusions. 

2   The Segmentation Process 

Segmenting moving objects is the first process of a computer based video surveillance 
system. It should provide accurate segmentation results in real-time. A good segmen-
tation process should handle image source errors, such as white noise from the cam-
era, cast shadows and highlights. To accomplish that, the OBSERVER system uses an 
adaptive background subtraction algorithm, combined with shadow, highlight and 
ghost detection and removal methods. 

In the first step of the proposed segmentation process, given an image I and a back-
ground image B, both in the RGB color space, we select the moving pixels based on a 
fixed threshold. As outcome, a binary mask, called Primary Motion Mask (PMM) is 
generated. 
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This primary mask may be affected by error sources as we can see in Figure 1 (c). 
Therefore, the process continues with the detection of shadows and highlights from 
the PMM. This is achieved by a color space transformation of the acquired image 
from RGB to HSV, from which the shadows and highlight binary masks are pro-
duced, by the following operations: 
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The ( )yxI H
n , , ( )yxI S

n ,  and ( )yxIV
n ,  represent respectively the hue, saturation and value 

components of a pixel at coordinate (x,y) from the input image I at time n. The same 
notation was applied to the background image B. 

In the above expressions, 0.65 ≤ α ≤ 0.80, 0.90 ≤ β ≤ 0.95, τS ≤ 15% of digitizer 
saturation range and τH ≤ 60 degrees of color. This is explained in detail in previous 
work [5]. The PMM is then subtracted by SM and HM, generating a Motion Mask 
(MM). 

 nnnn HMSMPMMMM ¬∩¬∩=  (4) 

Concerning noise removal, the use of separated masks for shadow and highlight 
detection allows a better result than was obtained with a common mask. The noise is 
removed from each mask by a morphologic open operator followed by a close, using 
a 3x3 structuring element. 

The resulting foreground regions from the MM are then filled in, in order to elimi-
nate holes inside segmented blobs. The resulting blobs are therefore filtered by an 
area threshold, where small regions are considered as noise and removed from the 
MM. Using this mask, the blobs are labeled and grouped into objects to be tracked, as 
described in the next section. 

Some of the detected objects may be ghosts, i.e. false positives originated by dis-
placements of background objects. In those cases, ghosts regions need to be detected 
in the MM, in order to adapt the background model accordingly. 

As stated before, an object can be composed by several segmented blobs. 
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We identify a segmented object as a ghost, only if all the blobs that constitute the 
object are classified as ghosts. This classification is determined as follows: 
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where Φ denotes the edge detection operator. 
The choice of the technique to be applied in the edge detection is critical. It must 

present good results and low response times. For this purpose the Canny, Sobel and 
Perwitt algorithms were tested.  

Despite the result quality, the computational requirements for those algorithms ex-
ceeded significantly the time requirements for our application. To overcome this 
drawback, a faster and simple, yet efficient edge detection algorithm was used. It 
compares each pixel value with is four connected neighbor pixels. If the absolute 
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difference between a pixel and one of its neighbors is higher than a given threshold, 
that pixel is marked as an edge. Based on this description, the following operator will 
then produce a binary image with all the edges detected. 
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Finally, the background image is updated in the RGB and HSV color spaces. Pixels 
belonging to shadows, highlights and objects remain unchanged. Background pixels 
of segmented regions classifieds as ghosts are set with the actual image value. The 
remaining pixels are updated by an infinite impulse response filter in order to adapt 
the reference image to slight luminosity changes. The background updating can there-
fore be expressed by: 
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where α controls how fast are the changes introduced. 

 

Fig. 1. (a) Background Image; (b) Current Image; (c) Primary Motion Mask; (d) Shadow Mask; 
(e) Highlight Mask; (f) Filtered Motion Mask 

3   Tracking of Moving Objects 

After segmenting moving objects, it is necessary to track them over the time, as long 
as they remain on the scene. For this task, a method based on appearance models was 
chosen. 

Appearance models can be seen as dynamic memory representations of objects that 
are updated, at each frame, during the track operation. They are composed by two 
masks: the Appearance Image (AI), which maintains a color model of the object; and 



902 D. Duque, H. Santos, and P. Cortez 

the Probability Mask (PM), that represents the most likely shape that the object can 
assume. An example of an appearance model can be seen in Figure 2. 

At each frame we will have a list of objects and, if in the presence of tracks, a list 
of tracks, respectively: 

{ }JOOOO ,...,, 21=  with, { }MBBO j ,=  

{ }KTTTT ,...,, 21=  with, { }PMAIBBTypeIDTk ,,,,=  

Where BB is the bounding box of the object, M is the object mask, ID is the track 
identifier, and Type indicates the object’s class, i.e. “person”, “group” or “vehicle”. 
The tracking algorithm is divided in four steps: track setup; track alignment; pixel 
assignment; and track update. 

3.1   Track Setup 

In the track setup, a correspondence matrix C, which associates each object Oj to a 
track Tk, is created. This matrix with JxK dimension, where J is the number of seg-
mented objects and K the number of detected tracks, is a binary matrix with value one 
in an element Ci,j, when the object Oj is associated with a track Tk. 

This association is established if the currently segmented object Oj is overlapped 
by a previous track Tk. An example of a correspondence matrix is: 
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In this example, there are three objects and four tracks. The first segmented object 
(first line) is a merge of the first and second tracks, i.e. first and second columns, 
respectively. Also, the first and second objects derived from a split from the second 
track. The third object is single tracked by track three, and the track four was not 
found at the current frame. 

If an object can’t be assigned to at least one track, then a new track must be cre-
ated for that object. In that case, the AI of the track is initialized with the color im-
age of the segmented object, the PM is initialized with an intermediate value, and a 
new ID is assigned to the track. The correspondence matrix C is then processed, and 
objects that are associated to a same track are joined together, forming a macro-
object (MO). 

 

Fig. 2. Example of an Appearance Model. At left the appearance image, and at right the Prob-
ability Mask with scale. 
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3.2   Track Alignment 

After performing the track setup, a list of MO and a list of tracks (Tk) are presented. In 
order to align the tracks, for each observed MO we will try to find the track displace-
ment that best fits the appearance model of Tk with the MO. This is done for all the 
tracks assigned to a MO, and starting from those tracks whose objects are closest to 
the camera. The displacement (δ) is obtained by maximizing the fitting function PFIT: 
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Considering that color components are uncorrelated and have equal variance, then: 
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The displacement is initialized with the values of the previous track and continues 
the search by a gradient descent approach. When the displacement that maximizes the 
fitting function is achieved, the pixels of the macro-object that match to the track are 
excluded for the following tracks fitting. 

3.3   Pixel Assignment 

The pixel assignment is used to decide when a track is finished or not. Once the tracks 
are aligned, each pixel of a MO with a PM value greater than zero is assigned to one 
of the tracks that compete for that pixel. If the ratio between the number of assigned 
pixels and the number of probability mask pixels with value different than zero is 
lower than a predefined threshold, the track is removed. 

The association of each pixel to a track is made based on the product of the pixel 
probability to belong to the appearance image by the pixel probability to belong to the 
track, which is (x,y) Є Tk for: 
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A MO pixel can be in one of three states. If it is assigned to the track Tk then we say it 
belongs to the set of the assigned pixels (APk). If the pixel doesn’t have a value in the 
probability mask, then it is labeled as new. Otherwise, it is classified as missed pixel. 

3.4   Track Update 

The final step in the tracking procedure is the track update. In this step, the appear-
ance image (AI) and the probability mask (PM) of single tracked objects are updated. 
Merged tracks will update only the position of the actual bounding box. 
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The appearance models are updated by the following rules: 
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where, 0 ≤ α ≤ 1. 
The appearance model of a tracked object remains in memory while the object is in 

the scene. After an object leaves the monitored area, the appearance model is deleted 
from the computer memory. As effect, if an object reenters in the scene, it will be 
detected as a new object, and not an extension of the previously observed movement. 
To overcome this issue, an approach that maintains, for a predefined period of time, 
the appearance models of departed objects, can be used. However, the RAM memory 
becomes a critical resource when dealing with a huge number of objects. 

4   Behavior Detection and Prediction 

The final goal of the OBSERVER system is to predict abnormal behaviors. For this 
propose the monitored temporal sequences of object attributes (object position, area, 
perimeter, velocity, etc) must be processed by a classifier in order to infer the type of 
action performed by an object. Such classifier will need to learn, from a dataset, the 
typical patterns of normal and abnormal events. 

4.1   Automatic Dataset Generation 

Typically, in an area under surveillance, the focus of attention falls into two types of 
events: unusual behaviors (e.g. a person running in a hotel lobby, or a car in wrong-
way driving in a motorway) and violation of a restricted area (for example with pe-
destrians crossing a highway). The OBSERVER system was developed to success-
fully handle both types of events. 

While the first type of events can be solved entirely by a classification algorithm, the 
violation of restricted areas requires human intervention in the system configuration 
stage. To accomplish that, the user only needs to mark the scene’s restricted areas. 

After the definition of the restricted areas, if there is any, the system starts to track 
objects moving in the scene. The observed tracks, along with the attributes of the 
objects, are recorded in real-time into a database. Tracks that overlap restricted areas 
are flagged as alarm events, the others are signaled as normal events. When the num-
ber of recorded tracks reaches to a predefined value, considered sufficient to the learn-
ing phase, then the classifier engine starts. 

4.2   Constructing the N-Ary Tree Classifier 

Before explaining the process of building the N-ary tree classifier, used to classify 
object behaviors, we will start by clarifying the idea behind the proposed classifica-
tion system and the architecture of the classifier. 
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The behavior of an object can be described by a set of actions that it performs in a cer-
tain environment. From the security point of view we could expect, at least, three kinds 
of observations: normal, unusual or abnormal actions. Normal actions are those which 
are frequently observed and do not origin the violation of any restricted area. Unusual 
actions are those that are not common or have never occurred. When an action leads to a 
violation of a restricted area, then it should be classified as an abnormal action. 

Besides this basic function, the OBSERVER will be able to predict those events 
from the registered object path. This takes us to a classifier that should respond to the 
following question: if an object, with specific properties, travels until a certain point, 
what is its probability to follow a path that will cause an abnormal event? 

We propose such a classifier, using an N-ary tree, whose nodes are multivariable 
Gaussian distributions N(μ, Σ) in the object attribute’s hyperplane, and have an ab-
normal probability (Pab). To simplify the computation, we assume that the variances, 
in the covariance matrix Σ, are not correlated. 

Has we can see in Figure 3, the classifier’s tree is organized by layers. Each layer 
defines a period of time, so every track should be described by a sequence of nodes, 
each one from a different layer, starting in “layer 1”, when the observed object enters 
the scene. The nodes present clusters of related points, i.e. Gaussian distributions, and 
subsequent layers are separated by a fixed time slice. For example, we can define that 
each layer will have a time period of ten frames. 

 

Fig. 3. Example of an N-ary tree classifier 

 

To build the classifier, we use as input the set of prerecorded tracks. Each track is de-
fined by a sequence of attribute vectors, describing the properties of an object at each 
sample. The following object attributes are considered: the 2D coordinates center-of-
gravity; velocity; area; type descriptor (i.e. human, group or vehicle); and an alarm flag. 

The first step consists on the partitioning of the data into equal time slices, i.e. lay-
ers. Then, for each layer of a track and for each attribute, the sampled data is  
processed in order to compute the mean value of the attribute for that layer. When this 
process finishes, the clustering is performed. 

Since there is no information about the number of clusters in a layer, a clustering  
algorithm capable to infer the number of expected distributions should be used. For this 
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propose, an Expectation-Maximization algorithm with automatic cluster number detec-
tion based in k-fold cross-validation [6] was implemented, with k = 10, as described next. 

4.3   Clustering the Data 

Consider X a d-component column vector of object attributes, μ the d-component 
mean vector, Σ the d-by-d covariance matrix, and |Σ| and Σ-1 its determinant and in-
verse, respectively. 

For each layer there are N track samples, and initially the number of classes (C) is 
set to one. The first step of the k-fold cross-validation is to divide the dataset into ten 
fractions. Next, nine fractions are selected to compute the expectation and maximiza-
tion steps. The remaining fraction is used to compute the log-likelihood. This proce-
dure is executed ten times, in order to compute the log-likelihoods of all the fractions. 

The final log-likelihood is calculated as the mean of the ten log-likelihoods. The 
value of classes (C) will be incremented while the log-likelihood (L) is not stabilized. 
After setting the number of clusters (C), the computation of the normal distributions is 
performed by the Expectation-Maximization algorithm, as described bellow. 
 

Starting conditions: 

( )
( )

( ) NX

NX

Xrandom

CWP

doCjforeach

N

i

jij

N

i

ij

j

j

∑

∑

=

=

−=Σ

=

=

=
∈

1

2

1

1

μ

μ

μ  

Expectation step: 

( ) ( ) ( )[ ]

( ) ( ) ( )
( )

( )
( )

( ) ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −⋅Σ⋅−
−

=

−

⋅
Σ⋅

=

⋅
=

∈

⋅=∑

2

2
1

2

1

1

2

1
|

,

|
|

|

jj
T

j XX

j
d

j

jj
j

K

j

jj

eWXP

where

XP

WPWXP
XWP

doCjforeach

WPWXPXP

μμ

π

 

 

Maximization step: 
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When the stopping condition is satisfied, the mean and variance values of the dis-
tributions of a layer are merged. After executing the clustering over the entire dataset, 
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a set of clusters for each layer is obtained. The next step consists on building the clas-
sification tree, defining links between clusters of different layers.  

4.4   Linking the N-Ary Tree Classifier  

To build the classification tree, it is necessary to go through all the track sequences of 
the dataset. For each track, we will try to find a path (sequences of clusters, each clus-
ter in a different layer) that represents it. When a dissimilar path is observed, a new 
branch is created. During this process of tree nodes linking, the information about the 
event type (i.e. normal or abnormal event) of each track and at each time slice is re-
corded within the clusters. At the end, all nodes of the tree will have the information 
about: mean and variance value of the multivariable normal distribution; and the num-
ber of normal and abnormal events observed by the cluster. In this way, it is possible 
to infer the probability of an object to exhibit an abnormal behavior, associated with a 
certain path. 

5   Experimental Results 

In this section we present the preliminary experiments to evaluate the proposed N-ary 
tree classifier. The dataset used to evaluate the classifier was artificially generated. 
For this propose, a semiautomatic track generator software, designated OBSERVER-
TG, was developed. This tool allows the user to generate tracks in a scene, with con-
figurable Gaussian noise over the object position, velocity, area and perimeter. 

A dataset of 180 tracks with different lengths was created, with a restricted area, 
as shown in Figure 4. The set of generated tracks represent six different paths. Ten 
of the tracks violated the restricted area, originating alarm events. All the abnormal 
tracks started at bottom left of the scene, cross the road and turn left into the pro-
tected area. 

 

Fig. 4. Background overlapped by 180 tracks from the dataset and a restricted area (red box) 
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To evaluate the accuracy of the proposed classifier, the dataset was randomly frac-
tioned in three parts. To access the system performance, a hold-out validation scheme 
[6] was adopted, where 2/3 of the simulated data was used for training (e.g. learning 
phase) and the remaining 1/3 for testing. Tracks that have probability of abnormal 
behavior greater than zero are classified as abnormal events, and sequences that have 
unobserved paths are classified as unusual events. The test results obtained in the 
three simulations (A, B, C) are presented in the table bellow. 

Table 1. Test results of the behavior classifier 

Test Set OBSERVER Test Results 
NºTracks Abnormal Unsusual Abnormal 

A 60 5.00% 1.66% 3.33% 
B 60 8.33% 5.00% 3.33% 
C 60 3.33% 1.66% 1.66% 

 
For instance, we can see a reasonable performance of the OBSERVER in the simu-

lation A, with a test set that has 5% of abnormal tracks. The system has successful 
detected 3.33% of tracks as abnormal events, and 1.66% as unusual events. Summat-
ing the abnormal with the unusual results, we obtain the total of 5%. 

When analyzing the results, we detected that all the normal tracks from the test 
dataset were correctly classified. This outcome is a consequence of the similarity of 
the generated tracks. In a real situation, when the type of observed paths is more 
chaotic, we can expect that a considerably amount of safety tracks will be classified 
as unusual events. In such situation, the system user should be prompted to classify 
unusual events as normal or abnormal behaviors, for use in future and refined clas-
sifiers. 

6   Conclusions 

In this work we presented a new approach to automatically detect and predict abnor-
mal behaviors. The proposed solution is based on an adaptive background subtraction 
algorithm, an appearance model tracking technique and an N-ary tree classifier which 
has performed well with artificial test data. Moreover, the N-ary tree classifier pos-
sesses complementary features that can be exploited to find the most used paths and 
to analyze the occupancy of the monitored areas. 

The classifier prototype was constructed as a stand alone application due to the ex-
pensive computation required by the clustering process and the necessary evaluation 
tasks. However, once finished, it seems to be sufficiently fast to meet the real-time 
constraints of a surveillance system. 

Despite the confidence level on the results obtained, the validation of this solution 
still lacks of an extensive test with real data. Therefore, our main concern in the near 
future is to extend the experiments of the proposed classifier to different scenarios, 
with a greater number of paths, both from simulated and real-world data. 
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