Teaching Science in The Laboratory: A Study on Portuguese School Science Teachers’ Perspectives

Luís DOURADO
Research Centre On Education, Institute Of Education
University Of Minho, Portugal
Ldourado@ie.uminho.pt

Laurinda LEITE
Research Centre On Education, Institute Of Education
University Of Minho, Portugal
Lleite@ie.uminho.pt

Sofia MORGADO
Research Centre On Education, Institute Of Education
University Of Minho, Portugal
Sofiamorgado@ie.uminho.pt

ABSTRACT
Laboratory activities may serve diverse educational purposes and be used in different ways. The educational advantages taken from laboratory activities depend strongly on the ways they are performed. Teachers’ conceptions on the best ways to carry out laboratory activities may influence the potential taken from them. This paper aims at finding out how teachers’ representations of practices regarding laboratory activities compare to their perspectives on a possible ideal form of implementing them. Data were collected through an online questionnaire from 159 teachers belonging to schools all over the country. Almost all participants stated that they were used to include laboratory activities in their classes. Besides, most teachers stated that the way they would implement laboratory activities would not change if there was no constraints to putting laboratory activities into practice. Thus, most teachers do not feel the need to change their practices regarding laboratory activities. In addition, teachers that would do things differently did not express theoretically grounded reasons to do so. Hence, research results suggest that pre-service and in-service teacher education must deal with the pros and cons of the diverse ways of using laboratory activities as well as with an analysis of possible strategies to overcome the main constrains face by teachers in Portuguese schools.

CONTEXT OF THE RESEARCH
Laboratory activities are a teaching resource that has concentrated educationalists’ attention for a long time (Abrahams, 2011) even though for reasons that depend on the interest of the moment or on the prevailing conceptions about what teaching science is. In fact, in the late nineteen century, laboratory activities were used to argue for the inclusion of science in the curriculum. By the turn to the twentieth century, Armstrong saw them as a way to give students’ the opportunity to acquire first-hand knowledge. By mid-twentieth century, they were conceptualized as a way to promote the development of science process skills. By the last decades of the twentieth century, they laboratory activities were seen as a tool to help students to reconstruct their previous ideas. More recently, it has been argued that they should be used to foster the integration of conceptual and empirical knowledge (Abrahams, 2011), based on an interplay between theory (or ideas) and evidence (or observables) supported by empirically based argumentation (Gott & Duggan, 2007). Besides, it is acknowledged that they should be used in such a way as to help students to bridge the gap between school science and contemporary issues (Gott & Duggan, 2007; Llorens-Molina, 2010).

Despite the long history of laboratory activities as an educational tool and the large amount of publications, including several books (Woolnough & Allsop, 1985; Woolnough, 1991; Wellington, 1998; Leach & Paulsen, 1999; Psillos & Niederer, 2002; Abrahams, 2011) focusing on them, a lack of consensus still emerge in different domains of the laboratory activities issue, starting with the terminology used to address them. In fact, as it was discussed in a previous paper (Leite & Dourado, 2013), several different words (e.g., practical work, laboratory
work, experimental work, investigations), that have different meanings, have been used to address laboratory activities in an undifferentiated way. This type of terminological issue is common when several researchers or research groups work simultaneously on the same issue, from different epistemological backgrounds. It happened, for instance, in the alternative conception research area (see Abimbola, 1988). Even though it does not necessarily suggest a lack of conceptual rigor from the researchers side, it may have negative implications for students learning, as it may impair readers’ awareness of the educational powers and limitations of each set of activities that should, in rigor, be associated with each of the different terms. This is why terminology clarification is a necessary requirement for an appropriate use of this valuable educational resource.

Within an educational context, laboratory activities can be defined as tools that enable indoor reproduction or simulation of natural facts and phenomena (or part of them) through conventional laboratory equipment and/or reusable everyday materials (Hodson, 1994; Abrahams, 2011; Leite & Dourado, 2013) that students and/or the teachers handle to produce data. Hence, laboratory activities are practical activities but it should be stressed that not all practical activities are laboratory activities. For instance, paper and pencil or computer modelling problem-solving activities are practical activities but they are not laboratory activities.

The ultimate goal of using laboratory activities in science teaching is not only to help students to learn how to interpret and explain facts and phenomena (Abrahams, 2011) but also to do it as scientists do (Ogborn et al, 1996). However, a set of intermediate and diverse objectives can be achieved through laboratory activities (Hodson, 1994), including conceptual, procedural, metacognitive and affective objectives. It should not be expected that a single laboratory activity would be able to lead to the fulfilment of such a variety of types of objectives. Rather to achieve such a demanding goal several laboratory activities, with different focus, should be performed. Thus, to enable the attainment of all of those objectives, a set of differentiated laboratory activities, each of them structured according to the requirements of the main type of objective to be achieved through it, should be performed (BERG, 2014; Leite & Dourado, 2013). As it has been argued before (Leite & Dourado, 2013), for instance: if attaining the main objective requires control and manipulation of variables to be done then an experimental laboratory activity may be required; if attaining the main objective involves problem-solving, then worksheet free laboratory investigation may be needed.

However, research suggests that teachers may have got used to the idea that laboratory activities are non-dissociable from science teaching, look at them as a single entity and often lack an appropriate methodological background on the best ways to using them. A consequence of this is that “Students’ experience of practical work as implemented could lead to a surface approach to learning rather than deeper learning for understanding.” (Sani, 2013, p. 1016). The point is that research suggests that the nature of the activities promoted by the syllabuses depend on the syllabuses’ authors (Ferreira & Morais, 2014; Šorgo & Špernjak, 2012) and that textbooks (Park & Lavonen, 2013) and teachers’ practices (Abrahams & Reiss, 2012; Sani, 2013) are pervaded by receipt-like laboratory activities that lead straight to the right answer. The popularity of worksheet-based laboratory activities leading to the right answer may lie on the fact that those activities are perceived as being less risky for teachers, that feel afraid of failing in the laboratory classes (Cossa & Uamusse, 2015), and for students who want to get credits for what they have done (Carlo, Mazzaro & Page, 2006). Nevertheless, research suggests that even though teachers resist to new ways of doing laboratory activities, with appropriate training, they gradually overcame their resistance and reluctance and develop willingness and motivation to practice them differently in everyday science classrooms (Kim & Chin, 2011).

Another issue that is worth raising is that laboratory activities may integrate the teaching and learning sequence in different ways (Leite & Dourado, 2013). In fact, the laboratory activities can be inserted at the beginning, the middle or the end of the teaching sequence, depending on whether it is aimed to be a starting point for conceptual learning, whether it is to facilitate conceptual knowledge reconstruction or procedural and conceptual knowledge integration or whether it is to reinforce previous conceptual learning, respectively.

Laboratory activities can have different levels of openness. The level of openness relates directly to the cognitive demands imposed to students (Tamir, 1991), so that the higher the level of openness of the activity, the higher the level of students’ demands. Consequently, the higher the level of openness, the deeper the learning that
should be expected to take place. However, there is some empirical evidence that teachers’ activities are low demanding (Ferreira & Morais, 2015) for students, which according to BERG – Biology Education Research Group (2014), may be due to teachers’ intentions for using them. Their attention is often focused on the hands on part of laboratory activities, based on the argument that students need to perform the laboratory procedure to learn better. However, even though hands-on are important to develop handling capabilities as well as a few technical skills (BERG, 2014; Woolnough & Alsop, 1985), developing those types of skills is hardly relevant unless they are integrated with cognitive reasoning issues (Abrahams & Reiss, 2012). Handling is far less important for meaningful learning than thinking is. As BERG (2014) emphasizes, “practical work isn’t just ‘doing’, it also involves ‘thinking about doing’.” (p.178). Thus, if conceptual learning is to take place, then it is far more important that students’ are cognitively engaged into the activity (have minds-on) than that they handle equipment or materials (have hands-on), without being aware of what they are doing or of what it is relevant for. For this process to be successful, it can be argued that students should also have their hearts-on (Leite & Dourado, 2013), as positive affective involvement would facilitate cognitive engagement. Unfortunately, research suggests that teachers’ naïve beliefs about laboratory activities are reflected into their practices (Kang & Wallace, 2005) leading them to often use laboratory activities unthinkably (Toplis, 2012) and to fail to explicitly promote the link between the laboratory activity and the related theory (Chopra, 2017). In addition, research focusing on teachers’ practices and representations of practices suggests that teachers’ practices regarding laboratory activities are teacher centred and aiming at confirming, empirically, previously taught concepts (Abrahams, 2011; Leite & Dourado, 2007; Ramalho, 2007). This may explain why students’ motivation towards laboratory activities decreases along the school path (Abrahams, 2009) and why some of them expect the laboratory to be the place to learn practical skills as well as to illustrate theory taught in lectures (Hanif et al, 2009).

As assessment practices determine what is important to learn (Abrahams & Saglam, 2010; Carlo, Mazzaro & Page, 2006), students’ assessment procedures need to be consistent with the aims settled for laboratory activities (Hodson, 1992) as well as with what is in fact valued (Abrahams, Reiss & Sharpe, 2013). As it was argued elsewhere (Hofstein & Lunetta, 2004; Leite, 2005), there is a variety of learning issues that can be assessed when laboratory activities are at stake. This variety is as larger as higher is the level of openness, being investigations the type of activity that offers a larger variety of learning issues to be assessed (Leite, 2005). Besides, there is a variety of assessment tools that can be used (Doran et al, 2002) to assess students’ learning from laboratory activities. The traditional laboratory reports are only one of them. They can be useful when open activities are used, as they assume a shape and role similar to the one of a scientific research paper in which all the decisions, procedures, data and conclusions are registered. However, they can be a waste of time when well-structured worksheet-based activities are under question, as to prepare the laboratory report students would need to transcribe (copy) the information and instructions given in the worksheet and to add the right answer only. On one hand, making copies is not what some researchers (e.g., Ellis, Taylor & Drury, 2007) talk about when they argue for writing for learning science. On the other hand, “the majority of students find one way or another to come up with the “right answer”. While most of them rely on perseverance to achieve their goal (i.e., redoing or fixing the procedure), many take the alternative route of copying or manipulating data.” (Carlo, Mazzaro & Page, 2006, p.1366). Therefore, more authentic assessment techniques need to be adopted (Hodson, 1992; Gott & Duggan, 2007), especially for summative purposes as it seems that the nature of summative assessment influences school practices with regard to using the laboratory with direct practical assessment favouring laboratory activities (Abrahams, Reiss & Sharpe, 2013). Of course, this may be a challenge for educational managers, as direct assessment in the laboratory is costly. It can also be demanding for teachers, as they themselves may feel the need of training, so that they can find the best assessment practices and to design activities that match their teaching context and their class conditions (Yip & Cheung, 2005) and that are more transparent to students (Ottander & Grelsson, 2006).

Teachers’ conceptions are one of the key factors that may influence their teaching practices (Kang & Wallace, 2005) namely in what concerns the use of laboratory activities. Besides, teachers’ work conditions may also condition their practices. In fact, teachers often complain about the conditions they have to include laboratory
activities into their teaching practice. They mention laboratory unavailability, inexistence of a laboratory technician, shortage of equipment or reactants, lack of time, and even student’s lack of interest on them. The worst part is that instead of finding valuable ways to overcome challenges to laboratory classes’ impairments, some teachers opt for the easiest alternative – do not put them into practice.

In summary, teachers’ conceptions on the best ways to carry out laboratory activities may influence teachers’ practices as well as the potential they take from laboratory activities. Their practices are often inconsistent with what specialists argue for and they mention several factors that impair them from using laboratory activities or from using laboratory activities, as they should be. However, as far as it is known, there is no research on how schoolteachers would like to use laboratory activities if there was no constrain.

RESEARCH QUESTION

A few research studies on teachers’ practices or representations of practices are already available. However, as teachers’ practices are often limited by factors that they see as constrains to the way they can teach, this study aims at answering the following question: how do Portuguese Natural Sciences teachers’ representations of practices regarding laboratory activities compare to a possible ideal form of implementing them?

RESEARCH METHODOLOGY

To attain the objective of the study, a questionnaire focusing on what teachers do and on what they would like to do (if there was no constrain) with regard to using laboratory activities in their junior high school natural sciences classes was designed. The questionnaire was inserted into Google Docs so that it could be answered online. In the first page there was an explanation about the overall aim of the study, as well as about the anonymous nature of the questionnaire and participants could decide on whether they were willing to proceed or not.

The target population was Natural Sciences (a school subject that encompasses biology and geology themes) teachers that were teaching in Portuguese public junior high secondary schools (grades 7 to 9) during the academic year of 2014/15. Due to the large dimension of the population, a sample was drawn. To do so, it was taken into account that data would be collected through an online questionnaire meaning that a large percentage of invited teachers could not reply. Besides, as the contacts of individual teachers were not available, it was decided to contact them through the school Director. Afterwards, it was decided to contact the Director (using the school e-mail address) of all the junior high schools included in the ministry of education official schools database and to ask to him/her to collaborate in the study. Those that accepted were asked to ask four Natural Sciences teachers, with at least three years of teaching experience, to answer to the questionnaire. The objective of this requirement was to ensure that the research participant teachers had a minimum teaching experience at this school level and therefore had a quite good overview of the syllabuses as well as about the possibilities and the constrains associated with putting them into practice with regard to laboratory activities.

The school Director should make the questionnaire web link available to teachers selected and willing to participate in the study so that they could fill it in. According to McMillan and Schumacher (2010), it should be noted that filling in an online questionnaire is a volunteer action that can be accepted as good alternative to informed consent statement signature.

The effective participants in the study are 159 teachers. Due to the anonymous character of the questionnaire, the number of schools they come from is not known. An analysis of data given in table 1 shows that all teachers have more than five years of teaching experience, that is two years more than the minimum required. Besides, it shows that the least experienced group is very small. This is consistent with the fact that, in the recent years, the admission of new teachers has been very rare, due to demographic reasons. A consequence of this is that all but one teacher are over thirty years old. Besides, table 1 shows that the number of male teachers is very small when compared with the number of their female counterparts. The prevalence of female teachers is consistent with what happens in school in several countries (Kelleheer, 2011) as well as with what was found in other studies (e.g., Dourado, 2001; Nunes, 2011). As far as teachers’ academic background is concerned, all of them have graduated as teachers through a Licenciatura (the required 5 years qualification before the Bologna process) and
about 27% (43 out of 159) have taken further post-graduation studies. This means that all of them are fully qualified to be teachers and that some of them even have additional qualifications.

Table 1: Characteristics of the sample (%)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Categories</th>
<th>f</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Female</td>
<td>140</td>
<td>88.1</td>
</tr>
<tr>
<td></td>
<td>Male</td>
<td>19</td>
<td>11.9</td>
</tr>
<tr>
<td>Age (years)</td>
<td>Less than 30</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>30 to 40</td>
<td>49</td>
<td>30.8</td>
</tr>
<tr>
<td></td>
<td>41 to 50</td>
<td>81</td>
<td>50.9</td>
</tr>
<tr>
<td></td>
<td>More than 50</td>
<td>28</td>
<td>17.6</td>
</tr>
<tr>
<td>Professional Experience</td>
<td>5 to 10</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>11 to 20</td>
<td>87</td>
<td>54.7</td>
</tr>
<tr>
<td></td>
<td>21 to 30</td>
<td>57</td>
<td>35.9</td>
</tr>
<tr>
<td></td>
<td>More than 30</td>
<td>11</td>
<td>6.9</td>
</tr>
<tr>
<td>Higher academic degree</td>
<td>Licenciatura</td>
<td>116</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>Specialization</td>
<td>10</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>Master</td>
<td>32</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>PhD</td>
<td>1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

RESEARCH RESULTS

Table 2 shows that all but one percent of the teachers stated that laboratory activities have been performed in their classes over the last three years. However, teachers are almost divided between a mean of less than and more than six activities a year in each of the classes they taught.

Table 2: Teachers’ mean use of laboratory activities over the previous 3 years

<table>
<thead>
<tr>
<th>Use of laboratory activities</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not use</td>
<td>1</td>
</tr>
<tr>
<td>Use</td>
<td></td>
</tr>
<tr>
<td>1 to 3 times a year</td>
<td>14</td>
</tr>
<tr>
<td>4 to 6 times a year</td>
<td>37</td>
</tr>
<tr>
<td>More than 6 times a year</td>
<td>48</td>
</tr>
</tbody>
</table>

Comparing these frequencies with data obtained in other studies it can be stated that these data are similar to those obtained for Physics and Chemistry, for example (see Leite & Dourado, 2007). Besides, by comparing them with the syllabuses laboratory requirements, it can be argued that whatever the grade level, the syllabus requires more than six activities to be done. Therefore, performing less than six activities a year in each class is not too much.

About a quarter of the 157 teachers that stated that they use laboratory activities in their classes mentioned that they were fully satisfied with the way they use them (table 3). The other three quarters were not fully satisfied with the way laboratory activities are carried out, being 2% fairly satisfied and 27% moderately satisfied only.

Teachers that stated that they were fully satisfied put forwards arguments that are related to the objectives that can be attained through laboratory activities. They argued that laboratory activities:

i) promote students’ conceptual learning
 “Students internalize concepts much more easily” (P8)

ii) promote students’ procedural learning
 “They improve students’ laboratory material handling skills and develop their data analysis competences” (P43)

iii) increase students’ motivation to learn
 “Students show enthusiasm every time a laboratory activity is performed.” (P13)

iv) develop students’ critical thinking
 “They foster students’ critical thinking.” (P158)
Table 3: Teachers’ level of satisfaction with the laboratory activities used in their classes

(N=157)

<table>
<thead>
<tr>
<th>Level of satisfaction</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully satisfied</td>
<td>26</td>
</tr>
<tr>
<td>Quite satisfied</td>
<td>45</td>
</tr>
<tr>
<td>Moderately satisfied</td>
<td>27</td>
</tr>
<tr>
<td>Fairly satisfied</td>
<td>2</td>
</tr>
<tr>
<td>Unsatisfied</td>
<td>0</td>
</tr>
</tbody>
</table>

Most teachers that were quite satisfied put forwards positive and/or negative arguments. The positive arguments compare to those used by the fully satisfied teachers. The negative arguments compare to reasons reported in the literature for teachers to not use laboratory activities. They are as follows:

i) students do not engage into the activities
 “Students do not look at these classes seriously.” (P29)
ii) good laboratory conditions are not available
 “There is not a real well equipped laboratory in our school.” (P31)
iii) the class time is too short
 “I am not fully satisfied because for some activities, the duration of the class (45 min) is insufficient.” (P39)
iv) the syllabus is too long
 “The only reason for my [moderate] satisfaction is the great length of the syllabus.” (P71)
v) the class is too large
 “There are too many students in a class.” (P128)

Moderately satisfied teachers mentioned negative aspects mainly. Those aspects compare to the ones previously presented. Finally, teachers that were fairly satisfied mentioned negative reasons only. Their reasons compare to reasons found in other studies for not performing laboratory activities, namely:

i) lack of laboratory
 “I cannot perform more laboratory activities because there is no sciences laboratory in my school.” (P1)
ii) shortage of laboratory material
 “There is shortage of laboratory material in schools.” (P11)
iii) insufficient discipline workload
 “The number of hours per week is very low.” (P41)
iv) shortage of training
 “I have inappropriate training to perform laboratory activities consistent with the syllabus.” (P41)

An analysis of the reasons above suggests that most teachers would like to have better conditions to use laboratory activities differently. However, comparing the way teachers state that they use laboratory activities with their perspectives on the ideal ways of using them it can be noted that, in each case, teachers mention a variety of ways with quite similar percentages (table 4). It can also be noted that there is a slight reduction on the percentages of teachers in the categories involving the option after teaching the content and a slight increase on the percentages of teachers in the categories involving the before option. This means that most teachers that stated that they use laboratory activities after teaching the content are happy with that approach and would not perform them differently if they had no constrains to their teaching practices relative to laboratory activities. However, a few teachers that use them after teaching the content would like to in traduce them before teaching it. They are used to introduce the content before the activity because, as P59 stated, they feel that “introducing the theoretical content before the activity helps the majority of the students to understand better the objectives of the activity and to consolidate conceptual learning”. However, they would like to start with the activity because, as the same teacher stated, “to suggest problems to be solved through laboratory activities fosters inquiry, requires several types of knowledge to the used and stimulates students’ autonomy”.

59
Table 4: Teachers’ use of laboratory activities and their perspectives on the ideal way of using them (%)
(N=157)

<table>
<thead>
<tr>
<th>Laboratory activities versus concept teaching</th>
<th>Real use</th>
<th>Ideal use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>During</td>
<td>34</td>
<td>29</td>
</tr>
<tr>
<td>After</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>Before or during or after</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>Before or during</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Before or after</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>During or after</td>
<td>13</td>
<td>6</td>
</tr>
</tbody>
</table>

Besides, the percentage of teachers that use and would like to perform the laboratory procedure either before, or during or after teaching the content remains almost unchangeable (table 4). For these teachers, the decision “depends on the content to be taught and on the activity itself” (P67). This may mean that teachers that believe that laboratory activities can be performed at any moment of the teaching and learning sequence do it because they believe it is the best for their students and that they can overcome the constrains they face in their daily life practice. In fact, laboratory activities should be performed at different stages of the teaching and learnings sequence, depending on the main objective to be achieved (Leite & Dourado, 2013). However, a few teachers that are used to introduce laboratory activities at any moment of the teaching and learning sequence would like to introduce them before theory, because, as P9 stated, it would “enable students to interiorize concepts more easily”. In addition, a few teachers that are used to introduce laboratory activities during theory presentation, they would like to use them before theory because, as P31 stated, “It enables the teacher to guide the students towards the formulation of questions that would be answered, with increased motivation, during the presentation of the content”. Hence, a few teachers, with different practices, seems to believe that students would benefit if laboratory activities were introduced before the content.

Table 5 shows that there is not too much difference between the tasks that teachers stated that are carried out before the implementation of the laboratory procedure and the tasks that would be performed in the ideal situation of having no constrains. However, there is a slight reduction in the percentages of teachers that stated that the teacher “Teaches contents related to the laboratory activity”, “Does scientific and pedagogic preparation for the laboratory activity”, and “Selects laboratory materials and Provide information on safety and handling rules”. In fact, as P11 mentioned, some teachers are used to “Start by introducing theory so that students can understand what they are going to do and what they should conclude from the laboratory activities”. It is worth noting that this is what a few of them would like to do under ideal conditions: “Introduce the theory related to the issues to be studied in the lab, so that students can have the theoretical foundations underlying the activity to be carried out.” (P11). However, a few other teachers would like to do it differently, as P18 stated: “Would not introduce the content before the activity; students would be asked to reach conclusions and to discover by themselves. It would be much more interesting even though most students are not used to work on this way” (P18).

Also, there is a reduction in the percentage of teachers that would ask students to “Read and analyse the laboratory worksheet” (table 5). On the contrary, there is a slight increase in the percentages of teachers that stated that they would like to give students the chance to “Design the laboratory worksheet”, “Do bibliographic search” and “Carry out predictions”. This may mean that only a reduced number of teachers would like to give more autonomy to students or to conduct more students’ centred activities. P1, which gives students the opportunity to become familiar with the laboratory worksheet in advance in order “[…] to develop the activity without wasting time”, may illustrate this group of teacher. In fact, this teacher stated: “Ask students to design the worksheet. I think that it would be educationally more valuable and the classes would not be receipt-based”. This argument may mean that P1 that trusts students’ abilities to learn in a student centred environments.

Additionally, it should be noted that the percentage of teachers that did not answer increased in 19% (from 8% to 27%) from the actual practices to the ideal situation. This means that more than a quarter of the participants may not be aware of what they would like to do before the implementation of the laboratory activities. This is a very intriguing result, as experienced teachers should have an idea about the way they would like to use a key
Table 5: Tasks carried out before starting the implementation of the laboratory procedure (%) (N=157)

<table>
<thead>
<tr>
<th>Responsible person</th>
<th>Action</th>
<th>Real way</th>
<th>Ideal way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>Teaches contents related to the laboratory activity</td>
<td>31</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Does scientific and pedagogic preparation for the laboratory activity</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Selects laboratory materials</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Provides information on safety and handling rules</td>
<td>24</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Provides information on learning assessment criteria</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Prepares for teamwork</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Does a prior trial of the laboratory experiment</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Asks questions on the activity to be carried out</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Students</td>
<td>Read and analyse the laboratory worksheet</td>
<td>29</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Design the laboratory worksheet</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Do bibliographic search</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Carry out predictions</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Practice the handling of laboratory materials and equipment</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Solve exercises</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Do not answer</td>
<td>8</td>
<td>27</td>
</tr>
</tbody>
</table>

Comparing what teachers stated that is done during the implementation of the laboratory procedure with what would be done (table 6), it can be noted that, in the majority of the laboratory activities, there would be about 20% less teachers guiding students and also about 20% less explaining to students, if there was no constrain to their implementation. This means that during the laboratory procedure, teachers would like to give more responsibility to students: “Would give a more central role to students.” (P3). Consistently, more teachers would like to have students performing the laboratory procedures in small groups or individually (table 6). However, there is no evidence that teachers would ask students to engage more strongly into the activity, as they did not mention that they would ask students to carry out conceptual/cognitive tasks.

Table 6: Tasks carried out during the implementation of the laboratory procedure (%) (N=157)

<table>
<thead>
<tr>
<th>Responsible person</th>
<th>Action</th>
<th>Real way</th>
<th>Ideal way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>Guides students</td>
<td>18</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>Explains issues to students</td>
<td>27</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Asks questions to students</td>
<td>11</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>Observes students working</td>
<td>11</td>
<td>89</td>
</tr>
<tr>
<td>Students</td>
<td>Observe teacher’s laboratory procedure performance</td>
<td>98</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Help teacher to perform laboratory procedure</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Carry out laboratory procedure in small groups</td>
<td>32</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Carry out laboratory procedure individually</td>
<td>94</td>
<td>6</td>
</tr>
</tbody>
</table>

Besides, some teachers are not confident on students’ motivation to engage into learning from laboratory activities. This statement can illustrated by teachers like P40 that was used to guide students in all the activities because he/she believes that “only with guidance students succeed on performing the activities and getting aware
of the interactions between the activity and the relevant theory”. This teacher would reduce the number of activities in which guidance is provided but only “In an utopian situation in which students are engaged and interested in learning and in which schools have good laboratory conditions”. Also, P157 stated that he/she explains and would explain content issues to the students in all activities because “students are very immature, have no rules, and have their interests focused on other places than the school. Therefore, they need explanations to recall previously acquired knowledge.”. Underlying these teachers’ answers is the perception that students are not motivated (even) to perform laboratory activities which is in disagreement with teachers who state that students enjoy all laboratory activities.

Finally, it should be mentioned that teachers whose students perform (only) the majority of the activities individually would like to have their students performing all the activities individually. To illustrate this, we take P69 o stated that: “as someone said ‘learning by doing’ leads to a deeper understanding of the phenomena”. This statement seems to be strongly influenced by a hands-on conception of using the laboratory for teaching science, which can be negative in terms of students learning achievements, as it was discussed above.

Table 7 shows that, after the laboratory procedure, a few teachers would do things differently, if there was no constrains. In fact, the percentage of teachers that, for the majority of the laboratory activities, would “Remind students about laboratory activity related contents” as well as the percentage of teachers that would ask students to “Discuss on the laboratory activities” previously carried out increased slightly. Besides, the percentage of teachers that stated that they would teach new contents increased 11%. However, this may mean that teachers would like to teach either the new content related to the procedure previously performed or another new content not related to the previous activity. Their answers are not too clear about that, as shown by P20’s answer: “Laboratory activities may be a starting point for approaching new issues.”.

Table 7: Tasks carried out after the implementation of the laboratory procedure (%) (N=157)

<table>
<thead>
<tr>
<th>Responsible Person</th>
<th>Action</th>
<th>Real way</th>
<th>Ideal way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>Reminds students about the activity related content</td>
<td>27/73</td>
<td>22/78</td>
</tr>
<tr>
<td></td>
<td>Teaches new contents</td>
<td>76/24</td>
<td>65/35</td>
</tr>
<tr>
<td>Students</td>
<td>Prepare the laboratory report</td>
<td>40/60</td>
<td>25/75</td>
</tr>
<tr>
<td></td>
<td>Discuss on the laboratory activities</td>
<td>11/89</td>
<td>8/92</td>
</tr>
<tr>
<td></td>
<td>Solve problems</td>
<td>61/39</td>
<td>36/64</td>
</tr>
<tr>
<td></td>
<td>Plan new laboratory activities</td>
<td>94/6</td>
<td>61/39</td>
</tr>
</tbody>
</table>

Larger percentage increases were found in two tasks that teachers would ask students to do. One of them relates to laboratory report preparation (15% increase). Teachers stated that they use and would continue to use laboratory reports because “They promote the development of a bridge between theory and practice; laboratory reports (besides being assessment instruments) they lead students to systematize their learning achievements” (P19) or “The elaboration of a laboratory report is an assessment and a consolidation tool.” (P158). These teacher’s answers reveal a deficit of knowledge laboratory learning assessment techniques and/or of critical thinking on laboratory reports potential and limitations. As argued above, laboratory report is a traditional laboratory assessment tool whose educational usefulness depends on the type of the activity that is at stake. It can be useful for investigation like activities (not based on a worksheet) but may be a waste of time for receipt like activities as their laboratory worksheets give all the information to students.

The action whose percentages are different has to do with asking students to solve problems (25% increase). Solving problems in the basis of a laboratory activity to be performed or related to the activity performed would be good for students to develop problem-solving competences or to perceive the usefulness of the newly acquired knowledge, respectively. With regard to this, teachers that ask and would like to ask students to do problem-solving, stated that they do it “so that students learn how to think scientifically; learn with experimentation” (P9) and because “a laboratory activity serves to lead to a conclusion, that is to solve a given problem.” (P112). These results raise some concern, as there is some empirical evidence that teachers often do
not differentiate the concepts of exercise and problem and also that problems are seldom used in the classrooms as well as in the textbooks.

Finally, the largest increase (33%) was noted for “Plan new laboratory activities” related to the majority or all activities performed. P54 that do not ask students to plan laboratory activities, stated that he/she would like to having them doing it for all the activities because “It is important and having the chance to plan new activities would be interesting for the students but it would require much more time for each activity.”. Similarly, P64, stated that “If the syllabus was not so long, it would be possible to ask students to plan new activities and to present problem to be solved through laboratory activities.”. This would be nice, as it would provide opportunities for students to develop procedural competences and to better integrate their knowledge. However, it seems hardly consistent with the reduced ambition shown by teachers in the previous phases.

CONCLUSIONS AND IMPLICATIONS

Almost all participants stated that they were used to include laboratory activities in their teaching practice, even though about half of them seem to use laboratory activities once in two months in each class. However, only about a quarter of the participants mentioned that they feel a moderate or lower level of satisfaction with the laboratory activities they put into practice. Besides, as far as the stage of the teaching and learning sequence in which laboratory activities are introduced is concerned, teachers stated a variety of possibilities that compare to the ones they would introduce them if they had no constraints to putting laboratory activities into practice. The only important difference has to do with the ‘before’ stage, as 10% more teachers would like to introduce laboratory activities at that stage than they were actually used to do. In addition, the percentages of teachers that do and would like to do things in a certain way before, during or after the implementation of the laboratory procedure are quite similar. Exceptions are that: i) a few less teachers would like to give guidance and explanation to students; ii) a few more teachers would like to have students performing the laboratory procedure individually, writing laboratory reports and solving problems after the laboratory procedure. These results suggest that teachers do not feel a strong need to change their practices regarding the introduction and implementation of laboratory activities. Besides, teachers that would do things differently did not express theoretically grounded reasons to do so. Some changes that they would like to do may not even be the best ones, as they would reinforce practices based on doing for habit, irrespective of the nature of the activity that is at stake. An example of this is the use of and belief in laboratory reports, which has powers and limitations, as discussed above.

Hence, pre-service and in-service teacher education must deal with the possible ways of using laboratory activities for teaching science in order to help them not only to overcome the temptation of continuing to use the frequent excuses reported in the literature (see Cossa & Uamasse, 2015) to not perform laboratory activities, but also to continue performing them as usual. Training should include a discussion on the potential and limitations of the diverse ways of using laboratory activities as well as on the best ways to carry them out in order to counteract what Kang & Wallace (2005) called teachers’ naïve epistemological beliefs about laboratory activities. Besides, it should help them to find ways of overcoming constrains faced in particular school contexts, for instance by doing laboratory activities (safely but) in places other than the conventional laboratory and or with non-conventional materials. Teachers and prospective teachers may need to perceive that motivation is important but that motivation in itself is not a learning outcome (Hanif et al, 2009). Nevertheless, it is possible to structure and use laboratory activities in such a way as to both increase students’ learning achievements and develop students’ positive attitudes (Tarhan & Sesen, 2010; Toplis, 2012).

Finally, curriculum developers and educational authorities need to find ways of fostering changes namely by fighting the right answer syndrome and promoting more realistic school laboratory practices that, as Ogborn et al (1996) would put it, may help teachers to lead their students to explain science as scientists do. As Abrahams, Reiss and Sharpe (2013) have emphasized, laboratory related learning assessment guidelines might need to change in order to foster teaching changes. Doing laboratory activities costs time and money. Therefore, they cannot be done just because ‘they are a part of science’ or because ‘science is a practical subject’. They need to be done because and when they have a meaningful role to play in the specific educational context each teacher is immerged at the moment, so that teachers can help their students to better master the scientific explanations of real facts and phenomena.
ACKNOWLEDGEMENTS
This work is funded by CIEd - Research Centre on Education, projects UID/CED/1661/2013 and UID/CED/1661/2016, Institute of Education, University of Minho, through national funds of FCT/MCTES-PT.

REFERENCES

Turkish Online Journal of Educational Technology

Special Issue for INTE 2017
December 2017

Prof. Dr. Aytekin İşman
Editor-in-Chief

Prof. Dr. Jerry WILLIS - ST John Fisher University in Rochester, USA
Prof. Dr. J. Ana Donaldson - AECT President
Editors

Assist. Prof. Dr. Fahme DABAJ - Eastern Mediterranean University, TRNC
Associate Editor

Assoc. Prof. Dr. Eric Zhi - Feng Liu - National Central University, Taiwan
Assistant Editor
Message from the Editor-in-Chief

Dear Colleagues,

We are very pleased to publish Special Issue for INTE-2017, ITICAM 2017 & IDEC 2017 conferences. This issue covers the papers presented at International Conference on New Horizons in Education, International Trends and Issues in Communication & Media Conference and International Distance Education Conference which were held in Freie Universität Berlin, Germany. These papers are about different research scopes and approaches of new developments and innovation in education, communication, media and technology.

Call for Papers

TOJET invites you article contributions. Submitted articles should be about all aspects of educational technology. The articles should be original, unpublished, and not in consideration for publication elsewhere at the time of submission to TOJET. Manuscripts must be submitted in English. TOJET is guided by its editors, guest editors and advisory boards. If you are interested in contributing to TOJET as an author, guest editor or reviewer, please send your CV to tojet.editor@gmail.com.

December, 2017
Prof. Dr. Aytekin ISMAN
Sakarya University
Editorial Board

Editors
Prof. Dr. Aytekin İşman - Sakarya University, Turkey
Prof. Dr. Jerry Willis - ST John Fisher University in Rochester, USA
Prof. Dr. J. Ana Donaldson - AECT President

Associate Editor
Assist.Prof.Dr. Fahme Dabaj - Eastern Mediterranean University, TRNC

Assistant Editor
Assoc.Prof.Dr. Eric Zhi - Feng Liu - National Central University, Taiwan

Editorial Board
Prof.Dr. Ahmet Zeki Saka - Karadeniz Technical University, Turkey
Prof.Dr. Akif Ergin - Başkent University, Turkey
Prof.Dr. Ali Al Mazar - Alfaisal University, Kingdom of Saudi Arabia
Prof.Dr. Ali Ekrem Özkul - Anadolu University, Turkey
Prof.Dr. Anil P. Gaikwad - Yashwantrao Chavan Maharashtra Open University, India
Prof.Dr. Antoinette J. Muntjewerff - University of Amsterdam
Prof.Dr. Arif Altun - Hacettepe University, Turkey
Prof.Dr. Arvind Singhal - University of Texas, USA
Prof.Dr. Asaf Varol - Firat University, Turkey
Prof.Dr. Aytekin İşman - Sakarya University, Turkey
Prof.Dr. Brent G. Wilson - University of Colorado at Denver, USA
Prof.Dr. Buket Akköyunlu - Hacettepe University, Turkey
Prof.Dr. Carmencita L. Castolo - Polytechnic University of the Philippines, Philippines
Prof.Dr. Cengiz Hakan Aydin - Anadolu University, Turkey
Prof.Dr. Chang-Shing Lee - National University of Tainan, Taiwan
Prof.Dr. Charlotte N. (Lani) Gunawardena - University of New Mexico, USA
Prof.Dr. Chi - Jui Lien - National Taipei University of Education, Taiwan
Prof.Dr. Chih - Kai Chang - National University of Taiwan, Taiwan
Prof.Dr. Chin-Min Hsiung - National pingtung university, Taiwan
Prof.Dr. Colin Latchem - Open Learning Consultant, Australia
Prof.Dr. Colleen Sexton - Governor State University, USA
Prof.Dr. Demetrios G. Sampson - University of Piraeus, Greece
Prof.Dr. Dimitar G. Velev - University of National and World Economy, Bulgaria
Prof.Dr. Don M. Flournoy - Ohio University, USA
Prof.Dr. Dongsik Kim - Hanyang University, South Korea
Prof.Dr. Enver Tahir Riza - Dokuz Eylül University, Turkey
Prof.Dr. Eralp Altun - Ege University, Turkey
Prof.Dr. Feng-chiao Chung - National pingtung university, Taiwan
Prof.Dr. Ferhan Odabaşı - Anadolu University, Turkey
Prof.Dr. Finland Cheng - National pingtung university, Taiwan
Prof.Dr. Fong Soon Fook - Universiti Sains Malaysia, Malaysia
Prof.Dr. Francine Shuchat Shaw - New York University, USA
Prof.Dr. Gianni Viardo Vercelli - University of Genova, Italy
Prof.Dr. Gwo - Dong Chen - National Central University Chung - Li, Taiwan
Prof.Dr. Hafize Keser - Ankara University, Turkey
Prof.Dr. Halil Ibrahim Yalın - Gazi University, Turkey
Prof.Dr. Heli Ruokamo - University of Lapland, Finland
Prof.Dr. Henry H.H. Chen - National pingtung university, Taiwan
Prof.Dr. Ing. Giovanni Adorni - University of Genova, Italy
Prof.Dr. J. Ana Donaldson - AECT President
Prof.Dr. J. Michael Spector - University of North Texas, USA
Prof.Dr. Jerry Willis - ST John Fisher University in Rochester, USA
Prof.Dr. Jie-Chi Yang - National central university, Taiwan
Prof.Dr. Kinshuk - Athabasca University, Canada
Prof.Dr. Kiyoshi Nakabayashi - Chiba Institute of Technology, Japan

Copyright © The Turkish Online Journal of Educational Technology
Assist.Prof.Dr. Betül Özkan - University of Arizona, USA
Assist.Prof.Dr. Burçin Kısa İşık - Gaziantep University, Turkey
Assist.Prof.Dr. Chiu - Pin Lin - National Hsinchu University of Education, Taiwan
Assist.Prof.Dr. Chun - Ping Wu - Tamkang University, Taiwan
Assist.Prof.Dr. Chun - Yi Shen - Tamkang University, Taiwan
Assist.Prof.Dr. Chung-Yuan Hsu - National pingtung university, Taiwan
Assist.Prof.Dr. Dale Havill - Dhofar University, Sultanate of Oman
Assist.Prof.Dr. Devrim Akgündüz - Istanbul Aydm Universitesi, Turkey
Assist.Prof.Dr. Ferman Konukman - College of Arts and Science, Sport Science Program, Qatar University
Assist.Prof.Dr. Filiz Varol - Furat University, Turkey
Assist.Prof.Dr. Guan - Ze Liao - National Hsinchu University of Education, Taiwan
Assist.Prof.Dr. Hsiang chin - hsiao - Shih - Chien University, Taiwan
Assist.Prof.Dr. Hung Tse Hou - National Taiwan University of Science and Technology, Taiwan
Assist.Prof.Dr. Hüseyin Ünlü - Aksaray University, Turkey
Assist.Prof.Dr. Jugamath. K Dange - Kuvempu University, India
Assist.Prof.Dr. K. B. Praveena - University of Mysore, India
Assist.Prof.Dr. Kanvaria Vinod Kumar - University of Delhi, India
Assist.Prof.Dr. Lotfi Salhi - University of Gafsa, Tunisia
Assist.Prof.Dr. Marko Radovan - University of Ljubljana, Slovenia
Assist.Prof.Dr. Min-Hsien Lee - National central university, Taiwan
Assist.Prof.Dr. Mohammad Akram Mohammad Al-Zu’bi - Jordan Al Balqa Applied University, Jordan
Assist.Prof.Dr. Muhammet Demirbilek - Suleyman Demirel University, Turkey
Assist.Prof.Dr. Pamela Ewell - Central College of IOWA, USA
Assist.Prof.Dr. Pey-Yan Liou - National central university, Taiwan
Assist.Prof.Dr. Phaik Kin, Cheah - Universiti Tunku Abdul Rahman, Kampar, Perak
Assist.Prof.Dr. Ping - Yeh Tsai - Tamkang University, Taiwan
Assist.Prof.Dr. S. Arulchelvan - Anna University, India
Assist.Prof.Dr. Seçil Kaya - Anadolu University, Turkey
Assist.Prof.Dr. Selma Koç Wonderwell - Cleveland State University, Cleveland
Assist.Prof.Dr. Sunil Kumar - National Institute of Technology, India
Assist.Prof.Dr. Tsung - Yen Chuang - National University of Taiwan, Taiwan
Assist.Prof.Dr. Vahid Motamedi - Tarbiat Moallem University, Iran
Assist.Prof.Dr. Wong Kung Teck - Sultan Idris Education University, Malaysia
Assist.Prof.Dr. Yalın Kılıç Türel - Firat University, Turkey
Assist.Prof.Dr. Yasin Aslan - Sinap University, Turkey
Assist.Prof.Dr. Yu - Ju Lan - National Taipei University of Education, Taiwan
Assist.Prof.Dr. Zehra Alaköç Burma - Mersin University, Turkey
Assist.Prof.Dr. Zerrin Ayvaz Reis - Istanbul University, Turkey
Assist.Prof.Dr. Zülfü Genç - Firat University, Turkey

Dr. Arnaud P. Prevot - Forest Ridge School of the Sacred Heart, USA
Dr. Balakrishnan Munianday - Universiti Sains Malaysia, Malaysia
Dr. Brendan Tangney - Trinity College, Ireland
Dr. Chan Shiau Wei - Universiti Tun Hussein Onn Malaysia, Malaysia
Dr. Chen Haishan - China Open University, China
Dr. Chinhai Leng - University of Malaya, Malaysia
Dr. Chinh Yeh Wang - National Central University, Taiwan
Dr. Chou Hsiang Chen - National Central University, Taiwan
Dr. Chun Hung Lin - National central university, Taiwan
Dr. Esra Telli - Hacettepe University, Turkey
Dr. Farrah Dina Yusop - University of Malaya, Malaysia
Dr. Fatma Bayrak - Hacettepe University, Turkey
Dr. Gökhan Akçapınar - Hacettepe University, Turkey
Dr. Gökhan Dağhan - Hacettepe University, Turkey
Dr. Hj. Issham Ismail - Universiti Sains Malaysia, Malaysia
Dr. Hj. Mohd Arif Hj. Ismail - National University of Malaysia, Malaysia
Dr. I-Hen Tsai - National University of Tainan, Taiwan
Dr. İsmail İpek - Bilkent University, Turkey
Dr. Jarkko Suhonen - University of Eastern Finland, Finland
Dr. Li Ying - China Open University, China
Dr. Norlidah Alias - University of Malaya, Malaysia
Dr. Pirnar Nuhoğlu - Hacettepe University, Turkey
Dr. Rosnaini Mahmud - Universiti Putra Malaysia, Malaysia
Dr. Sachin Sharma - Faridabad Institute of Technology, Faridabad
Dr. Seetharam Chittoor Jhansi - Pushpa Navnit Shah Centre for Lifelong Learning, India
Dr. Tam Shu Sim - University of Malaya, Malaysia
Dr. Tiong Goh - Victoria University of Wellington, New Zealand
Dr. Vikrant Mishra - Shivalik College of Education, India
Dr. Zahra Naimie - University of Malaya, Malaysia
Dr. Zari Sadat Seyyedrezaie - Islamic Azad University, Iran
Teacher Motivation Orientations and Leadership Styles
Svetlana LUKASHOVA, Bota ZHUMAKAYEVA

Teachers are Determining the Factors Increasing the Satisfaction of the Fatih Project Sakarya Example
Metin ÇENGEL, Ayşe ALKAN

Teaching Abstract Mathematics in Vocational Schools: Teachers’ Views
Sinan AYDIN, Kazım KAHRAMAN, Mustafa OF, Kenan TÜRKERİ, Celal MUTLU, İsmail KILIÇARSLAN

Teaching Expert Systems Development With Kafka
Fabio SARTORI, Riccardo MELEN

Teaching Human Resources in Sport Management by Emphasizing the Strategic Focus
Jana NOVÁ

Teaching Lead Time Reduction in Material Inventory Planning in the Construction Education
Adedeji AFOLABI, Olabosipo FAGBENLE, Rapheal OJELABI, Patience TUNJI-OLAYENI, Ignatius OMUH, Lekan AMUSAN

Teaching Methods at Elementary Schools
Barbora SVATKOVA, Lea NEDOMOVA

Teaching Science in The Laboratory: A Study on Portuguese School Science Teachers’ Perspectives
Luís DOURADO, Laurinda LEITE, Sofia MORGADO

Technology and Social Media: The Change in Family and School Communication
Tissiane Carla DE OLIVEIRA

Testing Hypothesis on Theory of Social Networking, Community Banking and Empowerment of People: A Conceptual View
Muhammad MAHBOOB ALI

Terrorist Attacks in the EU and their Impact on Short-Term Student Mobilities – Case of International Business Weeks Network
Martina CHALUPOVÁ, Jakub DOSTÁL, Martina ČERNÁ, Martin PROKOP

Testing the Main Differences and Mediating Effects of the Coping Scales
Jitka VACULÍKOVÁ

The Adaptation Study of Student Teachers’ Teaching-Learning Situation Preferences Scale into Turkish
Gürbüz OCAK, İjlal OCAK, Serkan BOYRAZ

The Analysis of the Value Orientation of Adolescents
Anežka HAMRANOVÁ

The Anxiety Levels of University Students Residing at State Dormitory
Nurhan GÜMRÜKÇÜOĞLU, Didem SARIMEHMET, Sevilay HINTISTAN, Nihat Burak ZİHNİ

The Application of Linear Algebra in Examples as a Motivating Tool for Teaching Mathematics at Universities
Miloslav FIALKA, Bronislav ŠKOPÍK

The Changes in South Korean Early Childhood Teachers’ Awareness Found in the Experience of Practicing Waldorf Education
Yeonhee LEE, Suhkyung KIM

The Cognetive in the Separation Technique of the Chemistry Laboratory By Using the Sample of Morinda Citrifolia For Application in the Herbal Soaps
Chanyapat SANGSUWON

The Cognitive Components of Self-Regulated Learning: Their Effects on Academic Procrastination
Valeria DE PALO, Pierpaolo LIMONE, Maria SINATRA 146

The Common European Framework and the European Language Portfolio: Involving Learners’ Judgments in the Assessment Process
Sedat KORKMAZ 151

The Complete of Senior Project by Studied the Chemical Constituents and Bioactivities Test of Lepisanthes Fruittiosa (roxb.) Leenh
Chanyapat SANGSUWON 159

The Conformity Of Computer Science Students And Satisfaction Of Entrepreneurs
Kunyanuth Kularbphettong 165

The Design Skill of Teacher: The Analysis of the Project Works
Laura AGRATI 170

The Development of Constructivist Simulation Learning Environment Model To Enhance Decision-Making For the Industrial Electrical Technology Students
Weeraphon PLESATT, Sumalee CHAIJAROEN, Pornsawan INSORN 178

The Development of An Online Test to Measure the Interpretation of Implied Meanings as A Major Constituent of Pragmatic Competence
Uğur Recep ÇETINAVCI, İsmet ÖZTÜRK 184

The Development of Authentic Assessment in Measuring Critical Thinking and Student Performance in Thermochemistry Material
Nahadi, WIWI SISWANINGSIH, Dzakiyatul AZIZAH R. 223

The Development of Handout on the Subject of Psychology For Teacher For Educational Students
Chaiwat WAREE 230

The Development of Talent Management Indicators For Primary Schools in Thailand
Pachara NGAMCHAD, Dawruwan THAWINKARN 235

The Development of Textbook on the Subject of Learning Management Process For Educational Students
Chaiwat WAREE 243

The Dynamics of Tahfiz Institutions: A Case Study of Three Best Practice Models of Tahfiz Education in Malaysia
Hazlina ABDULLAH, Noor Saazai Mat SAAD, Siti Rugayah TIBEK, Zulkiple Abd GHANI, Amir Husin Mohd NOR, Maziahtusima ISHAK, Adibah SULAIMAN, Noor Azizi ISMAIL, Ramialda DARMI, Mohd Muzhafar IDRUS, Noor Najihan JAAFAR, Setiyawan GUNARDI 248

The Education of Enlightenment – with Specific Regard to Musical Education
István Dániel SANDA 258

The Effect of Birdwatching Activities on Systematics Terms Learning in Biology Courses
Kalender ARIKAN, Salih Levent TURAN 263

The Effect of Curriculum Framework on Water Resource Management and Water Disaster of Secondary Schools
Chunwadee CHUNRASAKSAKUN, Unchalee SANRATTANA 267

The Effect of Education Themeatic Films on Classroom Teacher Candidates’ Motivation to Teach and Attitudes Towards Teaching Profession
Ümit İZGI, Serkan SAY 276
The Effect of Educational Games which are Played under the Guidance of Teachers on Children's Creative Thinking Skills in Preschool Period

Nuri KARABULUT, Eda ORAL

The Effect of in-Service Training on the Teacher Development: The Evaluation of the Teacher Professional Development Program

Memet KARAKUŞ

The Effect of Instruction With Augmented Reality Astronomy Cards On 7th Grade Students’ Attitudes Towards Astronomy and Academic Achievement

Serkan SAY, Volkan PAN

The Effect of Learning Leadership on Professional Learning Community in Thai Secondary Schools

Pichet JANTASILA, Kanokorn SOMPRACH

The Effect of Programming Language Learning by Using Game Comprehension

Kunyanuth Kularbphettong, Pattarapan Roonrakwit

The Effect of Publishing Anatomy Laboratory Videos Online on Success of the Students at School of Medicine

Ismail SIVRI, Tuncay COLAK, Mehmet Deniz YENER, Dilsat GUZELORDU, Elif AKSU, Rabia TASDEMIR, Belgin BAMAC, Abdullah ORS, Serap COLAK

The Effect of Teacher Candidates' Episodological Beliefs or Beliefs Regarding the Nature of Science on the Pseudo-Scientific Beliefs

Yüksel ÇEKBAŞ, Aytaç KARAKAŞ

The Effect of Working Memory Training on the Behavioral, Electrophysiological and Achievement Change

Suwit UOPASAI, Tassanee BUNTERM, Supaporn MUCHIMAPURA, Keow Ngang TANG

The Effectiveness of the 3D Animation for Transferring Knowledge to the Junior High School Kids: The Water Reservoir for Small Island in Indonesia

Ambar YOGANINGRUM, Wahyoe S HANTORO

The Effectiveness of Using Virtual Simulation and Analogy in the Conceptual Change Oriented-Physics Learning on Direct Current Circuits

Neni HERMITA, Andi SUHANDI, Ernaawulan SYAODIH, Achmad SAMSUDIN, Wahyu SOPANDI, Muslim MUSLIM, Firmandu C WIBOWO, Bunyamin MAFTUH, Zuhdan Kun PRASETOY, M.Nur MUSTAFA, Ijsoni ISJONI, Hendri MARHADI, Fitria ROSA, Sumardi SUMARDI, Bayram COSTU

The Elements of Knowledge, Personality and Motivation Among Teachers of Arabic Language Model in National Schools of Malaysia

Jawiah DAKIR, Mohd Yusof Hj OTHMAN, Zakaria STAPA, Ab Halim TAMURI, Muhammad Hilmi JALIL, Shamsul Azhar YAHYA, Siti Mahera ISMAIL @ IBRAHIM, Mujahid ABU BAKAR

The Evaluation of Attitudes of Nursing Students About Cadaver and Organ Donation

Elif AKSU, Mehmet Deniz YENER, Tuncay COLAK, Rabia TASDEMIR, Belgin BAMAC, Serap COLAK, Dilsat GUZELORDU, Ismail SIVRI, Abdullah ORS

The Examination of The Content Dimension of the 9th Grade Biology Curriculum Based on The Knowledge Dimension of the Bloom Revised Taxonomy

Ijlal OCAK, Gürbüüz OCAK, Burak OLUR

The Examination of Vocational School Students’ Online Information Search Strategies: Sakarya Sample

Hakki BAĞCI, Özlem ASLAN BAĞCI
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Formation of Audience Perception Through Social Media (New Media) With Determination of Contents and Concepts of Local TV Shows</td>
<td>Sinem KASIMOĞLU, Mustafa Ufuk ÇELİK</td>
<td>386</td>
</tr>
<tr>
<td>The Impact of University Community Engagement Programmes on Student’s Soft Skill</td>
<td>Khairunesa Hj. ISA, Rosman Md. YUSOFF, Abd. Rahman AHMAD</td>
<td>392</td>
</tr>
<tr>
<td>The Impacts of Inquiry-Based Learning Model on Teaching Science Subject: A Case Study in Thailand</td>
<td>Niwat TORNEE, Tassanee BUNTERM, Keow Ngang TANG</td>
<td>395</td>
</tr>
<tr>
<td>The Importance of Gender Competence of Social Workers: An Example of a Research on Health of Shelters’ Users</td>
<td>Barbora GRUNDÉLOVÁ, Kateřina GLUMBÍKOVÁ</td>
<td>403</td>
</tr>
<tr>
<td>The Importance of International Distance Learning for the Development of Intercultural Communication</td>
<td>Seda ÇAKAR MENGÜ, Murat MENGÜ</td>
<td>412</td>
</tr>
<tr>
<td>The Importance of Sutuden’s Skills Portfolio</td>
<td>Belahmer ZAKIA</td>
<td>422</td>
</tr>
<tr>
<td>The Indonesian vocational Students’ Understanding on Educational Activities Center Toward Characteristic of User Location Accessibilities</td>
<td>Juang AKBARDIN, Odih SUPRATMAN, Achmad SAMSUDIN, Firmanul Catur WIBOWO, Khilyatul KHOIRIYAH</td>
<td>426</td>
</tr>
<tr>
<td>The Interconnection of Mathematics Achievement Levels and the Academic Performance of Science Undergraduates at Suan Sunandha Rajabhat University</td>
<td>Kanyarat BUSSABAN, Naruemon PRAPASUWANNAKUL, Phanu WARAPORN</td>
<td>432</td>
</tr>
<tr>
<td>The Investigation of Environmental Risk Perception and Attitudes Towards the Environment in Secondary School Students</td>
<td>Bahattin Deniz ALTUNOĞLU, Esin ATAV, Suzan SÖNMEZ</td>
<td>436</td>
</tr>
<tr>
<td>The Investigation of Pre-Service Primary School, Science and Mathematics Teachers’ Teaching and Learning Conceptions</td>
<td>Bülent AYDOĞDU, Murat PEKER, Nil DUBAN</td>
<td>445</td>
</tr>
<tr>
<td>The Investigation of Pre-Service Science Teachers’ Self-Efficacy Toward Technological Pedagogical Content Knowledge</td>
<td>Murat GENC, Mustafa AKILLI</td>
<td>451</td>
</tr>
<tr>
<td>The Levels of English Language (Efl) Among Students of Public Upper-Secondary Schools in Poland. The Approaches Towards Assessments of Different Type of Students –Formative Assessment and Adjustment of Education Requirements</td>
<td>Adam Z. KRZYK</td>
<td>458</td>
</tr>
<tr>
<td>The Meaning of Global Citizenship in the Community Activities of International Married Immigrant Women From Korea</td>
<td>Youngsoon KIM, Hyekyeong NAM</td>
<td>463</td>
</tr>
<tr>
<td>The Multilevel Structural Equation Model of Strategic Leadership Affecting The Educational Quality According to Standard For Internal Quality Assurance in Thailand</td>
<td>Pakawan KHUNKUM, Arkom EUNGPOUNG, Kanokorn SOMPRACH</td>
<td>468</td>
</tr>
<tr>
<td>The Neurocognitive Constructivist Guided-Inquiry Based Teaching Model For Promoting Attention Abilities</td>
<td>Niwat TORNEE, Tassanee BUNTERM, Supaporn MUCHIMAPURA, Keow Ngang TANG</td>
<td>475</td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>The Pedagogical Meaning of Challenge Spirit in the Life History of ‘Koryo Saram’ Youngsoon KIM, Hee CHOI, Younghoa SON</td>
<td>484</td>
<td></td>
</tr>
<tr>
<td>The Perception of the Participants of the Familial Course on the Characteristics of the Exemplary Family Adawiyah Ismail, Rosma Aisyah Abd. Malek, Fariza Md. Sham</td>
<td>491</td>
<td></td>
</tr>
<tr>
<td>The Phenomenon of Pseudo-Social Services Provided to Seniors in the Czech Republic as Seen by Their Providers Soňa VÁVROVÁ, Šárka DOŘIČÁKOVÁ</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>The Place and Role of Sports in Leisure - Activity Habits of University Students Figen Yaman LESINGER, Emete YAĞCI, Ali AKTEPEBAŞI</td>
<td>507</td>
<td></td>
</tr>
<tr>
<td>The Predictive Level of Social Media Addiction for Life Satisfaction: A Study on University Students Cengiz ŞAHİN</td>
<td>515</td>
<td></td>
</tr>
<tr>
<td>The Process of Students’ Higher Order Thinking Around Coffee Plantation Area in Solving Open-Ended Problems Related to Coffee Theme SURATNO, Dian KURNIATI</td>
<td>521</td>
<td></td>
</tr>
<tr>
<td>The Process of Supporting Career Awareness Studies of Hearing-Impaired Students With Language Arts Courses Güzin KARASU, Zehranur KAYA, Meltem Ozten ANAY</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>The Profession of the Future in the Field of Accounting: Accounting Engineering Ela HIÇYORULMAZ, Habib AKDOĞAN</td>
<td>536</td>
<td></td>
</tr>
<tr>
<td>The Proportion of the Variation in the Academic Performance form the Courses Achievement of Food Science and Technology Students Naruemon PRAPASUWANNAKUL, Kanyarat BUSSABAN</td>
<td>542</td>
<td></td>
</tr>
<tr>
<td>The Relation Between the School Attachment Levels and Parent Attachment Levels of High School Students Hüseyin ŞİMŞEK, Fırat ÇÖPLÜ</td>
<td>546</td>
<td></td>
</tr>
<tr>
<td>The Relationship Between Cultural Intelligence and Work Performance of Malaysian Academic Librarians Mohamad Noorman MASREK, Sobariah Awang MUKHTAR, Shamila Mohd SHUHIDAN, Dang Merduwati HASHIM</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>The Relationship Between Preconception and Mental Effort of the Learners Learning With Constructivist Web-Based Learning Environments Sumalee CHAIJAROEN, Charumi ŞAMAT</td>
<td>564</td>
<td></td>
</tr>
<tr>
<td>The Relationship Between Self-Compassion and Depression, Anxiety, Stress Levels of Hemodialysis Patients Sema Bengi GÜRĶAN, Kamuran ELBEYOĞLU, Yağmın ORTAKALE</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>The Relationship Between Stress, Stress Coping Strategies and Attention Deficit Symptoms in Young Adults Yağmur AYDIN, Banu YAZGAN İNANÇ</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>The Result of the Learning Model to Enhance Computer Programming Comprehension by Visual Programming Environment and Advice System Pensri AMORNSINLAPHACHAI</td>
<td>581</td>
<td></td>
</tr>
<tr>
<td>The Role of Motivational Self-Talk and Life Satisfaction on Determining the Flow Experience of Undergraduate Athletes</td>
<td>586</td>
<td></td>
</tr>
</tbody>
</table>
Ahmet ŞAHİN, Nazmi BAYKÖSE, Selma CİVAR YAVUZ

The Role of Self-Talk and Self-Efficacy Levels of Athletes Studying at Faculties of Sport Sciences on Predicting Mental Toughness

Nazmi BAYKÖSE, Selma CİVAR YAVUZ, Ömer ÖZER, Ahmet ŞAHİN

The Role of Social Advertising in Continuity with the System of Values of Adolescent Youth

PaedDr. Marcela GÖTTLICHOVÁ

The Role of the Musical Learning in the Development of the Socio and Cognitive Abilities. A Review

Giusi Antonia TOTO

The Role of the Rehabilitation Nurse in Pain Management

Carlos ALBUQUERQUE, Catarina RODRIGUES, Rosa MARTINS

The Role of the Rehabilitation Nurse in Pain Management

Carlos ALBUQUERQUE, Catarina RODRIGUES, Rosa MARTINS, Madalena CUNHA

The Specifics of Logopedic and Special Education Intervention in Children with Psychiatric Diagnosis

Helena ČERVINKOVÁ, Kateřina VITÁSKOVÁ

The Teachers’ Satisfaction in Higher Education Institutions as Key Factor of the Strategic Management and of the Organizational Competitiveness

Cláudia Miranda VELoso, Domingos Augusto LUNGA, Paula Odete FERNANDES

The Use of Unregistered Services by Dependent Seniors in the Czech Republic As Seen by Their Family Members

Šárka DOŘIČÁKOVÁ, Soňa VÁVROVÁ

The Use of Wikis to Enhance Collaborative Reading and Writing skills in a Pre-Service EFL Teacher Training Program in an Ecuadorian Academic Context

Luz CASTILLO, César OCHOA, Paola CABRERA, Alba VARGAS

The Views of Preservice Teachers Studying at Undergraduate Programs and Receiving Pedagogical Formation Program Towards the Inclusion

Sertan TALAS, Tamer AYDEMİR

The Visual Perception of Phrasing in A Tai Chi Routine Enhanced By Music As Perceived By Inexperienced Viewers

Fung Chiat LOO, Fung Ying LOO

Theory With Practice Binding Instructional Group Activity Gains in The Eyes of Teacher Candidates

Fatma SASMAZ OREN

Thinking Process of Visual-Spatial Intelligence of 15-Year-old Students in Solving Pisa Standard Problems

Dian KURNIATI, SUNARDI, Dinawati TRAPSILASIWI, Titik SUGIARTI, Muhammad Alfan ALFARISI

Time on Task and Finnish Classroom Teaching Models for Developing Pre-Service Teachers Academic Writing Skills

Sri Hermawati Dwi ARINI

To the Question of the Organization of a Learning Environment for Developers of Cross-Platform On-Board Software for Unmanned Aerial Vehicles

Igor KOVALEV, Vasilyi LOSEV, Mikhail SARAMUD, Petr KUZNETSOV, Mariam PETROSYAN

Tourism College Major and The Relationships Among Choosing Tourism As A Major, Major Satisfaction and Commitment, and Career Decision Self-Efficacy

KyuMee KIM, NamJo KIM
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toward a Quality Measure of Angolan Public Higher Education Institutions to Enhance Organizational Performance</td>
<td>718</td>
</tr>
<tr>
<td>Cláudia Miranda VELOSO, Domingos Augusto LUNGA, Paula Odete FERNANDESES</td>
<td></td>
</tr>
<tr>
<td>Translation of Selected Pun Words from the Holy Quran Into English</td>
<td>730</td>
</tr>
<tr>
<td>Mohammed H. Al Aqad, Kulwinder Kaur, Ahmad Arifin Bin Sapar, Kais Amir Kadhim, Nor Hazrul Mohd Salleh</td>
<td></td>
</tr>
<tr>
<td>Turkish Teacher Candidates’ Perspectives on Ottoman Turkish Learning</td>
<td>740</td>
</tr>
<tr>
<td>Ömer YARAŞIR, Selma KORKMAZ</td>
<td></td>
</tr>
<tr>
<td>Twenty-Seven Years of Technology in Practice: A Meta-Analysis and Systematic Review on Blended Learning</td>
<td>748</td>
</tr>
<tr>
<td>Malissa Maria MAHMUD</td>
<td></td>
</tr>
<tr>
<td>Undergraduate Multicultural Education in the Czech Republic</td>
<td>771</td>
</tr>
<tr>
<td>Roman ŠPACEK, Martina CICHÁ</td>
<td></td>
</tr>
<tr>
<td>Understanding Technological Pedagogical Content Knowledge of Preservice Teachers in Teaching Across Subjects: A Case Study in Hong Kong</td>
<td>775</td>
</tr>
<tr>
<td>Elson SZETO</td>
<td></td>
</tr>
<tr>
<td>University Library’s Role as a Quality Indicator of Academic Curriculum Quality Assurance</td>
<td>781</td>
</tr>
<tr>
<td>Malivan PRADITTEERA</td>
<td></td>
</tr>
<tr>
<td>Using Systems Thinking as an Efficient Tool for Teaching Transfer of Creative Innovations</td>
<td>786</td>
</tr>
<tr>
<td>Eva SYIRAKOVA</td>
<td></td>
</tr>
<tr>
<td>Using Vocabulary Learning Strategies to Develop Vocabulary Meaning Understanding of Mathayomsuksa 6 Students of Demonstration School Khonkaen University</td>
<td>797</td>
</tr>
<tr>
<td>Najaree SUKASAME</td>
<td></td>
</tr>
<tr>
<td>Views of the Pre-Service Science Teachers About Nanotechnology</td>
<td>802</td>
</tr>
<tr>
<td>Selcen Siheyla ERGÜN, İjlal OCAK, Ertugrul ERGÜN</td>
<td></td>
</tr>
<tr>
<td>Vocational Skill Mobility and Its Effect on Occupational Engagement Among Tradesmen and Craftsmen in Building Sector</td>
<td>809</td>
</tr>
<tr>
<td>Lekan AMUSAN, Dele OWOLABI, Ayodeji OGUNDE, Patience TUNJI-OLAYENI, Raphael OJELABI, Ignatious OMUH, Afolabi ADEDEJI, Robert UGOCHUKWU</td>
<td></td>
</tr>
<tr>
<td>Water Consumption Strategy for Sustainable Surface Water Quality Management in Amphawa District, Samut Songkram Province Srisowan KASEMSAWAT</td>
<td>817</td>
</tr>
<tr>
<td>What is the Level of Inquiry Skills of Science Teacher Candidates? Does it Change by Gender and Class Level?</td>
<td>823</td>
</tr>
<tr>
<td>Fatma ŞAŞMAZ ÖRE, Nayşegül KARAPINAR</td>
<td></td>
</tr>
<tr>
<td>What to Learn from the Past: The Case Study of a Scientific Educational Laboratory</td>
<td>830</td>
</tr>
<tr>
<td>Verena ZUDIN</td>
<td></td>
</tr>
<tr>
<td>A Social Project Model: Our Guest Students</td>
<td>836</td>
</tr>
<tr>
<td>Kemal DAŞCIOĞLU, Kudret AYKIRI</td>
<td></td>
</tr>
<tr>
<td>Schools as Institutes of Acculturation: A Question of Belonging</td>
<td>843</td>
</tr>
<tr>
<td>Maura SELLARS</td>
<td></td>
</tr>
</tbody>
</table>