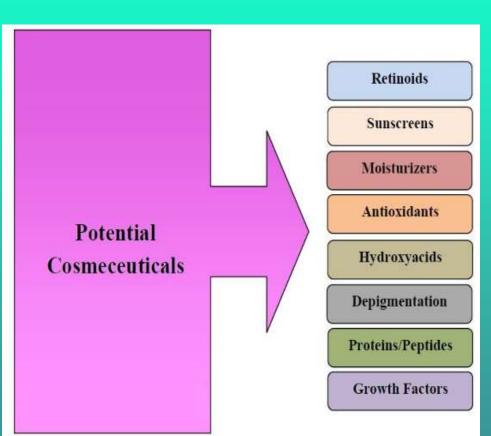
Biotecnologia e Nanotecnologia

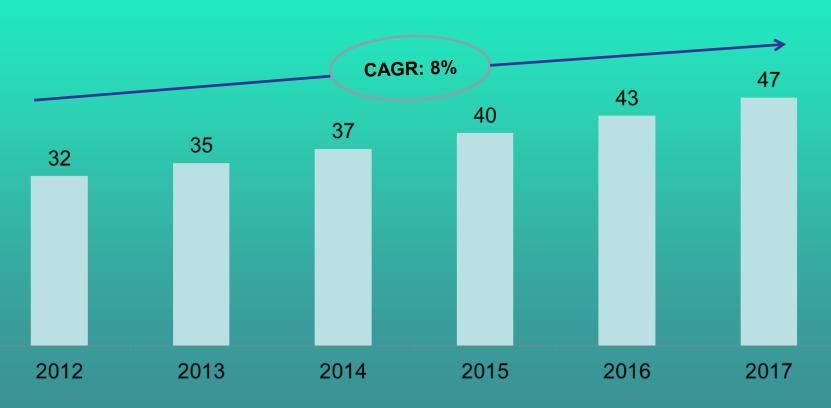
Productos naturais e cosmecêuticos: uma abordagem translacional

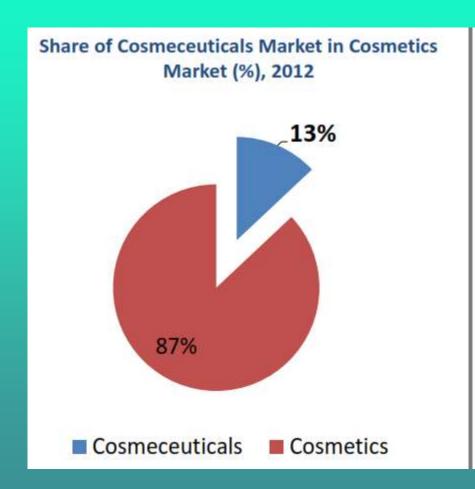
Alberto Dias

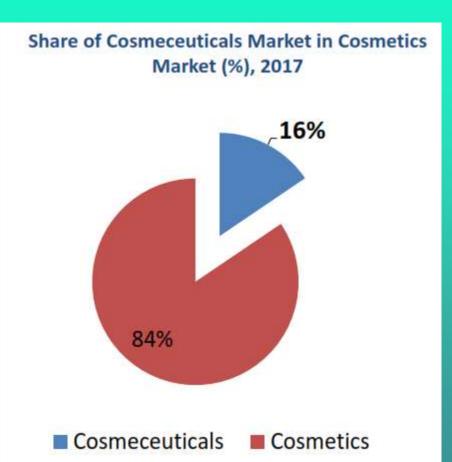


Sustentabilidade na Geração de Serviços e Processos no Centro-Oeste

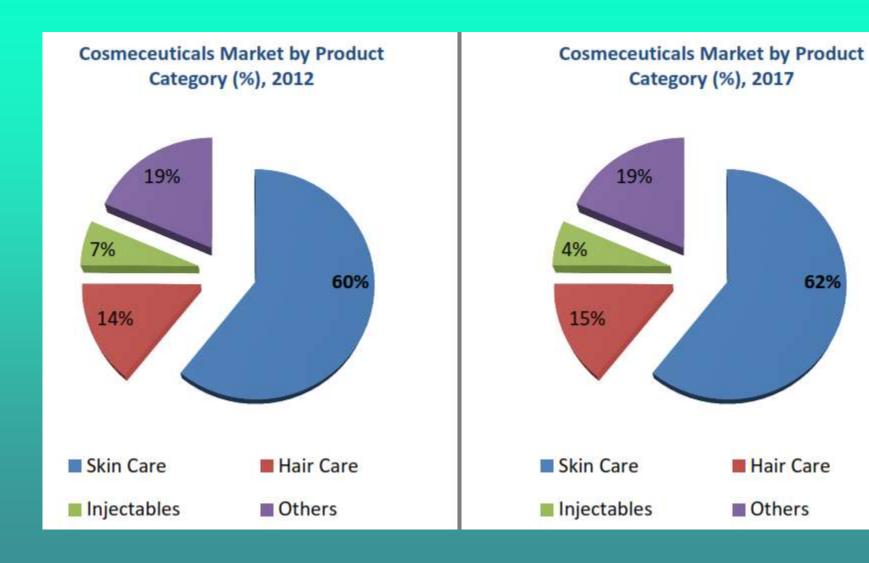
Cosmecêutico: cosmético + farmacêutico



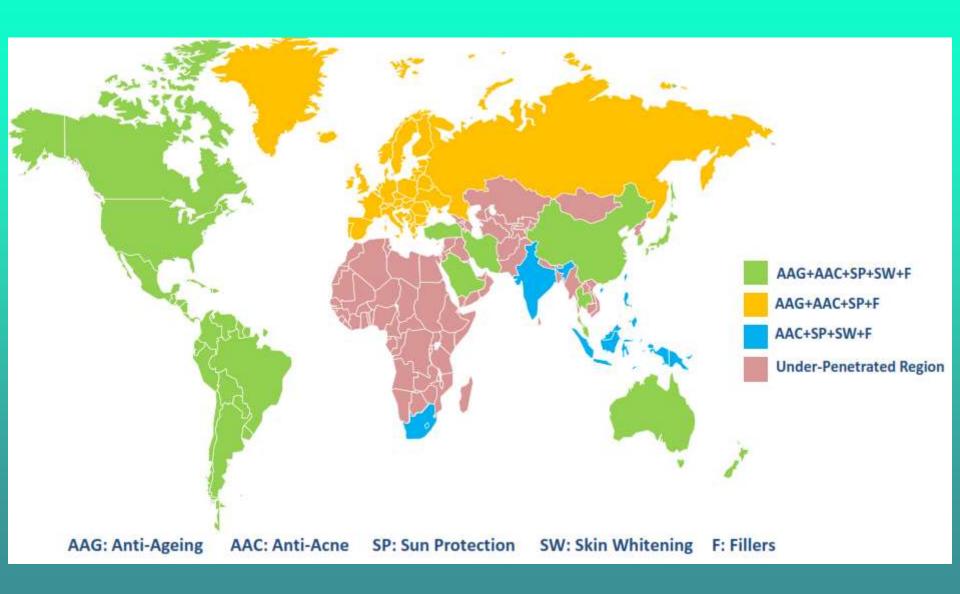



Mercado dos Cosmecêuticos

Market Size (Billion US\$), 2012-2017



Cosmecêuticos vs cosméticos lato sensu



Segmentos nos cosmecêuticos

Crescimento dos cosmecêuticos a nível mundial

Relevância das feridas no SNS e na saúde em geral

Alguns números ...

- cerca de 1% da população mundial sofre de feridas que não cicatrizam ou são de difícil cicatrização.
- Em Portugal, atendendo a dados conservadores, supõe-se que cerca de 300 a 400.000 pessoas apresentam algum tipo de ferida crónica. Lesões mais frequentes: úlceras de perna e de pressão, "pé diabético" e feridas em diabéticos, e infecção do local cirúrgico.
- Em 2012, ocorreram 1849 internamentos de doentes diabéticos com feridas em que 1493 (80,7%) sofreram uma amputação. Actualmente, supõe-se que em Portugal existam cerca de 150.000 doentes diabéticos com feridas. No Brasil, em 2004, o "pé diabético" gerou mais de 17000 amputações dos membros inferiores.
- Em Portugal, estima-se que os custos podem representar entre 2 a 5% do orçamento para a saúde; urgências, internamento, tratamento continuado por profissionais dos Cuidados de saúde Primários.

Um pouco de história ...

ANCIENT EGYPT & GREEKS

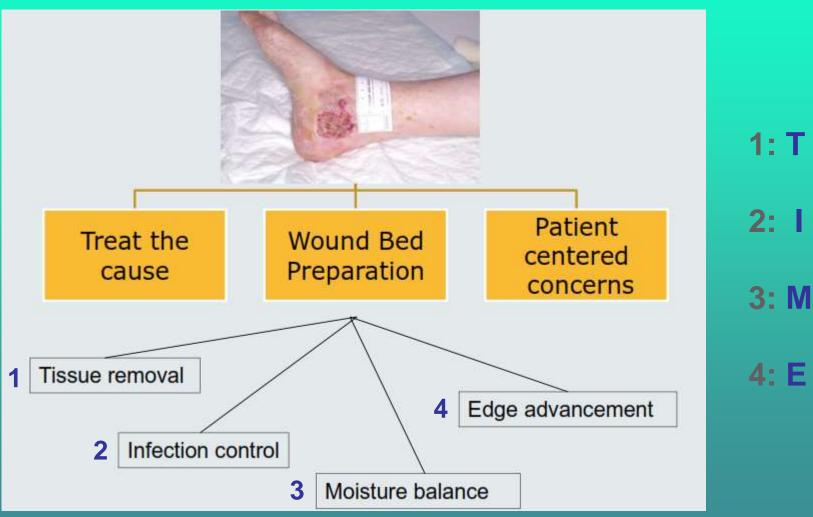
- Wounds dressed with lint, grease and honey
- Used red wine patches to treat Greek gladiators

DRY WOUND CARE

Standard treatment until 20th century (less infections)

MOIST WOUND CARE

- 1963: Winter et al: wounds heal more rapidly under intact blister
- Accepted as major advance in treatment of chronic wounds since 1960s:
 - Less intense, less prolonged inflammation (Rovee et al, 1972)
 - More rapid keratinocyte proliferation and migration (Madden et al, 1989)


•

Hoje em dia existem muitas alternativas...

WOUND CARE TODAY

Wound cleansers/debriders,
hydrogel, hydrocolloid, hydrofibre, foam, silicone
dressing,
alginate, film dressing, growth factor, skin
replacement, collagen,
antimicrobial dressing, honey dressing, maggot
therapy, NPWT,
electrical stimulation, oxygen, ...

Metodologia actual

Cosmecêuticos Biofuncionais

Contém vários ingredientes naturais:

Óleo de *neem*, óleo de *karanja*Extractos de frutos

Extractos de plantas medicinais

Óleos essenciais

Excelentes resultados clínicos:

queimaduras feridas

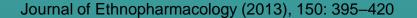
Psoriase

Alguns produtos naturais usados

Óleo de Azadirachta indica – neem

- Nativa da Índia
- Estimulante do sistema imunitário
- Antiséptico
- Anti-inflamatório
- Antioxidante
- Cicatrizante

Asian Pac J Trop Biomed 2013; 3(7): 505-514 Forsch Komplementmed 2014;21:88–93



Óleo de Pongamia (Millettia) pinnata- karanja

- Nativa da Índia
- Emoliente
- Antiséptico
- Anti-inflamatório

Extracto de Aloe barbadensis – aloe vera, babosa

- Nativa da África
- Imunomodelador
- cicatrizante
- Anti-inflamatória
- humectante

Molecules 2008, 13, 1599-1616;

DOI: 10.3390/molecules13081599

Óleo essencial de Melaleuca alternifolia – árvore do chá

- Nativa da Austrália
- Estimulante do sistema imunitário
- antimicrobiano
- Anti-inflamatório

Clin Microbiol Rev. 2006 Jan; 19(1): 50–62 Food Engineering Reviews (2011), 3(1), 1-16

Validação de algumas propriedades dos cosmecêuticos (INFARMED)

Após aplicação repetida na pele, em condições de exposição exagerada (*patch*), os cremes não resultaram em quaisquer reacções irritantes, apresentado uma boa compatibilidade cutânea (painel de 53 voluntários)

Adicionalmente, observou-se um reforço da hidratação da pele às 8 e 24h

Após aplicação de LSS durante 24h, GluckNeemC acelera significativamente: recuperação da hidratação cutânea (3,2 dias), recuperação da barreira cutânea (5,3 d); avaliada por perda trans-epidérmica de água recuperação de fluxo sanguíneo (3,8d); fluoxometria de laser doppler recuperação de eritema (5,6d)

Aplicação clínica:

queimaduras

Day Zero

Conventional treatment
Antibiotic's + Antiinflammatory + Topic Bacitracin

96 hours

96 hours

Pé diabético

95 days

Tratamento convencional (6 meses) sem resultados

Infecção profunda

Marcado para cirurgia com enxerto de pele; possibilidade de amputação

Tratamento exclusivamente com Gluck NeemC.

Tratamentos anteriores sem sucesso.

Marcado para possível amputação devido a complicações veno-circulatórias e infecção profunda.

Tratamento exclusivamente com Gluck NeemC seguido de Gluck NeemB.

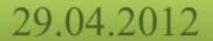
Escaras e úlceras de pressão

Tratamento anterior de mais de 2 anos e após 2 cirurgias (desbridação) sem sucesso.

Tratamento exclusivamente com Gluck NeemC.

Tratamentos anteriores sem sucesso (há mais de 1 ano) – ísquio direito

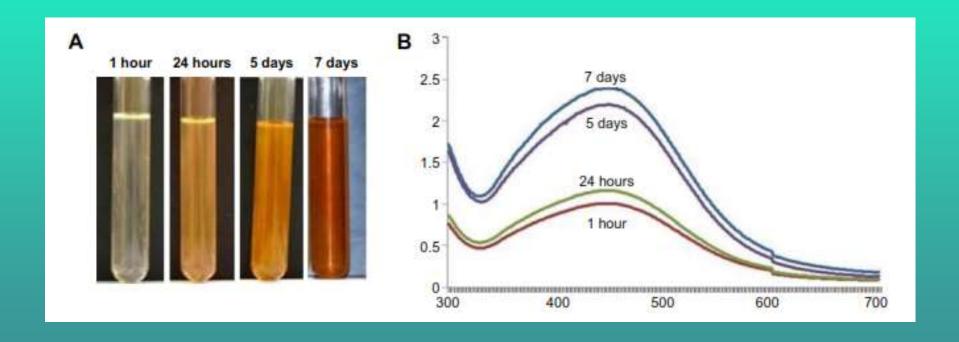
Tratamento exclusivamente com Gluck NeemC, seguido de Gluck NeemB.



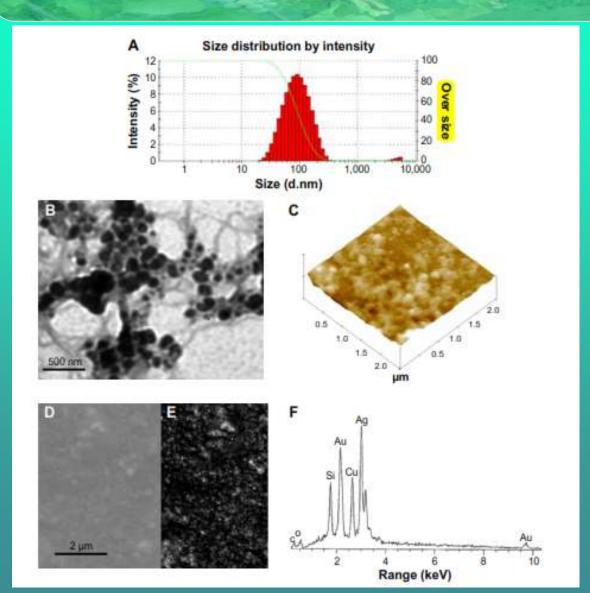
Tratamentos anteriores sem sucesso (há mais de 1 ano) – ísquio esquerdo

Psoriase

05.07.2012



12.09.2012


Novos desenvolvimentos: Int. J. Nanomedicine (in press)

Green synthesis of Ag-nanoparticles using Withania somnifera

Produção de nanopartículas de prata: AgNPs

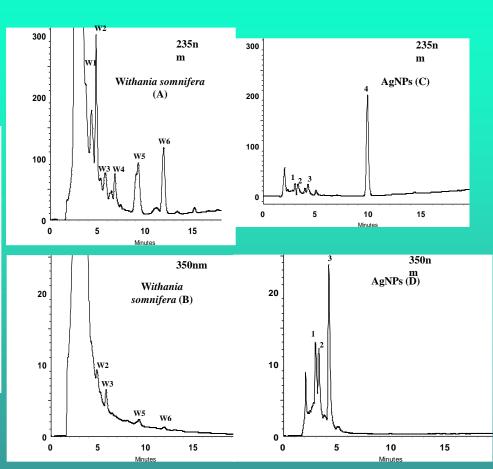
Caracterização das nanopartículas

Particle sze (A)

TEM image (B)

AFM height image (C)

SEM primary image (D)

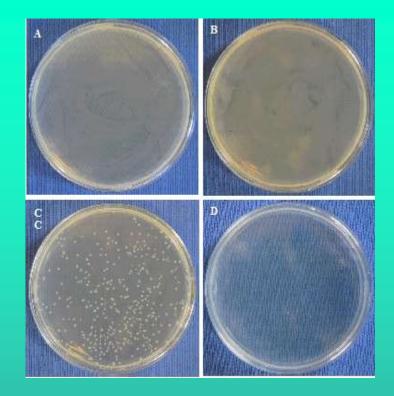

Backscattered image (E)

X-ray energy dispersive spectrum

(F)

HPLC chromatograms of aqueous leaf extract of W. somnifera and of green synthesized AgNPs

	Retention time (min)		
Peak No	Aqueous leaf extract	AgNPs	Compound
W1	4.32	-	withanolide
W2	4.82	-	withanolide
W3	5.74	-	withanolide
W4	6.82	-	withanolide
W5	9.26	-	withanolide
W6	11.94	-	withanolide
	-	2.98	catechin
	-	3.29	p-coumaric acid
	-	4.23	luteolin-7-glucoside
	-	9.89	whitanolide


Antimicrobial activity of AgNPs

A- E. coli growth (control)

B- E. coli + Ws

C- E. coli + AgNO3

D- E. coli + AgNPs

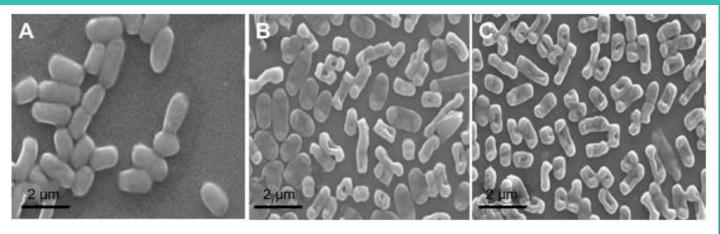


Figure 6 SEM analysis of AgNPs and Escherichia coli interaction.

Notes: Cellular interaction of AgNPs and E. coli visualized by SEM analysis: control (A), after 2 hours (B), and 4 hours (C) incubation time.

Abbreviations: AgNPs, silver nanoparticles; SEM, scanning electron microscopy.

Antimicrobial activity of AgNPs: diffusion method

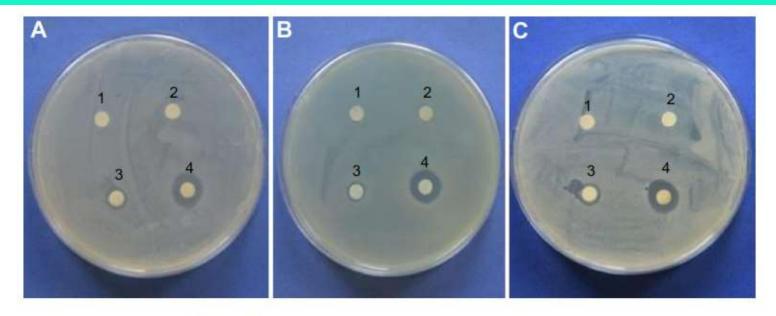


Figure 5 Antibacterial activity of AgNPs analyzed by disc diffusion method.

Notes: Bacterial growth without treatments (I) or treated with equivalent amount of Withania somnifera aqueous extract (2), AgNO₃ (3), and AgNPs (4). The bacteria tested were Escherichia coli (A), Pseudomonas aeruginosa (B), and Agrobacterium tumefaciens (C).

Abbreviation: AgNPs, silver nanoparticles.

Antimicrobial activity of AgNPs: colony counting method

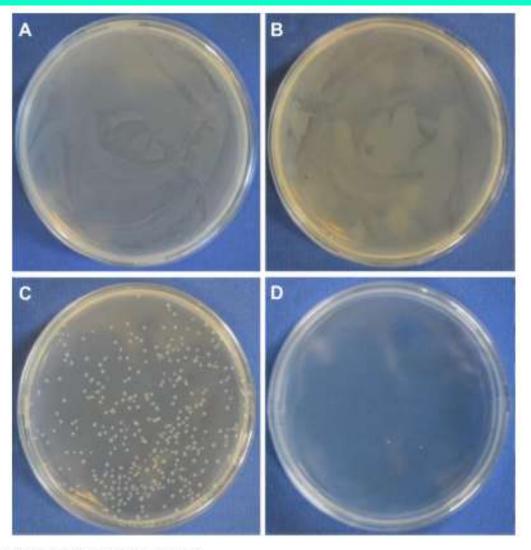
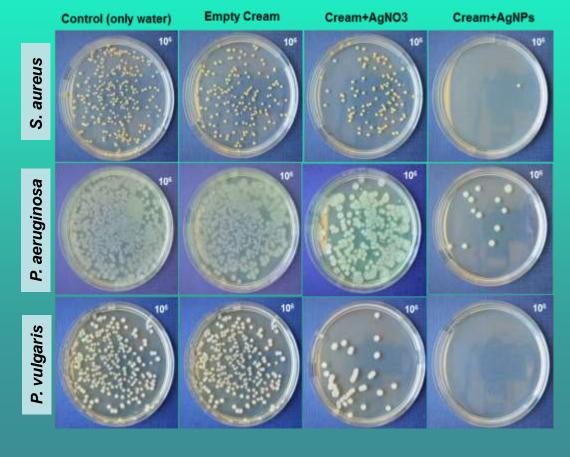


Figure 7 Antibacterial potential of AgNPs by colony counting method.


Notes: Escherichia cali without treatment (just water) (A), E. cali treated with plant extract (B), E. cali treated with AgNPs, (C), and E. cali treated with AgNPs (D).

Abbreviation: AgNPs, silver nanoparticles.

Antimicrobial activity of AgNPs in a cosmeceutical

Evaluation of antimicrobial potential of AgNPs incorporated in the cream

Organisms	Water (Control) (CFU)	Empty Cream (CFU)	AgNO3 in Cream (CFU)	AgNPs in cream (CFU	
Stapylococcus aureus	226.3 ± 0.74	211.0± 0.69*	123.3± 0.74***	0.6 ± 0.25***,+++	200x
Pseudomonas aeruginosa	432.0 ± 0.69	408.0± 1.00 [*]	267.6± 0.67***	8.6 ± 0.48***,+++	30x
Candida albicans	264.6± 0.88	127.6±0.75***	33.3±0.68***	1.6± 0.25***,+++	20x
Proteus vulgaris	213.0± 1.17	194.6 ± 1.02	26 .6±0.64***	0.6±0.25***,+++	44x
Escherichia coli	471.0± 1.39	441.3±1.36	226.0±1.16***	8.0±0.66***,+++	28x
Agrobacterium tumefaciens	190.3±1.47	145.3±0.88 [*]	35.0±1.02***	2.66±0.58***,++	13x

Data were analyzed by non-parametric T-test using Graph Pad Prism5 software (GraphPad, USA). Data were presented as mean \pm SEM of 6 replica. Asterisks (* P<0.05, ** P<0.01, ***P<0.001) denotes statistically significant different from water control. Asterisks (+) denote statistically significant of AgNPs (+ P<0.05, ++ P<0.01, +++P<0.001) compared to AgNO3.

Use of AgNPs cream in animals

Dermatophilosis

Habronema

Obrigado

Universidade do Minho

CITAB-UM

Os "intocáveis"

Neuron's family

