Co-delivery of two anti-HIV drug nanocrystals from electrospun nanofibers

Introduction and Objective

- **Truvada**:
 - The only medication approved by FDA for pre-exposure prophylaxis of the HIV infection
 - Tablets with fixed dosages of two antiretroviral compounds for *daily oral uptake*: Tenofovir disoproxil fumarate (TDF) + Emtricitabine (EMT) – reverse transcriptase inhibitors

Consequences
- ↓ renal function
- ↓ bone mineral density
- ↑ hepatic enzymes

Objectives:
- Incorporate TDF and EMT drugs in polymeric nanofibers produced by electrospinning; chosen polymers were polyoxyethylen (PEO) and polycaprolactone (PCL).
- Characterize the nanofibers and study the *in vitro* release profile of the drugs.
- Evaluate the possibility of a topical administration of the loaded fibers, by rectal or genital route, for HIV infection prophylaxis.

Method

1. **Polymeric PEO solution**
 - 10 mg TDF + 7 mg EMT + 0.5 g PEO + 5.0 mL H₂O

2. **Parameters of electrospinning**
 - Flow rate: 0.05 mL/h
 - Voltage: 20 kV
 - Needle: 0.3 mm
 - Room temperature

3. **Characterization**
 - SEM
 - XRD
 - ATR-FTIR
 - Controlled release assays in simulated vaginal fluid (VFS) (pH 4.2 at 37°C)

Results and Discussion

SEM
- Estimated fiber diameters: from 200 nm to 2 µm

XRD
- Crystalline structure of polymeric nanofibers is not damaged by encapsulation of the drugs.

In the fibers it was possible to identify the vibrations from the most important functional groups of the polymers but not of the drugs. Why? 1. because drug content is small (1.7-2.0%); 2. because radiation penetration depth in the fibers is only around 1.7 µm.

Control Release of TDF and EMT from PEO and PCL nanofibers

Each measured spectrum, resulting from the release of both drugs from the polymer nanofibers, was simulated by considering variable and adjusted contributions of each drugs.

TDF is more easily released from PEO nanofibers fibers than EMT. By contrast, from PCL nanofibers the release of EMT is more efficient.

Acknowledgements: We thank PAPALAB for the SEM analysis and Dr. A. S. Antunes for the X-ray analysis. This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04050/2013, and Programa Global GÉNESIS, Portugal (ref. PIDDAC/04622/2015). Marlene Lúcio acknowledges the exploratory project funded by FCT with the reference IF/00484/2012. José das Neves acknowledges FCT for financial support (grant SFRH/BPD/8204/2013).

IN CONCLUSION

By varying the hydrophobicity of the polymer, it is possible to tailor the drug release kinetics.