Honey EC3A and JPC2

Figure 1. Honey, phage and combined treatment experiments of microbial biofilms: JPC2 at 25% and 50% (w/v); (B) phage P1.

Introduction

Wound colonization by biofilms-forming bacteria is one of the main obstacles to the treatment of chronic wounds, causing a number of biological and financial problems. Biofilms are structured communities of bacterial cells enclosed in a self-produced polymeric matrix, adhered to inert or living surfaces, blocking antibiotics and patient’s immune cells from reaching bacteria. Bacteriophages, viruses infecting exclusively bacteria, and honey are being considered as valuable alternatives to treat a variety of infections (Table 1). Phages are harmless to mammalian cells, specific for target bacteria therefore not affecting commensal microflora, have the ability to self-replicate as long as the host is present, and are effective against antibiotic resistant bacteria. Honey is a complex substance with broad spectrum antimicrobial activity, essentially attributed to the high sugar content, low pH, the presence of hydrogen peroxide and methylglyoxal that reacts with important biological molecules (RNA, DNA and proteins). Honey had yet the potential to promote tissue regeneration, cicatrization, decrease inflammation, improving wound healing. In this work the combination of those two antimicrobial agents was considered in the control E. coli biofilms.

Methods

Biofilm Formation

Escherichia Coli
24 h and 48 h, 37 °C, 120 rpm

Biofilm Treatment
During 6, 12 and 24 h

• Phage EC3a
• Honey PF2
• Phage EC3a + Honey PF2

Treatment Efficacy

CFU Counts
SEM
Flow Cytometry

Evaluation of the combinatorial effect of Portuguese honey and phages in controlling E. coli biofilms

Results

Main conclusions

• The Portuguese honey PF2 50% (w/v) showed great antibiofilm effect with 6-log cell reduction in 24 h-old biofilms.
• A synergistic effect was observed with PF2 25% (w/v) and EC3a in 24 and 48 h-old biofilms.
• 48 h-old biofilms were more difficult to combat than 24 h-old biofilms.
• This is a promising strategy for biofilm control that will be further tested with other pathogens and using ex vivo models.

Table 1 – Advantages of honey and bacteriophages

<table>
<thead>
<tr>
<th></th>
<th>Honey</th>
<th>Bacteriophage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobial effect</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Low cost of production</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Efficient against antibiotic resistant bacteria</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ability to degrade the biofilm matrix</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Promote regeneration, cicatrization, decrease inflammation</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ability to induce insensitive mutants</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Self-replication in the site of infection</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Specificity</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Dangerous to mammalian cell</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Goal of the study

The authors acknowledge Hospital de São Brás (Braga, Portugal) for providing the clinical isolates. This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIOMED/04526/2013 and COMPETE 2020 – POI – PT2020 – 010104-0037/IF_000004 andquilbacter operation (NORTE-01-0145-FEDER-000024) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte and the Projects LNEC/2014-04184/2012/CT01461 and LNEC/2014-04184/2012/CT11462 and the project PTDC/CTM-2020/306/2018. ACD and CFF acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) through the grants SFRH/BD/159983/2019 and SFRH/BD/160796/2019. IC is an Investigator FCT ID/04469/2013.