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RESUMO 

Com o uso exponencial de telefones para lidar com informações sensíveis, o desenvolvimento de 

sistemas de intrusão também aumentou. Softwares maliciosos estão constantemente a ser 

desenvolvidos e as técnicas de intrusão são cada vez mais sofisticadas. Para neutralizar essas 

intrusões, os sistemas de proteção de segurança precisam constantemente de ser melhorados e 

atualizados. Sendo o Android um dos sistemas operativos (SO) mais populares, tornou-se também num 

alvo de desenvolvimento de métodos de intrusão. 

As soluções de segurança desenvolvidas monitoram constantemente o sistema em que se encontram e 

acedendo a um o conjunto definido de parâmetros procuram alterações potencialmente prejudiciais. 

Um tópico importante ao abordar aplicações mal-intencionadas é a identificação e caracterização do 

malware. 

Normalmente, para separar o comportamento normal do sistema do comportamento mal-intencionado, 

os sistemas de segurança empregam técnicas de machine learning ou de data mining. No entanto, 

com a constante evolução das aplicações maliciosas, tais técnicas ainda estão longe de serem capazes 

de responder completamente às necessidades do mercado. 

Esta dissertação teve como objetivo verificar se os padrões de comportamento malicioso são uma 

forma viável de enfrentar esse desafio. Para responder à pesquisa proposta foram construídos e 

testados dois modelos de classificação de dados, usando técnicas de data mining, e com os dados 

recolhidos compararam-se os seus desempenhos. Para o desenvolvimento e teste do modelo proposto 

foi utilizado o software RapidMiner, e os dados foram recolhidos através do uso da aplicação FlowDroid. 

Para facilitar a compreensão sobre as potencialidades de segurança da framework do Android, realizou-

se uma pesquisa sobre a sua arquitetura, estrutura geral e métodos de segurança, incluindo seus 

mecanismos de defesa e algumas das suas limitações. Além disso, realizou-se um estudo sobre 

algumas das atuais aplicações existentes para a defesa contra aplicações maliciosas, analisando os 

seus pontos fortes e fracos. 

 

PALAVRAS-CHAVE: Segurança Em Dispositivos Moveis, Análise de dados, Sistemas de Deteção de 

Ameaças, Android, Gestão de Ameaças 

 



 

xii 

 

 



 

xiii 

ABSTRACT 

With the exponential use of mobile phones to handle sensitive information, the intrusion systems 

development has also increased. Malicious software is constantly being developed and the intrusion 

techniques are increasingly more sophisticated. Security protection systems trying to counteract these 

intrusions are constantly being improved and updated. Being Android one of the most popular operating 

systems, it became an intrusion’s methods development target.  

Developed security solutions constantly monitor their host system and by accessing a set of defined 

parameters they try to find potentially harmful changes. An important topic when addressing malicious 

applications detection is the malware identification and characterization.  

Usually, to separate the normal system behavior from the malicious behavior, security systems employ 

machine learning or data mining techniques. However, with the constant evolution of malicious 

applications, such techniques are still far from being capable of completely responding to the market 

needs. 

This dissertation aim was to verify if malicious behavior patterns definition is a viable way of addressing 

this challenge. As part of the proposed research two data mining classification models were built and 

tested with the collected data, and their performances were compared. the RapidMiner software was 

used for the proposed model development and testing, and data was collected from the FlowDroid 

application. 

To facilitate the understanding of the security potential of the Android framework, research was done on 

the its architecture, overall structure, and security methods, including its protection mechanisms and 

breaches. It was also done a study on models threats/attacks’ description, as well as, on the current 

existing applications for anti-mobile threats, analyzing their strengths and weaknesses.  

 

 

KEYWORDS: Mobile Devices Security, Data Analysis, Intrusion Detecting System, Android, Malware 

Classification 
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1. INTRODUCTION 

1.1 Context and Motivation 

Before the widespread use of mobile phones, digital information security was already a great concern 

for government and enterprises. Criminals, using different types of intrusion methods (i.e. Trojan 

horses, social engineering, etc.), try to gain access to sensitive information, causing information 

leakage, which can cause great catastrophes and losses to countries, companies and principally 

people. 

In the past, this concern was directed to the information in computers and servers but now with the 

exponential use of mobile phones to handle several types of sensitive information that threat has also 

passed to those devices [1] [2].  

In this digital era, the price of information has become of great deal and so an increased effort is made 

in developing better security methods. However, the resources needed for monitoring and viably 

respond to large scale security incidents still require an effective solution management. As referred by 

Cheetancheri et al. (2006), “The challenge is to collect all information from the numerous data sources 

and to decide on appropriate actions for each reactive component” [3]. Besides the information leakage 

problem, this type of intrusion can also affect the device correct operation, causing problems such as 

draining resources (such as battery and RAM) or even corrupted files, compromising its availability and 

integrity [4]. 

In parallel with the threats against mobile devices growth, the work on anti-threats mobile applications 

was also initiated. But, these applications development state is still far from being capable of blocking 

most existing threats, and the difficulties are even greater when answering to unknown threats. One of 

the limitations on this field is the lack or limited understanding of the malware developed in mobile 

devices and the difficulty on getting some studying samples [5]. 

As stated by Spreitzenbarth et al. (2013), “For understanding the threat to security and privacy it is 

important for security researchers to analyze malicious software written for these systems.” [6], which 

combined with the constant evolution of mobile malware implies the constant need for new malware 

analysis. 
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1.2 Objectives 

This dissertation was developed in the scope of mobile security management solutions and the main 

purpose is to find malware identification patterns. Thereby this dissertation tries to answer the following 

research question: 

“Is it possible to define measurable behavior patterns in malicious applications?” 

However, to find the answer to this question, firstly some other questions need to be solved, namely: 

 “What is a behavior pattern?” 

 “How to define/classify a behavior pattern?” 

 “What defines a malicious application?” 

 “How to evaluate a malicious application behavior in a controlled environment?” 

1.3 Research Methodology 

For this dissertation development, firstly a definition of the work objectives and goals was done, setting 

the research questions and exploring the existing works and literature on this thematic. The main 

search keywords used were “host intrusion detection systems”, “Android”, “taint analysis”, “malware 

classification” and “data mining”. 

The design science research methodology [7] was applied, specifically to analyze the existing security 

methods on various Android malware detection solutions. Complementing this research, a study on the 

Android architecture was made, to understand the system.  

Afterwards an Android taint detection application was selected and it was used to preform analysis on 

various applications.  

Finally, an experimental study was performed on the analysis results, where the tests were carefully 

selected and performed. 

1.4 Document Organization 

The following chapters 2 and 3 cover a range of background topics to provide a better understanding of 

the subsequent chapters. Amongst others, Chapter 2 makes an overview to the Android system and 

chapter 3 gives a short introduction to some security definitions used in the literature. 
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Chapter 4 presents a state of the art review directed to this dissertation theme. Firstly, some examples 

are given of computer security applications developed over the years, followed by an overview of 

security Android applications found relevant to the project, developed in the last 6 years, completed 

with a comparative review. Lastly, a small review is made on some developed classification malware 

models. 

Chapter 5 presents the experience made in this dissertation, explaining all the steps taken, from the 

data collection, models building, to their evaluation, and in Chapter 6 are presented the results with 

their respective analysis. 

Lastly, in Chapter 7 is presented this dissertation conclusion, containing an overview of all the 

accomplishments of the project, its final considerations and limitations, and the suggestions for future 

work. 
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2. ANDROID  

In this chapter, it is presented an overview of the Android system, centering on the security relevant 

features of the architecture. 

2.1 Introduction to Android 

Android is an operating system (OS) designed for smartphones, purchased by Google in 2005, which is 

binary and source code released as open source software and enabled a rapid grow in the market. The 

OS has code written in Java, Assembly and C/C++, however the applications are manly written in Java, 

and sometimes in C/C++ [8]. 

2.2 Android Structural Overview 

The Android structure is divided in five functional layers, as seen in Figure 1, which are the kernel, the 

native libraries, the Android runtime environment, the framework layer and lastly the applications layer 

[9] [10]. Note that some authors call the combination of the application framework layer, the native 

libraries and the Android runtime environment as the middleware layer [11]. 

 

Figure 1 - Structural overview of the Android Software Stack [9] 
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In the Figure 1 the layers found in blue are programed using Java language, and run in the DVM (Dalvik 

Virtual Machine) or ART (Android RunTime), and the green layers in C/C++ language. 

 Linux kernel: This basic layer is the Android core system responsible for accessing the 

underlying hardware, managing device drivers (such as display, camera, Wi-Fi, Binder, etc.), 

resource access, power management and OS duties. 

 Native libraries: here can be found various libraries with various functionalities, such as 

SQLite providing data management, WebKit that allows HTML rendering, Free Tipe, Secure 

Socket Layer (SSL) that provides cryptography, the C runtime library (libe), OpenGL and Media.  

 Android RunTime (ART) environment: this layer consists in an integration between Dalvik 

VM (DVM) and core libraries functionalities. It replaces just-in-time (JIT) compilation and 

introduces Ahead-of-time (AOT) compilation, by compiling the applications into persistent native 

code at installation time, using the tool dex2oat, making it directly executable. Although this 

process makes the installation time longer, the afterwards use is faster since there is no further 

compilation needs during the application start [12].  

It was firstly introduced with the Android version KitKat (4.4) as an alternative to the DVM and 

finally replaced it in Lollipop (5.0) version.  

 Applications Framework: this level allows the developers to communicate with devices built 

in functions and functionalities, providing an API (application programing interface) in the form 

of various Java classes.  

 Applications layer: this layer, seen as the top of the stack, is where the user applications are 

stored, both the applications provided by each device developer (e.g. browser, dialer phone, 

etc.) and the ones got from app stores. 

2.3 The Dalvik Virtual Machine (Dalvik VM or DVM) 

The Dalvik VM is a core component in the Android OS where all applications are executed using its own 

byte code runtime environment, thereby each application is executed in its own thread with the same 

priority as core Android applications [9] [13] [14] [15].  

Android does not use the standard Java Virtual Machine but uses the DVM which has been tailor made 

for mobile devices and is an integral part of Android. DVM ensures that applications can run in systems 

with relatively smaller RAM, slower processors and without swap space in comparison to desktops [16].  
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The DVM is a register-based bytecode, obtained by translating the Java Virtual Machine (JVM) bytecode 

using the dx tool, producing the Dalvik’s executable, namely a dex file.  To reduce both the machine 

code generated and the compilation time during the applications runtime, the DMV employs adaptive 

compilation and indirect threading, by dividing the process into two threads: the main thread and the 

just-in-time (JIT) compilation thread. Thus, following the illustration shown in Figure 2, firstly in the main 

thread [i.e. Interpreter thread] the bytecode is executed by the interpreter and when a trace unit of 

bytecode is detected, i.e. it detects a fragment of hot execution paths, it is send to the second thread 

[i.e. Compile Thread] and compiled into machine code, thereby only the hot traces are compiled 

instead of the whole method [17]. 

 

Figure 2 - The Dalvik VM just-in-time compilation process [10] 

2.4 Android’s Security Model  

“Though the OS is immune to normal user usage, but the security flaws can be exploited, as done by 

the open source community, to get ROOT access (can be used for malicious purposes by crackers) and 

modify device capabilities” [18]. The core security processes implemented on the Android open-source 

code are the applications isolation and the permissions system. 

2.4.1 Applications Isolation  

To prevent malicious applications to manipulate the data of others apps, each application runs in a 

virtual machine, namely the DVM or ART, providing a sandboxed application execution environment 
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allowing a process isolation of all the applications. Thereby each application has its own low-privileged 

user space, unique user identifier (UID), only shared between apps signed with the same developer-key 

[12]. 

2.4.2 Android Permissions 

One of the principal security methods implemented in Android is the permission system, which is 

responsible for controlling which API (Application Programming Interface) calls the applications can 

access, thus granting access to sensitive data, resources and system interfaces [19] [20].  

Depending on the thread level they expose to the system, permissions can be categorized into three 

levels [21] [22]:  

 Normal permissions: that have no great impact in the device system nor any cost to the user 

(e.g. SET_ALARM). They are granted automatically [22] and serve as protection against API 

calls that could only “annoy the user”; 

 Dangerous permissions: these permissions are granted by the user and can possibly be 

explored by the application to access an API potentially harmful to the user or device (i.e. 

privacy leaks, paid SMS services, battery consumption, etc.);    

 Signature/system permissions: is the most dangerous permission, because it can access 

and manipulate other applications data. Fortunately, this last permission is only granted to 

applications signed with the device manufacturer’s certificate.   

Peiravian and Zhu [23] divided this last level in two, differentiating if the requesting permission 

is signed with the same certificate than the application that declared the permission, i.e. both 

have the same author, or if it is an application of the Android system. 

This step allows the user to verify, at installation time, which APIs the application is requesting to 

access and choose to grant such permissions, gaining better control over privacy issues, thereby as 

stated by Marforio et al. [24] “users are implicitly lead to believe that by approving the installation of 

each application independently, based on its declared permissions, they can limit the damage that an 

application can cause”.  

However, because of the shared UID, for applications of the same developer they can also share their 

granted permissions without having to ask them individually [i.e. malicious colluding applications], 

which means that by installing two or more apps from the same developer, each with their own set of 
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uncritical permissions, they can collude to get a set of various permissions that individually could be 

armless but combined may be used to exploit the device’ system and perform unauthorized malicious 

actions [11] [24].  

Nonetheless with the Android 6.0 users can now individually decide within each application which 

permissions they want to accept [12], passing that responsibility interlay to the users. Before if the user 

didn’t want to grant a certain permission, the only option was to abort the app installation, the 

installation system only finalized the installation by accepting all permissions asked. Nevertheless, since 

most phone users still use the Android versions between 4.4 and 5.1, as seen in Figure 3, this security 

issue created by the shared UID cannot be disregarded.  

 

 

Figure 3 - Relative number of devices running a given version of the Android platform [25] 

In addition, as demonstrated in a study by Felt et al. [26], most users ignore this step disregarding its 

consequences for their device security, or do not understand its information, rendering them unable to 

take knowledgeable security decisions [11] [27].  

Another security breach, presented by Shin et al. (2010) [28], exploits the inexistence of a naming rule 

restriction or constraint, while declaring a new permission. Without this enforcement, a malicious 

application can ask for a permission with a normal threat level, which is supposedly harmless to the 

user, but with the same name of a sensitive permission, associated to a dangerous level, and use it to 
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manipulate the permission specification and verification process, gaining access to sensitive 

information. 

2.5 Inter-Process Communication (IPC) 

In the Android architecture, illustrated in Figure 4, the applications are isolated between themselves 

and from the core system.  The IPC, also known as inter-component communication (ICC), allows the 

exchange of signals or data across multiple processes [29] [30]. This share provides an important tool 

to development richer applications, keeping a low development burden, and promotes APIs 

functionalities reuse. 

 

Figure 4 - The architecture of the Android platform [31] 

The IPC/ICC process, seen in Figure 5 is Binder-based, i.e., to interact with other applications or with 

the system processes (e.g. location manager, etc.) an application as to broadcast an intent, i.e., a 

messaging object used by the applications to request an action or to inform a performed action. 

Thereafter, the intent is propagated through the binder framework, which handles the intent and 

forwards it to the destination application or service [16] [32].   

 

 

Figure 5 - ICC overview [26] 
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Unfortunately, this method is supported by complex APIs, which leads to possible vulnerabilities in their 

implementation, for example, if an intent is left unprotected it can be intercepted by a malicious 

application or it can leave a sensitive component exposed [33].  

Addressing implementation oversighted vulnerabilities is the ComDroid application1, created by Chin et 

al. [29], that uses the Dedexer tool to disassemble the applications dex files and, thereafter, examine 

the IPC model searching for security risks created in its implementation, such as sensitive data loss or 

corruption or other unexpected behaviors. For the IPC examination ComDroid uses static analysis, that 

will be explained later, and tracks the intents changes from its source to its sink, thus when an intent is 

send with weak or no permission requirements the system generates a warning. This application 

facilitates the developer work by allowing him to test its systems for IPC vulnerabilities. 

 

 

  

                                                 

1 Note that throughout this document sometimes is used “app(s)” as an abbreviation from application(s). 
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3. SECURITY BACKGROUND INFORMATION 

Over the years, the importance of systems security has grown in people’s minds. Protection techniques 

to secure the integrity and confidentiality of the information, such as cryptographic algorithms, digital 

signatures, authentication biometrics, etc., try to anticipate and avoid possible attacks. 

Unfortunately, the development of methods to steal, manipulate or even destroy information has also 

increased over the years. Usually, the attackers, commonly known as hackers, use different types of 

vulnerabilities and techniques to gain access to information.  

This chapter presents a brief explanation on security concepts contemplated in this document, mainly 

directed to mobile security. 

3.1 Attack 

An intrusion can be defined as an ensemble of actions and procedures used to gain access to the 

systems’ information, possibly compromising its confidentiality, integrity and availability [34].  

To gain access to the system a cybercriminal usually performs an attack, trying to exploit a vulnerability 

of the system. If an attack tries to get access to a machine’s privileges it is considered a host-based 

attack, likewise, if it targets the network it is considered network-based (e.g. DDoS attack) [34]. 

3.2 Mobile threat types 

There are several threats that a mobile system can be exposed to, which can be divided into two 

classes: web-based (i.e. network based) threads, where a cybercriminal relies on the various web 

features to explore browsers vulnerabilities or tricks an incautious user into providing access to perform 

an attack, and application based (i.e. host based) threads posed by third party applications (i.e. 

malicious applications) [6]. 

Application-based threads can be divided in three main types of threats [35] [36] [37]:  

 Malware: usually these threats infect the device by installing a malicious app without the 

user’s knowledge or by gaining remote access to the device by exploring its vulnerabilities, and 

infects the device to steal data, damage the device or even to disturb the user.  
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These attacks usually work combined with social engineering [9] [10], attacks in which cyber 

criminals exploit vulnerabilities of human nature, with software and hardware malware in order 

to accomplish their goals.  

 Personal Spyware: this type of threat tries to collect the user’s sensitive and private data. It 

differs from the traditional malware because the attacker has physical access to the device and 

the information collected is send to the person responsible to install the malicious software, 

which usually isn’t the software developer. 

 Grayware: it is less serious than malware since legitimate applications use it to collect user’s 

information and use it for different purposes, such as marketing or user’s ambient customizing. 

This type of information collecting is connected to companies and can be linked to illegal 

information collection. 

3.3 Malware 

Malware can be spread into devices from various methods, from SMS with links to malicious sites to 

applications with malicious code. There are several classes of malware attacks that use different 

approaches to intrude a system. They can be categorized into: 

 Trojan: a type of malware that infiltrates the device disguised as a normal application and 

infects systems undetected  [38];   

 Virus: a malware capable of, inside a device, replicate itself infecting other programs [38];   

 Worms: similar to virus in its replication capabilities, but also capable of exploiting system 

vulnerabilities by themselves and replicate between devices [39];  

 Bots/Botnet: these are automated processes used to automatically perform a certain action. 

Its malicious behavior occurs when used to, for example, send “spam” messages, fill the 

bandwidth, by performing huge downloads, or making a certain machine or network resource 

unavailable, by flooding them with requests overloading the system (DDoS attacks) [39] [40] 

[41]; 

 Rootkits: this category describes infections directed to the device OS, that will afterwards 

“open” vulnerabilities in the system for other malicious methods; this is usually performed 

using DLL (dynamic-link library) injection and API hooking techniques [42]. 
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3.3.1 DLL injection and API Hooking 

To perform rootkits’ attacks developers use techniques such DLL injection and API hooking “that can be 

used to modify applications without intervening into their source code” [43]. 

The API hooking technique explores the system by gaining access to the gDvm structure, a global 

structure of type DvmGlobals that holds information on a specific Dalvik VM instance [44], and 

intercepts the system calls between applications and the kernel. The intercepted applications’ 

permissions are used to perform malicious libraries injections (DLL injection) in the address space of a 

targeted process or adding kernel modules [45]. Presented in Figure 6 is a flowchart of the API hooking 

algorithm. Note that, depending on the developer intentions, these techniques can also be applied in 

security enforcement applications. 

 

Figure 6 - Overview of API Hooking [46] 

3.4 Intrusion Prevention Systems (IPS or IDPS) 

There are various methods to detect if a system was infiltrated, however, recently researchers are trying 

to also generate system responses to the attacks, possible preventing them.  

Based on the IDS implementations, prevention based systems use various detecting techniques to 

determine attacks and furthermore try to stop a detected attack from happening, by blocking it in real-

time situations [47] [48].  
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3.5 Intrusion Detection Systems (IDS) 

Intrusion detection systems (IDS) are a collection of the tools, methods, and resources that try to detect 

system intrusions using different type of approaches and techniques [42] [49] [50].  

Detection based approaches uses various detection and data analysis algorithms combined to identify 

possible malicious activities in devices. Note that there are also hybrid approaches, named intrusion 

detection and preventing systems (IDPS), which in addition to detecting malicious behaviors also try to  

stop them [47], as seen in section 3.4.  

The wide IDS spectrum is divided into two classification categories: detection methodology and analyzed 

activity. 

3.5.1 Detection methodology 

Anomaly detection  

The principle of anomaly detection technique is system behavior analyses, searching for abnormalities. 

Therefore, the expected normal behavior is expressed in the algorithm and an unknown behavior is 

considered a threat, thus enabling the detection of possibility new threats [51].   

Accordingly, if they are defined too strictly, some normal behavior can be considered a threat, 

originating false positives, and inversely if they are overly flexible some threats may pass undetected, 

resulting in false negatives [34]. To minimize these results, anomaly detection techniques are applied 

with self-learning algorithms capable of building models on previous experiences’ results. Normally, the 

data analysis algorithms apply data mining techniques to search for patterns in the data enabling the 

distinction of behavioral patterns [31].  

 

Misuse detection 

Misuse detection is a signature based technique capable of detecting only known threats, using a 

database model to compare known system traces (i.e. set of attack signatures) left by intrusions [52]. 

Because, unlike anomaly detection, it does not perform an analysis on the device abnormal behavior, it 

can only recognize known attacks, rendering it is useless to address unknown intrusions [51] [53].  
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3.5.2 IDS analysis focus: NIDS and HIDS 

IDS can be deployed to analyze events either at the host machine, being known as Host Intrusion 

Detection System (HIDS), or at the network level, being known as Network Intrusion Detection System 

(NIDS).  

 Network Intrusion Detection Systems (NIDS): apply different types of algorithms to 

analyze huge amounts of network traffic and distinguish those generated by network-based 

attacks from the originated by normal web operations [34] [54]. 

 Host Intrusion Detection Systems (HIDS): concentrate their efforts in perceiving host-

based attacks, which target the device trying to obtain access to its resources or services, 

applying various processes to monitor the system data and detect abnormal behavior in its 

applications [34].  

Their main advantage over HIDS is the direct system access, which gives them the ability to 

access the root cause of attacks [55].  

3.5.3 Analysis approach 

Nowadays security applications use various approaches to analyze and detect malicious applications 

that may be infecting the device. Those approaches can be both static and dynamic depending on how 

they perform the applications analysis. 

 

Dynamic behavior analysis 

Security applications based on dynamic taint analysis, also known as behavior based analysis, seem to 

be one of the most successful rated mechanisms to detect suspicious devices behavior. These security 

applications focus on examining the operating system by collecting, various device defined parameters 

and constantly monitoring them to search for notorious differences in their behavior [56] [57].  

This method is normally used to look for meaningful differences in the device’s characteristics, such as 

battery consumption, memory load and network utilization. However, “dynamic analysis or behavior-

based detection involves running samples in a controlled and isolated environment in order to analyze 

its execution traces”, Zurutuza et al. (2011) [58].  
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Static behavior analysis 

Another procedure to detect applications malicious behavior is to use static behavior analysis, that 

mainly focuses on detecting sensitive data leakages in applications’ components by inspecting other 

applications source code or binaries looking for suspicious patterns, i.e., the security applications track 

how the data flow is being handled by other applications, usually at instruction level, searching for leaks 

of sensitive data [58].  

This method differs from the dynamic analysis mainly because it does not perform analysis on the 

system when the device’s applications are working, whereas it can scan the software for malicious 

patterns without “activating” it, or even without installing it, by sending input data to the application to 

simulate code execution, as so the number of test runs needed to reach an appropriate code coverage 

can be large [59].  Another advantage of static analysis over dynamic analysis is the current existence 

of malware capable of detecting dynamic analysis tools [60].  

This method is the most widely used by security companies, however, individually it cannot detect 

malicious applications that dynamically load code to perform the attacks [61].  

3.5.4 User Interface Analysis 

Other approach, is to understand if the user interaction with the device is consistent with its 

applications behavior. For example, if the user is trying to play a game and the game application makes 

system calls trying to access the user contact information and send it to an unknown entity, using 

internet and contact information permissions, it may be concluded that there is malicious behavior. 

Addressing a different possibility, Hwang et al. (2008) [62] made a study on the use of Keystroke 

dynamics-based authentication (KDA) for mobile devices to improve the viability of login PINs, which 

unlike computer logins have small password strings. With this authentication method, the user interface 

data collected is the user login input time and access to the device is only granted if password input 

interval times and duration are similar to already registered input rhythms. Although the test results 

were encouraging it is necessary to extend the input tests, such as studying population and 

performance measurement types.  

  



 

45 

3.6 Machine Learning Algorithms and Data Mining 

A constraint found in mobile devices is its processing capabilities which, although improved in the latest 

years, it is still far from comparable to personal computers’ processing abilities. Thereby, mobile 

security solutions need to avoid the devices’ overload [63].  

To reduce overload on the machine available resources, both on computers and mobile devices, 

machine learning algorithms (MLA) and/or data mining techniques (DMT) are employed [64]. Usually 

the same techniques can be applied in both MLA and DMT [65].  

Data mining covers a wide spectrum of topics in computer science and statistics. As stated by Hand et 

al. (2000) “The science of extracting useful information from large data sets or databases is known as 

data mining.”[66]. Some of the tasks in which this science is applied are data characterization and 

discrimination, association and correlation analysis, classification, clustering, regression, and others 

[67]. For example, for Android malware classification clustering algorithms are applied in behavior 

pattern recognition.  

These techniques are based on the human ability to learn a mechanism and then self-replicate it to 

other cases [68]. Summarizing, to employ this method three main steps are needed: 1) feature 

extraction, responsible for data collecting on the main selected features, 2) classifier construction, in 

this step the data collected is analyzed, possibly employing various threat detecting methods, and threat 

assessment is made, and lastly, 3) sequential pattern prediction, where the data behavior is classified 

as normal behavior or as a threat (malware) [68].  

3.6.1 Decision Tree Algorithm 

The Decision Tree (DT) algorithm is non-parametric supervised learning method used for classification 

methods2, i.e. the algorithm itself grows the number of attributes with the amount of training data, using 

data patterns it finds to make decisions.  

Its goal is to create a model that predicts the value of a target variable by learning simple decision rules 

inferred from the data features. It applies a straightforward idea to solve the classification problem [69]. 

The DT classifier poses a series of carefully crafted questions about the attributes of the test record 

                                                 

2 It can also be used as a predictability model. 
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and, according to the obtained calculated answers, it makes a decision about the class label3 of the 

data. Note that there several different implementations for this algorithm, that follow different metrics 

for measuring the data parameters and reaching a decision. 

Algorithms for constructing decision trees usually work top-down, i.e. they usually start with all the data 

in a root element and based on the made decisions they split the data into branches until it reaches the 

final decision were the data is allocated (called leaves) [70]. A structural example is shown in Figure 7. 

 

Figure 7 – DT structural example 

3.6.2 Support Vector Machine 

The Support Vector Machine (SVM) is a highly-sophisticated data mining classification model that given 

a set of data, with two possible states, tries to divide the hyperplane, where the data is, with decision 

boundaries, i.e. its objective is to “draw a line” (hyperplane) between both classes of data with the 

biggest margin possible. 

SVM has four well known kernels: linear, polynomial, radial basis function (RBF) and sigmoid, and each 

represents a different approach to separate the data. Figure 8 represents an example of the division on 

two classes of data “A” and “B” using a linear approach. 

 

Figure 8 - Example of the division on two classes of data 

                                                 

3 Class label represents the discrete attribute whose value the model is trying to predict based on the inputted values. 
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As the name indicates, the linear approach addresses an upfront solution to divide the plane and 

maximize the margins between a set of two classes of data.  

In the example, the classifier used a set of given data points in the form (�⃗�𝐴, 𝑦𝐴), … , (�⃗�𝑛, 𝑦𝑖), where 

𝑦𝑖 can take the value of both +1 for “A” samples and -1 for “B” samples. The hyperplane can be given 

as a set of points �⃗� satisfying: 

�⃗⃗⃗� ⋅ �⃗� − 𝑏 = 0   

In Eq. 1, �⃗� is a vector to one of the samples, �⃗⃗⃗� represents a vector perpendicular with the hyperplane 

drawn with any possible length and 𝑏 is an unknown value that defines the reach of the unknown 

sample vector (Note that ε = −b), where 𝑏

‖�⃗⃗⃗�‖
 represents the distance between the two margins of the 

hyperplane. 

Note that the introduction of  𝑦𝑖 is a mathematical simplification that adds a constraint to the previous 

equation, Eq. 1, as it can be seen in Eq. 2. 

𝑦𝑖(�⃗⃗⃗� ⋅ �⃗� − 𝑏) ≥ 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 1 ≤ 𝑖 ≤ 𝑛 

 

However not all the data samples can be linearly divided, thereby the hinge loss function is introduced 

to the model, Eq. 3, which takes the value of 0 if the constraint is satisfied, i.e. if �⃗� is on the correct 

side of the hyperplane.  

max(0,1 − 𝑦𝑖(�⃗⃗⃗� ⋅ �⃗� − 𝑏)) 

 

If the data is on the wrong side of the margin, the hinge loss function value is proportional to the 

distance from the margin, which needs to be minimized, Eq. 4. 

[
1

𝑛
 ∑ max (0,1 − 𝑦𝑖(�⃗⃗⃗� ⋅ �⃗� − 𝑏))

𝑛

𝑖=1

] +  𝐶‖�⃗⃗⃗�‖2 

 

Where the coefficient C represents the level of generalization of the equation, the lower the C value the 

more generic the model [71]. 

  

(Eq. 1)  

(Eq. 2)  

(Eq. 3) 

(Eq. 4) 
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4. STATE OF THE ART 

Researchers and companies look for forms of data protection, which implies a constant development 

and improvement of security management methods. Thereby, several different approaches are used to 

detect devices’ security breaches.  

This chapter presents well known examples of security application implementations and some of the 

most recent developed works found. Firstly, an overview of security works development over the years is 

done, and afterwards, recent works found relevant for this dissertation are explored. 

4.1 Computer security systems 

Even before the Android massification there were several IDS proposed for other computing platforms. 

An earlier work is the AutoFocus analysis system, developed by Estan et al. (2003), which focuses on 

dynamical and multidimensional traffic clusters to automatically generate a traffic behavior report, 

enabling, in an easier approach, unusual traffic behavior detection. However, the results are limited to 

periodically display [64].  

Liu et al. (2006) proposed a security managing framework while trying to solve some detected 

problems such as the lack of communication ability between security equipment, the lack of 

information in security events reports and the unreasonable focus on abnormality detection (i.e. 

neglecting network equipment or sub-domain host, etc.). Using a CBR module (Case-Based Reasoning) 

as its main approach to process data correlation, such as user web access, and wavelength diagnoses, 

studying the different wave frequencies on different network attacks, this framework tries to assimilate 

and integrate this information [72]. However, there is still the need to develop analysis methods 

capable of estimating the threat risk level in the obtained information [31].  

Zhang and Zulkernine (2006) developed a hybrid system framework, using a combination of misuse 

and anomaly detection, to detect attacks on the network. The proposed framework applies a misuse 

detection mechanism that identifies attacks such as patterns or signatures that can represent threats, 

to classify the network data as normal activity or an attack. It employs the random forest algorithm (i.e. 

a data mining algorithm), which enables real-time detection. Then the activity classified as normal is 

reanalyzed using anomaly detection, with low false positive rate, to identify activities with abnormal 

behavior. In this detection system, the normal behavior is pre-set and the unset behavior is considered 
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unknown. Although this framework has very high intrusion detection rate and it does not require training 

time, the anomaly detection fails to detect between very similar intrusions, which causes them to fall in 

the same leaf on the random forest algorithm making them undetectable to the posterior analysis of the 

anomaly detection system [53].  

Khan et al. (2007) presented an algorithm, Clustering Tree based on Support Vector Machines SVM 

(CT-SVM), capable of reducing false positive and false negative rate results, on real-time, in network 

level systems. It combines the SVM classification algorithm, a data miming algorithm that reduces 

training time, with the dynamically growing self-organizing tree (DGSOT) algorithm, a clustering 

algorithm that enables to find boundary points (i.e. support vectors) used on the SVM training. This 

combination reduces the SVM training time by inputting only the support vectors which hugely reduces 

its computation needs, thereby improving network threat detection. Though this method seems 

promising, the tests realized are still far from granting it full viability and its computing load is yet to be 

studied on mobile systems [34]. 

Focusing mostly on HIDS, Cheetancheri et al. (2006) developed a global worm detection algorithm, 

employed to detect attacks on host-end level. To attain such goal, when the host-end detectors, which 

are globally connected, detect an anomaly they aggregate their own information and compare it with the 

conclusions of other (random) chosen host-ends on that anomaly. By using a likelihood ratio table, they 

deduced if the anomaly is normal behavior or a malicious behavior: if a malicious behavior is detected 

the information is broadcasted to all host-ends. This method, although capable of detecting worms, has 

a slow response time making it unable to avoid host infection [3]. 

Later, inspired in the danger theory of human immune systems, Ou et al. (2011) developed an 

algorithm employing artificial immune system (AIS) in intrusion detection systems capable of detecting 

abnormal behavior by analyzing the system calls, considering them as antigens, and evaluating them 

with three parameters, namely severity, certainty and attack time, to outline the threats [73].  

Both Cheetancheri and Ou detection systems, which are host based, have the advantage of addressing 

the attacks root cause, nonetheless, one of their main problems is the high resource host system 

consumption, such as processing resources (i.e. memory, CPU).  

Analyzing the system calls behavior, Koucham et al. (2015) proposed an algorithm that combines 

system call argument based clustering with Bayesian classification. For this algorithm, the information 

of system calls is further explored using its call arguments, contextual information (i.e. identifiers and 

file models) and domain-level knowledge enabling relevant classification to create improved models for 
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the clusters that reflect differences in the system calls attributes. In this step both the normal and 

anomalous behaviors are used to create clusters per system call and per process which afterwards 

provides the classification system, Bayesian classification algorithm, with information on the similarities 

and differences between the behavior of normal or infected system calls [74]. 

4.2 Mobile devices security systems 

Apart from their portability and OS systems, a big difference between computers and mobile systems is 

the amount of available resources. In developing security systems for computers, the resources’ 

consumption, such as RAM, is a concern for developers, because a security application if too “heavy” 

for a system it can render it useless. 

Because mobile devices have even less computing resources this is a major problem for its security 

systems.  

Considering this limitation, Addagada (2010) used a neural network to build a user log classifier. In this 

approach the classifier was pre-trained on a user network activity and a periodic activity security 

analysis is performed, i.e. the data collected from the device is sent to an analysis server that sends a 

warning to the user if abnormal behavior is detected. Although this algorithm has good detection rate 

and low device processing load, the threats are not monitored in real-time, becoming incapable of 

preventing any prejudicial device activity [75].  

4.2.1 Crowdroid 

Burguera et al. (2011) proposed an algorithm that extracts the data from various user’s devices, using 

a client directed application called Crowdroid responsible for monitoring the system calls done by each 

application and transfer its accesses to a central server, where the malware is detected based on the 

amount of system calls made, as seen in Figure 9. That is, analyzing all the system calls happening in 

each device and comparing them, it considers the benign behavior the most used system calls made by 

all the devices and as malware behavior the less used system calls.  

This algorithm is less resource consuming on the devices and has high detection rate for detecting 

Trojan horses on the applications. However, if a benign application has more unusual system calls it 

can generate false positives and the detection accuracy also depends on the number of users 



 

52 

connected to de central system, rendering it useless for individual users unconnected to the server 

[58]. 

 

Figure 9 - Crowdroid malware Detection process [57] 

Unfortunately, limited systems resources are not the only concern on developing security systems, 

sometimes the system permissions needed by security enforcement applications are explored creating 

the possibility of tempering with the implemented IDS, a vulnerability on the application that can 

possibly render the IDS application useless or even dangerous to the device.  

For example, if an attack gains kernel access to the system it can deactivate the IDS or tamper with its 

configurations rendering it useless. Although virtualization methods were created to address the last 

problem, there is still need to develop improved solutions [39]. 

Although not implemented, Crowdroid, Khurana et al. (2010) had also already envisioned a possible 

solution, proposing the implementation of a system process, parallel to an existing HIDS application, 

that will periodically monitor any changes in the HIDS application architecture or rules and if any 

unauthorized changes are found it will replace de current HIDS files with backup files [76].. 

4.2.2 Andromaly 

Shabtai et al. (2012) developed a framework capable of detecting malware by continuously monitoring 

the mobile device, analyzing a group of pre-selected parameters, such as battery level and CPU 

consumption, that are fed to a machine learning anomaly detector that searches for abnormal 

performances.  

This application has various advantages such as being light-weighted in processing, running on the 

device and being modular, making it capable of easily integrating various malware detection techniques. 
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Although the test results on this approach seemed promising it is still unsuccessful identifying abrupt 

attacks [77]. 

4.2.3  Patronus 

Sun et al. (2014) realized a study on the API hooking security approach and pointed some 

vulnerabilities, caused by the implementation method being in the same sandbox as the other 

applications, specifically the vulnerability of the insns. This variable defines a specific address for each 

method corresponding to its Java method [i.e. target method], that can be modified by the attackers so 

that it bypasses the policy enforcement, and their capacity of intercepting the native transact method 

creating their own transact implementation that enables them to sidestep any security policy.  

Based on his study, Sun et al. proposed a secure HIPS architecture framework, called Patronus, also 

capable of detecting existing malware. It uses the hooking methodology both in the client and server 

side, implementing their native transact method directly with the target service, so that its access is 

unavailable to other applications. In the server side the framework intercepts the Service Manager and 

redirects the applications requests to the security application which will verify the query realized and, if 

considered safe, redirect it back to the Service Manager [78]. 

4.2.4 TaintDroid 

A great reference on analysis of third party applications behavior is TaintDroid, created by Enck et al. 

(2014), Yan et al. stated that “(TaintDroid) is a special crafted DVM that supports taint analysis of Dalvik 

instructions across API calls” [79].  

TaintDroid assumes that all third-party applications downloaded are untrustworthy, relying on the 

firmware’s integrity: including the virtual machine executed in user space and the loaded native system 

libraries, and ensures that applications can only use the native libraries from the firmware, denying 

them (third-party apps) access to libraries downloaded by the untrusted applications. 

Unlike other existing solutions, that perform heavyweight whole-system analysis making them 

unsuitable for real-time analysis, TaintDroid defined four focus tracking points for behavior tracking: 

variable, method, message, and file levels, creating a full system information-flow tracking device 

capable of analyzing various sources of sensitive data and reducing the runtime performance overhead.  



 

54 

To track the system at multiple granularities, following Figure 10 representation, the system firstly 

creates a “decoy-flag”, by using a trusted application that handles sensitive information such as the 

location provider, to generate tainted information (1), that is then stored together as one taint tag. When 

the taint interface invokes a native method (2) that interacts with the Dalvik VM interpreter to store the 

tag in the virtual taint map and afterwards propagate it (3). Afterwards, the taint tag is send through the 

modified Binder (4) to the Binder of the kernel (5), then through the Dalvik VM virtual map (6 and 7), 

until it reaches the untrusted application. Using the created tag, when the untrusted application invokes 

a library tagged as a taint sink (8), libraries with sensitive permissions such as network that may allow 

the app to send information to the web, the library retrieves the taint tag and knows that the information 

is sensitive (9) reporting the event [80]. 

 

Figure 10 - TaintDroid architecture [80] 

This application was then used as a craft design for new security applications development. For 

example, DroidBox [81], which is an open source project  that uses TaintDroid to build an application 

sandbox environment, on Android, to dynamically taint analyze the machine code level, making it able 

of detecting malicious behavior in Java components, native components or components based on both. 

Although, these approaches have positive detection rates they still face some shortcomings, for 

example, on applications installation time the TaintDroid system can only detect malware if paired with 

a dynamic testing approach [60]. Another problem to address is the existence of malicious applications 

that are only triggered by the user interaction with the tainted application. Thereby, a static approach, 

that only analyses the applications code before their execution, will not be able of detect possible 

information leakages [82].  
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4.2.5 SmartDroid 

SmartDroid is a prototype system, developed by Zheng et al. (2012), that combines the static analysis 

with dynamic analysis to detect application malicious behavior. It does so by comparing the system 

calls data, generated by the application, with the user interface (UI) triggered conditions, which in case 

of behaviors mismatch is considered suspicious behavior. Figure 11 shows the system architecture.  

 

Figure 11 - SmartDroid architecture [82] 

The static analysis is used, to firstly, produce an expected activity switch path, that will guide the 

dynamic analysis on its interaction with each activity. 

Thereunto, in the static analysis the application intents to construct a function call graph (FCG), used to 

determine all function call paths to sensitive APIs, and an activity call graph (ACG), used to define the 

activity related to the sensitive source functions. Combining this data an expected activity switch path is 

created and then used in the dynamic analysis stage, together with the UI interaction simulator, to 

determine which UI elements can trigger this behavior on the application. With this information, the 

application automatically analyses the system applications searching for malicious behaviors. Although, 

the presented results seem positive for simple indirect trigger conditions, based on UI, as stated by the 

authors the system still cannot reveal some complex indirect conditions between the device user 

behavior with the system calls generated [82]. 

4.2.6 AsDroid 

Identically to SmartDroid, AsDroid (Anti-Stealth Droid), proposed by Huang et al. (2014), also compares 

the user’s interactions with the applications behavior to detect suspicious behaviors. However, unlike 

taint analysis techniques that only allow the detection of malicious apps that perform information 
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leakage, AsDroid searches for stealthy behavior in malicious apps even if there is no information 

leakage. 

AsDroid root approach is slightly different, the Android APIs are classified into different groups, each 

associated to an intent type [i.e. SendSms, PhoneCall, HttpAccess, etc.], these intents are then used by 

the two components that make up this technique: the static program analysis and the UI analysis. 

In the static program analysis, reachability analysis is performed on control flow graph (CFG), “used in 

computer science to represent all of the paths a program may traverse during execution of the 

program” [83], and on call graph (CG), represents the relationships between the program subroutines 

[84], and the intents are propagated from the API call sites (i.e. behavior of interest) to top level 

functions with associated UI. On the UI analysis component, the UI artifacts, corresponding to the 

button and its residence dialog, are identified and its text is extracted, analyzing it to identify a set of 

keywords.  

Subsequently to both analysis, the data collected, from the top-level functions and UI artifacts, is 

searched for compatibilities and analyzed for correlation dependencies between intents, if there is no 

relation between the intents and a mismatched behavior occurs it is confirmed to be found a stealthy 

behavior [85]. 

4.2.7 FlowDroid 

FlowDroid is an application, created by Bodden et al. (2013), that performs static taint analysis for 

Android applications searching for information leakages [60]. 

Its method is to search the application’s bytecode and its configuration files, such as layout XML file 

and executable dex files, searching for lifecycle and callback methods and calls to sources, sinks and 

entry points in the analyzed application. Note that another project of the authors previously ascertains 

the sources and sinks, namely SuSi, a machine learning approach that identifies sources and sinks 

from the Android source code [86].  

As stated by FlowDroid’’s authors “Sources are calls into resource methods returning non-constant 

values into the application code. (…) Sinks are calls into resource methods accepting at least one non-

constant data value from the application code as parameter, if and only if a new value is written or an 

existing one is overwritten on the resource” [86].  

Then it generates a main method, from the collected information, that is used to generate a call graph 

(CG), which combines pre-extracted Android callback information to find unknown callbacks, that is fed 
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to an inter-procedural control-flow graph (ICFG), an exploded super-graph based on flow functions 

associated with the program statements. Taint analysis is performed by starting in the sources detected 

and tracking taints by traversing the ICFG, i.e. after finding a possible taint source it follows the code 

until it reaches an app process kill or it finds a sink, which means that between that source and sink a 

taint if found. 

This approach technically resembles LeakMiner approach, as seen in Figure 12, a technique that 

performs static analysis on applications on market site before there are distributed to users [87], 

however their distinguishing point is the context-sensitive analysis performed by FlowDroid, which states 

that it causes the system success rate to improve [88]. 

 

Figure 12 – Comparative overview of FlowDroid and LeakMiner architectures [60] [87] 

4.2.8 Applications review resume  

There are several works developed on improving the security management methods, for both mobile 

and computer platforms. Whereas this dissertation focus is on mobile devices, to perform a 

comparative review of the works analyzed in this dissertation, resumed in Table 1 only mobile system’ 

works are listed.  
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Table 1 - Resume of mobile security applications 

System 
Name / 
Author 

IDS 
analysis 

focus 

Detection 
methodology 

Analysis 
type 

Data mining 
technique 

 
Resumed characteristics 

n.s. 4 / 
Addagada 

NIDS Anomaly  static Naïve Bayes Neural 
Network; 
SVM; 

 good detection rate;  
 low device processing load; 
 threats monetarization not on-

time; 
Crowdroid 
/ Burguera 
et al. 

HIDS Anomaly  n.s. K-means clustering; 
 

 monitors the system calls; 
 high detection rate Trojan 

horses; 
 can generate false positives; 
 useless offline; 
 threats monetarization not on-

time; 
Andromaly 
/ Shabtai 
et al. 

HIDS Anomaly  dynamic K-means; 
Logistic regression; 
Histogram; 
DT; 
Bayesian Networks; 
Naïve Bayes; 

 searching for abnormal 
performances; 
 light-weighted; 
 runes on the device; 
 modular; 
  unsuccessful to identify abrupt 

attacks; 
Patronus / 
Sun et al. 

HIDS/ 
NIDS 

Anomaly  dynamic ptrace-based 
analysis system; 

 solves an API hooking security 
approach vulnerability; 

TaintDroid 
/ Enck et 
al. 

HIDS Anomaly static n.s.  taint analysis application; 
 denies apps access to libraries 

downloaded by the untrusted 
applications; 

SmartDroid 
/ Zheng et 
al. 

HIDS Anomaly  static 
and 
dynamic 

Fixed-point 
algorithm 

 compares the system calls 
data with UI triggered 
conditions; 
 searches for suspicious 

behavior;  
 system fails to reveal some 

complex indirect conditions; 
AsDroid / 
Huang et 
al. 

HIDS Anomaly static n.s.  detects stealthy behavior; 
 

FlowDroid 
/ Bodden 
et al. 

HIDS Misuse  
/ Anomaly  

static n.s.  static taint analysis; 
 detects possible information 

leakages; 
 

From the resume, most security applications employ more than one type of security method to detect 

malicious applications in mobile systems, improving a lot both in their detection rate and system overall 

                                                 

4 “n.s.” stands for not stated. 
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consumption. They also detect different types of malware, using different parameters in feature 

detection, and different data mining (or machine learning) techniques to classify the applications 

behavior. 

However, because of the broad scope of possible malware and to address this dissertation problem, it 

was decided to focus on data leakage malware, i.e. flows of data between sources and sinks with 

malicious purposes such as information stealing.  

4.3 Malware Classification Models 

An important subject when addressing malicious systems is the malware classification analysis. When 

dealing with malicious detection data, for computerized systems, the size of inputted data to be 

analyzed is impractical for a hand-made analysis. Thereby, data mining techniques, or machine 

learning, are often used to transform the initial data into humanly readable information or in relevant 

information for the security algorithms.  

An applied advantage of these analysis is the possible use of its output results to generate malicious 

signatures, used in the development of future security systems. 

For example, Jang et al. (2011) developed a system capable of analyzing malware that provides a 

perception in the differences and similarities between and within malware data sets, named BitShred. 

The BitSherd application uses Boolean featured malicious variables combined with Jaccard similarity 

metric, that calculates the percentage of common features, and hashing implementation to make 

comparisons in the malware data and find correspondences [89].  

On the NIDS systems approach, Perdisci et al. (2012) developed a clustering model to aggregate HTTP-

based malware into similar clusters based on its behavior patterns [90]. Thomas and Mohaised (2014), 

also on the NIDS systems approach, proposed a DNS traffic data analysis model based on clustering 

models that looks for patterns on the Botnet domains names used for the command and control of 

Botnets [91].  
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5. METHODOLOGY 

5.1 Problem Contextualization 

Developing security applications systems capable of detecting, and possibly disable, malware 

applications faces a major challenge with the constant evolution of malicious software. When facing this 

challenge, understanding the malware contained in those applications is paramount. Recognizing the 

importance and complexity of this theme, this dissertation addresses the problem by answering the 

research question posed: “Is it possible to define measurable behavior patterns in malicious 

applications?”. 

5.1.1 Malicious Applications 

An advantage of the Android OS is its open source availability, which provides developers a wide scope 

of features when developing their own applications, and grants access to the Android applications 

market. Unfortunately, this easy access also facilitates the development and spread of malicious 

applications by criminals. 

As explained in Chapter 3 there are several methods and attack types. Usually application based 

attacks are performed by malicious applications, a third-party application that can perform different 

types of actions harmful for both the device or its owner, for example installing other apps without user 

consent, subscribing to premium services and change or leak data [92].  

5.1.2 Behavior Patterns 

A behavior pattern can be defined as a repetition of an action or a set of dominant behaviors, for 

example, for Beaucamps et al. (2010) “Behavior patterns are defined after observing malicious 

execution traces and extracting basic sequences likely to be part of a malicious behavior. These 

patterns often define usual interactions of the program with the system or the network. Once extracted, 

a sequence either defines a new behavior pattern or extends an existing pattern” [93].  

In this dissertation scenario, the variables in this study are the flows between the sources and sinks 

existing in an application, thereby their repetitions in different applications are considered behavior 

patterns. 
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To explore patterns in collected data, two classification models are used: a Decision Tree model and a 

Support Vector Machine model, which employ the patterns in the data to make predictions for new 

data. 

5.2 Experimental Setup 

As aforementioned, this dissertation aim is to find if it is possible to define measurable behaviors 

patterns in malicious applications. Since the data obtained constitutes a great deal of “raw” material it 

is impossible to analyze it manually, thereby data mining (DM) techniques are used, i.e. algorithms 

created to extract various types of information (e.g. knowledge extraction, data archaeology, data 

dreading, data/pattern analysis, etc.) [67], resorting to the RapidMiner5  software [94] to apply them. 

Table 2 presents a summary of all the RapidMiner operators used. 

Table 2 -  Resume of all the workflow operators used to build all the models 

Operator [95] Used functionality 

Retrieve This operator is used to access the data repositories. 

Set Role Used to change the role of the attributes. 

Filter examples Allows to separate the samples from a repository with unwanted data, in this 

context it was used to remove the unknown data samples. 

Generate TFIDF Generates a numeric statistic, by filtering the database, which reflects the 

importance of each word in the database. 

Nominal to Numerical Converts (bi)nominal data into representative numeric values. 

Apply Model Used to apply a trained model on a database. 

Performance Makes a modal performance estimation.  

Cross Validation Estimates the statistical performance a given learning operator will have in a real 

performance. 

Decision Tree Applies the Decision Tree algorithm. 

SVM Applies the SVM algorithm. 

Optimize Parameter 

(Grid) 

Finds the optimal values for a set of selected parameters. 

 

                                                 

5 Note that all the operators used in data preparing, application and evaluation of the models were from RapidMiner. 
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5.3 Data Collection 

When defining behavior patterns any system needs generated measurement data. In Chapter 4 an 

overview of some security applications developed for mobile systems is made. From the applications 

studied, considering their code availability and documentation, the FlowDroid application was chosen to 

perform the analysis on third-party applications and its outputted data was collected for the experiment 

done. As stated (in section 4.2.7) the application performs leakage detection on applications, outputting 

information of the sources and sinks found, which composed the data used for this dissertation 

experiment. 

All the used applications were randomly chosen. The normal applications were obtained from the 

“Google Play” store [96] (e.g. “Facebook”, “Messenger”, “Candy Crush”, “VLC”, “Photo Editor Pro”, 

etc.) and the malicious applications were gotten from “Contagium” malware blog [97] (e.g. 

“AndroidTrojAt”, “Skype”, “Brain Test Ghost Push”, “Sms worker”, etc.). 

As seen, a requirement of the FlowDroid program is a source and sink document (i.e. 

SourcesAndSinks.txt), obtained from SuSi application [86]. The sample size was decided based on the 

number of sources and sinks in the SourcesAndSinks.txt document, which had 147 sources and 165 

sinks, resulting in the decision of using 24 application samples, from which 13 samples were normal 

applications (approximately 520 flows) and 11 were malicious applications samples (approximately 385 

Flows).  

The total number of flows collected is 905 flows, however its repartition is not exact because all the 

flows obtained in the malicious applications analysis were considered as malicious. However, 

depending on the application purposes and implementation, it could contain normal flows. 

Firstly, using FlowDroid several analyses where performed, both on normal applications and malicious 

applications. Figure 13 presents an example of the FlowDroid output data, where the sink, source and 

method are highlighted.  

 

Figure 13 - Example of FlowDroid output data 



 

64 

After performing the analysis, the data was collected to an excel file, example shown in Figure 14. It 

should be noted that the method data, outputted by the FlowDroid application, was not considered in 

this analysis because it corresponds to specific features of each application, being irrelevant at this 

point of the analysis. 

As it can be seen in Figure 14, every line represents a flow, i.e. in the tested application information is 

read from the device (source) and is sent “outside” (sink). The “APP_ID” column represents the 

knowledge on the flow, if it is identified as “normal” the data flow is known as from a normal 

application, if it is identified as “malicious” the data flow is from a malicious application. The 

highlighted flow seen in Figure 14 represents the data collected from the example presented in Figure 

13.  

 

Figure 14 - FlowDroid output data in excel file example 

For a pre-analysis on the data collected, a handmade abstraction of the data was initially performed, 

where a unique “ID” was given for each different app (source and sink). Taking for example, the data 

seen in Figure 14, the transformed equivalent data is shown in Figure 15. 

 

Figure 15 – Figure 12 data ID transformation example 

5.3.1 Data Preparation 

Before building the analysis models, data preparation was performed, as shown in Figure 16. First, the 

database was filtered (1), in order to remove the unknown flows, i.e. those with “APP_ID” unknown.  

To avoid losing significant data information a TF-IDF (term frequency–inverse document frequency) 

filtering was performed (2), to infer about the importance of certain word represented in the database, 

where each word is given a certain value of importance (term frequency value). This operation was 
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performed by enabling the “calculate_term_frequencies” parameter, of the “Generate TFIDF” operator, 

that indicates that the term frequency values would be generated by RapidMiner.  

The aim of this model is to find relations (patterns) in the inputted data to classify it, thereby it is 

required to normalize the given data (4), so that all the data was in the same range, however the data 

obtained are strings. To enable the normalization, the use of numeric data is imperative6, for therefore a 

transformation from nominal data type7 to numeric data was done (3). 

Finally, the resulted data was saved, in a RapidMiner database, and later used in the experiment. 

 

 

Figure 16 - Workflow of the data preparation 

5.4 Data Pre-analysis 

To get a better understanding of the collected data, a pre-analysis was made before building the data 

mining models.  This analysis was carried out by directly observing the data and graphic representation.  

As seen in Figure 17, a sink can have more than one source, the output information has sources (519) 

and sinks (311). 

 

Figure 17 - FlowDroid number of sources and sink found in a app analysis 

By directly analyzing the excel file transformed into IDs, example shown in Figure 15, it was observed 

that similar applications usually have more sources and sinks in common. The “Facebook” and 

“Messenger” applications, for example, which are from the same author and have most of their flows in 

common (vide Figure 18).  

                                                 

6 The normalization performed by RapidMiner uses numerical values [95]. 
7 Note that the same operator is used both for nominal and binominal data. 
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Figure 18 - Similar applications flows comparison 

Afterwards, a direct output of the normalized data, transformed into IDs, was made. From the Figure 

19, where the blue data (“0”) are normal applications flows and the red data (“1”) are the malicious 

applications flows.  

 

Figure 19 - Graphic output of the transformed IDs,  
gotten from RapidMiner results 
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5.5 Data Analysis Models   

To begin the data testing the classification techniques chosen were Decision Tree (DT) and Support 

Vector Machine (SVM). This decision was made based on the data collected and on the most frequently 

analysis models found during the literature review.  

Also, some unsuccessful preliminary tests were done using clustering models. However, considering 

this dissertation’s goal, to prove that it is possible to define malicious applications behavior patterns and 

not to find the best pattern recognition model, it was decided to use the classification models 

mentioned.  

5.5.1 Decision Tree Model 

The Decision Tree (DT) classification model, similarly to an inverted tree architecture, is applied by 

starting with all its data in the root and consecutively splitting the data into smaller portions and 

allocating it into the nodes, until it reaches a classification decision in the leaves. An advantage of this 

technique is its ability to build models from datasets with both numerical and categorical data [70] [69].  

Figure 20 stands for a representation of the DT model workflow. Note that the databases of training 

data (“dados_treino”) and classification data (“classificação_treino”) were obtained previously, and 

saved, by the output from the data preparation step, showed in section 5.3.1. 

 

Figure 20 - Workflow of the Decision Tree model,  
gotten from RapidMiner results 
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5.5.2 Support Vector Machine Model 

Support Vector Machine (SVM) is a non-probabilistic binary linear classifier that, given a set of inputted 

tested data (with two possible states), uses it as a sample to classify unknown data (see section 3.6.2). 

Figure 21  represents of the SVM model. It should be noted that, as in the Decision Tree model, both 

databases used were previously saved with the output from the data preparation step showed (section 

5.3.1). 

 

Figure 21 - Workflow of the SVM model,  
gotten from RapidMiner results 

 

As seen in section 3.6.2, two important parameters of SVM are the coefficient (C) and epsilon (ε), 

respectively responsible for the trade-off between complexity and proportion of non-separable samples 

(thus the lower the C value the more generic the model gets with the cost of misclassification some 

points), and responsible for defining the level of influence a single training example reaches (where the 

lower its value the farther its reach).  

During the experiment, different parameter setups were used, later seen in section 5.6.4. However, 

unlike the Decision Tree model8, to better predict the C and ε values a practical guide to SVM 

classification developed by Hsu et al. (2010) was followed [98]. Its implementation is shown in Figure 

22, where the operator “Optimize Parameters (Grid)” is used to execute the cross-validation test using 

all the combinations of values for the selected parameters (C and ε) and obtain the best performance 

values. 

                                                 

8 This was not done to the DT parameters because no guide was found. 
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Figure 22 - SVM parameters calculation workflow,  
gotten from RapidMiner results 

5.6 Classification Models Experiments 

To ascertain that the models created fit the intended data analysis, tests were performed on the used 

models, namely a performance test and a validation test.  

It is important to note that each model has various parameters, which influence the test results. 

Thereby, various tests were performed, using different parameters, to find the best parametrization for 

the models.  

In both the performance test and the validation test, the data used was the sample with known behavior 

(“APP_ID”), which accounted for 100% of the collected data. Because the data type is (bi)nominal, the 

pruning, a machine learning technique that removes unimportant information, was not made use of in 

the tests. 

5.6.1 Performance Test 

Primarily, to test the accuracy of the model prediction a performance operator was used, in this step 

the test model was built and trained using only the known data, i.e. it tested if the flow came from a 

malicious application or from a normal application. One should be aware that this test information only 

validates the ability of the model to reproduce answers to known questions, which represents the 
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training error.  Figure 23 shows an example of the workflow used for the performance test of the 

Decision Tree model. 

 

Figure 23 - Workflow of the evaluation performance of the Decision Tree model,  
gotten from RapidMiner results 

The example of the SVM workflow performance test model is seen in Figure 24. 

 

Figure 24 - Workflow of the evaluation performance on the SVM model,  
gotten from RapidMiner results 

5.6.2 Validation Test 

After testing the model performance, a validation test was performed to see how the model would 

behave when faced with unknown questions (i.e. unknown data set), which yields the prediction error of 

the model. To ensure that this test results are statistical significant estimators of the models’ 

performance, and not “random luck” on the collected data, the 10-fold cross validation method was 

resorted to.  

The cross-validation test takes the given inputted data and divides it into random samples of data 

subsets. The number of subsets of data is defined by the number of test folds (x-folds) defined, in this 
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case 10 folds were used. It builds a model9 on 9 of the data subsets and keeps 1 of the data subsets 

for testing and measures the performance of the model. To test the robustness of the model and avoid 

overfitting of the data subset used, the cross-validation test iterates x-fold times the testing data subset 

(i.e. changes the defined testing subset) and repeatedly calculates the model performance. Finally, it 

calculates the model accuracy by the performance average of each of the iterations done [99]. 

This step was performed on the Decision Tree and SVM classification models. Figure 25 shows an 

example of the workflow used for the SVM model validation. It should be noted that the parameters’ 

definitions where the same in both models tests. 

 

 

Figure 25 - Workflow of the validation performance SVM model,  
gotten from RapidMiner results 

5.6.3 DT Model Experiment 

When classifying the data, Decision Tree models use different attributes (features), found in the inputted 

data, to continually split the data until it reaches a prediction on the data label.  

The model splits the data attributes based on the specified “Criterion” parameter (Table 3 shows the 

different captions for the “Criterion” parameter) and the maximum number of splits carried out is 

outlined by the “Maximal Depth” value. 

                                                 

9 The model is built based on the model in the test. 
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Table 3 - Caption of the criterion parameters 

Criterion Caption [95] 

Gini_index 

 

“This is a measure of impurity of an ExampleSet (inputted data). Splitting on a chosen 

attribute gives a reduction in the average gini index of the resulting subsets.” 

Accuracy 

 

“Such an attribute is selected for split that maximizes the accuracy of the whole Tree.” 

Information_gain 

 

“The entropy of all the attributes is calculated. The attribute with minimum entropy is 

selected for split. This method has a bias towards selecting attributes with a large number 

of values.” 

Gain_ratio “It is a variant of information gain. It adjusts the information gain for each attribute to allow 

the breadth and uniformity of the attribute values.” 

 

To test the model behavior with different parameter definitions, the performance tests were done using 

different “Criterion” parameters and different “Maximal Depth” values, Table 4 are specified the 

parameters used.  

Unlike for the SVM model, for the DT model no parameterization model was found, therefore initially all 

the available “Criterion” parameters were used during the test and the “Maximal Depth” values were 

randomly chosen. After some “trial and error” tests performed, the parameters were adjusted per 

improvements seen in the results obtained. 

Table 4 - Decision Tree algorithm parametrization' details 

Parameters Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

Criterion Gini_index Gini_index Gini_index Accuracy Gain_ratio Information_gain 

Maximal 

Depth 

2 10 30 40 40 40 

 Test 7 Test 8 Test 9 Test 10 Test 11 Test12 

Criterion Gini_index Gini_index Accuracy Gini_index Gini_index Gini_index 

Maximal 

Depth 

40 70 70 75 85 100 
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5.6.4 SVM Model Experiment 

As stated before (in section 5.5.2), to better parameterize the SVM model a value prediction model was 

applied. The outputted calculation results values can be seen in Figure 26, with a AUC (Area Under the 

Curve) performance of 0.964 +/- 0.016. The AUC refers to the area under the ROC (Receiver Operator 

Characteristic) which is a graph used as the baseline to assess whether the model is useful [100]. It is 

important to remember that this performance value is only for the model used to calculate the first C 

and ε values and it is independent from the evaluation of the SVM model. 

 

Figure 26 - Parameters calculation results outputted values,  
gotten from RapidMiner results 

The parameters’ calculation model was used as a reference to start the SVM model testing (Test 

1,Table 5), however to find comparison of the C and epsilon (ε) impact, the tests that followed were 

performed using both the RapidMiner default values of the testing software and the calculated 

parameters, changing the kernel used. Account should be taken that, by variating the kernel used, i.e. 

by altering the mathematical expression used to divide the data, the model behavior and thereby the 

output results will also vary. All the used parameters values are specified in Table 5. 

The neural kernel and Gaussian Combination kernel tests were initial considered to also be run, but the 

used machine resources limitations rendered them impossible, so they were not run.  
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Table 5 - SVM algorithm parametrization' details 

Parameters Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 

C 512 0.0 512 0.0 512 0.0 

ε 0.000488 0.001 0.000488 0.001 0.000488 0.001 

Kernel Linear Linear Radial Radial Polynomial Polynomial 

 Test 7 Test 8 Test 9 Test 10 Test 11 Test12 

C 512 0.0 512 0.0 512 0.0 

ε 0.000488 0.001 0.000488 0.001 0.000488 0.001 

Kernel Anova Anova Epachnenikok Epachnenikok Multiquadric Multiquadric 

5.6.5 Evaluation 

Data mining models need to have the greatest possible acuity. Hence, for the models to be accepted as 

reliable for use in real cases, certain specifications must be met. In the scope of this problem, the time 

and memory constraints during the testing were not considered. The main criteria defined was the 

models’ correct prediction ability, i.e. its reliability. Therefore, the evaluation parameters are Accuracy, 

Precision, and Recall. To ascertain these values from the cross-validation test, the data from the 

confusion matrix was also collected, as is shown in Table 6, to compare the actual classes of samples 

(correctly and incorrectly) defined against the predicted classes. 

Table 6 - Confusion matrix 

 

Each of the evaluation parameters represents a percentage value that estimates the model reliability, 

respectively: the accuracy, Eq. 5, defines the ability of the model to correctly predict the class label of 

unknown data; the precision, Eq. 6 and Eq. 7, defines the percentage of relevant results (quality); and, 

the recall, Eq. 8 and Eq. 9, defines the percentage of relevant results (quantity) [101].  

 

 Actual Class Class Precision 

Normal (N) Malicious (M) 

Predicted class Normal  True Normal (TN) False Malicious (FM) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑜𝑟𝑚𝑎𝑙  

Malicious  False Normal (FN) True Malicious (TM) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 

Class Recall 𝑅𝑒𝑐𝑎𝑙𝑙𝑁𝑜𝑟𝑚𝑎𝑙  𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠   
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑁 +  TM

𝑁 + 𝑀
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 =  
TM

𝐹𝑁 + 𝑇𝑀
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑁𝑜𝑟𝑚𝑎𝑙 =  
TN

𝑇𝑁 + 𝐹𝑀
 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠 =  
 TM

𝐹𝑀 + 𝑇𝑀
 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑁𝑜𝑟𝑚𝑎𝑙 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 
In addition to the confusion matrix, during the cross-validation test RapidMiner presents a global 

average value for the Accuracy, the Recall and the Precision values, i.e. the average of each parameter 

for the malicious and normal results. 

Table 7 shows the percentage values defined for evaluation of the performance and validation of the 

models, note that these values represent the global average. The minimum accepted percentage value 

of the models was decided based on the performance values found in the literature review (in Chapter 

4) and other security performance studies done using cross-validation [102] [103]. 

Table 7 - Defined percentage values for the models evaluation 

 Testing Model10 Validating Model 

Accuracy Higher that 90% higher than 80% 

Precision Higher that 90% higher than 80% 

Recall Higher that 90% higher than 70% 

 

An additional information calculated by RapidMiner is the standard deviation (σ) value, for both the 

Accuracy and Recall values, which represents the amount of variation or dispersion of a set of data 

values (i.e. the lower this value the more stable the model is) [101]. 

                                                 

10 For the Decision Tree performance test the model only evaluates the “Accuracy”. 

  (Eq. 5) 

(Eq. 6) 

(Eq. 7) 

(Eq. 8) 

(Eq. 9) 
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6. RESULTS 

As previously stated (in section 5.6.5), RapidMiner gives a global average value for each evaluated 

parameter, thereby those results were first gathered. The global results obtained from the performance 

and validation tests in the Decision Tree (DT) are shown in Table 8. To ease the observational analysis 

of the tables, the best results obtained are highlighted (in yellow). 

Table 8 - Decision Tree model tests results 

Model Test  Test type Accuracy (%)(+/-σ) Precision (%) Recall (%)(+/-σ) 

DT Test 1 Performance 72.87 - - 

Validation 72.87 (+/- 3.55) 100.00 (+/- 0.00) 32.90 (+/- 8.55) 

Test 2 Performance 81.52 - - 

Validation 78.06 (+/- 3.78) 100.00 (+/- 0.00) 45.70 (+/- 9.42) 

Test 3 Performance 92.29 - - 

Validation 86.57% +/- 3.07 98.47% +/- 2.35 67.70% +/- 6.83 

Test 4 Performance 91.09 - - 

Validation 84. 57 (+/- 3.70) 93.65 (+/- 6.12) 66.70 (+/- 8.90) 

Test 5 Performance 90.96 - - 

Validation 85.24 (+/- 3.88) 98.29 (+/- 2.62) 64.42 (+/- 8.73) 

Test 6 Performance 95.35 - - 

Validation 87.36 (+/- 2.75) 98.55 (+/- 2.22) 69.67 (+/- 6.15) 

Test 7 Performance 95.08 - - 

Validation 87.36 (+/- 2.75) 98.55 (+/- 2.22) 69.67 (+/- 6.15) 

Test 8 Performance 99.20 - - 

Validation 89.36 (+/- 3.38) 98.25 (+/- 3.38) 89.36 (+/- 3.38) 

Test 9 Performance 95.48 - - 

Validation 86.69 (+/- 4.01) 93.87 (+/- 6.08) 72.25 (+/- 10.53) 

Test 

10 

Performance 99.20 - - 

Validation 89.36 (+/- 3.38) 98.25 (+/- 2.76) 74.90 (+/- 7.68) 

Test 

11 

Performance 99.20 - - 

Validation 89.36 (+/- 3.38) 98.25 (+/- 2.76) 74.90 (+/- 7.68) 

Test 

12 

Performance 99.20 - - 

Validation 89.36 (+/- 3.38) 98.25 (+/- 2.76) 74.90 (+/- 7.68) 
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The global results obtained from the performance and validation tests in the SVM model are shown in 

Table 9. Similarly to the table of the DT model results, the best results are also highlighted (in yellow). 

Table 9 - SVM model tests results 

Model Test Test type Accuracy (%) (+/-σ  ) Precision (%) Recall (%) (+/-σ  ) 

SVM Test 1 Performance 99.20 100.0 98.03 

Validation 65.31 (+/- 11.73) 95.74  15.00 (+/- 30.01) 

Test 2 Performance 98.80 99.66 97.37 

Validation 65.31 (+/- 11.73) 95.74 15.00 (+/- 30.01) 

Test 3 Performance 99.20 100.00 98.03 

Validation 61.84 (+/- 4.87) 100.00 5.67 (+/- 11.55) 

Test 4 Performance 99.20 100.00 98.03 

Validation 61.84 (+/- 4.87) 100.00 5.67 (+/- 11.55) 

Test 5 Performance 70.61 58.03 98.68 

Validation 60.77 (+/- 2.70) 58.18 10.67 (+/- 21.33) 

Test 6 Performance 88.96 100.00 72.70 

Validation 60.77 (+/- 2.83) 65.52 6.33 (+/- 12.69) 

Test 7 Performance 98.80 97.73 99.34 

Validation 65.04 (+/- 11.17) 85.96 16.33 (+/- 32.68) 

Test 8 Performance 59.57 unknown 0.00 

Validation - - - 

Test 9 Performance 99.20 100.00 98.03 

Validation 61.84 (+/- 4.87) 100.00 5.67 (+/- 11.55) 

Test 

10 

Performance 99.20 100.00 98.03 

Validation 61.84 (+/- 4.87) 100.00 5.67 (+/- 11.55) 

Test 

11 

Performance 59.57 unknown 0.00 

Validation - - - 

Test 

12 

Performance 59.57 unknown 0.00 

Validation - - - 

 

The best result tests, obtained for each model, are discriminated in the confusion matrix (Table 10), 

where the DT and SVM models are respectively shown. Highlighted in yellow are the best true predicted 

scores and in blue the lowest true predictions. 
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Table 10 - Confusion matrix of the models best validation test results 

Model Test % predicted as 

“normal” (TN) 

% successful “normal” 

predictions  

% predicted as 

“malicious” (TM) 

% successful 

“malicious” predictions  

DT Test 8 94.62  83.67 75.06 91.17 

Test 9 92.12 88.01 78.18 88.01 

Test 10 94.62 84.10 75.85 91.25 

Test 11 94.62 84.97 77.40 91.41 

Test 12 94.62 85.12 77.66 91.44 

SVM Test 1 99.55 63.26 14.80 95.74 

Test 2 99.55 63.26 14.80 95.74 

Test 7 98.21 63.31 16.12 85.96 

 

% successful 

“normal/malicious” predictions 

Percentage of predictions, for each class, the models managed to made. 

% predicted as 

“normal/malicious” (TN/TM) 

Percentage of correct predictions, for each class, the models managed 

to made. 

6.1 Discussion 

The discussion performed was divided into three parts. The first part focuses on the results of the DT 

model, which is subdivided into a direct observation analysis and an examination of the model tests. 

Then, the SVM parameters optimization testing and model results is discussed. Finally, a comparison of 

the performance between the models is done. 

6.1.1 Decision Tree Model Discussion 

Direct Observation 

For a preliminary examination of the DT model results an example was chosen from the performed 

tests, and its output is analyzed. The graphical representation used is shown in Figure 27, this figure 

corresponds to an output gotten during the experimental tests. 
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From the branches shown in the figure), it can be interpreted that a flow will only be normal if its 

normalized value is equal to or lower than 7.86411, meaning that above that value are the malicious 

flows. 

 

Figure 27 - Output from the training Tree Decision model,  
gotten from RapidMiner results 

An example of the outputted values gotten from RapidMiner during the validation tests is presented in 

Figure 28. These values represent the output from the Decision Tree model validation test (Test 8). It is 

noteworthy that “pred. normal” stands for predicted normal and “pred. malicious” stands for predicted 

malicious. Because both images were gotten at different times during the project, it should be noted 

that figures 27 and 28 represent two different test results.  

In this example, focusing on the malicious flows predictions, the model managed to predict 75.06% true 

malicious flows. However, in 9 cases of malicious flow predictions one of the flows was a normal flow 

(“pred. malicious” of 91.17%). 

 

Figure 28 - Illustration of the outputted values of the DT model validation test (Test 8),  

                                                 

11 Numeric value calculated by the Decision Tree algorithm, based on the criterion parameter definition. 
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gotten from RapidMiner results 

Decision Tree Model Test Results 

Based on the analysis of the results obtained during the tests performed on the DT model, it can be 

verified that in terms of accuracy and precision almost all the tests performed (from Test 3 to Test 12) 

comply with the minimal values defined, and the Tests 8 to 12 are quite satisfactory since they all 

comply with the minimum specifications. 

Individually, Tests 1 and Test 2 obtained the best precision (=100%), however this value could be due to 

an overfitting of the models for the parameters used in this tests. Whereas Tests 8 to 12 obtained the 

best accuracy (= 89.36 +/- 3.38) and Test 8 had the best recall value (=89.36% +/-3.38). 

Test 8 parameters obtained the best DT model performance, using the criterion defined as “Gini_index” 

and a maximal Depth of 70, with accuracy of 89.36%, precision of 98.25%, recall of 89.36% and a 

standard deviation of 3.38. This model fits the data well, however because of the depth used it may not 

fit different data sets. 

From the confusion matrix (Table 10), it is possible to differentiate that although Test 8 had the best 

results when analyzing the global values (on Table 8), it was the Test 9 that had the best score 

(78.18%) when predicting malicious flows, whereas Test 8 afforded the lowest true malicious prediction 

score (75.06%). Test 9 had the lowest true normal prediction percentage (92.12%) and all the others 

scored 94.62% true normal predictions. 

6.1.2  Support Vector Machine Model Discussion 

The SVM model did not produce any graphical representation that could be analyzed and its confusion 

matrix is similar to the DT confusion matrix. Thereby, for the SVM results only the results on the tests 

were considered. 

Unfortunately, the SVM model results were not satisfactory, unlike what the performance results 

indicated in the cross-validation tests. None of the performed tests complied with the minimum 

specifications. Among all of them, Test 7 obtained the best results, with the parameters definition: C = 

512, ε = 0.000488 and “Anova” kernel, and an accuracy of 65.04%, precision of 85.96%, recall of 

16.33 %, standard deviation for accuracy of 11.17 and a standard deviation for recall of 32.68. 

From the data in the confusion matrix it can be concluded that the model completely fails on detecting 

malicious behaviors, with the best true malicious score being of only 16.12% (Test 7). 
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6.1.3 Results Comparison 

From the performance test results obtained, it seemed reasonable to assume that both models would 

have good results when analyzing new data, with both the DT and SVM model having, for most tests, 

more that 90% in accuracy results.  

However, from the 10-fold cross validation test it was found that the SVM model never met the 

minimum values, with best test results presenting an accuracy of 65.04%, a precision of 85.96%, a 

recall of 16.33 % and standard deviations for accuracy and recall, respectively, of 11.17 and 32.68 

which also mean the model is unstable. 

The DT classification model seems to have a good response rate when detecting the data type used. 

From the 10-fold cross validation test results, it can be concluded that the model was a good fit for the 

data analyzed, with 33% of the tests meeting the minimum evaluation values defined. This means the 

model successfully found behavioral patterns in the data (both normal and malicious). However, the 

model was not generalized given that most maximal depth values used were over 40 (branches). 

Between the best results obtained for each model and their standard deviation values, it can be 

concluded that the DT model (σ = 3.38) was more stable than the SVM model (σ = 32.68). 

From the experiment, the DT model was a good classification model for the data obtained. It was shown 

that it is possible to distinguish, with some precision, malicious patterns on the data used.  
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7. CONCLUSION 

Digital information security has been a great concern for government and enterprises, initially directed 

to the information in computers and servers. The widespread usability of mobile phone users to handle 

information made them into a target for malicious users, particularly the Android OS system.  

Malicious software is constantly being developed and the intrusion techniques are increasingly 

sophisticated. Criminals, use different types of intrusion methods (i.e. Trojan horses, social engineering, 

etc.) trying to gain access to sensitive information, causing information leakage. To counteract these 

intrusions systems, security protection systems are constantly in the need of improvement and 

updating.  

The research question goal was to assess whether it was possible to define measurable behavior 

patterns in malicious applications. 

By collecting the outputted data from the FlowDroid application, flows from sources to sinks, and 

applying it into the DT and SVM models built, an analysis was made on the models’ ability to identify 

behavioral patterns in the data and correctly classify it as either normal or malicious. To test the models 

both performance and validation tests were used.  

The results obtained, from the DT model, indicate that it is possible to determine malicious flows in 

malicious applications and that the flows found share a level of similar attributes, which enabled the 

classification of behavior patterns between the applications.  

The characterization and detection of tainted flows is an important feature on security applications. 

Particularly for companies and governments, were the loss of sensitive information can represent 

severe losses. Private users should also be more concerned with their own privacy leakages. However, 

more than having good security applications, there is the need to raise the users’ awareness on the 

risks they expose themselves when installing doubtful applications and the negative impact that could 

mean for their privacy or on their device. 

7.1 Project Limitations and Future Work 

This dissertation has developed two classification models, a DT and SVM model, with the purpose of 

showing if these models could use the behavioral patterns found in the collected data and correctly 
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classify the flows (data collected) into malicious or normal flows, however some limitations were found 

in this study. 

A constraint of this study was the SourcesAndSinks.txt document used in the data collection phase. 

Because the document used translates the sources and sinks collected by the FlowDroid application’s 

authors, it may be possible that from the analyzed applications for this study some flows in those 

applications were not found and thereby not considered in the data classification phase. This means 

that some information may be missing from the analyzed data set. For an improvement of this project, 

and greater accuracy of the results, an assessment on the sources and sinks per application needs to 

be done.  

Based on the created DT model and with the obtained results, it is possible to make a prior 

identification of the malicious applications. Therefore, a future proposal for the continuation of the 

project is to expand the data collection and try other data mining techniques (such as data clustering 

algorithms, deep learning, or neural networks) to uncover exactly which patterns the malicious flows 

form. For example, to create a detection application that directly looks for this patterns when analyzing 

the system, making the detection faster and less resource consuming. 
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