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The details concerning the implementation of the yield criterion developed by Cazacu et al. 2006 (CPB06)
[1], which accounts for both tension–compression asymmetry and orthotropy of the plastic flow, in the
fully implicit FE solver DD3IMP (contraction of ‘Deep Drawing 3-D IMPlicit') are presented in this work.
The implemented constitutive model is extensively described, including the analytical first and second
order derivatives required to the stress update algorithm. A set of anisotropy parameters describing the
mechanical behavior of two metallic materials at room temperature, namely Zirconium and AZ31-Mg
alloy, are identified with the DD3MAT (contraction for ‘Deep Drawing 3-D MATerial’) in-house code
(Alves, 2004) [2]. The anisotropy parameters are identified for both the CPB06 and the Cazacu and Barlat
(2001) (CB2001) [3] yield criteria, in order to emphasize the importance and role of the strength dif-
ferential effect. The results clearly show that the CPB06 yield criterion is able to accurately describe both
the in-plane anisotropy and tension–compression asymmetry, as well a different anisotropic behavior in
uniaxial tension and uniaxial compression. The numerical simulation of a four-point bending test is
performed, considering different orientations of the beam, i.e. of the hard/soft to deform direction re-
latively to the load direction, allowing to validate the implementation. The results obtained with the
CPB06 show its ability to describe with accuracy the strain fields in the beam's central cross-section, the
distribution of the tensile and compressive layers and, consequently, the shift of the neutral layer. The
comparison with the results obtained with CB2001 indicates that the strength differential effect affects
the final deformed shape of the beam, particularly for materials exhibiting strong tension–compression
asymmetry.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, plastic forming of metals with hexagonal closed
packed (HCP) structure poses tremendous challenges due to their
low ductility at room temperature and their unusual deformation
characteristics, i.e. very pronounced anisotropy with strong
asymmetry between tensile and compressive behavior. Unlike
cubic metals (both face centered cubic (FCC) and body centered
cubic (BCC)), hexagonal metals deform due to the activation of
mechanical twinning or non-Schmid type slip at single crystal
level. In contrast to slip, twinning is a directional shear mechan-
ism: in general, shear in one direction can produce twinning while
shear in the opposite direction cannot [1,3–6]. This causes the
strength differential (SD) effect, or tension–compression asym-
metry. However, although less pronounced, the SD effect is also
present in materials with cubic structure [7].
os).
Until recent years, the SD effect has been neglected with the
major developments being made in macroscopic plasticity models
for materials with cubic structure. In fact, in most numerical analysis
of metal forming processes, the yield surface is assumed to possess a
point-symmetry with respect to the center, such that a stress state
and its reverse state have the same absolute value [3,8–11].

Cazacu et al. (2004) extended an isotropic yield function to the
anisotropic case through invariants generalizing, able to describe
both the materials anisotropy and tension–compression asym-
metry [4]. Later, Cazacu et al. presented another yield function
(CPB06) that enables describing the asymmetric yielding between
tension and compression due to twining as well as in-plane ani-
sotropy through a linear transformation, with a fourth-order ten-
sor, of the deviatoric stress tensor [1]. Some authors have later
adopted several linear transformations in order to more accurately
capture in-plane anisotropy [6,12]. Tuninetti et al. characterized
the mechanical behavior of a Ti-6Al-4V alloy using uniaxial ten-
sion, uniaxial compression, simple shear and plane strain tests in
three orthogonal material directions, identifying the CPB06 yield
criterion parameters by inverse modeling of the axial strain field of
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Nomenclature

A set of parameters used in the objective function ac-
cording to the selected yield criterion

C anisotropy parameters tensor for the CPB06 yield
criterion

Ce Elastic modulus
Cep Elastoplastic modulus

c a a b b, , ... , , , ... ,1 6 1 11 CB2001 yield criterion anisotropy
parameters

C C C C C C C C C k a, , , , , , , , , ,11 22 33 44 55 66 23 13 12 CPB06 yield criterion
parameters

D Strain rate tensor
De elastic strain rate tensor
Dp plastic strain rate tensor
E Young's modulus
E Green-Lagrange strain tensor
F Deformation gradient tensor
G Shear modulus

′H isotropic hardening modulus
I4 forth-order identity tensor
J J,2

0
3
0 second and third generalized invariants of Σ

Q second derivative of the equivalent stress σ̄ in order to
the effective stress tensor, Σ

R orthogonal plastic rotation tensor
θr anisotropy coefficient for direction θ with the rolling

direction
s s s, ,1 2 3 principal values of σ= ′Cs

V first derivative of the equivalent stress σ̄ in order to
the effective stress tensor, Σ

W total spin tensor

σ σ σθ θ θw w w w w, , , ,r rb bT C weighting factors used in the objective
function

Y flow stress
α material state parameter
β material state parameter
γ generalized middle point rule parameter
Δε total strain increment tensor
Δεp plastic strain increment tensor
ε̄p equivalent plastic strain
θ angle with the rolling direction
λ ̇ plastic multiplier
μ Lamé parameter
υ Poisson ratio
Σ effective stress tensor
σ Cauchy stress tensor
σ′ Deviatoric Cauchy stress tensor
σ̇ J Jaumann derivative of the Cauchy stress tensor
σ̄ equivalent stress
σθ

T tensile yield stress for direction θ with the rolling
direction

σθ
C compression yield stress for direction θ with the

rolling direction
σb

T equibiaxial yield stress in tension
σb

C equibiaxial yield stress in compression
Φ Yield surface and plastic potential
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compression specimens in the three orthogonal directions of the
material [13]. In fact, several works have been made for the
characterization of both titanium [14,15] and magnesium alloys
[16,17], both presenting a HCP crystal structure.

The modeling of the SD effects allowed to point a new inter-
pretation of Swift effects. Considering the isotropic form of the
CPB06 yield criterion, Cazacu et al. showed that a slight difference
between the uniaxial yield stresses in tension and compression
leads to irreversible length changes under monotonic free-end
testing conditions [18]. Revil-Baudard et al. show that there is a
correlation between the Swift phenomenon in torsion and the
stress–strain behavior in uniaxial tension and compression [17].
Chandola et al. showed that to explain and accurately predict the
room-temperature torsional response of a strongly textured AZ31
Mg material it is necessary to account for the combined effects of
anisotropy and tension–compression asymmetry at polycrystalline
level [16].

Revil-Baudard and Cazacu numerically assessed the influence
of the tension–compression asymmetry of the plastic flow in the
matrix on void evolution and the location of the zone corre-
sponding to maximum damage, in round tensile specimens sub-
ject to uniaxial tension [19]. Alves and Cazacu [20] used a detailed
micromechanical finite-element analyses of three-dimensional
unit cells, considering a spherical void at its center, with the plastic
flow of the matrix described by the isotropic form of the CPB06
yield criterion. It was shown that there is a strong correlation
between SD effects in the plastic flow of the matrix, arising from
its dependence on the third stress invariant, with void evolution,
and ultimately the ductility of porous metallic polycrystals. The
combined effect of both the tension–compression asymmetry and
anisotropic behavior of the material was also studied [17]. Also,
due to non-negligible twinning activity accompanied by grain re-
orientation and highly directional grain interactions, the influence
of the texture evolution on the hardening behavior of HCP
materials cannot be neglected, even for the simplest monotonic
loading paths [21]. In fact, Plunkett et al. shows a way of describing
distortional hardening based on the evolution, with plastic strain,
of the CPB06 yield locus [5].

The aim of this work is to evaluate the importance of taking
into account the tension–compression asymmetry in the con-
stitutive model. In this context, an associated flow rule is con-
sidered, neglecting the evolution of the shape of the yield surface
with plastic work. The manuscript starts by presenting the details
concerning the constitutive model, including the non-quadratic
yield criterion proposed by Cazacu, Plunkett and Barlat and its
implementation into the implicit in-house FE code DD3IMP, which
has been continuously developed and optimized to simulate sheet
metal forming processes [22,23]. In this context, the main aspects
of the implementation of the CPB06 yield criterion in an implicit
finite element code are presented, including the general aspects of
the linear transformation operating in the deviatoric stress space.
The validation of the implemented model is performed with the
numerical simulation of a beam subjected to a four-point-bending
test, along two different directions. The results obtained with the
CPB06 yield criterion are compared with the ones of the Cazacu
and Barlat (CB2001) [3] yield criterion, since the later enables an
accurate description of the in-plane anisotropy while neglecting
the SD effect. This allows analyzing the strain fields evolution in
the beam's cross section, as well as the final shape of the beam
when considering, or not, the SD effect.
2. Constitutive model

The constitutive equation that models the materials’ mechan-
ical behavior establishes the relationship between the most re-
levant state variables characterizing the continuum medium. In
the following, it is assumed that constitutive modeling is
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formulated in the objective frame, and thus all tensorial quantities
are invariant. The differential form of the elastoplastic behavior
law is, in its general form,

σ̇ = ( )C D: , 1J ep

where σ̇ J is the Jaumann derivative of the Cauchy stress tensor σ,
given by

σ σ σ σ̇ = ̇ + − ( )W W , 2J

where σ̇ stands for the time derivative of the Cauchy stress tensor
and W is the total spin tensor defined by

= ̇ ( )W RR , 3T

with R being the orthogonal rotation tensor (it is assumed that the
plastic spin tensor is negligibly small [24]). The global and objec-
tive frames are related through the rotation tensor R , which is
derived from the polar decomposition of the deformation gra-
dient. D is the strain rate tensor and Cep is a fourth-order tensor
corresponding to the elastoplastic modulus. The expression for
this tensor depends of the algorithms adopted in the integration of
the constitutive model and the type of relation considered be-
tween the states at the beginning and at the end of the loading
increment. Therefore, it is possible to consider the tangent elas-
toplastic or the consistent elastoplastic moduli. The implicit algo-
rithm adopted in DD3IMP relies on the Newton–Raphson method
to determine the incremental displacements that guarantee the
static equilibrium of the deformable body, in each increment. This
method assures quadratic convergence only when the consistent
elastoplastic modulus is used, i.e. when the same approximations
used to calculate the incremental strains and rotations and the
updated state variables are also applied to linearize the principle
of virtual power [25]. The trial solution for the Newton–Raphson
method is obtained using an explicit approach, relying on the
tangent elastoplastic modulus, defined as [26]

α= − ⊗ ( )fC C V V, 4ep
tangent

e
0

where α = 0 if the material is in an elastic state, or during elastic
unloading, and α = 1 if the material is in an elastoplastic loading
state. f0 is a function of the hardening law adopted which, con-
sidering only the isotropic hardening, can be written in the general
form as

μ
μ

=
+ ′ ( )

f
HV V

4
2 :

,
50

2

where μ is the Lamé parameter. V is one of the tensorial quantities
to be determined as function of the adopted yield criterion, and it
is, by definition

Φ
σ

= ∂
∂ ′ ( )V , 6

where σ′ is the deviatoric Cauchy stress tensor and Φ is the plastic
potential, identified as a scalar potential defining the elastic limit
surface, such that

( )σΦ ε σ′ ¯ = ¯ − = ( )Y, 0, 7p

where σ̄ is the equivalent stress given by the yield criterion and Y
is the flow stress, modeled by the isotropic work-hardening law.

The strain rate can be decomposed into elastic and plastic parts
as

= + ( )D D D 8e p

where Dp, the plastic strain rate tensor, is a deviatoric tensor, given
by the associated inviscid flow rule as
λ Φ λ
σ

= ∂
∂ ′

= ( )D V, 9
p

in which λ ̇ is the plastic multiplier. From the plastic potential
definition (see (7)), the consistency condition in the rate form
states that

( )Φ σ σ ε̇ ¯ = ¯ ̇ − ′ ¯ ̇ = ( )Y H, 0, 10p

where

ε′ = ∂ ∂¯ ( )H Y/ 11p

is the isotropic hardening modulus. If Φ is a homogeneous func-
tion of degree one, then ε λ¯ ̇ = ̇p . σ̄ ̇ and ε̄ṗ are, respectively, the time
derivatives of the equivalent stress and of the equivalent plastic
strain. The total equivalent plastic strain is defined as

∫ σε
σ

¯ = ′
¯ ( )t
D:

d . 12
t

p

0

p

2.1. Time integration

Since the elastic behavior is considered isotropic, the hypoe-
lastic form of the Hooke's law can be written as [26]

( )σ̇ = − ( )C D D: , 13e p

which, by integration, corresponds to the stress increment in the
time interval + Δ⎡⎣ ⎤⎦t t t, , i.e.

σ σ ϵ ϵ− = Δ − Δ ( )C C: : , 14F 0
e e p

with subscripts 0 and F denoting the quantities at the beginning
and at the end of the time increment + Δ⎡⎣ ⎤⎦t t t, , respectively. ϵΔ p

and ϵΔ are the increments of the plastic and total strain tensors,
respectively, determined over the time increment. Applying the
generalized middle point rule to determine the Dp evolution, and
since λ= ̇D Vp , it can be written that

λϵΔ = Δ ( )γV , 15p

with

( )γ γ γ= − + ∈ ( )γ ⎡⎣ ⎤⎦V V V1 and 0, 1 . 160 F

To calculate λΔ and VF it is necessary to determine σ′F . σF is
calculated from Eq. (14), leading to deviatoric and hydrostatic
components given by, respectively,

σ σ λ′ = ′ + Δϵ′ − Δ ( )G G V2 2 and 17F 0 F

( ) ( )σ
υ

σ ϵ( ) = ′ +
+

Δ ( )
E

tr tr
1 2

tr .
18F 0

G and E are the shear and Young's modulus, while υ is the Pois-
son's ratio. In order to determine both σ′F and Δϵ̄ = Δλp , the
consistency condition at the end of the time step is imposed, i.e.

( )( )σσ̄ ′ − ϵ̄ + Δϵ̄ = ( )Y 0. 19F F
p p
0

Together, Eqs. (17) and (19) define a non-linear system of equa-
tions, which needs to be solved in the state update algorithm, with
unknowns σ′F and Δϵ̄p, i.e.,

( )σ ′ Δϵ̄ = =
( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥g

Q G 0,
0

,
20F

p

or

( )( )
σ σ

σσ
=

′ − ′ − Δϵ′ − Δϵ̄

¯ ′ − ϵ̄ + Δϵ̄
=

( )

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡
⎣⎢

⎤
⎦⎥g

G G

Y
G V 02 2

0
.

21

F 0
p

F

F F 0
p p
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So, the updated state variables are determined solving the non-
linear system of equations Eq. (21) using the Newton–Raphson
method. The calculation of Q and ς∂ ∂Q/ (with σς = ′ Δϵ̄⎡⎣ ⎤⎦,F

p ) de-
pends on the adopted yield criterion, with Q calculated con-
sidering Eq. (21) and ς∂ ∂Q/ calculated considering partial deriva-
tives, such that:

ς
∂
∂

=
( )

⎡
⎣
⎢
⎢

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎤
⎦
⎥
⎥d

Q A c

b
,

22

where

σ σ
= ∂

∂ ′
= ∂

∂ ′
= ∂

∂Δϵ̄
= ∂

∂Δϵ̄ ( )
g

d
g

A
Q

b c
G

, , , .
23F F

p p

After some mathematical developments, the above expressions
can be written as:

= + Δϵ̄ =
= = − ′ ( )H

G

d

A I Q c V

b V

2 , ,

, , 24

4
p

F F

F F

where

σ σ
σ σ ε= ∂ ¯

∂ ′
= ∂ ¯

∂ ′
′ = ∂ ∂¯

( )
H YV Q, and / .

25
F

F
F

2

F
2 F

p

The details concerning the previously mentioned analytical
derivatives are presented in Appendix A for the CPB06 yield cri-
terion, as implemented in DD3IMP [22]. The tensor Q corresponds
to the second order derivative of the yield criterion with respect to
the effective stress state Σ σ= ′, and it is used both in the state
update algorithm and on the definition of the consistent elasto-
plastic modulus,

( )β Λ= − − ⊗
′

+ Δϵ̄
( )

⎛
⎝⎜

⎞
⎠⎟G

H
C C

V V
Q4 1 .

26
ep e 2 F F

F

p
F

Λ depends on the hardening law adopted, given in general terms
as

μΛ = + ⊗
′

+ Δϵ̄
( )

−
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥H

I
V V

Q2 ,
27

1
4

F F

F

p
F

where I4 corresponds to the forth order unit symmetric tensor,
defined as ( )δ δ δ δ= +I 1/2ijkl ik jl il jk . Since the strain increment can

be either elastic or plastic, parameter β and ( )β−1 is introduced
in Eq. (26) to separate, respectively, the elastic and elastoplastic
parts of the total strain increment. Further details about the cal-
culus of the parameter β are given in Appendix A.
2.2. Cazacu, Plunkett and Barlat yield criterion

In order to describe both anisotropy and tension–compression
asymmetry, Cazacu, Plunkett and Barlat proposed a macroscopic
elastoplastic yield criterion for textured metals. The equivalent
stress σ̄ associated with the orthotropic form of the CPB06 yield
criterion is given as

( ) ( ) ( )σ̄ = − + − + − ( )⎡⎣ ⎤⎦B s k s s k s s k s , 28
a a a a

1 1 2 2 3 3
1

where a and k are material parameters and s1, s2, s3 are the
principal values of σ= ′s C , determined following Barlat et al. [27]
(see Appendix A for further details). σ′ is the deviatoric stress
tensor and C is the constant 4th-order linear transformation ten-
sor, given by
= ⋅

( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

C C C
C C C
C C C

C
C

C

C

0 0 0
0 0 0
0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 29

11 12 13

12 22 23

13 23 33

44

55

66

For a 3-D stress state, C involves 9 independent anisotropy coef-
ficients. a is a positive integer usually taken as 2. As taken from
Cazacu et al. the only restrictions imposed on the tensor C are that
it satisfies the major and minor symmetries and to be invariant
with respect to the orthotropy group [6]. Considering isotropic
conditions, the coefficient k alone allows for the description of the
SD effect, giving a direct measure of the ratio between tensile and
compressive yield stresses, as

( )
( )= −

+
=

−

−
⋅

( )

σ
σ

σ
σ

⎡

⎣

⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥⎥

k
h
h

h
1
1

, With
2 2

2 2
30

a
a

a

a1/T

C

T

C

This means that the σ σ/T C ratio, i.e. the ratio between the yield
stress in uniaxial tension and the yield stress in uniaxial com-
pression, for the three principal axes is the same, in isotropic
conditions. However, for an anisotropic material it is not possible
to define a single σ σ/T C ratio and, consequently, the physical sig-
nificance of the k parameter is lost [28]. B is a constant defined
such that σ̄ reduces to the tensile yield stress along the rolling
direction, and is simply defined as

( ) ( ) ( )ϕ ϕ ϕ ϕ ϕ ϕ
=

− + − + − ( )

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥B

k k k

1
,

31
a a a

a

1 1 2 2 3 3

1

with

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

ϕ
ϕ
ϕ

=

− −

− −

− −

⋅

( )

⎧
⎨⎪

⎩⎪

⎫
⎬⎪

⎭⎪

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

C C C

C C C

C C C

2/3 1/3 1/3

2/3 1/3 1/3

2/3 1/3 1/3 32

1

2

3

11 12 13

21 22 23

31 32 33

For =a 2, =k 0 and C equal to the 4th-order identity tensor, the
von Mises yield criterion is recovered. Convexity is guaranteed for
any integer ≥a 2 and ∈ [ − ]k 1, 1 [1].
3. Application to zirconium and AZ31-Mg alloy

The CPB06 yield criterion is used in this section to describe the
anisotropic behavior of two metallic materials, known for ex-
hibiting strong tension–compression asymmetry: Zirconium [6]
and the AZ31-Mg alloy [16]. These materials were selected since
the anisotropy parameters for the CPB06 yield criterion were
previously determined [6,16].

The CB2001 yield criterion is also used to evaluate the impact
in the numerical results of neglecting the strength differential
effect, although taking into account the orthotropic behavior. In
this context, a four-point beam bending test is used in order to
analyze both the strain components distributions in the beam
central cross-section, as well the punch force evolution. This test
was selected because experimental results are available for the
Zirconium [6].

In brief, the CB2001 yield criterion is a generalization of the
Drucker's isotropic criterion to orthotropy [3] and, in its general
form, is given by



Table 1
Virtual data for the Zirconium, reproduced considering the anisotropy parameters
of the CPB06 yield criterion given in [6] for 15% of equivalent plastic strain.

Test direction r-value (tension) r-value (compression) σθ
T [MPa] σθ

C [MPa]

0° 6.825 �26.292 175.00 199.37
15° 7.627 �24.961 164.03 184.45
30° 9.191 �23.612 147.65 161.55
45° 10.126 �22.421 142.12 152.19
60° 9.761 �20.500 150.81 159.17
75° 8.510 �18.278 171.05 179.12
90° 7.773 �17.220 184.45 192.70

σb
T[MPa] 550.87

rb 0.532

Table 2
Virtual data for the AZ31-Mg alloy, reproduced considering the anisotropy para-
meters of the CPB06 yield criterion given in [16] for 3% of equivalent plastic strain.

Test direction r-value (tension) r-value (compression) σθ
T [MPa] σθ

C [MPa]

0° 1.082 �0.304 157.12 92.68
15° 0.913 �0.337 167.68 95.17
30° 0.541 �0.403 198.95 101.30
45° 0.364 �0.445 226.10 107.16
60° 0.792 �0.445 202.00 109.07
75° 1.386 �0.406 169.15 107.50
90° 1.681 �0.384 157.74 106.32

σb
T[MPa] 213.31

rb 0.579
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{ }( ) ( )σ̄ = −
( )

⎡
⎣⎢

⎤
⎦⎥J c J27 ,

332
0 3

3
0 2

1
6

where J2
0 and J3

0 are the second and third generalized invariants of
the effective stress tensor Σ, defined as

Σ Σ Σ Σ Σ Σ

Σ Σ Σ

= ( − ) + ( − ) + ( − )

+ + + ( )

J
a a a

a a a

6 6 6
,

34

2
0 1

11 22
2 2

11 33
2 3

11 33
2

4 12
2

5 13
2

6 23
2

( )
( )
( )

( )( ) ( )( )
( ) ( )
( )( ) ( )( )
( ) ( ) ( )
( )( )

( )
( )

( )

Σ Σ

Σ

Σ Σ Σ Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ

Σ Σ Σ Σ Σ Σ Σ

= + + +

+ + − −

− + − +

− − + + − +

+ +

− − − −

− − − −

− − − − + ( )

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

J b b b b

b b b b

b b b b

b b b b b b

b b

b b b b

b b b b

b b b b b

1/27 1/27

1/27 2

1/9 1/9

1/9

2/9

/3 2 2

/3 2 2

/3 2 , 35

3
0

1 2 11
3

3 4 22
3

1 4 2 3 33
3
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where c, a a, ... ,1 6 and b b, ... ,1 11 are the anisotropy parameters.
Σ =i j, , 1, 2, 3ij are the effective stress components defined in the
material frame. When considering metal sheets, the off-plane
parameters cannot be experimentally evaluated. Thus, a a,5 6 and bk

( )=k 6, 7, 8, 9, 11 are assumed as equal to the isotropic values, i.e.
1.0. For further details about the implementation and parameters
identification procedure please refer to [29].

3.1. Parameters identification for the zirconium and AZ31Mg alloy

For the Zirconium and the AZ31-Mg alloy under study, the
anisotropy parameters of the CPB06 yield criterion were pre-
viously identified in [6] and [16], respectively. In those studies,
different sets of anisotropy parameters were identified for differ-
ent levels of the plastic work. However, in order to keep the focus
of the present work, such evolution of the anisotropy is not taken
into account. Based on [6] and [16], the Zirconium presents the
higher strength differential effect for a plastic strain value of 15%,
while the AZ31-Mg shows higher strength differential effect for
about 3% of plastic strain. Thus, the anisotropy parameters selected
from [6] and [16] are the ones corresponding to these values of
plastic strain, in order to highlight the strength differential effect.
These anisotropy parameters were used to estimate virtual ex-
perimental data for both materials. The use of this virtual data,
instead of the experimental one, guarantees that the material is
perfectly described by the CPB06 yield criterion. Therefore, the
parameters identified using the current implementation of the
CPB06 yield criterion, should accurately describe the generated
virtual data. Moreover, since the off-plane parameters cannot be
experimentally evaluated, in this work a new set of constitutive
CPB06 parameters was identified, for each material, imposing the
corresponding isotropic values, i.e. = =C C44 55 1.0.

Based on the sets of parameters from [6] and [16], the virtual
data generated for the previously mentioned values of plastic
strain is presented in Tables 1 and 2, for the Zirconium and the
AZ31-Mg alloy, respectively. The virtual data includes uniaxial
tensile and compression tests, equibiaxial tension and disc com-
pression tests. Note that under this conditions it is assumed that
both materials' plastic behavior is perfectly described by the
CPB2006 yield criterion.

A set of anisotropy parameters, for each yield criteria, was then
determined using the DD3MAT in-house code [2], taking into ac-
count the abovementioned virtual set of experimental data and

=a 2. The anisotropy coefficients should be determined such that
the yield criterion reproduces the materials' mechanical behavior
as close as possible. In DD3MAT, the identification procedure is
based on the minimization of an error function, using a downhill
simplex method, which evaluates and weights the differences
between the values determined from the constitutive equations
and the experimental ones, as follow
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where A represents the set of parameters associated with the
selected yield criterion. σθ

T, σθ
C and θr are the experimental yield

stresses in tension, compression and r-values determined in uni-
axial tension, respectively, obtained from the uniaxial tests for a
specific orientation θ( ) with respect to the rolling direction (RD). σb

T

is the experimental yield stress obtained from the equibiaxial
tensile test, rb the experimental r-value obtained from the disc
compression test. ( )σθ AT , ( )σθ AC ( )θr A , ( )σ Ab

T and ( )r Ab are the
correspondent values predicted from the adopted yield criterion.
Such procedure can be considered a generalization of the one
proposed by Banabic et al. [30], where the weighting factors, σθ

w T,

σθ
w C, θwr , σw b and wrb are used to balance the influence of the ex-

perimental data. Nevertheless, the selection of the weighting fac-
tors is normally a manual procedure, strongly dependent on users’
expertise and knowledge. In this work, all the weighting factors
are considered equal to 1.0.

The yield stress values presented in Tables 1 and 2 correspond
to the initial yield surface, such that the yield stress Y0 is always
equal to the one obtained for the uniaxial tensile test performed
along the RD, σRD

T . Previous results indicate that, for the CPB06, the
value proposed for the yield stress, Y0, defined by the hardening



Table 3
Literature and identified parameters for the Zirconium for both yield criteria. ( = =C C 1.044 55 and a a,5 6 and bk with ( )=k 6, 7, 8, 9, 11 also considered 1.0).

CPB06 [6] C11 C22 C33 C66 C23 C13 C12 k
1.0000 0.7201 1.1806 2.9195 1.5212 1.6353 3.1351 �0.1828

CPB06 C11 C22 C33 C66 C23 C13 C12 k
�1.1201 �0.9378 0.0712 �1.7037 �0.0347 �0.1507 0.2943 0.1646

CB2001 c a1 a2 a3 a4
�0.6880 1.7462 0.1003 0.0084 1.926703
b1 b2 b3 b4 b5 b10
1.3207 1.5103 1.4147 0.0496 1.2485 1.6950

Table 4
Literature and identified parameters for the AZ31-Mg for both yield criteria ( = =C C 1.044 55 and a a,5 6 and bk with ( )=k 6, 7, 8, 9, 11 also considered 1.0).

CPB06 [16] C11 C22 C33 C66 C23 C13 C12 k
1.0000 1.0900 3.3420 0.7300 0.2430 0.0980 �0.1680 �0.625

CPB06 C11 C22 C33 C66 C23 C13 C12 k
1.0526 1.1556 3.5000 0.7591 0.2527 0.0955 �0.1663 �0.6344

CB2001 c a1 a2 a3 a4
1.1369 1.4620 0.7157 0.7464 0.3996
b1 b2 b3 b4 b5 b10
3.0707 �0.1938 �0.5420 �2.2672 �0.3057 0.0531
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law, should be in accordance with the σRD
T to enable an accurate

description of the in-plane yield stresses [28]. For both yield cri-
teria the minimization problem associated to Eq. (33) is over
constrained, since that a total of 23 experimental values are used
to identify only 8 parameters in case of CPB06, and 11 parameters
in case of CB2001. Considering that the problem is over con-
strained, the r-values in uniaxial compression are not used, to
check if it is possible to captured them using the remaining data,
for a material that follows the CPB06 yield criterion. A summary of
the sets of parameters determined for both yield criteria is pre-
sented in Tables 3 and 4 . The yield criterion parameters used to
generate the virtual experimental data are also depicted (first
line).

Figs. 1 and 2 and present the comparison between numerical
and experimental r-values and normalized yield stresses in ten-
sion and compression for both yield criteria and both materials,
respectively. The figures also present the r-values determined in
uniaxial compression, although not used in the identification
Fig. 1. Virtual and predicted (a) r-values and (b)
procedure. Note that for the CB2001 the r-values and yield stress
in-plane evolution in tension and compression is the same. Re-
garding the Zirconium, the r-values are accurately described by
both yield criteria with negligible differences between them. For
the AZ31-Mg alloy the same accurate description is observed.

For the Zirconium, the yield stresses are accurately predicted
with the CPB06 yield criterion, while the CB2001 presents a less
accurate fit with the increase of the angle relative to the rolling
direction. As for the AZ31-Mg, both yield criteria show an accurate
description of the yield stresses directionalities.

The yield surfaces predicted with both yield criteria are pre-
sented in Figs. 3 and 4, for the plane σ σ,1 2 (with σ = 03 ) and the
π-plane, for the Zirconium and the AZ31-Mg alloy, respectively.
The rolling (RD), transverse (TD) and normal (ND) directions cor-
respond to 1, 2 and 3, respectively. Note that the equibiaxial stress
state is equivalent to the through-thickness uniaxial compression,
i.e. there is an equivalence between the stress ratio in ND and
equibiaxial ( ) ( )σ σ σ σ=/ /b b3

T
3
C C T [28], as shown in the figures.
normalized yield stresses for the Zirconium.
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Fig. 2. Virtual and predicted (a) r-values and (b) normalized yield stresses for the AZ31-Mg alloy.
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Fig. 3 shows that the yield surface for the Zirconium is well
described by the CPB06 yield criterion for all stress states. Note the
fact that there is a slight difference between numerical and virtual
data for the point relative to equibiaxial compression, σb

C. More-
over, as expected, the CB2001 cannot predict the tension–com-
pression asymmetry, falling short mainly in the point relative to
equibiaxial compression, σb

C.
Fig. 4 shows that both the CPB06 and CB2001 accurately predict

the material behavior in the first quadrant of the plane σ σ,1 2, where
tension–compression asymmetry has no influence. However, in the
other quadrants, the CB2001 cannot accurately predict the material
behavior, due to the point-symmetry of the criterion, while the CPB06
reproduces closely the experimental material behavior. Although
CPB06 has a reduced set of anisotropy parameters, both yield criteria
are flexible enough to enable the accurate description of the in-plane
anisotropy of both r-values and flow stresses (yield stresses).

Comparing the CPB06 anisotropy parameters proposed in the
literature with the ones identified with DD3MAT (see Table 3) for
Zirconium, it should be mentioned that the parameter k changes
(a)
1 0Y

2 0Y

Fig. 3. Predicted yield surfaces in the (a) σ σY/ ,1 0 2
from negative to positive, without affecting the predicted tension–
compression ratios obtained for the orthotropy axes (see Table 5),
highlighting that both sets of parameters are robust. Although not
shown here, it should be mentioned that it is also possible to
obtain a set of anisotropy parameters for the CPB06 yield criterion
with a negative value for the parameter k. In that case the ani-
sotropy parameters become symmetrical to the ones presented in
Table 3, for the CPB06 yield criterion.

For the AZ31-Mg alloy, the obtained anisotropy parameters are
very similar to the ones proposed on the literature (see Table 4),
leading to similar stress ratios for the orthotropy axes (see Ta-
ble 6). In this case, it is not possible to obtain a set of parameters
with a positive value for k that accurately describes the material
behavior, which seems to result from the “triangular” shape with
rounded corners of the yield surface, in opposition to the elliptical
shape of the Zirconium yield locus.

Regarding the tension–compression ratios for the orthotropy
axes, for the Zirconium (see Table 5), the values obtained for the σ1

and σ2 directions are relatively close and lower than 1.0.
(b)

1 0Y 2 0Y

3 0Y

Y/ 0 plane and (b) π-plane for the Zirconium.
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Fig. 4. Predicted yield surfaces in the (a) σ σY Y/ , /1 0 2 0 plane and (b) π -plane for the AZ31-Mg alloy.

Table 5
Ratios obtained for the three principal axes for the Zirconium.

( )σ σ/1
T

1
C ( )σ σ/2

T
2
C ( )σ σ/3

T
3
C

Experimental 0.8778 0.9572 1.4474
CPB06 0.8767 0.9569 1.3940

Table 6
Ratios obtained for the three principal axes for the AZ31-Mg alloy.

( )σ σ/1
T

1
C ( )σ σ/2

T
2
C ( )σ σ/3

T
3
C

Experimental 1.6953 1.4837 0.2607
CPB06 1.6998 1.4715 0.2573

(a)

(b)

Upper pins

Beam

38.

12.7

x

y

z

50.8

Fig. 5. Schematic of the (a) four-point bending test and (b)
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Considering the σ3 direction, the ratio is higher than 1.0 with a
slight difference between numerical and experimental values, as
supported by Fig. 3(b). Regarding the AZ31-Mg alloy (see Table 6),
the ratios obtained for the σ1 and σ2 directions are relatively close
and higher than 1.0, meaning that the yield stresses in tension are
higher than in compression. On the other hand, the ratio in σ3 is of
about 0.26, meaning that the yield stress in compression is four
times higher than the yield stress in tension. Note that, as shown
in Fig. 4(b), the ratio in σ3 is the inverse of the ratio in the equi-
biaxial direction.

3.2 Four-point bending test

The beam bending example considered is based on the original
work of Kaschner [31]. The simulation of the four-point bending
Lower pins

1

6.35

6.35

beam geometry and dimensions (dimensions in mm).



x
y

z

Fig. 6. Numerical model of the four-point bending test (half model).
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tests is performed with both the CPB06 and CB2001 yield criteria.
This test is used in order to highlight the strain distribution and
shift of the neutral layer in materials which exhibit tension–
compression asymmetry, and the importance of accurately mod-
eling this phenomenon. The four-point bending fixture is com-
posed by two upper pin dowels, having a downwards displace-
ment of 6 mm, and two lower pins which are held stopped. The
center distance between the upper pins is 12.7 mm and for the
lower pins is 38.1 mm (Fig. 5). Fig. 6 presents the numerical model
of the four-point bending test. The dimensions of the beam are
6.35 mm�6.35 mm�50.8 mm.

The beam is discretized with 8-node hexahedral finite ele-
ments, combined with a selective reduced integration technique
[32]. Due to geometrical and material symmetries, only half of the
global structure is modeled with the beam composed by 6�6
elements and 75 elements along the beam axes, yielding a total of
2700 finite elements.

For each material, two different beam orientations are con-
sidered, both taken with the RD aligned with the x-axis: (i) case
TD, the TD is coincident with the global y-axis, i.e. the material
axes are coincident with the global ones; and (ii) case ND, the ND
(a)
Fig. 7. Predicted punch force evolution for both CPB06 and CB2
is aligned with the global y, i.e. the beam is rotated 90° around the
x-axis. This rotation allows the change in orientation of the hard/
soft to deform direction relatively to the load direction. In this
work, an isotropic work hardening law is considered, assuming
that the initial shape of the yield surface expands only iso-
tropically with plastic deformation.

4. Results and discussion
Fig. 7(a) presents a comparison of the predicted normalized

punch force evolution obtained for Zirconium, with both yield
criteria, showing that the differences observed with the change of
orientation are negligible. Nonetheless, the force predicted by the
CPB06 is higher, when compared with the CB2001. This can be
related to the fact that yielding in compression is lower for the
CB2001.

Fig. 7(b) presents the same comparison regarding the AZ31-Mg
alloy. When using the CB2001 yield criterion, the difference be-
tween orientations are, again, negligible. When using the CPB06,
however, the differences are evident, with the TD case presenting
(b)
001 yield criteria, for (a) Zirconium and (b) AZ31-Mg alloy.
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higher values than the ND case. For this material, the CB2001
predicts higher yield stresses in compression when compared with
the CPB06, thus resulting in a higher punch force evolution for
CB2001.

Regarding the predicted deformed bar central cross-section,
the results for the Zirconium are presented in Fig. 8, for both
orientations. Note that for the Zirconium, the experimentally
measured strain distributions are available, as well as the y–z
cross-sections of the deformed bars [6]. Considering the TD case,
the final shapes obtained for both yield criteria are in good
agreement with the experimental ones, with negligible differ-
ences between both. As for the ND case, the final shape is very
close to the initial one, for both yield criteria. This means that
both yield criteria correctly model the rigidity of the bar in the
hard to deform c -axis direction. This is coherent with the fact
that the Zirconium presents a strong basal structure, i.e. c -axis
of the crystals predominantly oriented along the plate normal
direction. Hence, in the TD case, the c -axis, are mostly aligned
with the z-axis while for the ND case, the c -axis are mostly
aligned with the y-axis. In fact, even though the CB2001 does not
allow describing the compression yield stresses evolution, that
evolution is very close in shape to the experimental one, with
only slightly lower values (see Fig. 1(b)). Moreover, as shown in
Fig. 1(a) the in-plane r-values present high absolute values in
order to describe the lack of ability to deform of the ND direction.
The fact that the CPB06 presents negative uniaxial compression
r-values does not seems to affect the final geometry of the beam
central cross-section.

Fig. 9 shows the deformed bars central cross-section for the
AZ31-Mg alloy. For this material, when considering the TD case,
the CB2001 yield criterion predicts a wedge shape, similar to the
one obtained for the Zirconium. The CPB06, predicts a barrel-like
shape. In fact, for the beam section bellow the neutral layer, the
shape predicted for both yield criteria is very similar. Above that,
the CB2001 predicted section dilates in the y direction, with the z
one almost constant. For the CPB06, the section narrows in the y
direction and dilates in the z direction. Also note that the curva-
ture on the top surface has different directions for both yield cri-
teria. Regarding the ND case, the CB2001 is not sensitive to the
change in orientation. For the CPB06, however, the shape becomes
closer to the one obtained with the CB2001 yield criterion but
with more pronounced features, mainly in the upper part of the
beam. For both cases, note that the major differences appear in the
layer which is subjected to compression states, for which the
CPB06 reproduces the virtual compression yield stresses in-plane
(a)
Fig. 8. Experimental and predicted y–z central cross-section of the bent bar considering (
for both yield criteria).
evolution. The CB2001 presents a compression yield stresses in-
plane evolution that is neither similar in shape or values to the
virtual, i.e. shows a more anisotropic behavior with overestimated
values (see Fig. 2(b)). Moreover, as shown in Fig. 2(a), the CPB06
predicts negative in-plane uniaxial compression r-values. In par-
ticular the r0 is close to the one in tension, for both yield criteria,
while it is close to �0.304 for the compression predicted by the
CPB06. These may explain the fact that the deformation in the ND
direction is always higher than the one along TD direction for the
layers submitted to compression when using the CPB06 yield
criterion. Also, it can explain why, in the TD case, the beam in-
creases height while it narrows in the y direction, i.e, the strains in
both direction are symmetric, being coherent with the fact that
the r-value is negative.

In order to better understand the differences between both
yield criteria and material orientations, the strain distributions are
compared, along the z-axis of the central cross-section (for =y 0,
according to Figs. 8 and 9). Again, experimental data is available
only for the Zirconium, obtained through digitally processed local
strain measurements determined by a dot-matrix deposition and
mapping (DMDM) technique [31]. Fig. 10 presents the comparison
between experimental and numerically predicted Green-Lagrange
strain components, for the Zirconium. The Green-Lagrange strain
tensor is defined by ( )( )= − = −E C I FF I1/2 1/2 T , where F is the
deformation gradient. Regarding the TD case (see Fig. 10(a)), both
yield criteria present a good prediction of the strain components
distribution when compared with the experimental ones. How-
ever, the CPB06 predicts closer results as well as the shift of the
neutral layer. For the ND case, the trend is the same – both yield
criteria show a good agreement with the experimental data, with
the CPB06 able to have a more accurate prediction, including the
shift of the neutral layer. Also, this analysis allows to confirm the
consistency of results between the predicted deformed shapes
presented in Fig. 8, with the predictions of both yield criteria re-
latively close. In fact, the negative values predicted by the CPB06
for the uniaxial compression r-values only seem to affect the
Green-Lagrange strain distribution for the hard to deform direc-
tion which, in the compression layer, are closer to zero when
comparing with the ones obtained by the CB2001. As previously
mentioned, in the TD case the hard to deform direction is mostly
aligned with the z-axis, while for the ND case is mostly aligned
with the y-axis. It should also be mentioned that the test leads to a
strain of about 20% in the outmost fibers of the beam [6], which is
close to the plastic strain value of 15% selected to determine the
yield locus for the Zirconium.
(b)
a) TD case and (b) ND case, for the Zirconium (dash-dot series indicate neutral layer



(a) (b)
Fig. 9. Predicted y–z central cross-section of the bent bar considering (a) TD case and (b) ND case, for the AZ31-Mg alloy (dash-dot series indicate neutral layer for both yield
criteria).

P.D. Barros et al. / International Journal of Mechanical Sciences 114 (2016) 217–232 227
For the AZ31-Mg alloy, the results comparing only the nu-
merically predicted strain components obtained along the z-axis of
the beam central cross-section are presented in Fig. 11. Regarding
the TD case, the CB2001 predicts strains in agreement with the
final deformed shape obtained (see Fig. 9). Also note that com-
ponents Ezz and Eyy have a very close evolution. As for the CPB06,
there are major differences when comparing with the CB2001. The
Eyy component is always negative with an inversion in the zone
relative to the neutral layer. This evolution explains the final de-
formed barrel-like shape (see Fig. 9). The Ezz component starts at
the beam bottom layer at about �0.7 and at the upper layer with a
value of about 0.38. This evolution is in agreement with the fact
that the beam central cross-section suffers a considerable increase
in height. For the ND case, Ezz is almost constant and negative, thus
explaining the minor change in height of the central cross-section.
The Eyy component, however, shows a variation similar with the
Ezz one for the TD case. This evolution is responsible for the more
pronounced wedge-like shape, mainly for the area above the
neutral layer. Nonetheless, it is not expected that the shape of the
Fig. 10. Experimental and predicted Green-Lagrange strain distributions, considering (a)
both yield criteria).
beam for the case of the AZ31-Mg alloy is so pronounced, since the
tension–compression ratio decreases with the increase of plastic
deformation (see [16]). In this case, the strain value attained in the
outmost fibers of the beam is quite distinct from the plastic strain
value of 3% selected to determine the yield locus.
5. Conclusion

The main features of the implementation of the Cazacu, Plun-
kett and Barlat yield criterion in the implicit in-house finite ele-
ment solver DD3IMP were described. The analytical expressions
for the first and second derivatives of the CPB06 yield criterion,
necessary for an improved solution of the stress update algorithm,
were derived and shown in detail in Appendix A, enabling its
implementation in other finite element codes. The anisotropy
parameters for Zirconium and AZ31-Mg alloy, both known for
exhibiting strong tension–compression asymmetry as well as in-
plane anisotropy, were identified for both CPB06 and CB2001 yield
TD case and (b) ND case, for the Zirconium (dash-dot series indicate neutral layer for



Fig. 11. Predicted Green-Lagrange strain distributions, considering (a) TD case and (b) ND case, for the AZ31-Mg alloy (dash-dot series indicate neutral layer for both yield
criteria).

P.D. Barros et al. / International Journal of Mechanical Sciences 114 (2016) 217–232228
criteria. The results show that the yield criteria adopted can ac-
curately describe both the yield stresses and r-values for tensile
stress states, with CPB06 yield criterion also allowing an accurately
prediction of the mechanical behavior for compression stress
states, for both materials.

The numerical simulation of a four-point bending test was
performed, considering the beam aligned along two different or-
ientations. The results show that an accurate description of the
tension–compression asymmetry influences the punch force evo-
lution, for both materials. This effect is more relevant for the AZ31-
Mg which shows a higher tension–compression asymmetry. In
what concerns Zirconium and regarding the shape of the central
cross-sections, both yield criteria describe well the final deformed
shape with minimal differences between them, for both beam
orientations, meaning that the tension–compression asymmetry is
not the predominant phenomenon contributing to the almost
squared shape for the ND case. In fact, the strain distribution
analysis shows that both yield criteria have a good approximation
to the experimental values, with the CPB06 showing better accu-
racy, particularly in what concerns the prediction of the shift of the
neutral layer.

For the AZ31-Mg alloy and analyzing the deformed shape for
the TD orientation, the difference between both yield criteria is
clearly visible. The strain distributions predicted by the CPB06
show a very different trend from the CB2001, converging on a
strong shift of the neutral layer. When considering the ND or-
ientation, the CB2001 shows negligible differences in both shape
and strain distributions on the central cross-section, when com-
pared with the ones obtained for the TD case. In the ND case, the
CPB06 predicts a shape similar to the one predicted by the CB2001,
but more pronounced, supported by the strain distribution pre-
dicted. Thus, highlighting the sensitivity to the orientation of the
CPB06 yield criterion. In summary, the global results shown and
discussed, put in evidence the importance of modeling and taking
into account the tension–compression asymmetry when analyzing
the deformation of HCP materials.
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Appendix A. Analytical expressions of the derivatives of the
CPB2006 yield criterion

A.1. This section presents the details concerning the calculation of the
following quantities
β σ σ
σ σ

= ∂ ¯
∂

= ∂ ¯
∂ ( )V Q, , , 37

2

2

specifically related with the numerical implementation of the
CPB06 yield criterion in the FE solver DD3IMP.

The scalar β has to be evaluated whenever the effective stress
state at the beginning of the time increment is elastic. It is de-
termined with the consistency condition, such that

( ) ( )σΦ β σ βϵ= ¯ ′ Δ ′ − = ( )Y, , 0, 38I0

where subscript I denotes the flow stress at the beginning of the
time increment. β is the only unknown of this non-linear equation.
Thus, the Newton–Raphson method is used to iteratively de-
termine β , given by the relation

β β Φ
Φ

= − ( )
+

′
. 39

i i
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i
1

A schematic representation of the stress update algorithm is
shown in Fig. 12, where σ′trial corresponds to the one obtained
from Eq. (17), and subscripts 0 and F denote the deviatoric stress
tensor at the beginning and at the end of the time increment
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Fig. 12. Schematic representation of the stress update algorithm, with subscripts
0 and F denoting the quantities at the beginning and at the end of the time in-
crement [ ]+ Δt t t, .
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+ Δ⎡⎣ ⎤⎦t t t, , respectively.
The scalar quantities Φi and Φ ′i are required, being the first one

given by Eq. (38) and the second one by
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The initial effective stress state is then updated to the initial
yield surface as

( ) ( )σ σ β μ ϵ′ * ← ′ + Δ ′ ( )2 430 0

The terms relative to the first and second order derivatives are
defined bellow.
A.2. First derivatives
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A.3. Second derivatives

The second order derivatives have a role in the state variables
update (see Eq. (56)) and in the definition of the consistent elas-
toplastic modulus.
a) Expression for σ∂ ¯ ∂ ∂s s/ p q

2

σ σ∂ ¯
∂ ∂

= ⋅ − ⋅ ∂ ¯
∂

⋅ ( ) + ⋅ ∂
∂

( )
( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
s s A a s

D s R
s

D s
1 1

1
59p q p

q
q

p

2

with

( )( ) = − −
( )

−
⎡
⎣
⎢
⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥
⎥D s a s k s

s

s
k

60
q q q

a q

q

1

b) Expressions for ∂ ∂s H H/p m n
2

∂
∂

= ∂ ∂
∂ ( )

⎛
⎝⎜

⎞
⎠⎟

s
H H H

s
H 61

p

m n n

p

m

2

θ β θ β θ

θ β

θ β θ
θ

θ β θ

∂
∂

∂
∂

= + ⋅ ( ) − + ∂
∂

( )

− +
+

+

+ ⋅ + ∂
∂

∂
∂

− + ⋅ + ∂
∂ ∂ ( )

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡

⎣

⎢
⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥
⎥

⎛
⎝

⎞
⎠

H
s
H

n
H

n

H H

H
H H

H
H

H H
H H

cos
3

dA1
2
3

sin
3

dA2

1
3

2
sin

3

2
3

cos
3

2
3

sin
3 62

n

i
i i

i

i
n

i
n

1 1

1
2

2

1

1
2

2

1

1
2

2

2

1
θ β

θ β θ

θ β θ β θ θ

θ β θ

∂
∂

∂
∂

= + ⋅

( ) − + ∂
∂

( )

− +
+

⋅

+ + + ∂
∂

∂
∂

− + ⋅ + ∂
∂ ∂ ( )

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

H
s
H

n
H

n

H H
H H

H H

H H
H H

cos
3

dA3
2
3

sin
3

dA2

1
3

1

sin
3

2
3

cos
3

2
3

sin
3 63

n

i
i

i

i i
n

i
n

2

2

1
2

2
1
2

2

2

1
2

2

2

2

θ β θ

θ β θ θ

θ β θ

∂
∂

∂
∂

= − + ∂
∂

( )

− + + ∂
∂

∂
∂

− + ⋅ + ∂
∂ ∂ ( )

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

H
s
H H

n

H H
H H

H H
H H

2
3

sin
3

dA2

1
3

2
3

cos
3

2
3

sin
3 64

n

i
i

i
n

i
n

3 3

1
2

2
3

1
2

2

2

3

with

( ) ( )

( ) = ∂
∂ +

=
+

−
+ ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n
H

H

H H

H

H H

H

H H

dA1
2

2
0

65

n

1

1
2

2

2

1
2

2
3

1

1
2

2
3

( )( ) = ∂
∂

+ =
+ + ( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥n

H
H H

H

H H H H
dA2

1

2
0

66n
1
2

2
1

1
2

2 1
2

2

( ) ( )

( ) = ∂
∂ +

= −
+

−
+ ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

n
H H H

H

H H H H

dA3
1

1

2
0

67

n 1
2

2

1

1
2

2
3

1
2

2
3

θ β θ β θ∂
∂

+ = − + ∂
∂ ( )

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠H H

cos
3

1
3

sin
3 68n

i i
n

θ β θ β θ∂
∂

+ = + ∂
∂ ( )

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠H H

sin
3

1
3

cos
3

.
69n

i i
n

Also,

( )
( ) ( )

θ∂ ∂
∂

= −
+ − +

−

+
−

− −
−

∂
∂

−
∂
∂ ( )

∂
∂ ∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

⎜ ⎟⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

H H

H H

H H H

H H

H H H H H
H H

H
H

H H
H
H

2
5 2

2 ,
70

n m

p
H

H H

H

H

H

H

H

H

H

H q
H

H H

p p q

p
H

H q
H

H

p p q p q

p q
p

n

p q
q

n

3
2

3 2

3
2

3 2
2

3 2

3 2

q

m n

q

m

p

n

q

n

p

m

p

m n

q

m

p

m

2 2

with

( )∂
∂

= ∂
∂

+ =
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

H
H H

H H
H2

1
0

,
71

p

m m
1
2

2

1

( )∂
∂

= ∂
∂

+ + =
+

( )

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

H
H H

H H H H
H H

H
1
2

2 3 2
1
2

6 3
3

2

,

72

q

m m
1
3

1 2 3

1
2

2

1

∂
∂ ∂

= ∂
∂

=
( )

⎛

⎝
⎜⎜⎜

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎞

⎠
⎟⎟⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

H
H H H

H2
1
0

2 0 0
0 0 0
0 0 0

,

73

p

m n n

2 1

∂
∂ ∂

= ∂
∂

+
=

( )

⎡

⎣

⎢
⎢
⎢

⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥

⎤

⎦

⎥
⎥
⎥

⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥

H
H H H

H H

H

H
1
2

6 3
3

2

1
2

12 0 0
3 0 0
0 0 0

.

74

q

m n n

2 1
2

2

1

1

c) Expressions for ∂ ∂ ∂H s s/m rs uv
2

δ∂
∂ ∂

= ∂
∂

+ ∂
∂

=
( )

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

H
s s s s

0
1
2

1
3 75kl mn mn nm

kl

2
1



)

)

P.D. Barros et al. / International Journal of Mechanical Sciences 114 (2016) 217–232 231
∂
∂ ∂

= ∂
∂

+ ∂
∂

∂
∂

=

− −
− −
− −

(

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

H
s s s s

H
s

1
2

1
3

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0

0 0 0
1
2

0 0

0 0 0 0
1
2

0

0 0 0 0 0
1
2 76

kl mn mn nm kl

2
2 2

∂
∂ ∂

=

−
−

−

− −

− −

− − (

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

H
s s

s s s

s s s
s s s

s s s s

s s s s

s s s s

1
2

0 0 0

0 0 0
0 0 0

0 0

0 0

0 0 77

kl mn

zz yy yz

zz xx xz

yy xx xy

yz xx xy xz

xz xy yy yz

xy xz yz zz

2
3 1

2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

d) Expressions for θ∂ ∂H/ a

For sake of simplicity, the following is considered

θ = = =
( )

⎡
⎣
⎢
⎢

⎤
⎦
⎥
⎥

⎡⎣ ⎤⎦H

H
C C

H

H
arccos arccos , with

78

q

p

q

p
3/2 3/2

Thus, the derivative for θ∂ ∂H/ a

θ θ θ∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂ ( )H H

H
H H

H
H 79a p

p

a q

q

a

The terms for the above expression are given by

θ∂
∂

= −
−

⋅ = ⋅
( )H C H

K
H

1

1

1 1
,

80q p p
2 3/2 3/2

θ∂
∂

= −
−

⋅ ⋅ − = ⋅ ⋅ −
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟H C

C
H

K C
H

1

1

3
2

1 3
2

1
,

81p p p2

∂
∂

=
+

( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

H
H

H H

H

3

1

,

82

q

a

1
2 3

2 2

3
2 1

∂
∂

=
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

H
H

H2
1
0

,
83

p

a

1

with

= −
− ( )

K
C

1

1 842

e) Expressions for θ∂ ∂ ∂H H/ a b
2

θ θ θ

θ θ θ

θ θ θ

∂
∂ ∂

= ∂
∂

∂
∂

∂
∂

+ ∂
∂

∂
∂

=

= ∂
∂ ∂

∂
∂

+ ∂
∂ ∂

∂
∂

∂
∂

+ ∂
∂

∂
∂ ∂

+ ∂
∂ ∂

∂
∂

+ ∂
∂ ∂

∂
∂

∂
∂

+ ∂
∂

∂
∂ ∂ ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

H H H H
H
H H

H
H

H H
H
H H H

H
H

H
H H

H
H H

H H
H
H H H

H
H

H
H H

H
H H

,

85

a b b p

p

a q

q

a

p p

p

b p q

q

b

p

a p

p

a b

q q

q

b q p

p

b

q

a q

q

a b

2

2 2 2

2 2 2

with
∂
∂ ∂

=
∂

∂ ∂
=

( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

H
H H

H
H

H H

6 0

0 0

0 0 0

and
2 0 0
0 0 0
0 0 0

,

86

q

a b

p

a b

2
1

3
2

3
2

2

θ∂
∂ ∂

= ∂
∂

⋅
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H H

K
H H

1

87q q q p

2

3/2

θ∂
∂ ∂

= ∂
∂

⋅ + ⋅ ⋅ −
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟H H

K
H H

K
H H

1 1 3
2

1

88q p p p p p

2

3/2 3/2

θ∂
∂ ∂

= ∂
∂

⋅ ⋅ − + ⋅ ∂
∂

⋅ −
( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟H H

K
H

C
H

K
C
H H

3
2

1 3
2

1

89p q q p q p

2

( )
θ∂

∂ ∂
= ∂

∂
⋅ ⋅ − + ⋅ ∂

∂
⋅ − − ⋅ ⋅ −

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝⎜⎜

⎞
⎠⎟⎟ 90H H

K
H

C
H

K
C
H H

K C
H H

3
2

1 3
2

1 3
2

1 1

p p p p p p p p

2

A.4. Principal values

The principal values are calculated by solving the characteristic
equation
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where s represents the principal values of s and s is a tensor
whose trace is zero,
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x, y and z denote an orthogonal frame attached to the material (i.e.
sheet rolling, transverse and normal directions, respectively).

This equation reduces to
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Through a change of variables [8],
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the characteristic equation becomes
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Cardan's solutions to the characteristic equation are

) ¯ = + ¯ ( )a s z z , 1021
1/3 1/3

ω ω) ¯ = + ¯ ¯ ( )b s z z , 1032
1/3 1/3

ω ω) ¯ = ¯ + ¯ ( )c s z z , 1043
1/3 1/3

where z is a complex number. ω is a complex constant ( π−e 2i /3), and
z̄ and ω̄ are their conjugate quantities.
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The principal values of s can be written as
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These values are ordered as [8]

≥ ≥ > ( )s s s s s, . 1071 2 3 1 3
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