A Study on the Convergence of Observer-Based Kinetics Estimators in Stirred Tank Bioreactors

R. Oliveira¹, E. Ferreira², F. Oliveira³, S. Feyo de Azevedo¹*

¹Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4099 Porto Codex, PORTUGAL
²Universidade do Minho, Engenharia Biológica, Largo do Paço, 4700 Braga PORTUGAL
³Universidade do Minho, Electrónica Industrial, Largo do Paço, 4700 Braga PORTUGAL

ABSTRACT

This paper is devoted to the tuning problem of the "observer-based kinetics estimator" in stirred tank bioreactors. This algorithm estimates the reaction kinetics from the online knowledge of the state variables (either from measurement or by means of state observer), when the yield coefficients are known. The relation between the dynamics of convergence and the tuning procedure is explored. The method proposed imposes a second-order dynamics to the convergence of the estimator. This approach will be shown to compare favourably with a pole placement based technique, in an application to a baker's yeast fed-batch fermentation.

INTRODUCTION

Two of the major problems limiting the use of modern control techniques to bioprocesses are the difficulty of modelling the growth kinetics of microorganisms and the lack of cheap and reliable sensors of biological variables. Model-based state observers and observer-based parameter estimation represent recent developments which may overcome such difficulties. Bastin and Dochain (1990) proposed a methodology for state and parameter estimation based upon the concept of a "general dynamical model for bioreactors":

\[
\frac{d\xi}{dt} = K\phi(\xi) - D\xi + F - Q(\xi)
\]

For the on-line estimation of reaction rates when the yield coefficients are known and constant, the proposed observer-based estimator is expressed by

\[
\frac{d\hat{\xi}}{dt} = KH(\hat{\xi})\hat{\rho} - D\hat{\xi} + F - Q(\hat{\xi} - \hat{\xi})
\]

\[
\frac{d\hat{\rho}}{dt} = [KH(\hat{\xi})]^T \Gamma (\hat{\xi} - \hat{\xi})
\]

The reaction rates are defined as \(\phi(\xi) = H(\xi)\rho(t)\) to take advantage on any possible knowledge of the kinetics model, where \(H(\xi)\) is an \(m \times r\) known matrix (function of the state) while \(\rho(t)\) is a vector of \(r\) unknown functions of the state which are considered as completely unknown time varying parameters.

A difficulty related with the application of this methodology is the tuning of the gain matrices \(\Omega\) and \(\Gamma\) which are design parameters at the disposal of the user for the control of the stability and the tracking properties of the algorithm. This problem is discussed by Pomerleau and Perrier (1990) which proposed a pole placement based tuning for the estimation of the three specific growth rates involved in a Baker's yeast fed-batch fermentation.

This paper is devoted to the tuning problem of this estimator. An alternative approach is presented which is based on the concept of imposing that the estimated kinetics follow a second order dynamic response to the true reaction kinetics changes, leaving free to the user the setting of the natural period of oscillation and of the damping coefficient. The matrices of gains are presented as functions of those settings and of the system state. Hence, they are time variant but automatically adapted.

SECOND-ORDER DYNAMICS BASED TUNING

It is assumed that it is sufficient to base the kinetics estimator on a subset of \(r\) equations of the full state space model, provided that they involve all the \(r\) parameters that need to be estimated (this subset of equations is denoted by...
the index s). In this case the gain matrices are square with dimension r. In what follows, a reformulated dynamical model is adopted by considering the transformation

$$\psi = K^{-1}_s \xi_s,$$

which gives:

$$\frac{d\psi}{dt} = \varphi(\xi) - DK\psi + K^{-1}_s (F - Q(\xi)) \quad (3)$$

The estimator can then be rewritten as:

$$\frac{d\hat{\psi}}{dt} = H\dot{\rho} - D\psi + K^{-1}_s (F_s - Q_s) - \Omega(\psi - \hat{\psi}) \quad (4a)$$

$$\frac{d\rho}{dt} = H^T\Gamma(\psi - \dot{\psi}) \quad (4b)$$

The dynamics of the observation error is obtained by subtracting eqn (4a) from eqn (2):

$$\frac{d(\psi - \dot{\psi})}{dt} = H(\rho - \dot{\rho}) + \Omega(\psi - \dot{\psi}) \quad (5)$$

If the matrix \(\Gamma\) is such that \([H(\xi)]^T\Gamma\) is a constant matrix, then differentiating equation (4b) gives

$$\frac{d^2\rho}{dt^2} = H^T\Gamma \frac{d(\psi - \dot{\psi})}{dt} \quad (6)$$

Moreover, if \(H(\xi)\) is a diagonal matrix, then combining equations (4b), (5), and (6), and setting \(\Omega = \text{diag}\{\omega\}\) and \(\Gamma = H(\xi)\text{diag}\{\gamma\}\), (where \(\gamma, \omega \in \mathbb{R}^r\)) the following result is obtained:

$$\tau_i \frac{d^2\rho_i}{dt^2} + 2\zeta_i \tau_i \frac{d\rho_i}{dt} + \rho_i = \rho_i \quad i = 1, \ldots, r \quad (7)$$

$$\tau_i = (\gamma_i h_i)^{-0.5} \quad (8)$$

$$\zeta_i = 0.5 \omega_i (\gamma_i h_i)^{-0.5} \quad (9)$$

where \(h_i\) refers to the diagonal elements of matrix \(H(\xi)\).

Eqs. (7), (8) and (9) show that each parameter follows a second order dynamic response to the true parameter changes with a natural period of oscillation of \(\tau_i\) and a damping coefficient of \(\zeta_i\). Nevertheless they are functions of the system state, and hence, they are time variant.

The application of this methodology to the estimation problems of completely unknown reaction rates, specific reaction rates and specific growth rates is as follows:

**i) completely unknown reaction rates**

In this case we have:

$$r = M$$

$$\rho(\xi) = \varphi(\xi)$$

$$H(\xi) = X_{M}$$

Which gives:

$$\tau_i = \gamma_i^{-0.5} \quad (\zeta_i = 0.5 \omega_i \gamma_i^{-0.5})$$

**ii) specific reaction rates**

In this case we have:

$$r = M$$

$$\rho(\xi) = \alpha(\xi)$$

$$H(\xi) = G(\xi) = \text{diag}\{g\}$$

where \(g = \prod_{n=1}^{n} \xi_n\) means multiplication over the components with index n which are reactants in the reaction j.

The result is:

$$\tau_i = (\gamma_i g_i)^{-0.5} \quad (\zeta_i = 0.5 \omega_i (\gamma_i g_i)^{-0.5})$$

**iii) specific growth rates**

In this case we have:

$$r = M$$

$$\rho(\xi) = \mu(\xi)$$

$$H(\xi) = X_{M}$$

where X means biomass concentration.

The result is:

$$\tau_i = (\gamma_i X)^{-0.5} \quad (\zeta_i = 0.5 \omega_i (\gamma_i X)^{-0.5})$$

**CASE STUDY - BAKERS YEAST FED-BATCH FERMENTATION**

**The process model**

Yeast growth is characterised by three metabolic pathways:

\[
\begin{align*}
S + C & \rightarrow X + G \\
S & \rightarrow X + E + G \\
E + C & \rightarrow X + G
\end{align*}
\]

(10a) (10b) (10c)

with S: glucose; C: oxygen; X: biomass; E: ethanol; G: carbon dioxide and \(\mu^r, \mu^o, \mu^c, \tau^r, \tau^o, \tau^c\) specific growth rates for the three pathways.

Pathways (10a), (10b), and (10c) refer respectively to the respiratory growth on glucose (oxydative pathway), fermentative growth on glucose (reductive pathway) and the respiratory growth on ethanol (oxydative pathway).

The dynamic model for the fed-batch fermentor is obtained from a mass balance on the components, considering that the reactor is well mixed, the yield coefficients are constant and the dynamics of the gas phase can be neglected. The mass balances, in terms of
concentration, take the matrix form of the general dynamical model (eqn. 1):

\[
\frac{d}{dt} \begin{bmatrix}
X \\
S \\
E \\
C \\
G
\end{bmatrix} = \begin{bmatrix}
-1 & 1 & 1 & 0 & 0 \\
-k_1 & -k_1 & 0 & 0 & 0 \\
0 & k_1 & -k_1 & 0 & 0 \\
0 & 0 & k_1 & -k_1 & 0 \\
k & k & k & k & 0
\end{bmatrix} \begin{bmatrix}
X' \\
S' \\
E' \\
C' \\
G'
\end{bmatrix} - \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
D & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \begin{bmatrix}
X \\
S \\
E \\
C \\
G
\end{bmatrix}
\]

where \(D\) is the dilution rate and the \(k_i\) are yield coefficients; \(S_{in}\) is the substrate concentration in the feed; \(OTR\) is the oxygen transfer rate and \(CTR\) is the carbon dioxide transfer rate.

This dynamic model and the kinetic model proposed by Sonnleitner and Käppeli (1986) with modifications made by Pomerleau and Perrier (1990) were used for simulation purpose. It is assumed that the baker's yeast fed-batch process can only be in an ethanol production state or in an ethanol consumption state, meaning that the yeast can only grow by two pathways simultaneously: pathways \(10a\) and \(10b\) corresponding to ethanol production, and pathways \(10a\) and \(10c\) corresponding to ethanol consumption.

The kinetics estimator

The "observer-based kinetics estimator" (eqns. 4) is applied to two partial models reflecting the two process states mentioned above, taking the form:

\[
\frac{d\tilde{\psi}}{dt} = X\hat{\mu} - D\psi + K_s^{-1}(F_i - Q_i) - \Sigma(\psi - \hat{\psi})
\]

(12a)

\[
\frac{d\hat{\mu}}{dt} = \Gamma(\psi - \hat{\psi})
\]

(12b)

with:

\[
\psi = K_s^{-1}\xi, \quad \xi = [C \ G]^T, \quad (F_i - Q_i) = [OTR \ -CTR]^T
\]

and with the estimated specific growth rates \(\hat{\mu}\) switching between \((\mu_0^T \ 0_T)^T\) and \((0_T \ \mu_0^T)^T\).

The use of eqns 12 requires the on-line knowledge of biomass concentration. This is achieved by means of a "Luenberger-type asymptotic observer" (Luenberger, 1971) which enables the on-line estimation of \(X, S\) and \(E\) from the measured variables - \(C, G,\) \(CTR,\) \(OTR,\) \(Sin\) and \(F\) - at sampling times of 6 minutes.

Second-order-dynamics based tuning

The gain matrices for the case of specific growth rates are given by:

\[
\gamma_i = \frac{1}{\tau_i^2 X_m}, \quad \omega_i = \frac{2\zeta_i}{\tau_i}
\]

where \(\tau_i\) and \(\zeta_i\) are the desired natural period of oscillation and damping coefficient, and \(X_m\) is a mean value of biomass estimates over the time interval. As given by eqns. 14, the \(\gamma_i\) parameters are piecewise functions of biomass, i.e., \(\gamma_i\) remains constant between measurements, being adjusted at each sampling period.

The kinetics estimator equations (eqns. 12 and 13) were integrated with a robust variable-step numerical integration algorithm (4th/5th order Runge-Kutta type embedded scheme due to Butcher) employing along the integration linear estimates of the relevant sampled variables.

Pole placement based tuning

The overall estimation procedure was also carried out, employing the Euler’s discretization approach and tuning method proposed by Pomerleau and Perrier (1990). Basically, this method consists on defining time trajectories for the gain parameters in order to maintain constant the position of poles (on the discrete complex plan) of the discrete error system throughout the fermentation. The gain parameters are given by:

\[
\gamma_i = \frac{(p_i - 1)^2}{\tau^2 X^2}, \quad \omega_i = \frac{2\zeta_i}{\tau}
\]

(15)

where \(p_i\) is the desired double pole of the error system (0<\(p_i<1\)), \(X\) is biomass estimate, and \(\tau\) the sampling period (and also the integration step).

Results and Discussion

Figures 1, 2 and 3 illustrate the tuning procedure proposed in this work. The results in fig. 1 are obtained with similar natural periods of oscillation (\(\tau_i=0.01\)) and damping coefficients (\(\zeta_i=0.5\)) for the three components. The influence of \(\tau_i\) and \(\zeta_i\) on the dynamics of convergence can be assessed from the plots in Figs. 2 and 3. This influence is in agreement with the characteristics of a typical second-order dynamics response: decreasing \(\tau_i\) the response becomes faster and decreasing \(\zeta_i\) the response becomes more oscillatory.
Figure 1 - Specific growth rates (full lines-true; dotted lines-estimates) using the 2nd order dynamics based tuning ($\tau=0.01$, $\zeta=0.5$)

Figure 2 - $\mu_{oe}$ estimates for different damping coefficients ($\zeta$)

Figure 3 - $\mu_{oe}$ estimates for different natural periods of oscillation ($\tau$)

Figs. 4 and 5 illustrate the same application with the pole placement technique.

Figure 4 - Specific growth rates estimates (full lines-true; dotted lines-estimated) using the pole placement based tuning

Figure 5 - $\mu_{oe}$ estimates for different poles ($p$)

The best results are obtained when the double poles are close to zero (no significant improvement is obtained when $p<0.01$). In fig. 4 the three specific growth rates (estimated vs. 'true') are represented for $p=0.01$.

The information from Figs. 1 and 4 suggest that the 'second order dynamics' approach produces better results than the pole placement method. This is confirmed by the error indexes employed (ITAE – integral of time-weighted absolute errors) which are, for the former, an order of magnitude lower than those observed for the latter. The other possible advantage of the second order tuning is that the choice of parameters has an intuitive basis since this type of response is widely observed in natural phenomena and its theoretical study well disseminated.

Further theoretical analysis is out of scope of this paper. Work is in progress which aims in particular at establishing the domains of validity of the procedure proposed.
REFERENCES


ACKNOWLEDGEMENTS

This work was partially supported by JNICT - Junta Nacional de Investigação Científica e Tecnológica, under contract numbers BIC/636/92 and BD/224/90-IF and BD/1476/91-RM.

NOMENCLATURE

C dissolved oxygen concentration
CTR carbon dioxide transfer rate
D dilution rate
E dissolved ethanol concentration
F feed rate vector
G dissolved carbon dioxide concentration
\( \tilde{g}_i \) product of reactants concentration in reaction i
H(\( \xi \)) (m×r) matrix of functions of the state
\( k_i \) yield coefficients
K yield coefficients matrix
m number of reaction rates
n number of state space variables
OTR oxygen transfer rate
p_i double pole of the discrete error system
Q gas removal rate vector
r number of parameters to estimate
S glucose concentration
S_m glucose feed concentration
T sampling period
X biomass concentration
\( X_m \) average value of biomass concentration over the sampling period

\( \alpha \) specific reaction rates vector
\( \varphi \) reaction rates vector
\( \mu \) specific growth rates vector
\( \hat{\mu} \) vector of estimated specific growth rates
\( \mu_s \) specific growth rate for the fermentative growth on glucose pathway
\( \mu_e \) specific growth rate for the respiratory growth on ethanol pathway
\( \mu_s \) specific growth rate for the respiratory growth on glucose pathway
\( \rho(t) \) vector of unknown time-varying parameters
\( \hat{\rho} \) vector of estimated parameters
\( \tau_i \) natural period of oscillation
\( \omega_i, \gamma_i \) diagonal elements of \( \Omega \) and \( \Gamma \)
\( \Omega, \Gamma \) gain matrices
\( \hat{\xi} \) predicted state vector of concentrations
\( \xi \) vector of measured concentrations
\( \hat{\xi}_2 \) vector of non-measured concentrations
\( \hat{\xi}_2 \) estimated state vector of nonmeasured concentrations
\( \zeta_i \) damping coefficient