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We re-consider Raman scattering by LO-type phonons in a small semi-
conductor crystal and derive a simple formula taking into account the
higher order confined phonon modes, to describe the asymmetric Ra-
man lineshapes observed experimentally. For a single crystalline sphere,
we explicitly calculate the relative contributions of the confined modes
with different values of the radial quantum number. For arrays of such
spheres, we argue that, apart from a superposition of the above con-
tributions from individual scatterers, there exists a collective scattering
by a coherent mode which involves many spheres, unless their concen-
tration is too small. This collective scattering is determined by an ef-
fective dielectric function of the composite medium and peaks near the
Frohlich frequency. We apply these principles to the analysis and mod-
elling of Raman spectra taken from CdS doped SiO; films. © 1997
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1. INTRODUCTION

The effects of reduced space dimensions on the optical
properties of semiconductor nano-crystals are the sub-
Ject of much current interest [1]. Phonons in these ma-
terials are interesting from two points of view [2]. First,
the electron-phonon interaction plays a critical role
in the optical properties. Secondly, it may be possible,
through Raman measurements, to determine the size
of the nano-crystals. However, the crystal size effects
on the Raman spectra and on the electron-phonon in-
teraction are still somewhat controversial [3). In most
cases, the first-order Raman line redshifts and broad-
ens with asymmetry towards the low-frequency side as
the nano-crystal size decreases [2-5). Unexpected up-
ward shifts have also been observed and attributed to
compressive strains due to the glass matrix [6], or to
impurities in the nano-crystals [7].
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According to the classical work of Ruppin and En-
glman [8], in small ionic crystals there exist bulk-like
optical modes, the so called Frohlich mode corre-
sponding to a uniform polarization of the nano-
crystal, and also surface optical modes. The Fréhlich
mode is only IR-active [9] while the surface modes
usually contribute much more weakly than internal
modes to Raman scattering [S] despite the fact that
for the small nano-crystals a significant part of the
atoms are surface atoms. To describe the scattering by
the internal modes, a simple phenomenological mode!
was proposed some ten years ago [10], which has
been used by most experimentalists studying Raman
spectra from various semiconductor nano-crystal sys-
tems [4,11,12]. In fact, the model and the widely used
formula were proposed much earlier [13] for Raman
scattering by disordered materials. The central part of
the model is the phonon weighting function. There is
arbitrariness in the choice of this function, since it has
no clear physical meaning in the case of small crys-
tals (in contrast to the case of disordered materials
where it is the displacement-displacement correlation
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function). It is not an eigenfunction of the dynamical
equation of motion because the expression [10] for
the Raman intensity involves an integration over bulk
phonon wavevectors instead of summation over the
appropriate quantized eigenmodes. Accordingly, this

model cannot reliably give a satisfactory description

of the Raman spectra [14] unless one constucts a so-
phisticated weighting function with enough degrees
of freedom.

The scope of the present paper is to propose a for-
mula, as simple as that of ref. [10], describing the one-
phonon Raman scattering by nano-crystals and, un-
like that in ref. [10], taking properly into account the
changes in the spectrum of phonons due to their spa-
tial confinement. Also, we discuss a collective Raman
scattering by small (of the order of the light wave-
length in size) regions of the composite medium which
contain a sufficient number of nano-crystals.

2. SCATTERING FROM A SINGLE SMALL
CRYSTAL

We start with a known expression for the one-
phonon cross-section (Stokes component) [15, 16]:
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Xy is the polarisability tensor, uy are the displacement
components, 1y, kr and e;, and ngs. ks and eg are the
refraction coefficient, wavector and polarization vec-
tor for the incident and scattered waves, respectively,
r and /' run over unit cells, k and k’ denote different
atoms within one unit cell, &, B, y stand for Cartesian

coordinates, G is the one-phonon Green function de-
fined as follows:

Gap(r'. k', r, K w) = Z"“—"‘——"v'“(:‘;)ivﬁ;" <)
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where v enumerates the phonon eigenstates.
For large crystals, v = (g; /), ¢ and j being the
phonon wavevector and branch number, respectively,

ugy(r, K) ~ €%,
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the summations over r, 7’ give Vé(k; = ks —¢q) (V is
the scattering volume), and one arrives at a known
expression for the Raman cross-section, containing the
spectral density of optical phonon states with g = 0.
For a crystal without disorder, the latter is just a -
function at the appropriate frequency.

For a small crystal, two facts must be taken into
consideration:

(i) the phonon spectrum is now described by a dif-
ferent set of quantum numbers;

(ii) even if phonons still can be approximately de-
scribed by the wavevector, the integration over just a
small volume leads to broadening of the §-function
expressing the quasi-momentum conservation.

To explore these ideas, let us consider a small crystal
of a simple (e.g. spherical) shape made of an ionic
binary compound. Then

Prg(k) = (=1)"pag.y &)
S Gl Ve M
(1, K) = “ey (N () P (1) “

for optical phonons, where e, is the phonon polariza-
tion vector, M, are atomic masses, u is the reduced
atomic mass, j is a constant tensor and ¥,(r) is an
envelope function. Using (2)(4), (1) reduces to
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is an overlap integral, R, being the radius vector of
the r-th unit cell (of volume v), and

Av(R) = 3 papyer“esPe,”(R)
afy
depends on the phonon symmetry and scattering ge-
ometry.

Phonons in small spherical crystals were considered
in [9, 17). There are just two types of Raman-active
modes with / = 0 and 2 (/ is the orbital quantum
number), i.e. Ay is non-zero for only these modes. The
most important contribution to the one-phonon Ra-
man scattering corresponds to / = 0. This mode is
excited for parallel’polarizations of the incident and
scattered light.’ According to [9],

g R _ e
Ya(R) = le(C..‘EE), n=12-- (O]

where Ry is the sphere’s radius, jj is the Bessel spher-
ical function, C is a normalisation constant and Z, is
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the n-th root of ji. The corresponding vibrational fre-
quencies are:

w} = wlo - Blo(3? ®
with wro and Bro being the bulk LO frequency and
the LO dispersion curve bending parameter, respec-
tively. The polarization of these confined modes ey is,

_of course, independent of n and, since

Bap.y ~ Sapek .
the A4 factor can be removed from (6) and (5).
Using (5)-(7), we obtain

d20' Bn
dQdws ~ (n(w) + 1) Im ;wz -w?2-i0 ©)
where
_ 3f 2(1 ~cos&,) —G,sinl, 72
& 8"R0[3Cn cosLy = (3 - an) sin Cn] (10

3. SCATTERING FROM AN ENSEMBLE OF
SMALL CRYSTALS

Since the vibrational mode considered above does
not produce any electric field outside the sphere, there
is no interaction associated with this mode between
the nano-crystals. Also, due to distribution of their
sizes, we can rule out any coherence of scattering by
different spheres. Therefore, the Raman cross-section
of an array of scatterers is simply a superposition
of their individual contributions. The latter is deter-
mined by formulae (8)-(10). The array cross-section is,
roughly speaking, proportional to the volume fraction
S of semiconductor. The array scattering is also sup-
posed to be fully polarized if the composite medium
is isotropic on the average.

If an “interaction volume” of the light includes
many nano-crystals, there should be another con-
tribution to Raman scattering due to a collective
vibrational-electromagnetic excitation of the Fréhlich
type. For a single sphere, the Fréhlich mode is
Raman-inactive [9). However, a piece of the composite
medium containing many spheres is described by an
effective dielectric function €* whose zeros correspond
to longitudinal-type collective excitations which in-
volve mechanical displacements within the spheres
and which are purely electromagnetic in between. An
electromagnetic wave interacting coherently with this
piece of the medium would “see” these excitations.
Therefore we should expect for this kind of scattering
in the backscattering geometry [15]

2
T _ - (n(w) + 1) Im(=)N,
s €

dQdw &)
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where N, is the number of the “collective scatterers”.

The effective dielectric function of a composite con-
taining separate (spherical) inclusions embedded in a
diclectric matrix can be calculated using an approach
based on the classical Maxwell-Garnett (MG) the-
ory [18] but using a renormalised polarizability of the
inclusions which can be related to the usual one by a
kind of the Dyson equation. This (RMG) approach
allows for taking into account a continious distribu-
tion of sizes of the spheres if their dielectric function
€(Ro) is known [I9]. Since the Fréhlich frequency
should be much less dependent on Ry than the con-
fined LO phonon frequency, the dielectric function of
the spheres can be taken as for bulk, i.e.

2
w €y — €
€ = €ul(l + —2T0 (€0 " €x)

Wi — w? — iwl'-ro) (12) )

where € and €. are the static and high-frequency di-
electric constants, respectively, wro is the bulk phonen
frequency and I'ro is TO phonon damping. As f — 0,
the effective LO frequency (corresponding to the peak
of Im(—€*)~") tends, of course, to the Frohlich fre-
quency wr but for finite f it lies above wz and below
wo [19].

For higher filling fractions (f = 0.3), probably more
relevant is a self-consistent mean-field approximation
known as the Bruggeman model (BM) [20]. This ap-
proach is widely used to describe various properties of
composite media.

The interaction volume which should be taken as
the size of the collective scatterer is of the order of
AZE, where A is the light wavelendth and & ~ f-!
is its coherence length. Therefore the number of the

“collective scatterers N. ~ f and, since approximately

Im(—€*)~! ~ f, the Raman cross section is propor-
tional to f? for this mechanism, implying the condi-
tion of the collective scattering f > R}/(A2E.) sat-
isfied. The different collective scatterers can be con-
sidered as independent and randomly oriented cylin-
ders, because, apart from the Raman scattering, there
is also elastic scattering of light, and the partial waves
propagate in all possible directions (which define the
collective scatterer’s orientations) within the medium.
Consequently, the inelastically scattered light should
be least polarized in this case [15].

4. RESULTS AND DISCUSSION

Formulae (8)-(10) have been applied to describe
Raman spectra of CdS nano-crystals of the size range
of 4-10 nm embedded in SiO; glass films grown by
the magnetron RF-sputtering technique with post-
deposition annealing. Details of sputtering and an-
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Fig. 1. Experimental (bold curve) and theoretical Ra-
man spectra of a rf-sputtering grown CdS/SiO; film.
The theoretical curves are as follows: dashed line - con-
fined LO modes withn = 1, - - -, 10 assuming a Gaus-
sian distribution of sphere’s sizes; dashed—dotted line
— spheres of one size only are considered; dotted line -
single Lorentzian for the principal mode in the sphere
of Ry = 504; full fine curve is the sum of the con-
tribution of the LO modes (dashed line) and that of
the collective mode (see also Fig. 2). The insert shows
the relative contributions of the modes with different
n calculated according to equation (10).

nealing regimes have been reported before [21]. X-ray
studies showed zinc-blende structure of the nano-
crystals. One of these spectra taken at room tempera-
ture in the backscattering geometry using an Ar laser
and a Jobin Yvon T64000 spectrometer (resolution
better than 1 cm™') is shown in Fig. 1. The theoret-
ical spectrum (the dashed line) fits the central part
of the experimental peak very well using just two ad-
justable parameters: the mean radius of the spheres
(Ro = 504 in this case) and the natural Lorentzian
linewidth (ILo = 12cm™}). It reproduces the asymme-
try due to the contribution of the modes with n = 2
(for comparison, a Lorentzian centered at the first
confined LO mode is also shown in Fig. 1). As can be
seen from the insert, the odd modes contribute more
strongly than the even ones.

Since the bulk LO phonon dispersion curve of
CdS is relatively flat (BLo is rather small), the Raman
lineshape is rather insensitive to the distribution of
sphere’s sizes. The curves of Fig. | calculated first for
spheres of one size and then for the spheres with a
Gaussian distribution of the radii almost coincide.

At the same time, the experimental spectral peak
possesses a very broad pedestal which implies a wide
band of Raman-active phonon states not included in
the model. As is known [22], neither confinement nor
disorder in nano-crystals can produce phonon states
above the upper limiting frequency of the bulk ma-
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terial (307 cm~! for CdS) unless the effects of a new
chemical binding or compressive stress are involved.
In our case, since the peak is always below 307 cm™!,
the most natural explanation of the high-frequency
tail may be as follows. The CdS films were grown
on substrates of a common glass possibly contain-
ing ZnO. During the heat treatment Zn could dif-
fuse into the film leading to the formation of some
Cd;-xZn,S nano-crystals [7], with x decreasing as the
distance from the interface increases. Cdj-xZn,S is an
one-mode alloy displaying an LO frequency increas-
ing with x almost linearly [16}, so some of the spheres
situated closer to the interface can produce LO-type
vibrations of frequency higher than 307 cm™!.

A low-frequency tail is often observed for nano-
crystal semiconductor systems [2,4]. It is tempting to
attribute it to the collective scattering described in the
previous section. The lineshape for this kind of scat-
tering was calculated according to (11) using both the
RMG and BM approximations. The results thus ob-
tained for f = 0.07 are shown in Fig. 2. The two mod-
els give rather different lineshapes. If the difference in
the dielectric functions of the spheres and the matrix
is large (as is the case here), the use of the BM approx-
imation is not justified for very small f (see discussion
in [19]). Nevertheless, it is often applied, with some
success, to composite systems with small volume frac-
tions of inclusions (e.g. [23]). Surprisingly, the collec-
tive scattering lineshape calculated this way fits very
well the difference between the experimental and the-
oretical spectra of Fig. 1 which is plotted in Fig. 2.
This can also be seen from Fig. 1 where the full curve
represents a superposition of the two lineshapes. Of
course, this fact does not yet prove the assignment of
the low-frequency tail to the collective Raman scatter-
ing mode. A possible contribution of the surface op-
tical (SO) mode of a single sphere with / = 2, whose
frequency, according to the formula given by [8], is
about 279 cm™~! for the system studied here, cannot be
disregarded. In fact, this is a common explanation of
the low-frequency part of the Raman lineshape [4, 5).
The only paper of which we are aware claiming the
observation of the Fréhlich mode (that is, of the col-
lective mode) in Raman spectra is ref. [3]. It seems
to be rather difficult to distinguish the contributions
coming from the SO modes and the collective longitu-
dinal mode, because both of them are expected to be
depolarized [15, 17}'and it is practically impossible to
calculate and compare the absolute values of the scat-
tering cross-sections. A study of the dependence of the
low-frequency tail on the volume fraction of semicon-
ductor could possibly distinguish collective scattering
from that due to the SO modes, since it should be dif-
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Fig. 2. Raman lineshapes for the collective scattering
mechanism calculated using the BM (full curve) and
RMG (dashed curve) models. In both cases [Tp =
15 cm™', f = 0.07. Also shown (bold curve) is the
difference between the experimental spectrum and the
overall LO lineshape of Fig. 1. The ordinate scale is
multiplied by a factor of 10 compared to Fig. 1.

ferent for the discussed modes.

We do not have such a set of well characterized sim-
ilar samples of different f. In addition to rf-sputtering
grown samples, we have also studied a CdS/SiO; film
grown by the sol-gel technique [24], with the esti-
mated filling fraction f = 0.1. Its Raman spectrum
shown in Fig. 3 was fitted in the same way as that
of Fig. 1. Again, the central part of the peak is well
reproduced by the confined mode model (note that
the mean radius Ry = 214 is much smaller for this
sample, which results in the position of its maximum
shifted down to 301 cm~!, compared to 306 cm~! for
the rf-sputtering grown sample). However, to repro-
duce its low-frequency (below 285 cm™!) part, we had
to take a higher value of the relative weight of the
collective scattering than for the spectrum of Fig. 1,
in qualitative agreement with the conclusion of Sec.3
that this effect should be proportional to f2. Further-
more, changing the exciting wavelength for 514.5 nm
(that is, going further off resonance and making the
condition for the collective scattering be more likely
satisfied), the relative contribution of the additional
mode is enhanced, as can be seen from the insert of
Fig. 3. Lastly, this additional excitation can hardly
be idenrtified as the individual sphere’s surface mode,
since it lies well below the SO frequency in this case.
On the contrary to the SO mode, the position of the
Im(—€*)~! peak depends on f. Thus, it seems much
more plausible that the low-frequency tail of the 1LO
peak in our non-resonant Raman spectra is due to the
collective mode and not the SO one.

In summary, we proposed a simple formula (9) for
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Fig. 3. Experimental (bold curve) Raman spectrum of
a sol-gel grown CdS/SiO; film obtained with A, =
488 nm and its theoretical fit (fine full curve), which is
a sum of the contributions of the collective and con-
fined modes. Dashed curve includes only the confined
modes calculated assuming [0 = 15em™!, Ry = 214
and Gaussian distribution of the sphere's radii with a

standard deviation of 5A4. The insert shows the effect
of the exciting wavelength.

the Raman cross-section of perfectly confined LO-
type modes with / = 0, n = 1,2, .- - . Although we
considered polar modes, this formula is also valid
for non-polar ones, e.g., in Si nano-crystals. The SO
modes can be included in the same manner, since
the displacement field for them is also known [9] and
the corresponding oscillator strengths can be calcu-
lated, but obviously the overlap integral (6) is several
times less for these modes. We have discussed another
mechanism of scattering, relevant for ensembles of
nano-crystals of polar materials, by a collective longi-
tudinal excitation spanning coherently many spheres.
Combining the collective and confined LO scattering
cross-sections we were able to describe the lineshapes
in Raman spectra of the SiO; films doped by CdS
nano-crystals.
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