Software Reification using the SETS Calculus

José N. Oliveira
DI/INESC, Universidade do Minho
Braga, Portugal

Abstract

SETS is an emerging reification calculus for the derivation of implementations of model-oriented specifications of abstract data types.

This paper shows how abstraction invariants can be synthesized by calculation in SETS, and the potential of this calculus for assessing, comparing or classifying specifications.

The main results of the paper are concerned with a functorial approach to reification, particularly w.r.t. the systematic implementation of recursive data domains on non-recursive run-time environments. A final example of this class of implementations is provided.

1 Introduction

Research in software technology has shown the need for splitting software design in two complementary steps: formal specification first (in which a mathematical text is written prescribing "what" the intended software system should do) and then implementation (in which machine code is produced instructing the hardware about "how" to do it).

In general, there is more than one way in which a particular machine can accomplish "what" the specifier bore in mind. Thus, the relationship between specifications and implementations is one-to-many, that is, specifications are more abstract than implementations. In fact, specifications are intended to be read, understood and reasoned about by humans. They prescribe behaviour rather than describe it. Implementations are intended to be executed by machines, as efficiently as possible. The programming "tricks" introduced for the sake of efficiency (in implementations) are thus irrelevant details at specification level. In summary, the "epistemological gap" between specifications and implementations is far from being a "smooth" one and is the major concern of the so-called reification (or refinement) technology, a recent branch of software engineering using formal methods.

Of course, one wants an implementation to behave exactly in the way prescribed by its specification. Thus the notion of formal correctness is central to any reliable reification discipline.

In the well-known constructive style for software development [19, 20] design is factored into as many "mind-sized" design steps as required. Every intermediate design is first proposed and then proved to follow from its antecedent. Despite improving the primitive approach to correctness (full implementation prior to the overall correctness argument), such an "invent-and-verify" style is often impractical due to the complexity of the mathematical reasoning involved in real-life software problems.
Recent research seems to point at alternative reification styles. The idea is to develop a calculus allowing programs to be actually calculated from their specifications. In this approach, an intermediate design is drawn from a previous design according to some law available in the calculus, which must be structural in order for the components of an expression to be refined in isolation (i.e., pre-existing refinement results can be re-used). Proof discharge is achieved by performing structural calculation instead of proofs from first principles. This is the point of a calculus, as witnessed elsewhere in the past (cf., the differential and integral calculi, linear algebra, etc.). After a decade of intensive research on the foundations of formal methods for software design, one is tempted to forecast that the 1990s will witness the maturation phase of software technology, developing and using tools based on formal calculi.

The target of this paper is to describe the evolution of a particular reification calculus — SETS — whose foundations can be found elsewhere [34, 35, 22]. We start by overviewing related work on reification calculi. For conciseness, this overview is concerned only with calculi for static semantics, that is, the very important area of event reification is deliberately left out. (The reader is referred to e.g., [26, 2, 18, 44, 21] for results in this area.) We proceed to a summary of SETS taken from [35] but adding further basic results. The main results of the paper are presented in section 4 and have to do with reasoning about recursive data types. The scope of these results is illustrated in section 5. The last two sections contain some conclusions and suggestions for future work.

2 Overview of Reification Calculi for Software Design

Wirth's "formula" Algorithms + Data Structures = Programs [46] has become famous as the title of a mandatory textbook on structured programming since the mid 1970s. It may be regarded as being probably the first, widespread message that programs "are" algebraic structures — cf., Operators + Sets = Algebras — which has become the motto of a vast amount of research undertaken in the last two decades on applying universal algebra to computer programming, namely to the formalization of abstract data types [14, 12], to denotational semantics [11, 31], to concurrent processing [25, 16, 15, 27], to formal specification languages [5, 28] etc.

One of the schools of thought in algebraic specification is termed model oriented, or constructive because specifications are written explicitly as models, i.e., algebras instead of being axiomatically defined. Constructive specification languages (such as VDM [20] and Z [43]) allow nondeterministic operators and local states, and work with relational algebras [32], that is, the above "formula" becomes Relations + Sets = (Relational) Algebras.

The algebraic-model approach to programming has the benefit that, whatever is said about (or happens to) programs, can always be decomposed across two complementary axes: the data programs deal with (i.e., data-structures) and the operations which manipulate them (e.g., procedures, functions etc).

Reification is no exception in this respect. The way the VDM practitioner proceeds from abstract specifications to more concrete models (closer and closer to a target machine, or available programming language) is by "model-
refinement”. VDM recommends that one of the above axes — data-refinement — be considered first, possibly encompassing several iterations. Once a satisfactory implementation-model is reached, refinement decisions are then taken on the orthogonal direction (algorithmic-refinement) so as to, eventually, reach executable code (e.g., in PL/I, Pascal, etc.).

This view is in slight contrast with [30, 29], where data-refinement is regarded as a special case of algorithmic-refinement, being the action of replacing an abstract type by a more concrete type in a program, while preserving its algorithmic structure. The corresponding refinement calculus stems from an extension of Dijkstra’s calculus [9] of predicate transformers. Such a “calculational style” was first introduced by [17] in a relational setting.

Backus’ Turing Award paper [3] has become the ‘ex-libris’ of a vast collection of works on calculating algorithmic refinements in a functional setting, cf. the well-known program transformation school (see for instance [4, 7, 28]). Reference [7] is one of the first in the literature to characterize functional data-refinement by calculation (transformation). Reference [33] shows how to apply this strategy in the relational (pre/post-condition) context of the VDM methodology.

However, a slight difficulty persists in both relational and functional data-refinement: one has to choose (i.e., guess) the abstraction invariant which links abstract values to concrete values. Such an invariant, which in the functional style can be factored into a concrete invariant and an abstraction function [30], can be hard to formulate in practical, realistic examples. It would be preferable to be able to calculate such an invariant. That is to say, one needs calculi for the stepwise refinement of the data themselves.

This is precisely the main target of the SETS calculus which is the subject of this paper. Because its emphasis is on data structuring laws independently of algorithmic control, we regard it as a “pure” data-refinement calculus when compared to the approaches described above. It is grounded on elementary properties of the cartesian closed category of Sets [24] which underlies formal specification in the constructive (model-oriented) style. It is therefore easy to understand and to use in reasoning about software models. Following the pragmatic presentation of [35], most category theoretical notions will be replaced by set-theoretical ones.

3 Overview of the SETS Calculus

In this section we present a summary of SETS which is sufficient for the understanding of the main results of this paper (see [35] for further details). Some basic algebraic terminology is required first. For space economy, we stick to “functional” algebraic notation, the appropriate generalization to non-deterministic or relational algebras being available from e.g., [32].

3.1 Basic Terminology

Given a set Ω of function symbols, and a set S of sorts (“types”), a signature Σ is a syntactical assignment Σ : Ω → (S^x × S) of a functionality to each function symbol; as usual, we will write σ : s_1 ⊗ \ldots \otimes s_n → s or s_1 ⊗ \ldots \otimes s_n ⊢ s as shorthands of Σ(σ) = (⟨s_1, \ldots, s_n⟩, s). Let Sets denote the class of all
finite or denumerable sets\(^1\) operated by set-theoretical functions. Let these be denoted by \(f : X \to Y\) or \(X \xrightarrow{f} Y\), where \(X\) and \(Y\) are sets.

A \(\Sigma\)-algebra \(\mathcal{A}\) is a semantic assignment described by a functor

\[\mathcal{A} : \Sigma \to \text{Sets}\]

that is, \(\mathcal{A} = \langle \mathcal{A}_\Omega, \mathcal{A}_S\rangle\) where \(\mathcal{A}_S\) maps sorts to corresponding carrier-sets, \(\mathcal{A}_\Omega\) maps operator-symbols to set-theoretical functions, and

\[\mathcal{A}_\Omega(\sigma) : \mathcal{A}_S(s_1) \times \cdots \times \mathcal{A}_S(s_n) \to \mathcal{A}_S(s)\] \hspace{1cm} (1)

holds. Subscripts \(\Omega\) and \(S\) may be omitted wherever they are clear from the context, e.g., by writing

\[\mathcal{A}(\sigma) : \mathcal{A}(s_1) \times \cdots \times \mathcal{A}(s_n) \to \mathcal{A}(s)\]

instead of expression (1).

A particular \(\Sigma\)-algebra is the one whose carrier-set for each sort \(s \in S\) contains all the “words” (\textit{terms}, or \textit{morphisms}) that describe objects of that sort:

\[W_\Sigma(s) \overset{\text{def}}{=} C(s) \cup \{\sigma(t_1, \ldots, t_n) \mid \sigma : s_1 \ldots s_n \to s \land \forall i \leq n : t_i \in W_\Sigma(s_i)\}\]

where

\[C(s) \overset{\text{def}}{=} \{\sigma \in \Omega \mid \Sigma(\sigma) = \langle \langle >, s \rangle \}\]

is the set of all “constants” of type \(s\).

In model-oriented specification, a software module is specified by producing a \textit{model}, which is just a \(\Sigma\)-algebra \(\mathcal{A}\), for a particular signature \(\Sigma\) describing its syntactical structure.

3.2 Underlying Formalisms

Given a specification model \(\mathcal{A} : \Sigma \to \text{Sets}\), a \textit{refined model} (or refinement) of \(\mathcal{A}\) is any other model \(\mathcal{B} : \Sigma \to \text{Sets}\) such that there is an epimorphism (\textit{abstraction map}) from \(\mathcal{B}\) to \(\mathcal{A}\). In general, \(\mathcal{B}\) is more \textit{redundant} a model than \(\mathcal{A}\), in the sense that a given abstract value \(x \in \mathcal{A}(s)\), for some sort \(s \in S\), may be represented (refined, refined) in \(\mathcal{B}\) by more than one value in \(\mathcal{B}(s)\). Take, for instance, the usual reification of finite sets in terms of arbitrary finite lists. The empty set \(\emptyset\) is implemented by a single list value, the empty list \(\langle \rangle\). But any other set, \(e.g., \{a, b\}\), has many list representatives, \(e.g., \langle a, b \rangle, \langle b, a \rangle, \langle b, a, b \rangle\), the abstraction map being the usual \textit{elems} function \([19]\).

The collection of all (surjective) abstraction maps, one for each sort \(s \in S\), makes up an epimorphism \(h : \mathcal{B} \twoheadrightarrow \mathcal{A}\) \(^2\). The algorithmic structure of \(\mathcal{A}\) is

\(^1\) Following the terminology of \([1]\), by a \textit{denumerable} set \(A\) we mean a set whose cardinal number \(\text{card}(A)\) equals \(\aleph_0 = \text{card}(\mathbb{N})\).

\(^2\) The so-called \textit{final} approach to reification \([45]\) imposes \(h\) to be unique. See section 7 for a discussion about this point.
preserved by B in the sense that every epimorphism h is a homomorphism, and thus,

$$A(\sigma)(h(b_1), \ldots, h(b_n)) = h(B(\sigma)(b_1, \ldots, b_n))$$ \hspace{1cm} (2)

for every n-ary Σ-operator σ applied to (correctly type-checked) n-arguments in B. \(^3\)

In our calculational style, instead of conjecturing $B : \Sigma \rightarrow \text{Sets}$ and proving that there is an epimorphism from B to A, we want to effectively calculate B from A, gradually synthesizing the appropriate epimorphism, as explained in the sequel. We will concentrate on data-level transformations, for the sake of brevity. See [35] for a refinement theorem which fits such transformations to the preservation of algorithmic behaviour. Section 5 will provide an illustration of model calculation in Sets, combining data-level and operation-level transformations.

3.3 On Redundancy Orderings

The Sets calculus is “naively” based on the cardinality ordering $A \preceq B$ among sets:

$$A \preceq B \overset{\text{def}}{\iff} \exists f : A \rightarrow B \text{ is surjective.} \hspace{1cm} (3)$$

where f plays the role of an abstraction map such as discussed above (section 3.2). We will write $A \preceq_f B$ wherever we want to keep track of abstraction maps in \preceq-reasoning. For instance,

$$2^A \preceq_{\text{elems}} A^* \hspace{1cm} (4)$$

for A a finite set. The ordering \preceq is reflexive and transitive, and \preceq-antisymmetry induces set-theoretical isomorphism [35]. Transitivity means that one can chain \preceq-steps and synthesize overall abstraction maps, that is

$$A \preceq_f B \land B \preceq_g C \Rightarrow A \preceq_{f \circ g} C \hspace{1cm} (5)$$

The finitary version of (5), for n \preceq-reasoning steps, is

$$A \preceq_{f_1} A_1 \preceq_{f_2} \cdots \preceq_{f_n} A_n \hspace{1cm} f = f_1 \circ \cdots \circ f_n$$

Reflexivity is naturally established by identity maps,

$$A \preceq_1 A$$

while \preceq-antisymmetry

$$A \preceq_f B \land B \preceq_g A \Rightarrow A \cong B$$

enforces two isomorphisms f, g for finite A, B ($g = f^{-1}$, in particular).

Unfortunately, many reification steps cannot be described by facts of the form $A \preceq B$, because B is “too wide” a data model and contains invalid

\(^3\)For improved readability, subscripts $S, \Omega, s_1, \ldots, s_n$ have been omitted from (2), cf. [35].
representatives of A. For instance, there is an implementation of sets in terms of lists which is “finer” than (4) because one wants to leave out lists which contain repeated elements (for the sake of efficiency, maybe). The basic fact we can assert in this case is

$$2^A \preceq_{\text{elems}} \{ l \in A^* \mid \text{inv}(l) \}$$

where

$$\text{inv} : A^* \rightarrow 2, \quad \text{len}(l) = \text{card(elems}(l))$$

where $2 \cong \{\text{TRUE, FALSE}\}$ denotes the set of Boolean values, and len, elems and card are well-known list and set operators [19].

Validity predicates such as inv (7) have become known in the literature as \textit{data-type invariants}. Because the need for data-type invariants, the ordering above is too “strong”. As is explained in [35], (3) may be superseded by the ordering

$$A \preceq B \overset{\text{def}}{=} \exists S \subseteq B : A \preceq f S.$$ \hspace{1cm} (8)

Let ϕ denote the characteristic function of S in B [35]. Then

$$A \preceq_{f}^\phi B$$ \hspace{1cm} (9)

may be written to mean exactly the same thing as (8). For instance, instead of (6), we will write

$$2^A \preceq_{\text{inv}} \text{elems} A^*$$ \hspace{1cm} (10)

Subscripts f, ϕ in (9) may be omitted wherever implicit in the context. Invariant ϕ determines the domain of the abstraction map f, which can be regarded as a partial surjection from B to A.

This wider notion of a redundancy ordering (\preceq) enjoys the same properties as \preceq_{e} e.g.

$$A \preceq_{\text{true}} A$$

c\text{t. It is relevant to see how invariants are synthesized by transitivity:}

$$A \preceq_{f}^\phi B \land B \preceq_{g}^\gamma C \Rightarrow A \preceq_{f \circ g}^\rho C$$

for

$$\rho(c) = \gamma(c) \land \phi(g(c))$$ \hspace{1cm} (11)

\footnote{Strictly speaking, the \preceq and \preceq_{f} orderings are mathematically equivalent, since $A \preceq B \overset{\text{def}}{=} A \preceq_{f} B$ (let $S = B$) and $A \preceq_{f} B \Rightarrow A \preceq B$ (choose an arbitrary $a \in A$ and “totalize” f by setting $f(b) = a$ for every $b \in B$). However, such a “totalized” abstraction map f would be semantically unnatural and confusing, a being represented by valid and invalid data at the same time.

It is better to retain the partial nature of f explicit by using the \preceq_{f}-notation, \preceq being a shorthand used to denote \preceq-facts such that f is total.}
where logical conjunction (\land) should be regarded as a non-strict connective at its second argument (e.g., $FALSE \land \bot = FALSE$). For a chain of $n \leq$ steps,

$$\begin{array}{l}
\forall i \left(f_i \right) \\
\phi_i
\end{array}$$

the overall abstraction map and invariant are given by:

$$\begin{array}{l}
f \overset{\text{def}}{=} \bigcap_{i=1}^{n} f_i \\
\phi \overset{\text{def}}{=} \lambda x. \land_{i=0}^{n} \phi_i((\bigcap_{j=i+1}^{n} f_j)(x))
\end{array} \tag{12}$$

3.4 A Redundancy Calculus

Readers familiar with model specification such as in VDM are aware that a limited number of set-theoretical constructs is enough for modelling fairly elaborate abstract objects. In Sets, such “primitive” constructs are,

- **cartesian product** of two sets A and B (cf. records):
 $$A \times B = \{ (a, b) | a \in A \land b \in B \}$$

- **disjoint union** of two sets A and B (cf. variant records):
 $$A + B = (\{1\} \times A) \cup (\{2\} \times B)$$

- **exponentiation** (A raised to a finite set B, see examples below):
 $$A^B = \{ f | f : B \rightarrow A \}$$

On top of these one can build the following derived constructs:

- finite subsets of a finite set A (cf. set of A in VDM):
 $$2^A$$

- finite binary relations from A to B (cf. set of $(A \times B)$ in VDM):
 $$2^{A \times B}$$

- finite partial maps from A to B (cf. map A to B in VDM):
 $$A \leftrightarrow B = \bigcup_{K \subseteq A} B^K$$

- finite sequences on a set A (cf. seq of A in VDM):
 $$A^* = \bigcup_{n \geq 0} A^n$$

where each exponent \bar{n} denotes the initial segment of \mathbb{N} whose cardinality is n. For simplicity, we will write n instead of \bar{n} and therefore 0 instead of the empty set \emptyset.

• union types (cf. [4] in VDM):

\[A + 1 \]

where 1 stands for any singleton set, cf. [35]. Typically, \(1 \cong \{\text{NIL}\} \).

A last ("meta") construct is recursive definition,

\[X \cong F(X) \]

where \(X \) is the name of a data sort and \(F \) is a \textit{Sets}-expression ("functor") involving the above primitive or derived constructs. For example, the following recursive \textit{VDM} syntax for abstract decision trees,

\[
\text{DecTree} \ :: \ Q :: \text{What} \quad \text{/*Question or Decision */} \\
R :: \text{Answer} \rightarrow \text{DecTree} \quad \text{/*Subtrees */} \\
\text{What} = \ldots \\
\text{Answer} = \ldots
\]

(where decisions are modelled by \textit{DecTree} nodes with no answers) is written in the \textit{Sets} notation as follows:

\[\text{DecTree} \cong \text{What} \times (\text{Answer} \rightarrow \text{DecTree}) \] \hspace{1cm} (14)

The following theorem is central to the \textit{Sets} calculus.

\textbf{Theorem 1 (\textbf{\(\preceq \)-Monotonicity of \textit{Sets}-constructs})} The \textit{Sets}-constructs \(\times \) and \(+ \) are monotone wrt. the \(\preceq \)-ordering (8); exponentiation requires isomorphical exponents.

That is, given \textit{Sets}-objects \(A, B, X, Y, M, N \) such that \(A \preceq X, B \preceq Y \) and \(M \preceq N \), then facts

\[A \times B \preceq X \times Y \] \hspace{1cm} (15)

\[A + B \preceq X + Y \] \hspace{1cm} (16)

\[A^M \preceq X^N \] \hspace{1cm} (17)

\textit{hold.}

\textbf{Outline of Proof:} Let

\[A \preceq_f^g X, \ B \preceq_f^g Y, \ M \preceq_h N \] \hspace{1cm} (18)

Then

1. Equation (15):

\[A \times B \preceq_f^{\bigotimes g} X \times Y \]

where the product of two functions \(f \) and \(g \) is "parallel application" [24]5

\[(f \times g)(a,b) = (f(a),g(b)) \] \hspace{1cm} (19)

and the product of two predicates \(\phi \) and \(\varphi \) is "parallel conjunction"

\[(\phi \times \varphi)(a,b) = \phi(a) \wedge \varphi(b) \]

5For improved readability, functional application involving tupled arguments, e.g., \(f((x_1,\ldots,x_n)) \), will be abbreviated to \(f(x_1,\ldots,x_n) \) or \(f(x_1,\ldots,x_n) \).
2. Equation (16):

\[A + B \trianglelefteq_{f+g} X + Y \]

where the sum of two functions \(f \) and \(g \) is \([24]\)

\[
\begin{align*}
(f + g)(1, a) &= (1, f(a)) \\
(f + g)(2, b) &= (2, g(b))
\end{align*}
\] \((20) \)

and the sum of two predicates \(\phi \) and \(\varphi \) is

\[
\begin{align*}
(\phi + \varphi)(1, a) &= \phi(a) \\
(\phi + \varphi)(2, b) &= \varphi(b)
\end{align*}
\]

3. Equation (17): Since \(M \) and \(N \) have the same cardinality, say \(m \), then

\[
A^M \cong A^m = \underbrace{A \times \cdots \times A}_m
\]

and

\[
X^N \cong X^m = \underbrace{X \times \cdots \times X}_m
\]

cf. (23) below. That is, (17) can be reduced to a finitary version of (15) in which we have

\[A^m \trianglelefteq_{f^m} X^m \]

where

\[
\begin{align*}
f^m(a_1, \ldots, a_m) &= (f(a_1), \ldots, f(a_m)) \\
\phi^m(a_1, \ldots, a_m) &= \forall 1 \leq i \leq m : \phi(a_i)
\end{align*}
\] \((21) \)

Alternatively, we may define the overall abstraction map \(t \) and invariant \(\tau \) in

\[A^M \trianglelefteq_{t^m} X^N \]

as follows, for \(\sigma \in X^N \) and \(h \) the isomorphism between \(M \) and \(N \) (18):

\[
\begin{align*}
t(\sigma) &= f \circ \sigma \circ h^{-1} \\
\tau(\sigma) &= \forall n \in \text{dom}(\sigma) : \phi(\sigma(n))
\end{align*}
\]

It remains to be proved that all composite abstraction maps above are surjective, which is not hard work. cf. [22], \(\Box \)

By this theorem, the components of each data domain of a Sets expression can be refined in isolation, allowing for the stepwise introduction of redundancy in formal models of software.
3.4.1 The \simeq-Subcalculus

The SETS calculus is fairly rich in algebraic properties. A collection of \simeq-equalities is given in [35] which establishes that, up to set-theoretical isomorphism, Sets may be regarded as a commutative semiring under \times and $+$. Therefore, it makes sense to write finitary products

$$A_1 \times \ldots \times A_n$$

as well as finitary disjoint unions

$$A_1 + \cdots + A_n \text{ that is } \sum_{i=1}^n A_i$$

and we have

$$\underbrace{A \times \ldots \times A}_n \simeq A^n$$

as expected.

Concerning exponentiation, we recall the following laws from [35]:

$$A^0 \simeq 1$$

$$A^{(B+C)} \simeq A^B \times A^C$$

$$A^1 \simeq A$$

$$1^A \simeq 1$$

$$(A \times B)^C \simeq A^C \times B^C$$

$$C^{A \times B} \simeq (C^B)^A$$

$$A \leftrightarrow B \simeq (B + 1)^A$$

and note that

$$A^* \simeq \sum_{n \geq 0} A^n$$

$$A \leftrightarrow B \simeq \sum_{K \subseteq A} B^K$$

since

$$A \not\simeq B \Rightarrow X^A \cap X^B = \emptyset$$

$$A \cap B = \emptyset \Rightarrow A \cup B \simeq A + B$$

Many other basic results are derivable within this subcalculus. The following one will be useful in the sequel:

$$2^A \simeq (1 + 1)^A$$

$$\simeq A \leftrightarrow 1$$
(= finite sets can be modelled by finite maps), cf. 2 ≃ 1 + 1 (24) and (31).

A more interesting example of ⊢-reasoning is the following: let us re-write (14) avoiding semantically biased symbols such as DecTree, What, Answer and using more “neutral” symbols such as T, I, A:

\[T \cong I \times (A \leftrightarrow T) \] \hspace{1cm} (35)

Now let \(A \cong 2 \). Then

\[I \times (A \leftrightarrow T) \cong I \times (2 \leftrightarrow T) \cong I \times (T + 1)^2 \cong I \times (T + 1) \times (T + 1) \]

\(\neg \) cf. (31) and (23) \(\neg \) and (35) becomes

\[T \cong I \times (T + 1) \times (T + 1) \] \hspace{1cm} (36)

Let us now compare (36) against the following VDM abstract data model of *genealogical diagrams* (the “pedigree view” of family relationship):

\[
\begin{align*}
\text{GenDia} & : I : \text{Ind} \quad \text{/* data about an individual */} \hspace{1cm} (37) \\
F & : \text{[GenDia]} \quad \text{/* genealogy of his/her father (if known) */} \\
M & : \text{[GenDia]} \quad \text{/* genealogy of his/her mother (if known) */}
\end{align*}
\]

Clearly, (36) and (37) are the “same” data model (recall (13)). We conclude that *genealogical diagrams* “are” particular cases of *decision trees*, that is, if a package implementing the latter is available, then it may be re-used to implement the former. Of course, a full comparison between both models should examine the algorithmic structure as well. But the point of this example is just to show the usefulness of SETS in comparing or assessing data specification.

3.4.2 The \(\Delta \)-Subcalculus

Equations (4) and (10) above record basic results about implementing finite sets. Most other \(\Delta \)-results concern the reification of finite partial maps.

Recall laws (25) to (30) concerning exponentiations, that is, sets of total maps. It would be useful if such laws were to hold for partial maps, that is, for expressions of the form \(A \leftrightarrow B \) instead of \(B^A \). It can be easily checked that only (26) and (25) are in fact preserved, cf. respectively,

\[
(B + C) \leftrightarrow A \cong (A + 1)^{B+C} \cong (A + 1)^B \times (A + 1)^C \cong (B \leftrightarrow A) \times (C \leftrightarrow A) \] \hspace{1cm} (38)

and

\[
0 \leftrightarrow A \cong (A + 1)^0 \cong 1
\]

\(^6 \) For instance, making decisions in DecTree corresponds exactly to ascending genealogical data in GenDia, for a fixed menu (set of available “answers”) at every “decision” level: \(2 \cong \{ \text{father, mother} \} \).
Concerning (27) and (28) we obtain slightly different results: for (28) see (34); for (27) we have

\[1 \leftrightarrow A \equiv (A + 1)^1 \equiv A + 1 \]

still in the \(\mathfrak{S}\)-schema calculus, cf. (31) and (27) itself. The remaining two laws lead to \(\mathfrak{A}\)-results, as follows.

(29) "holds" at \(\leftrightarrow\) level provided that \(\mathfrak{d}\) replaces \(\equiv\),

\[A \leftrightarrow B \times C \not\equiv (A \leftrightarrow B) \times (A \leftrightarrow C) \quad (39) \]

cf. [35]. The \(\leftrightarrow\)-version of the "currying" law of exponentiation (30) is another \(\mathfrak{A}\)-result,

\[(A \times B) \leftrightarrow C \not\equiv A \leftrightarrow (B \leftrightarrow C) \quad (40) \]

and not the desirable

\[(A \times B) \leftrightarrow C \equiv A \leftrightarrow (B \leftrightarrow C) \]

because the expected currying and un-currying maps are, respectively, not surjective and partial — think of those values in \(A \leftrightarrow (B \leftrightarrow C)\) containing the empty map in their range. The invariant induced by (40) is thus

\[\phi(\sigma) \equiv \{ \; \emptyset \not\in \text{rng}(\sigma) \; \} \]

The law "symmetrical" with (40) is therefore not valid, although a somewhat more involved fact holds,

\[A \leftrightarrow (B \leftrightarrow C) \not\equiv 2^4 \times ((A \times B) \leftrightarrow C) \quad (41) \]

which is a particular case of

\[A \leftrightarrow D \times (B \leftrightarrow C) \not\equiv (A \leftrightarrow D) \times ((A \times B) \leftrightarrow C) \quad (42) \]

(let \(D = 1\) and apply basic properties of \(\times\) and (34)). The invariant induced by (42) is

\[\phi(\sigma, \sigma') \equiv \pi_1[\text{dom}(\sigma')] \subseteq \text{dom}(\sigma) \quad (43) \]

where \(\pi_1[\text{dom}(\sigma')]\) means \(\{\pi_1(p) \mid p \in \text{dom}(\sigma')\}\), for \(\pi_1, \pi_2\) the standard product selector maps:

\[\pi_1(a, b) = a \]
\[\pi_2(a, b) = b \]

This invariant recommends that all \(a \in A\) found in \(\sigma \in A \leftrightarrow D\) which cannot be found in \(\sigma' \in A \times B \leftrightarrow C\) are exactly the entries, at abstract level, to be mapped to the empty map (in \(B \leftrightarrow C\)), cf. the corresponding abstraction map:

\[f(\sigma, \sigma') \equiv \{ a \mapsto \langle \sigma(a) \rangle, \{ b \mapsto \sigma'(a, b) \mid (a, b) \in \text{proj}(a, \sigma') \} \mid a \in \text{dom}(\sigma) \} \quad (44) \]

where

\[\text{proj}(a, \sigma') \equiv \{ (d, b) \in \text{dom}(\sigma') \mid d' = a \} \]
On the other hand, the \sqsupset-subcalculus encompasses \leftrightarrow-laws which cannot be adapted from similar results concerning exponentiation. For instance,

$$(B + C)^A \nsubseteq B^A \times C^A$$

and yet we have the following map-decomposition law:

$$A \leftrightarrow (B + C) \sqsupset \phi (A \hookrightarrow B) \times (A \hookrightarrow C)$$

for

$$\phi(\sigma, \rho) \overset{\text{def}}{=} \text{dom}(\sigma) \cap \text{dom}(\rho) = \emptyset$$

$$f(\sigma, \rho) \overset{\text{def}}{=} i_1 \circ \sigma \cup i_2 \circ \rho$$

where i_1, i_2 are the standard co-product injection maps:

$$i_1(a) = \langle 1, a \rangle$$

$$i_2(a) = \langle 2, a \rangle$$

Laws such as (39, 41, 42) and (45) play an important rôle in finite map reification. They can be used to “decompose” complex/nested maps into tuples of simpler maps. Recalling from [35] how immediate it is to refine finite maps into binary relations,

$$A \leftrightarrow B \leq_{\text{mf}} 2^{A \times B}$$

for \(^7\)

$$\text{mf}(R) \overset{\text{def}}{=} \forall \langle a, b \rangle, \langle a', b' \rangle \in R : a = a' \Rightarrow b = b'$$

$$\text{mf}(R) \overset{\text{def}}{=} \{ \langle a \mapsto \text{the}\left(\{ x \in B | a R x \}\right) \rangle, \langle a, b \rangle \in R \}$$

it makes sense to say that the \sqsupset-subcalculus fragment studied above is just what we need in order to refine elaborate, finite-map based data models into relational database schemata. This will become apparent from the illustration which will be given in section 5. But we need further, more ambitious \sqsupset-results concerning recursion removal.

4 Dealing with Recursive Data Models

Equations (14) and (36) presented above are examples of recursively defined data models in \textit{Sets}. Many others could have been presented since recursion

\(^7\)The partial operator

$$\text{the} : 2^A \rightarrow A$$

yields the unique element of a singleton set, that is,

$$\text{the}(\{a\}) = a$$

while $\text{the}(\{a, b\})$, $\text{the}(\emptyset)$ are undefined expressions.
normally provides “elegant” solutions for a wide range of problems, namely:

\[X \equiv 1 + A \times X \quad \text{/* finite lists on } A \text{ */} \] \(49 \)

\[X \equiv 1 + A \times X^2 \quad \text{/* binary trees on } A \text{ */} \] \(50 \)

\[X \equiv 1 + A \times X^* \quad \text{/* generic trees on } A \text{ */} \]

\[X \equiv V + A \times X^* \quad \text{/* formal terms on } V \text{ and } A \text{ */} \]

etc.

What can we do about refining a recursive data model?

Some languages support recursion directly (e.g., LISP) but may others do not (e.g., FORTRAN). Languages such as PASCAL are “half-way through” — recursion is supported in an indirect way by providing pointers to dynamic storage (“heaps”). Programming with pointers is error-prone (e.g., pointer undefinedness, non-termination caused by cyclic referencing etc.) and tends to produce “tricky” code (pointers are data-structuring counterparts of “gotos” [46]). A way of overcoming this situation is to think of a generic rule for refining recursive data structures into safe non-recursive ones, thus ruling out non-systematic use of pointers.

By way of motivation, let us recall Fielding’s VDM representation 1 of abstract mappings [10].

\[S1 = [Bt1] \]
\[Bt1 :: S1 \text{ Key Data } S1 \] \(51 \)

which means nothing more than recursive definition (50) in Sets (let \(A \equiv \text{Key} \times \text{Data}\)). Representation 2 presented in the same work [10] “maps a binary tree onto linear storage”:

\[S2 :: \text{ROOT : [Ptr] ARRAY : Ptrl} \overset{m}{\rightarrow} \text{Node2} \]
\[\text{Node2 :: [Ptr] Key Data [Ptr]} \] \(52 \)

The abstract schema of (52) in Sets is

\[S2 \equiv (K + 1) \times \text{ARRAY} \]
\[ARRAY \equiv K \leftrightarrow \text{Key} \times \text{Data} \times (K + 1)^2 \]

for an abstract domain \(K \equiv \mathbb{N} \) of pointers, cf. Ptrl in (52).

From [10] we know that (52) refines (51) under a fairly elaborate data-type invariant ensuring pointer definedness and absence of pointer loops. A similar invariant is required to justify the following well-known “linked-list” representation of finite lists (49):

\[X_1 \equiv (K + 1) \times (K \leftrightarrow A \times (K + 1)) \]

Can these two “recursion removing” refication steps be generalized?

We may conjecture that, if \(X_1 \) is a fixpoint solution of a recursive definition in Sets of the form

\[X \equiv 1 + G(X) \] \(53 \)

\[^8 \text{Much in the same way that one can do “Structured Programming with Goto Statements” cf. [23].} \]
then

\[X_1 \cong_f \left(K + 1 \right) \times (K \leftrightarrow \mathcal{G}(K + 1)) \tag{54} \]

for \(K \cong \mathbb{N} \). For this conjecture to hold we need to find which \(f, \phi \) are generically induced by \(\mathcal{G} \). We will show below that an elegant way of doing it is to regard \(\mathcal{G} \) as a polynomial (endo)functor in \(\text{Sets} \) [24].

Some necessary concepts about functors in \(\text{Sets} \) will be given next, adapted from [24] where the same concepts can be found under the appropriate categorical generalization.

4.1 Polynomial Functors

Let \(A, B, C \) be objects in \(\text{Sets} \). Let \(f : A \to B \) be a morphism in \(\text{Sets} \) and let \(1_C : C \to C \) denote the identity morphism on \(C \). Then \(C \) may be regarded as the constant functor\(^{1}\)

\[C : \text{Sets} \to \text{Sets} \tag{55} \]

such that \(C(A) = C \) and \(C(f) = 1_C \).

Let \(\mathcal{F}, \mathcal{G} : \text{Sets} \to \text{Sets} \) be functors. Define their product

\[\mathcal{F} \times \mathcal{G} : \text{Sets} \to \text{Sets} \]

by \((\mathcal{F} \times \mathcal{G})(A) = \mathcal{F}(A) \times \mathcal{G}(A)\) and by \((\mathcal{F} \times \mathcal{G})(f) = \mathcal{F}(f) \times \mathcal{G}(f)\), cf. (19). For instance, \(\mathcal{F}(X) = X \times C \) defines the product functor of the identity functor \(\lambda X.X \) and the constant functor \(C \) (55), and we have \(\mathcal{F}(f)(a, c) = (f \times 1_C)(a, c) = \langle f(a), c \rangle \).

We may have \(n \)-ary products of functors, of which \(\mathcal{F}(X) = X^n \) is a particular case. For \(f \) the same morphism as above, we will have \(\mathcal{F}(f) = f^n : A^n \to B^n \), cf. (21).

The notion of a product functor has a dual — the co-product functor (or sum of two functors) — which results to (20):

\[\mathcal{F} + \mathcal{G} : \text{Sets} \to \text{Sets} \]

\[(\mathcal{F} + \mathcal{G})(A) = \mathcal{F}(A) + \mathcal{G}(A) \]

\[(\mathcal{F} + \mathcal{G})(f) = \mathcal{F}(f) + \mathcal{G}(f) \]

Co-product functors may also be iterated to \(n \)-arguments.

Finally, we are ready to define what a polynomial functor is — every functor \(\mathcal{F} : \text{Sets} \to \text{Sets} \) which is either a constant functor or the identity functor, or the composition or (finitary) product or sum of other polynomial functors, is said to be polynomial.

For instance,

\[\mathcal{F}(X) = 1 + A \times X \tag{56} \]

(cf. (49)) is a polynomial functor and so is \(\mathcal{F}(X) = X^* \), cf. (32), \(\mathcal{F}(X) = C \hookrightarrow X \) is also polynomial for \(C \) a finite exponent (cf. \(C \hookrightarrow X \cong (X + 1)^C \) and [24]) and we have

\[(C \hookrightarrow f)(\sigma) = f \circ \sigma \]

\[\{c \mapsto f(\sigma(c)) | c \in \text{dom}(\sigma)\} \tag{57} \]
The following result is valid in \(\text{Sets} \) [24]: every polynomial functor
\[
\mathcal{F} : \text{Sets} \longmapsto \text{Sets}
\]
may be put into the canonical form:
\[
\mathcal{F}(X) \cong \sum_{i=0}^{n} C_i \times X^i
\]
For instance, for \(\mathcal{F}(X) = X^* \) we have every \(C_i = 1 \), since
\[
X^* \cong \sum_{i \geq 0} X^i
\]
\[
\cong \sum_{i \geq 0} 1 \times X^i
\]
(recall (32) and the fact that 1 is the identity of \(\times \)).
A suggestive result for converting polynomial functors into canonical form
is Newton’s binomial formula itself,
\[
(A + B)^n \cong \sum_{i=0}^{n} \binom{n}{i} A^{n-i} \times B^i
\]
as illustrated by the following treatment of the “pedigree” functor
\[
\mathcal{F}(T) = I \times (T + 1)^2
\]
of section 3.4.1. We will have,
\[
\mathcal{F}(T) = I \times (T + 1)^2
\]
\[
\cong I \times (T^2 + 2 \times T + 1)
\]
\[
\cong I \times T^2 + 2 \times I \times T + I
\]
which literally means: “about an individual I either both father and mother
are known \((T^2) \), or one of either father or mother are known \((2 \times T) \), or both
father and mother are unknown \((I) \)”.
Combining (38,59) with the map-decomposition law (45), we obtain a general rule for decomposing a mapping of the form
\[
A \leftrightarrow \mathcal{F}(X)
\]
into a cartesian product of mappings, i.e.
\[
\Pi_{i=0}^{n} (A \leftrightarrow C_i \times X^i)
\]
each of which may in turn be refined into tabular form, cf. relational data-base
design.
Finally, with the aid of polynomial functors we may extend theorem 1 as follows:
\footnote{We regard a denumerable sum of polynomial functors as being a polynomial functor.}
Table 1: Summary of Functorial Calculus

<table>
<thead>
<tr>
<th>$\mathcal{F}(X)$</th>
<th>$\mathcal{F}(f)$</th>
<th>$\mathcal{F}(\phi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>$\lambda \phi . { f(x) \mid x \in s }$</td>
<td>$\lambda \phi . \text{TRUE}$</td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>$\lambda \phi . { f(x) \mid x \in \mathcal{C} }$</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{G}(X)$</td>
<td>$\mathcal{G}(f) + \mathcal{H}(f)$</td>
<td>$\mathcal{G}(f)(a)$</td>
</tr>
<tr>
<td>$\mathcal{G}(X) + 1$</td>
<td>$\lambda \phi { x = 2.NIL \Rightarrow x }$</td>
<td>$\mathcal{G}(f)(a)$</td>
</tr>
</tbody>
</table>

Theorem 2: Let \mathcal{F} be a polynomial (endo)functor in Sets. If

$$A \downarrow_{f} B$$

then

$$\mathcal{F}(A) \downarrow_{\mathcal{F}(f)} \mathcal{F}(B)$$

Proof: It is performed by induction on the structure of polynomial functor \mathcal{F}. Sum and product (and exponentiation) have been dealt with in theorem 1.

The base case concerning the identity functor $\mathcal{F}(X) = X$ is trivial, since $\mathcal{F}(f) = f$ and $\mathcal{F}(\phi) = \phi$, i.e., (62) reduces to (61). The other base case concerns the constant functor $\mathcal{F}(X) = \mathcal{C}$. We have $\mathcal{F}(f) = 1_{\mathcal{C}}$ and $\mathcal{F}(\phi) = \lambda \phi . \text{TRUE}$, (62) holding trivially. \Box

This theorem provides an elegant, functorial strategy for computing complex abstraction invariants throughout a reification process. Although $\mathcal{F}(X) = 2^{X}$ is not polynomial [24], (62) still holds for this functor, for finite A and B [22]. Table 1 presents a summary of this “functorial calculus” for the most common Sets constructs.

4.2 A Result for Recursion Removal

We now come back to our conjecture about (54). The result which will be presented below is applicable to recursive definitions of the form

$$X \cong \mathcal{F}(X)$$

of which (53) is a particular case, let $\mathcal{F}(X) = 1 + \mathcal{G}(X)$.

Let $(X_0, \delta : \mathcal{F}(X_0) \rightarrow X_0)$ be a fixedpoint of functor \mathcal{F} (63) in Sets. A least fixpoint solution to (63) is guaranteed for every co-continuous functor \mathcal{F}. Moreover, every polynomial functor is co-continuous [24].

We want to discuss the following reification step:

$$X_0 \downarrow_{f} K \times (K \hookrightarrow \mathcal{F}(K))$$

(64)
for \(K \) a domain of “pointers” such that \(K \cong \mathbb{N} \). (64) will hold provided that we define a surjection

\[
f : K \times (K \leftrightarrow \mathcal{F}(K)) \rightarrow X_0
\]

which is total over \{ \langle k, \sigma \rangle \in K \times (K \leftrightarrow \mathcal{F}(K)) \mid \phi(k, \sigma) \}. We start by temporarily assuming that \(\sigma \in K \leftrightarrow \mathcal{F}(K) \) is a total function, and draw the following diagram

\[
\begin{array}{c}
K \\
\downarrow \sigma \\
\mathcal{F}(K)
\end{array}
\]

(65)

Assuming a given piece of “linear storage” \(\sigma \) (“database”), let \(f_\sigma \) denote the function which, for each “pointer” \(k \in K \), retrieves the value of \(X_0 \) corresponding to a \(\sigma \) “scan” starting from \(k \). We may add \(f_\sigma \) to (65), that is

\[
\begin{array}{c}
X_0 \\
\delta \\
\mathcal{F}(X_0)
\end{array} \xleftarrow{f_\sigma} \begin{array}{c}
K \\
\downarrow \sigma \\
\mathcal{F}(K)
\end{array}
\]

Since \((X_0, \delta)\) is a fixpoint of \(\mathcal{F} \), we may add \(\delta \) to the above diagram, and obtain

\[
\begin{array}{c}
X_0 \\
\delta \\
\mathcal{F}(X_0)
\end{array} \xleftarrow{\delta} \begin{array}{c}
K \\
\downarrow \sigma \\
\mathcal{F}(K)
\end{array} \xleftarrow{f_\sigma} \begin{array}{c}
X_0 \\
\delta \\
\mathcal{F}(X_0)
\end{array}
\]

Finally, our diagram may be “closed” by \(\mathcal{F}(f_\sigma) \),

\[
\begin{array}{c}
X_0 \\
\delta \\
\mathcal{F}(X_0)
\end{array} \xleftarrow{\delta} \begin{array}{c}
K \\
\downarrow \sigma \\
\mathcal{F}(K)
\end{array} \xleftarrow{f_\sigma} \begin{array}{c}
X_0 \\
\delta \\
\mathcal{F}(X_0)
\end{array} \xleftarrow{\mathcal{F}(f_\sigma)} \begin{array}{c}
X_0 \\
\delta \\
\mathcal{F}(X_0)
\end{array}
\]

(66)

since \(\mathcal{F} \) is a functor.

The equation implicit in commutative diagram (66) is

\[
f_\sigma(k) = \delta(\mathcal{F}(f_\sigma)(\sigma(k)))
\]

We may write \(f(k, \sigma) \) instead of \(f_\sigma(k) \), obtaining the following abstraction map for (64)

\[
\begin{array}{c}
f \\
f(k, \sigma)
\end{array} \defeq \begin{array}{c}
K \times (K \leftrightarrow \mathcal{F}(K)) \\
\rightarrow X_0
\end{array}
\]

(67)

Let us see an example involving polynomial functor (56). \((A^*, \delta)\) is a well-known fixpoint solution of this functor [24, 35] for

\[
\begin{array}{c}
\delta \\
\delta(x)
\end{array} \defeq \begin{array}{c}
1 + A \times A^* \\
\rightarrow A^*
\end{array}
\]

\[
\begin{array}{c}
\delta(\langle \rangle) \\
\delta(x) \defeq \begin{array}{c}
\text{cons}(\alpha, l) \\
\text{cons}(\alpha, l)
\end{array}
\end{array} \defeq \begin{array}{c}
\langle 1, \text{NIL} \rangle \\
\langle 2, \text{cons}(\alpha, l) \rangle
\end{array}
\]

(68)
For $\mathcal{F}(f_\sigma)$ we obtain

$$
\mathcal{F}(f_\sigma)(x) = (1 + A \times f_\sigma)(x) \\
= (1_1 + 1_A \times f_\sigma)(x) \\
= \begin{cases}
 x & \iff x = \langle 1, \text{NIL} \rangle \\
 \langle 2, \langle a, f_\sigma(l) \rangle \rangle & \iff x = \langle 2, \langle a, l \rangle \rangle
\end{cases}
$$

(69)

Composing (69) with (68) we obtain, following (67),

$$
f(k, \sigma) \overset{\text{def}}{=} \begin{cases}
 \langle \text{NIL} \rangle & \text{if } \text{is-NIL}(\sigma(k)) \\
 \langle a, k' \rangle & \text{else}
\end{cases}
\quad \iff
\begin{array}{c}
\text{cons}(a, f_\sigma(k')) \\
\sigma(k) = \langle 1, \text{NIL} \rangle \\
\sigma(k) = \langle 2, \langle a, k' \rangle \rangle
\end{array}
$$

which is written in a more “palatable” notation, as follows:

$$
f(k, \sigma) \overset{\text{def}}{=} \begin{cases}
 \text{if is-NIL}(\sigma(k)) \\
 \langle a, k' \rangle & \text{else}
\end{cases}
\quad \iff
\begin{array}{c}
\text{cons}(a, f(k', \sigma)) \\
\sigma(k) = \langle 1, \text{NIL} \rangle \\
\sigma(k) = \langle 2, \langle a, k' \rangle \rangle
\end{array}
$$

Removing the assumption that σ is a total function, we have to face pointer undefinability — $\sigma(k)$ in (67) is undefined wherever $k \not\in \text{dom}(\sigma)$ and other pointers k' in the range of σ, reachable from k, may be in the same situation.

Pointer reachability can be characterized by the transitive closure $\preceq_{\mathcal{F}}$ of the following ordering on K, induced by \mathcal{F} and σ:

$$
k_1 \preceq_{\mathcal{F}} k \overset{\text{def}}{=} k \in \text{dom}(\sigma) \land k_1 \in \mathcal{F} \sigma(k)
$$

(70)

where logical conjunction is once again regarded as non-strict (cf. (11)), and $\in_{\mathcal{F}}$ is structurally defined, for polynomial \mathcal{F}, as follows:

$$
k \in_{\mathcal{F}} x \overset{\text{def}}{=} \text{FALSE} \\
k \in_{\mathcal{F} + \mathcal{F} \times \mathcal{G}} x \overset{\text{def}}{=} k = x \\
k \in_{\mathcal{F} \times \mathcal{G}} (x, y) \overset{\text{def}}{=} k \in_{\mathcal{F}} x \land k \in_{\mathcal{G}} y \\
k \in_{\mathcal{F} + \mathcal{G}} x \overset{\text{def}}{=} \begin{cases}
 k \in_{\mathcal{F}} y & \iff x = \langle 1, y \rangle \\
 k \in_{\mathcal{G}} z & \iff x = \langle 2, z \rangle
\end{cases}
$$

The following invariant for (64) prevents reachable pointers being undefined:

$$
\phi(k, \sigma) \overset{\text{def}}{=} \begin{array}{c}
\text{let } \quad P = \{k\} \cup \{k' \in K \mid k' \preceq_{\mathcal{F}} k\} \\
\text{in} \quad P \subseteq \text{dom}(\sigma)
\end{array}
$$

However, this invariant is insufficient if we want to restrict our interpretation of recursion to least fixpoints [24], that is, if we want to guarantee that $f(k, \sigma)$ does not yield infinite results. It remains to enforce that P is a well-founded set w.r.t. $\preceq_{\mathcal{F}}$:

$$
\phi(k, \sigma) \overset{\text{def}}{=} \begin{array}{c}
\text{let } \quad P = \{k\} \cup \{k' \in K \mid k' \preceq_{\mathcal{F}} k\} \\
\text{in} \quad P \subseteq \text{dom}(\sigma) \land \\
\forall \emptyset \subseteq C \subseteq P : \exists m \in C : \forall k' \not\in C : k' \not\in P
\end{array}
$$

(72)
For instance, let \(\mathcal{F}(X) = C \leftrightarrow \mathcal{G}(X) \). It is not hard to obtain \(\in_{\mathcal{F}} \) for this case,

\[
\kappa \in_{C \leftrightarrow \mathcal{G}} x \overset{\text{def}}{=} \exists c \in \text{dom}(x) : k \in \mathcal{G}(c)
\] \hspace{1cm} (73)

Condition (73) will be helpful in understanding the illustration of calculated reification which will be presented in section 5.

The proofs about the surjectiveness of \(f \) (67), for \((X_0, \delta : \mathcal{F}(X_0) \to X_0) \) a finite or denumerable fixpoint of \(\mathcal{F} \), and its termination over \(\phi \) (72), are too lengthy to be pursued here, and are available from [22]. The first of these proofs is inductively performed over the structure of polynomial functor \(\mathcal{F} \), and requires \(K \cong \mathbb{N} \).

It is interesting to analyze the meaning of (64) for a few simple, particular cases of \(\mathcal{F} \):

- Constant functor \(\mathcal{F}(X) = C \). \((C, 1_C) \) is of course a fixpoint of \(\mathcal{F} \). From (67) and (55) we obtain abstraction map

\[
f : K \times (K \leftrightarrow C) \to C \subseteq C \\
f(k, \sigma) \overset{\text{def}}{=} \delta(f_c)(\sigma(k)) \\
= 1_C(C(f_c)(\sigma(k))) \\
= 1_C(1_C(\sigma(k))) \\
= \sigma(k)
\]

From (70) and (71) we obtain an empty ordering \(<_\mathcal{F}\) on pointers \((K, \sigma) \), whereby invariant (72) reduces to

\[
\phi(k, \sigma) \overset{\text{def}}{=} k \in \text{dom}(\sigma)
\] \hspace{1cm} (74)

as expected. This particular case corresponds to a popular programming technique (typical of C or PASCAL): instead of handling \(C \) data directly (statically stored), the program handles dynamic references to them.

- Same as above, for \(C \equiv 0 \). This case trivializes (63) to the definition \(X \cong 0 \) of an empty data domain; note that \(K \times (K \leftrightarrow \mathcal{F}(K)) \) becomes \(K \times (K \leftrightarrow 0) \) which reduces to

\[
K \times (K \leftrightarrow 0) \cong K \times \bigcup_{X \subseteq K} 0^X \\
\cong K \times 0^0
\]

That is, \(\sigma : 0 \to 0 \equiv 0 \) is bound to be completely undefined, and \(\text{dom}(\sigma) = 0 \); then \(k \in \text{dom}(\sigma) \equiv 0 \) FALSE and (74) reduces to

\[
\phi(k, \sigma) \overset{\text{def}}{=} \text{FALSE}
\]

As expected, we are led to the empty reification (every datum is invalid).

- Identity functor \(\mathcal{F}(X) = X \). This case trivializes (63) to \(X \cong X \), which accepts any fixpoint \((X_0, \delta : X_0 \to X_0) \) for \(\delta \) a bijection. Let us see how the least fixpoint interpretation implicit in (72) reduces this case to the
previous one \((X_0 = 0)\), by showing that definedness and well-foundedness cannot be met at the same time.

Assuming that \(P\) is well-founded \(wrt.\) \(k_1 \leq_{\lambda X, X} k\) (which we abbreviate to \(k_1 < k\) and is logically equivalent to \(k \in \text{dom}(\sigma) \land k_1 = \sigma(k)\)), we have

\[
\exists m \in P : \sigma(m) \notin P
\]

(75)

But if \(m \in P\) then \(m\) is reachable from \(k\) \((m \prec k)\), \(m \in \text{dom}(\sigma)\) and \(\sigma(m) < m\). Then

\[
\sigma(m) < m \prec k
\]

i.e. \(\sigma(m) \prec k\), which entails \(\sigma(m) \in P\) and contradicts (75). Thus the conjunction of definedness and well-foundedness in (74) is impossible, and we obtain

\[
\phi(k, \sigma) \overset{\text{def}}{=} \text{FALSE}
\]

Equation (72) is a generalization of some invariant definitions found in the VDM literature, \textit{e.g.} [10, 47, 48]. It also is less constrained in the sense that only the set \(P\) of pointers in \(\sigma\) reachable from \(k\) is affected by non-circularity and definedness restrictions ([10, 48] constrain \(\text{dom}(\sigma)\) as a whole).

Some algorithmic flavour can be added to (72) by introducing an auxiliary function

\[
\text{reach}(k, \sigma) \overset{\text{def}}{=} \{ k \} \cup \{ k' \in K \mid k' \prec_{\mathcal{F}} k \}
\]

(that is, \(P = \text{reach}(k, \sigma)\)) subject to transformations as follows:

\[
\text{reach}(k, \sigma) \overset{\text{def}}{=}
\]

\[
[k] \cup \{ k' \in K \mid k' \prec_{\mathcal{F}} k \}
\]

\[
= [k] \cup \left\{ \emptyset \cup \bigcup_{k' \prec_{\mathcal{F}} k} \{ k' \} \cup \{ k'' \in K \mid k'' \prec_{\mathcal{F}} k' \} \right\} \quad \Leftrightarrow \quad k \notin \text{dom}(\sigma)
\]

\[
= [k] \cup \left\{ \emptyset \cup \bigcup_{k' \prec_{\mathcal{F}} k} \text{reach}(k', \sigma) \right\} \quad \Leftrightarrow \quad k \in \text{dom}(\sigma)
\]

The test for definedness may be encapsulated in a predicate

\[
\text{defined}(k, \sigma) \overset{\text{def}}{=} P \subseteq \text{dom}(\sigma)
\]

Since \(P = \text{reach}(k, \sigma)\) we obtain, after the expected substitutions and transformations:

\[
\text{defined}(k, \sigma) \overset{\text{def}}{=}
\]

\[
\{ \text{FALSE} \quad \forall k' \prec_{\mathcal{F}} k : \text{defined}(k', \sigma) \quad \Leftrightarrow \quad k \notin \text{dom}(\sigma) \}
\]

Note that both \text{reach} and \text{defined} do not compute the intended set-theoretical fixpoint implicit in the transitive closure of \(\prec_{\mathcal{F}}\) wherever this relation is cyclic. A \(\prec_{\mathcal{F}}\)-cycle is detected wherever we revisit the same \(k \in K\). Since
cycle detection matches with wellfoundedness testing, one may put everything together and write

\[\phi(k, \sigma) = \phi_{aux}(k, \sigma, \emptyset) \]

(76)

where

\[\phi_{aux}(k, \sigma, C) \stackrel{\text{def}}{=} \left\{ \begin{array}{ll}
 FALSE & \text{if } k \notin \text{dom}(\sigma) \cup C \\
 \forall k' <_{\mathcal{F}} k : \phi_{aux}(k', \sigma, C \cup \{k\}) & \text{if } k \in \text{dom}(\sigma)
 \end{array} \right. \]

(77)

5 An Illustration of Calculated Reification

The \textit{Sets}-model \textit{DecTree} for decision trees presented above (14) will be explored in this section and subject to a series of calculations, illustrating the main results of this paper. Refinement steps will be indexed by natural numbers to make it easy to apply rule (12) for inferring abstraction maps and data-type invariants.

This exercise about \textit{DecTree} is a simplified version of a similar exercise reported in [40], a project where legal knowledge about public property records, expressed in terms of decision trees, had to be incorporated in a pre-existing relational database system.

5.1 Data-level Reification

Recursion removal according to (64) is the first transformation applicable to (14). One obtains

\[\text{DecTree} \downarrow_1 \text{DecTree}_1 \]

where

\[\text{DecTree}_1 = K \times (K \leftrightarrow \text{What} \times (\text{Answer} \leftrightarrow K)) \]

(78)

Before proceeding, let us think a little about what has been achieved in \textit{DecTree}_1 (78). Two interpretations (at least) are admissible:

1. For \(K \) a domain of pointers,

\[K \leftrightarrow \text{What} \times (\text{Answer} \leftrightarrow K) \]

(79)

models a heap-segment of dynamic storage. In \textsc{pascal} (where the heap is "hidden" in the run-time system) we would write something like \(^{10}\)

\[\text{type DecTree}_1 = \uparrow\text{DecTree}; \\
 \text{DecTree} = \begin{array}{l}
 \text{record} \\
 \quad Q : \text{What}; \\
 \quad R : \text{array [Answer]} \text{ of } \uparrow\text{DecTree} \\
 \end{array} \]

end;

\(^{10}\)Strictly speaking, (80) is a further refinement of (79) because \textsc{pascal} pointers implement \(K+1 \) rather than \(K \) (the 1 alternative corresponds to the \textit{nil} value). Therefore, an invariant over (80) will be required ruling the \textit{nil} alternative out of \textit{DecTree}_1.
2. For K a domain of object names, (79) models the object database

$$\text{name} \rightarrow \text{object}$$

implicit in an object-oriented programming environment [47]. This is better suggested by the following VDM “sugaring” of (78):

$$\text{DecTree}_1 \quad ::= \quad \text{ObjName} : \quad K \\
\text{AttrBase} : \quad \text{ObjBase}$$

$$\text{ObjBase} \quad = \quad K \leftarrow \text{Attributes}$$

$$\text{Attributes} \quad ::= \quad Q : \quad \text{What}$$

$$\text{SubObjs} : \quad \text{Answer} \leftarrow K$$

Let us proceed via law (42):

$$\text{DecTree}_1 \quad = \quad K \times (K \leftrightarrow \text{What} \times (\text{Answer} \leftrightarrow K))$$

$$\Downarrow_2 \quad K \times ((K \leftrightarrow \text{What}) \times ((K \times \text{Answer}) \leftrightarrow K))$$

$$\Downarrow_2 = \text{DecTree}_2$$

For K a state descriptor, DecTree_2 accepts the following interpretation:

- $(K \times \text{Answer}) \leftrightarrow K = \text{state transition diagram}$ of a (deterministic) finite state automaton ($\text{Answer} = \text{input stimuli}$);

- the first factor $k \in K$ in (81) = current state of the automaton;

- $K \leftrightarrow \text{What} = \text{semantic table}$ assigning a meaning to each state.

Step 2 led us to a lower level where we met “good old friends”: finite state automata can be implemented using arrays and jumps! Carrying on our reasoning,

$$\text{DecTree}_2 \quad = \quad K \times ((K \leftrightarrow \text{What}) \times ((K \times \text{Answer}) \leftrightarrow K))$$

$$\Downarrow_3 \quad K \times (2^{K \times \text{What}} \times 2^{(K \times \text{Answer}) \times K})$$

$$\Downarrow_3 = \text{DecTree}_3$$

$$\Downarrow_4 \quad K \times (2^{K \times \text{What}} \times 2^{K \times \text{Answer} \times K})$$

$$\Downarrow_4 = \text{DecTree}_4$$

cf. (46) and (22). Our final model,

$$\text{DecTree}_4 = K \times (2^{K \times \text{What}} \times 2^{K \times \text{Answer} \times K})$$

is nothing but a relational database schema for implementing DecTree in terms of two database files (tables) where K plays the role of a domain of keys.

In summary, our reasoning can be sketched by

$$\text{DecTree} \Downarrow_4 \text{DecTree}_1 \Downarrow_2 \text{DecTree}_2 \Downarrow_3 \text{DecTree}_3 \Downarrow_4 \text{DecTree}_4$$

(83)
5.2 Inference of the Abstraction Map and Data-type Invariant

The overall abstraction map of (83) can be inferred via (12), i.e.

\[f(k, \langle t, t' \rangle) = f_1(f_2(f_3(f_4(k, \langle t, t' \rangle)))) \]

where \(f \) is obtained by functorial composition of abstraction maps \(f_1 \) to \(f_4 \), as follows: \(f_4 \) is given by

\[f_4 = 1_K \times (1_{2K \times \mathbb{W}_{eq \times 2}}) \]

where

\[(A \times B) \times C \cong_f A \times B \times C \]

that is,

\[f_4(\langle k, \langle t, t' \rangle \rangle) = \langle k, \langle \{ \langle k, a \rangle, k' \rangle \mid \langle k, a, k' \rangle \in t' \rangle \rangle \]

In a similar way, \(f_3 \) resorts to the \(mkf \) abstraction map (48) between relations and functions,

\[f_3 = 1_K \times (mkf \times mkf) \]

and \(f_2 \) is simply

\[f_2 = 1_K \times f \]

where \(f \) is given by (44). Finally,

\[f_3(k, \sigma) \overset{\text{def}}{=} f_\sigma(k) \]

\[f_\sigma(k) \overset{\text{def}}{=} \text{let } \sigma(k) = \langle w, \sigma' \rangle \text{ in } \langle w, \{ a \mapsto f_\sigma(\sigma'(a)) \mid a \in \text{dom}(\sigma') \} \rangle \]

(84)

cf. (67,19) and (57). Then

\[f_3(f_4(\langle k, \langle t, t' \rangle \rangle)) = \langle k, \langle mkf(t), mkf(\{ \{ k, a \rangle, k' \rangle \mid \langle k, a, k' \rangle \in t' \} \rangle) \rangle \]

\[= \langle k, \{ \{ k \mapsto u \mid \langle k, u \rangle \in t \}, \{ \langle k, a \rangle \mapsto k' \mid \langle k, a, k' \rangle \in t' \} \rangle \rangle \]

and

\[f_2(f_3(f_4(\langle k, \langle t, t' \rangle \rangle))) = \langle k, \{ x \mapsto \langle w, \{ a \mapsto k' \mid \langle k'', a, k'' \rangle \in t' \wedge k'' = x \} \rangle \rangle \langle x, w \rangle \in t \} \rangle \]

(85)

Combining (85) with (84) we obtain, after some simplifications

\[f(k, \langle t, t' \rangle) \overset{\text{def}}{=} \text{let } w = \{ \pi_2(r) \mid r \in t \wedge \pi_1(r) \overset{\text{def}}{=} k \} \text{ in } \langle w, \{ a \mapsto f(k', \langle t, t' \rangle) \mid \langle k'', a, k'' \rangle \in t' \wedge k'' = k \} \rangle \]

(86)

The overall data-type invariant can be calculated in similar way,

\[\phi(k, \langle t, t' \rangle) = \phi_3(f_4(k, \langle t, t' \rangle)) \wedge \phi_2(f_3(f_4(k, \langle t, t' \rangle))) \wedge \phi_1(f_2(f_3(f_4(k, \langle t, t' \rangle)))) \]
since ϕ_4 is universally true, ϕ_3 resorts to fdp (47),

$$\phi_3 = (\lambda k.\text{TRUE}) \times fdp \times fdp$$

and ϕ_2 is given by (43). It may be checked that $\phi_2(f_3(f_4(k,\langle t, t' \rangle)))$ reduces to $\pi_1[t'] \subseteq \pi_1[t]$. Then

$$\phi_2(f_4(k,\langle t, t' \rangle)) = \text{TRUE} \land fdp(t) \land fdp(\{ \langle k, a, k' \rangle \mid \langle k, a, k' \rangle \in t' \}) = fdp(t) \land fdp(\{ \langle k, a, k' \rangle \mid \langle k, a, k' \rangle \in t' \}) \quad (87)$$

Further calculating $fdp(\{ \langle k, a, k' \rangle \mid \langle k, a, k' \rangle \in t' \})$ in (87) yields

$$\forall \langle k_1, a, k'_1 \rangle, \langle k_2, b, k'_2 \rangle \in t' : (k_1 = k_2 \land a = b) \Rightarrow k'_1 = k'_2$$

Finally, ϕ_1 (72) is based on the ordering

$$k_1 < k \quad \overset{\text{def}}{=} \quad k \in \text{dom}(\sigma) \land$$

$$(\text{FALSE} \lor \exists a \in \text{dom}(\pi_2(\sigma(k))) : k_1 = \pi_2(\sigma(k))(a))$$

$$\Rightarrow$$

$$k \in \text{dom}(\sigma) \land \text{let } \sigma' = \pi_2(\sigma(k))$$

$$\text{in } \exists a \in \text{dom}(\sigma') \mid k_1 = \sigma'(a)$$

cf. (73). Recalling (76,77) above, we may reduce $\phi_1(f_2(f_3(f_4(k,\langle t, t' \rangle))))$ to $\text{aux}(k, t, t', \emptyset)$ where

$$\text{aux}(k, t, t', C) \overset{\text{def}}{=} \left\{ \begin{array}{l} \text{FALSE} \iff k \notin \pi_1[t] \lor \kappa \in C \\ \forall r \in \{ \pi_1(s) = k \mid s \in t' \} : \text{aux}(\pi_3(r), t, t', C \cup \{ k \}) \iff k \in \pi_1[t] \end{array} \right. \quad (88)$$

Putting everything together, we finally obtain the following (non-trivial) data-type invariant over (82):

$$\phi(k, \langle t, t' \rangle) =$$

$$(\forall \langle k, w, \langle k', w' \rangle \in t : k = k' \Rightarrow w = w') \land$$

$$(\forall \langle k_1, a, k_1' \rangle, \langle k_2, b, k_2' \rangle \in t' : (k_1 = k_2 \land a = b) \Rightarrow k'_1 = k'_2) \land$$

$$\pi_1[t'] \subseteq \pi_1[t] \land$$

$$\text{aux}(k, t, t', \emptyset) \quad (89)$$

where aux is the recursive auxiliary predicate given by (88).

5.3 Operation Reification

From the operations which are expected over type DecTree we select the following,

$$\text{decide} : \text{DecTree} \times \text{Answer} \rightarrow \text{DecTree}$$

$$\text{decide}(\sigma, a) \overset{\text{def}}{=} \text{let } m = \text{dom}(\pi_2(\sigma))$$

$$\text{in } \left\{ \begin{array}{l} \sigma \left(\pi_2(\sigma)(a) \right) \leftarrow a \notin m \\ a \in m \end{array} \right. \quad (90)$$

which specifies the action of picking a particular answer a available at the root menu of decision tree σ and selecting the corresponding sub-tree (if a is a valid answer).
We want to calculate the refication of \textit{decide} at refification-level 4, that is \textit{wrt.} \textit{DecTree}_4 (82). Following [7, 33], we start by building the corresponding (commutative) refication diagram:

\[
\begin{array}{c}
\text{DecTree} \times \text{Answer} \xrightarrow{\text{decide}} \text{DecTree} \\
\downarrow f \times 1_{\text{Answer}} \downarrow f \\
\text{DecTree}_4 \times \text{Answer} \xrightarrow{\text{decide}_4} \text{DecTree}_4
\end{array}
\]

which leads to equation

\[f(\text{decide}_4(k, \langle t, t' \rangle, a)) = \text{decide}(f(k, \langle t, t' \rangle), a)\]

(91)

where \text{decide}_4 is regarded as the unknown and \(f \) is abstraction map (86). Substituting (90) in (91) we obtain

\[
f(\text{decide}_4(k, \langle t, t' \rangle, a)) = \text{decide}(f(k, \langle t, t' \rangle), a)
\]

\[
\text{let } m = \text{dom}(\pi_2(f(k, \langle t, t' \rangle)))
\]

\[
\text{in } \{ f(k, \langle t, t' \rangle), (\pi_2(f(k, \langle t, t' \rangle))(a) \iff a \notin m
\}
\]

Assuming the following definitions, which specify usual \textit{projection/ selection} relational operators,

\[
\text{proj} : \{1, \ldots, n\} \times 2^{A_1 \times \ldots \times A_n} \rightarrow \bigcup_{i=1}^n 2^{A_i}
\]

\[
\text{proj}(i,t) \overset{\text{def}}{=} \{\pi_i(r) \mid r \in t\} = \pi_i[t]
\]

and

\[
\text{sel} : \bigoplus_{i=1}^n A_i \times 2^{A_1 \times \ldots \times A_n} \rightarrow 2^{A_1 \times \ldots \times A_n}
\]

\[
\text{sel}(\langle i, a \rangle, t) \overset{\text{def}}{=} \{r \in t \mid a = \pi_i(r)\}
\]

it is easy to show that

\[
\text{dom}(\pi_2(f(k, \langle t, t' \rangle))) = \text{proj}(2, \text{sel}(\langle 1, k \rangle, t'))
\]

and that

\[
(\pi_2(f(k, \langle t, t' \rangle)))(a) = \text{let } t'' = \text{sel}(\langle 1, k \rangle, t')
\]

\[
\text{let } t''' = \text{sel}(\langle 2, a \rangle, t'')
\]

\[
\text{let } k' = \text{the}(\text{proj}(3, t'''))
\]

\[
\text{in } f(k', \langle t, t' \rangle)
\]

Then

\[
f(\text{decide}_4(k, \langle t, t' \rangle, a)) = \]

\[
\text{let } m = \text{proj}(2, \text{sel}(\langle 1, k \rangle, t'))
\]

\[
\text{let } k' = \text{the}(\text{proj}(3, \text{sel}(\langle 2, a \rangle, \text{sel}(\langle 1, k \rangle, t'))))
\]

\[
\text{in } f(k', \langle t, t' \rangle)
\]

\[
\iff a \notin m
\]

(92)
Removing \(f \) from both sides of (92) we obtain

\[
\text{decide}_4(k, \langle t, t' \rangle, a) \overset{\text{def}}{=} \\
\text{let } m = \text{proj}(2, \text{sel}((1, k), t')) \\
k' = \begin{cases} \\
k & a \not\in m \\
\text{the}(\text{proj}(3, \text{sel}((2, a), \text{sel}((1, k), t')))) & a \in m \\
\end{cases} \\
im \langle k', \langle t, t' \rangle \rangle
\]

which implements the expected “pointer-handling” operation in a relational database programming style. It should be noted that \(\text{decide}_4 \) is not a unique solution to (91) because \(f \) (86) is non-injective. Other valid solutions might “garbage collect” \(t \) and \(t' \) by removing all entries accessed by \(k \) (which will not be revisited, cf. invariant (80)).

6 Conclusions

The research described in this paper extends the work on the SETS calculus reported in \([34, 35]\). The SETS sub-calculus is studied in much more detail and includes generic results for refining recursive data models.

Many laws of SETS are trivial from a strict mathematical viewpoint. What appears to be relevant is their use in the context of model-oriented reification. The synthesis of arbitrarily complex abstraction maps and data-type invariants induced by data refinement, resorts to a “functorial” approach whose compactness pays off the initial effort in understanding its categorial foundation. However, it is apparent from the final example of the paper that “pen and pencil” inference of such maps and invariants may become fairly laborious tasks in sizeable, real-life reifications. Resorting to a functional transformation tool (e.g. a system such as \textsc{nuprl} \([6]\) or \textsc{eril} \([8]\)) may be of some help in this respect.

Section 5 illustrates how dramatically the complexity of data-type invariants may increase throughout reification. This provides good evidence of how insecure informal designs may become if invariants are either ignored or mis-recorded.

7 Future Work

The SETS calculus is still in its infancy and there are several lines along which it may be developed.

7.1 Foundations

The categorial foundations of SETS need further investigation, particularly with respect to its naïve basis on set-theoretical \textit{cardinality}. Apparently, one is free to choose an abstraction map (surjection) \(f : B \to A \) between two domains \(A \) and \(B \) such that \(A \sqsubseteq B \). But this freedom appears to be available only at very basic data domains (e.g. \textit{elems} from sequences to sets) and is denied by
the functorial strategy adopted in this paper for structural composition of data refinements. In fact, it would be "unnatural" to choose an abstraction map

\[g : \mathcal{F}(B) \rightarrow \mathcal{F}(A) \]

other than \(\mathcal{F}(f) \) if \(f \) is the "natural" abstraction map between \(B \) and \(A \), cf. theorem 2. Such a functorial naturalness of some abstraction maps (and corresponding invariants) is even more evident wherever recursion is around, cf. section 4.

This brings to mind Wand’s final algebra approach to specification [45] \(^{11}\):

[... for any object \(A \) of \(K \), there is only one morphism in \(K \) from \(A \) to \(W \). (There is only one "reasonable" abstraction map for each data type representation \(A \), i.e., each "concrete" value in \(A \) may reasonably represent only one "abstract" value in \(W \).) [...].] that is: an abstract data type is a final object in the category of its representations [...]

In this final approach to refinement, epimorphism (2) will become unique and refications will have to form a comma category [45].

Alternatively, some kind of "ordering" is required on multiple refications. In fact, there seems to be no "best" way in which a given data domain \(A \) may be refied by some other domain \(B \). Which of the following "limits" is better from a calculation viewpoint: is it to have as much redundancy as necessary to avoid invariants on \(B \)? or is it to introduce as many invariants as necessary in order for \(A \) to be isomorphic to the corresponding subset of \(B \)? The latter alternative provides unique solutions to algorithmic refinements (recall section 3.3), but invariants grow in complexity. Moreover, this problem has model-theoretical implications with non-determinism, observational equivalence, implementation bias etc. [32, 38].

Other aspects which may require better foundations are "context-sensitive" transformations [35], "ad hoc" invariants [39] and recursion handling \(^{12}\) [22]. The main result of the paper should be extended from polynomial to co-continuous functors, in a category theoretical setting.

7.2 Operation Refinement

SETS claims no originality on operation refinement. Section 5.3 illustrated how "program transformation"-like reasoning can be used to calculate functional refinements. But other techniques could have been used, e.g. the "Oxford calculus" [30, 29]. In fact, it is straightforward to combine this calculus with SETS, as is apparent from the following quotation from [30]:

An abstraction invariant \(AI \) is chosen which links the abstract variables \(a \) and the concrete variables \(c \). [...]. In many cases, the abstraction invariant is functional [...]. and can always be written as a conjunction

\[(a = AF(c)) \land CI(c) \]

where \(AF \) we call the abstraction function and \(CI \) the concrete invariant.

\(^{11}\) In the following quotation from [45], \(W \) is an "abstract data type" and \(K \) is the category of representations of \(W \).

\(^{12}\) Note that some interesting refications steps actually introduce (rather than remove) recursion [7]. This kind of refication is particularly relevant w.r.t. parallel runtime environments.
in which one immediately identifies a \(\mathcal{A} \)-refinement step which may be calculated using \(\text{SETS} \) rather than being simply "chosen".

7.3 "Reverse" Calculation

Another direction of future research is (formal) reverse specification. Some experimentation carried out by the author suggests that \(\text{SETS} \) may become useful in reversing pre-existing code, by performing calculations in the reverse direction, that is \(\mathcal{B} \)-calculations instead of \(\mathcal{A} \)-calculations (from implementation to specification). As a side effect, such pieces of code are likely to be improved since code-level invariants may be revealed which were never recorded in the documentation.

7.4 Horizontal Refinement and Classification

Yet another potential application of the calculus concerns horizontal refinement [13], that is the decomposition of large software systems in terms of reusable components [41]. Many laws of \(\text{SETS} \) work in this direction, particularly the ones which "push the \(\times \) construct outwards" — e.g., (38), (39), (42), (45), (60) etc. — because they help in factorizing complex state structures of monolithic designs into collections of simpler structures which may have been dealt with already, and may thus be re-used.

The hierarchical classification and retrieval of reusable abstract models is suggested above in section 3.4.1 and has been further developed in [36] and [37], where a repository of such models is hierarchically organized in terms of the subterm instantiation ordering on the \(\text{SETS} \) expressions which denote the classes of their internal states. The same repository records \(\mathcal{A} \)-refinement relationships among components.

Acknowledgements

The author wishes to thank Isabel Jourdan (Dept. of Mathematics, University of Coimbra) for her comments on earlier drafts of this paper. This work has been partly supported by the JNICT council under PICT contracts nrs. 87/63 and 87/66.

References

