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Abstract 

 

Malignant gliomas are the most common primary brain tumors, accounting for 80% of 

all neoplasms of the central nervous system, of which glioblastoma (GBM) is the most 

aggressive and deadly subtype. Even with a multimodal therapy approach that includes surgery 

and chemo-radio-therapy, the prognosis of glioma patients remains very poor. Moreover, the 

etiology and clinically-relevant prognostic factors in glioma remain largely undetermined. In 

this context, the research summarized in this thesis focuses on i) evaluating the influence of 

TGF-β1 genetic variants in glioma susceptibility and patient prognosis; ii) identifying novel 

defining characteristics of glioma stem cells (GSCs), a subpopulation of cells that plays critical 

roles on tumor initiation, resistance and recurrence; and iii) unveiling new insights on the 

influence of mesenchymal stem cells (MSCs) in glioma behavior. 

Many genetic polymorphisms have been associated with glioma susceptibility and 

prognosis. Several studies demonstrated that polymorphisms in the TGF-β1 gene were 

associated with the susceptibility for different tumor types. Transforming growth factor beta 

(TGF-β) is known to play an important role in carcinogenesis, and its activity has been 

associated with poor prognosis in glioma patients. Taking into account that the relevance of 

single nucleotide polymorphisms (SNPs) in TGF-β1 in glioma is not known, we evaluated two 

SNPs (-509C/T and 869T/C) in this gene in glioma risk and patient prognosis. A case-control 

study involving 138 Caucasian cancer-free control and 118 glioma patients from Portugal was 

performed. We showed that TGF-β1 -509C/T and 869T/C variants were not significantly 

associated with glioma risk. Importantly, we demonstrated that both homozygous -509TT and 

869CC genotypes were associated with longer overall survival of GBM patients. Our data 

suggested that TGF-β1 -509C/T and 869T/C polymorphisms may be relevant prognostic 

biomarkers in GBM patients. 

A striking characteristic of malignant gliomas, particularly GBMs, is their highly 

heterogeneous and therapy-resistant nature. These features are partly attributed to GSCs, a 

subpopulation of cancer cells with stem cell features that are involved in tumor initiation, 

progression, and recurrence, making them crucial therapeutic targets. Their isolation has been 

challenging as the markers typically used lack sufficient specificity and sensitivity. Thus, we 

also investigated here if intracellular autofluorescence, a biomarker of epithelial cancer stem 

cells, could be used as a biomarker to improve GSCs identification and isolation. We found that 

both established and patient-derived primary GBM cells presented a subpopulation of 

autofluorescent cells (Fluo+). Moreover, we showed that Fluo+ cells had typical features of 

GSCs, including higher expression of stem cell protein markers and pluripotency-associated 

genes, enriched capacity to grow as neurospheres, and long-term self-renewal ability. 
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Additionally, treatments with temozolomide (TMZ) or radiation led to a significant increase in 

the percentage of Fluo+ cells. Importantly, in vivo studies showed that mice with intracranial 

tumors derived from Fluo+ GBM cells presented a significantly shorter overall survival than 

those with non-autofluorescent cells (Fluo-) GBM cells. Finally, the underlying mechanism of 

the autofluorescent phenotype was due to the uptake, and accumulation of riboflavin in GSCs, 

by the ABCG2 transporters, exclusively in cells with GSCs’ features. Together, our data 

revealed autofluorescence as a novel and useful biomarker for GSCs. 

In the light of the lack of curative therapies for malignant glioma, many exploratory 

therapeutic strategies have been analyzed. Among these, MSCs have been studied as a new 

approach for the treatment of malignant gliomas, due to their inherent capacity of homing to 

glioma, and their ability to be engineered to deliver anti-tumoral agents. In the third 

experimental work included in this thesis, we assessed the impact of the secretome of MSCs on 

hallmark characteristics of GBM cells, such as cell viability, migration, proliferation, tumor 

growth, as well as chemotherapy response. Using in vitro approaches, we observed that GBM 

cells exposed to conditioned media (CM) from human umbilical cord perivascular cells 

(HUCPVCs, a MSC population) presented an increased cellular viability, proliferation and 

migration, while not affecting the sensitivity of GBM cells to TMZ treatment. Additionally, in 

the in vivo CAM assay, we found that CM from HUCPVCs promoted GBM tumor growth. 

Finally, proteomic analyses to characterize the secretome of HUCPVCs identified several 

proteins involved in promotion of cell survival, proliferation and migration, revealing novel 

putative molecular mediators for the effects observed in GBM cells exposed to HUCPVCs CM. 

Our data highlights that caution must be taken regarding the use of MSCs as stem-cell based 

therapies for GBM. 

In summary, the thesis presented here contributes to the better understanding of several 

dimensions of glioma, from factors that may be causative, to those that influence their 

pathophysiology and progression, to therapeutics insights. Particularly, assessing TGF-β1 SNPs 

-509C/T and 869T/C variants may be clinically relevant for GBM patients; using 

autofluorescence as a biomarker for GSCs identification may be important to develop new 

GSCs-specific therapies; and using MSCs as stem cell-based therapies for GBM does not seem 

to be a safe choice. 

 

 

  



  

Abstract / Resumo 

xvii 

Resumo 

 

Os gliomas malignos são os tumores primários do cérebro mais frequentes, constituindo 

cerca de 80% de todas as neoplasias do sistema nervoso central, sendo o glioblastoma (GBM) 

o subtipo mais agressivo e letal. Mesmo com as abordagens terapêuticas usadas, que incluem 

cirurgia, radioterapia e quimioterapia, o prognóstico de doentes com glioma continua bastante 

crítico. Além disso, a etiologia e factores clínicos de prognóstico relevantes dos gliomas são 

praticamente desconhecidos. Neste contexto, os estudos sumarizados nesta tese pretenderam: i) 

avaliar a influência das variantes genéticas do gene TGF-β1 na susceptibilidade para glioma e 

no prognóstico dos pacientes com glioma; ii) identificar novas características das células 

estaminais de glioma (GSCs), uma subpopulação de células com um papel importante na 

iniciação, resistência e recorrência dos tumores; e iii) revelar novos conhecimentos que a 

influência das células estaminais mesenquimatosas (MSCs) têm no comportamento dos GBMs. 

Muitos polimorfismos genéticos têm sido associados com susceptibilidade para glioma 

e com prognóstico de pacientes com glioma. Vários estudos demonstraram que polimorfismos 

do gene TGF-β1 estavam associados com a susceptibilidade para vários tipos tumorais. O 

transforming growth factor beta (TGF-β) tem um papel importante na carcinogénese e a sua 

atividade foi associada a um pior prognóstico de pacientes com glioma. Tendo em conta que a 

relevância de polimorfismos do tipo single nucleotide polymorphism (SNPs) do TGF-β1 em 

gliomas não é conhecida, nós avaliamos a possível associação de dois SNPs neste gene (-

509C/T e 869T/C) no risco e prognóstico de gliomas. Num estudo de caso-controlo 

demonstrámos que apesar de nenhum destes polimorfismos do TGF-β1 estar associado com um 

maior risco de desenvolvimento de glioma, ambos os genótipos homozigóticos -509TT e 

869CC estavam associados a uma maior sobrevida de pacientes com GBM. Os nossos 

resultados sugerem que os polimorfismos -509C/T e 869T/C do TGF-β1 podem ser 

considerados biomarcadores de prognóstico em pacientes com GBM. 

Uma característica impressionante dos gliomas, em particular dos GBMs, é a sua 

elevada heterogeneidade e resistência à terapia. Estas características são, em parte, atribuídas à 

presença de GSCs, que estão envolvidas na iniciação, progressão e recorrência tumoral, 

tornando-as um importante alvo terapêutico. O isolamento das GSCs tem constituído um 

desafio uma vez que os marcadores tipicamente usados não são específicos. Assim, nós também 

investigámos se a autofluorescência, um marcador usado na identificação de células estaminais 

cancerígenas de tumores epiteliais, poderia ser usado como novo biomarcador para melhor 

identificar e isolar as GSCs. Os nossos resultados demonstraram que linhas primárias e 

estabelecidas de GBM continham células autofluorescentes (Fluo+). Mais ainda, verificámos 

que as células Fluo+ apresentavam características típicas de GSCs, tais como uma elevada 
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expressão de marcadores de células estaminais e de genes de pluripotencia, maior capacidade 

para crescer em neuro-esferas e uma capacidade de auto-renovação mais prolongada. Após 

tratamento com temozolomida (TMZ) e radiação verificou-se um aumento da percentagem de 

células Fluo+. Para além disso, estudos in vivos revelaram que murganhos injetados 

intracranialmente com células de GBM Fluo+ apresentavam uma sobrevida significativamente 

menor do que murganhos injetados com células de GBM Fluo-. Por fim verificámos que o 

mecanismo subjacente ao fenótipo da autofluorescência era exclusivo das GSCs e se devia ao 

transporte de riboflavina, pelos transportadores ABCG2, e à sua acumulação intracelular. Todas 

estas evidências revelaram claramente que a autofluorescência é um novo biomarcador para a 

identificação de GSCs. 

Tendo em conta a falta de terapias curativas no tratamento de glioma, muitas estratégias 

terapêuticas exploratórias têm sido analisadas. Entre estas, as MSCs têm sido estudadas como 

uma nova abordagem terapêutica no tratamento dos gliomas, uma vez que são capazes de 

migrar para os gliomas e podem ser facilmente modificadas para distribuir agentes anti-

tumorais. No terceiro trabalho apresentado nesta tese, avaliámos o impacto do secretoma das 

MSCs em características de agressividade das células de GBM. Estudos in vitro demonstraram 

que células de GBM expostas a meios condicionados (CM) provenientes de células 

perivasculares humanas do cordão umbilical (HUCPVCs, uma população de MSCs) 

apresentavam um aumento na viabilidade, proliferação e migração celulares. Por outro lado, 

nenhum efeito foi observado na resposta à TMZ. Mais ainda, no ensaio in vivo da CAM, 

verificámos que o CM das HUCPVCs promovia o crescimento tumoral. Finalmente, a 

caracterização do secretoma das HUCPVCs foi efectuada por análises de proteómica, o que 

permitiu identificar varias proteínas envolvidas na sobrevivência, proliferação e migração das 

células de GBM, revelando novos e putativos mediadores moleculares envolvidos no efeito 

observado nas células de GBM quando expostas ao CM das HUCPVCs. Os nossos resultados 

demonstraram que é necessária alguma precaução no uso de MSCs como potenciais agentes 

terapêuticos para o tratamento de GBM.  

Em suma, a tese aqui apresentada contribui para uma melhor compreensão de várias 

dimensões dos gliomas, desde fatores que possam ser causadores da doença, passando por 

fatores que influenciam a sua patofisiologia e progressão, até a perspetivas terapêuticas. 

Particularmente, avaliar os níveis dos SNPs -509C/T and 869T/C do TGF-β1 pode ser 

clinicamente relevante para pacientes com GBM; usar a autofluorescência como biomarcador 

para identificar e isolar as GSCs poderá ser importante para desenvolver terapias específicas 

anti-GSCs; e usar MSCs como uma nova abordagem terapêutica no tratamento dos GBMs não 

aparenta ser uma escolha segura. 
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Gliomas, particularly glioblastomas (GBM), are one of the most devastating human 

cancers, presenting a high mortality rate and very poor patient outcomes. In the last decades 

this has not changed significantly, emphasizing the need for a better and more integrated 

understanding of its pathophysiology and a more rational design of novel therapeutic strategies 

that may, more efficiently, overcome the highly resistant nature of these tumors. The etiology 

of glioma remains largely undetermined being ionizing radiation the only risk factor firmly 

established; however, gliomas can also be caused by genetically inherited disorders and some 

genetic polymorphisms can modulate the risk for this type of tumors. Moreover, GBMs are 

highly heterogeneous tumors with a remarkable resistance to current therapies, which can partly 

be explained by the presence of glioblastoma stem cells (GSCs). 

The general aim of this thesis is to better understand the molecular and cellular 

determinants that may impact on the pathophysiology of gliomas, with potential to affect the 

risk and prognosis of glioma patients. An emphasis is put on GBM, as this is the most common 

and aggressive glioma subtype. The thesis is organized in five chapters, each addressing a 

specific goal, as presented below. 

Chapter 1 presents a general introduction reviewing the current knowledge on glioma 

pathophysiology, aiming to prepare the reader for the work presented in the thesis. Briefly, this 

chapter summarizes the epidemiology, classification, molecular determinants, and treatment of 

malignant gliomas. An emphasis is given on GSCs as critical components of glioma 

pathophysiology, and on mesenchymal stem cells (MSCs) as novel putative tools for a stem-

cell based therapy for glioma treatment. 

Chapter 2 focuses on the relevance of two single nucleotide polymorphisms (SNPs) of 

the transforming growth factor-beta 1 (TGF-β1) gene on glioma risk and prognosis. Since TGF-

β1 genetic polymorphisms have been implicated in the susceptibility of several cancers, and 

TGF-β signaling pathway has been identified as a mediator on gliomagenesis (by stimulating 

tumor cell proliferation, invasion and angiogenesis), we studied the relevance of TGF-β1 SNPs 

as biomarkers of glioma .This chapter is presented as a final research paper published in Tumor 

Biology (DOI 10.1007/s13277-015-3343-0). 

Chapter 3 presents a research work that identifies an intrinsic autofluorescent 

phenotype in GSCs that can be used as a biomarker, which is presently a topic of great interest 

in the field of cancer stem cells. In fact, GSCs have been associated with increased therapy 
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resistance and tumorigenesis, making them critical therapeutic targets. While substantial 

progress has been made towards isolating GSCs, the currently-available GSCs markers lack full 

specificity and sensitivity, making the identification of new, more specific and reliable 

biomarkers of GSCs critical. 

Chapter 4 focuses on MSCs, and how they can affect glioma cells paracrinally via 

secreted molecules. This is critical as MSCs have been exploited as a potentially useful new 

stem cell-based therapy for cancer treatment. However, very few studies have evaluated the 

effect of MSCs secretome on GBM aggressiveness, reporting inconsistent findings. This 

chapter summarizes how MSCs’ secretome modulates critical hallmark features of GBM, 

particularly on tumor cell viability, migration, proliferation, growth, and response to 

chemotherapy, while also characterize the full protein content of MSCs’ secretome by 

proteomic analysis. 

Chapter 5 includes an overall discussion of the topics addressed in the thesis, 

highlighting the major contributions, limitations, and significance of our findings, integrating 

and discussing them at the light of current relevant literature. Finally, suggestions for relevant 

future directions to complement our research are presented, as well as a general conclusion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: General Introduction  
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1. General Introduction 

 

1.1 Epidemiology and Classification of Glial Tumors 

1.1.1 Epidemiology and Clinical Features of Gliomas 

The central nervous system (CNS) encompasses several tumor subtypes that comprises 

benign to malignant entities, being the non-malignant tumors the most frequent (239,835 versus 

117,023 malignant)1. CNS tumors are the most common cancer among children and adolescents 

(0-19 years of age) with an overall average annual age-adjusted incidence rate of 5.57 per 

100,000. In adults (20+ years), the overall incidence rate is 28.57 per 100,0001. Regarding 

incidence rates by gender, CNS tumors are more frequent in females (58%; 206,565 tumors) 

than males (42%; 150,271 tumors)1.  

More than 250,000 new cases of primary malignant brain tumors are diagnosed 

annually, being the 17th most common cancer type worldwide2. United States of America (USA) 

white population, Northern Europe, and Israel are the regions presenting the highest reported 

rates of primary malignant brain tumors (11-20 per 100,000 habitants), while India and 

Philippines have the lowest rates (2-4 per 100,000 persons), which may be a consequence of 

differences in adequate health care and diagnosis practices, rather than geographic and genetic 

variations3. Among primary malignant brain tumors approximately 80% are gliomas4. In the 

USA, more than 19,000 new cases of glioma are diagnosed each year, with an age-adjusted 

average annual incidence of 6.6 per 100,000 persons1, 5. Males have higher incidence rates of 

glioma than females (1.3-fold), while gliomas are more common in non-Hispanic whites than 

African Americans1, 5.  

Gliomas constitute a broad class of neuroectodermal tumors believed to be originated 

from glial cells or stem/progenitor cells that upon malignant transformation develop glial 

characteristics6, 7. These tumors can appear anywhere in the CNS but occur primarily in the 

brain, preferably in the frontal, parietal, occipital, and temporal lobes combined (60.9%), and 

form a heterogeneous group of tumors with several histologic types and malignancy grades5. 

The classification of gliomas is performed according to the World Health Organization (WHO), 

which is based on their localization, histological features, degree of differentiation, grade of 

malignancy and, more recently, molecular features4, 8.  

Glioblastoma (GBM, WHO grade IV) is the most common type of glioma (55.1%), with 

an annual incidence of 3.2 per 100,000 persons1. The incidence of this tumor type increases 

with age, with rates highest in the 75 to 84 years old, being more common in older adults and 
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less common in children. GBM is more common in males than females (1.6-fold) and is 2 times 

more prevalent in whites comparing with blacks1. Regarding survival rates, patients diagnosed 

with GBM present a low survival, with only 5.1% of patients being alive after 5 years post 

diagnosis1. The majority of GBM (~90%), arise de novo being designated primary GBM, while 

those that appear from a lower-grade lesion progression are designated secondary GBM.  

Some general symptoms of gliomas include headache, confusion or a decline in brain 

function, memory loss, nausea or vomiting, personality changes or irritability, difficulty with 

balance, urinary incontinence, vision problems, speech difficulties and seizures. These 

neurological symptoms depend primarily on the CNS tumor location, however, the chance of a 

long recurrence‐free survival is more closely associated with patient clinical history, including 

age and Karnofsky performance score (KPS), as well as, with the biology of the tumor4.  

 

1.1.2 Histological and Molecular Classification of Gliomas 

Until recently, gliomas have been traditionally classified as astrocytomas, 

oligodendrogliomas, oligoastrocytomas (mixed), or ependymomas based on microscopic 

analysis (Table 1.14). Additionally, the WHO classification assigns to each tumor a histologic 

grade that range from WHO grade I (lower grade) to WHO grade IV (higher grade9). Grade I 

gliomas are benign tumors presenting a low proliferative growing and are normally associated 

with a favorable prognosis. Grade II tumors are considered low grade gliomas presenting a slow 

growing and some malignant features such as diffuse infiltration. After surgical resection these 

tumors tend to progress to higher grade gliomas. Grades III and IV are considered high-grade 

malignant gliomas since they present features of high aggressiveness such as microvascular 

proliferation (MVP), nuclear atypia, necrosis and mitotic activity. From these, the most 

malignant gliomas are those of grade IV and present poor outcomes4, 10, 11. 

For several decades, histological classification was the “gold standard” for gliomas 

classification and forming the basis for patient treatment, however it is associated with 

considerable interobserver variability12. In the last two decades, several molecular studies 

demonstrated that within the same glioma entity extensive clinical and biologic variability 

occurred, suggesting that the genetic factors underlying this variation could be used as clinically 

relevant biomarkers, contributing to a more accurate classification of brain tumors4, 9. In fact, it 

was already demonstrated that molecular characteristics correlates better with the biology of 

gliomas than histological classification13, 14. 
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Table 1.1: Classification of gliomas according to WHO 2007 classification of central nervous 

system tumors 4. 

Glioma type 
Grade 

(WHO) 
Glioma histologic subtype 

Incidence  

(% of all brain 

tumors) 

 I Pilocytic astrocytoma 5-6% 

 I Subependymal giant cell astrocytoma <1% 

Astrocytoma II Diffuse astrocytoma 10-15% 

 III Anaplastic astrocytoma 10-15% 

 IV Glioblastoma 12-15% 

Oligodendroglioma 
II Oligodendroglioma 2.5% 

III Anaplastic oligodendroglioma 1.2% 

Oligoastrocytoma 
II Oligoastrocytoma 1.8% 

III Anaplastic oligoastrocytoma 1% 

Ependymoma 

I Subependymoma 0.7% 

I Myxopapillary ependymoma 0.3% 

II Ependymoma 4.7% 

III Anaplastic ependymoma 1% 

 

Therefore, recently both histological and molecular features of brain tumors were 

integrated in the new WHO classification of CNS tumors (Table 1.28). This “integrated 

diagnosis” allow a more robust and quality-controlled assessment of clinically relevant 

diagnostic, prognostic, and predictive biomarkers. One of the major findings that validated the 

importance of gliomas’ molecular classification was the discovered of isocitrate dehydrogenase 

(IDH) 1 or 2-mutation status. Indeed, it was established that the presence of IDH mutations 

distinguishes gliomas with distinct clinical behaviors and biologies14-16. For the purposes of this 

thesis, the major subtypes of glioma (astrocytomas and oligodendrogliomas) are further 

discussed throughout this chapter. 

In adults, most glial tumors are diffuse gliomas that include the WHO grades II and III 

astrocytomas, the grades II and III oligodendrogliomas and the grade IV GBM, among other 

entities (Table 1.28). These types of gliomas present a diffuse infiltrative growth within CNS 

parenchyma that is often further accompanied by aggregation of tumor cells around blood 

vessels, neurons (perineuronal satellitosis) and under pial membrane17. Additionally, diffuse 

gliomas tend to invade over large distances along myelinated fiber tracts that can crossing the 

corpus callosum into the opposite hemisphere (“butterfly glioma” pattern). Sometimes, a 
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widespread diffuse glioma may have MVP and/or necrosis, as well as, multiple foci of high 

cellularity (multicentric or multifocal)17.  

 

Table 1.2: Grading of diffuse astrocytic and oligodendroglial tumors according to WHO 2016 

classification of central nervous system tumors8. 

 

Histological classification 

Traditionally, the evaluation of diffuse glioma subtypes is based on the similarity 

between non-neoplastic glial cells and tumor cells. Tumors showing hyperchromasia and 

nuclear irregularities are considered astrocytomas, whereas oligodendrogliomas usually have 

uniformly rounded nuclei17. Low grade oligodendrogliomas (WHO grade II) present uniform 

and round nuclei with a delicate chromatin, crisp nuclear membrane and very small nucleoli, 

Glioma histologic subtype Grade (WHO) 

Diffuse astrocytoma, IDH mutant II 

Gemistocytic astrocytoma, IDH mutant II 

Diffuse astrocytoma, IDH wildtype II 

Diffuse astrocytoma, NOS II 
 

 

Anaplastic astrocytoma, IDH mutant III 

Anaplastic astrocytoma, IDH wildtype II 

Anaplastic astrocytoma, NOS III 
 

 

Glioblastoma, IDH wildtype IV 

Giant cell glioblastoma IV 

Gliosarcoma IV 

Epithelioid glioblastoma IV 

Glioblastoma, IDH mutant IV 

Glioblastoma, NOS IV 
 

 

Diffuse midline glioma, H3-K27M mutant IV 
 

 

Oligodendroglioma, IDH mutant and 1p/19q co-deleted II 

Oligodendroglioma, NOS II 
 

 

Anaplastic oligodendroglioma, IDH mutant and 1p/19q co-deleted III 

Anaplastic oligodendroglioma, III 
 

 

Oligoastrocytoma, NOS II 

Anaplastic oligoastrocytoma, NOS III 
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while WHO grade III oligodendroglioma have increased pleomorphism, cell size, a more 

vesicular chromatin and prominent nucleoli, as well as may present perinuclear halo17. 

Additionally, histological features such as mitotic activity, necrosis, and MVP are used for 

grading of diffuse gliomas. WHO grade II diffuse gliomas, do not present malignant 

histological features such as necrosis, MVP and mitotic activity18, while anaplastic high-grade 

gliomas (WHO grade III) are characterized histologically by increased mitotic activity, nuclear 

atypia and hypercellularity19. Finally, the defining histopathologic features for the diagnosis of 

GBM (WHO grade IV) are MVP and necrosis, nevertheless these tumors also present nuclear 

atypia, high mitotic rates, cellular pleomorphism, invasiveness and vascular thrombosis 4, 8. 

 

Molecular classification 

Molecularly, diffuse astrocytic and oligodendroglial tumors are subdivided into several 

glioma subtypes which includes WHO grades II-IV IDH-wildtype, WHO grades II-IV IDH-

mutant astrocytomas, IDH-mutant and short arm of chromosome 1 and the long arm of 

chromosome 19 (1p/19q)-co-deleted oligodendrogliomas of WHO grades II-III (Table 1.2 8). 

The hallmark genetic alteration of WHO grades II-III diffuse gliomas (astrocytoma and 

oligodendroglioma) is the mutation of IDH1 or, less common, IDH216, 20, 21. However, some 

alterations are different in astrocytic and oligodendroglial tumors. Mutations on tumor protein 

53 (TP53), and alfa thalassemia/mental retardation syndrome X-linked (ATRX) occur in WHO 

grades II and III astrocytomas, whereas whole-arm losses of 1p 19q (1p/19q co-deletion) and 

telomerase reverse transcriptase (TERT) promoter mutation happen on oligodendrogliomas13, 

22. In fact, IDH, TP53, and ATRX mutations are considered the defining molecular 

characteristics of astrocytic tumors, while IDH mutation, 1p/19q co-deletion, and TERT 

promoter mutation is considered the genetic profile of oligodendrogliomas 13, 22 (Figure 1.19).  

WHO grade IV GBMs are divided into: GBM IDH-wildtype (~90%), GBM IDH-mutant 

(~10%) and GBM NOS (not otherwise specified), that corresponds to cases for which IDH 

mutation cannot be tested. Almost all IDH-wildtype GBMs are typically seen in patients over 

55 years of age, and correspond to primary GBMs, while IDH-mutant GBMs correspond to 

secondary GBMs and preferential occur in young adults8, 23. In adults, IDH-wildtype GBMs 

frequently reveal homozygous deletion of the cyclin-dependent kinase inhibitor 2A and 2B 

(CDKN2A/p14ARF and CDKN2B) loci on 9p21, monosomy of chromosome 10, copy number 

gains on chromosome 7, and mutations in the promoter of TERT and in the phosphatase and 

tensin homolog on chromosome 10 (PTEN) tumor suppressor gene19. Additionally, other 

mutations have been found in this GBM subtype, including mutations in the neurofibromatosis 



 

General Introduction 

8 

type 1 (NF1), TP53, phosphatidylinositol 3-kinase, catalytic, alpha (PIK3CA), and 

phosphatidylinositol 3-kinase regulatory subunit 1 (PIK3R1) genes24. Amplification of the 

murine double minute genes (MDM2 and MDM4), CDK4, CDK6, and  epidermal growth factor 

receptor (EGFR), hepatocyte growth factor receptor (MET), and platelet-derived growth factor 

receptor A (PDGFRA) genes was also observed19. 

 

 

Figure 1.1: Molecular diagnostics of diffuse gliomas. The genetic alterations considered as diagnostic 

biomarkers, namely loss of nuclear ATRX expression, H3-K27M mutation, IDH mutation (mutation of 

IDH1 or IDH2) and 1p/19q co-deletion are shown, as well as the typical biomarker patterns for the most 

common diffuse glioma entities. Selected chromosomal and genetic alterations that may serve as 

additional diagnostic markers are also represented. O6-methylguanine-DNA methyltransferase (MGMT) 

promoter methylation does not represent a diagnostic marker but is of clinical importance as predictive 

marker for response to alkylating agent chemotherapy, in particular in elderly patients with IDH-

wildtype GBM. Abbreviations: TERTp mutant, TERT promoter mutant; WHO II, III, or IV, WHO grade 

II, III, or IV. Results obtained by testing: (1) IDH1 or IDH2 mutations; (2) nuclear ATRX expression; 

(3) 1p/19q co-deletion; (4) other markers (Adapted from 9). 

 

1.2 Determinants of Glioma Risk and Pathophysiology 

1.2.1 Environmental and Genetic Risk Factors for Glioma 

The main epidemiologic causes of glioma risk are advanced age, Caucasian race and 

male gender25. However, it is accepted that several environmental causes, such as ionizing 

radiation, allergies, tobacco smoking, alcohol consumption, diet, infectious agents, among 

others and genetic factors can be involved in the etiology of gliomas. Several studies have been 
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evaluating the effect of those risk factors on glioma incidence, however most of the results were 

inconsistent and no clearly correlation was observed 5, highlighting that the etiology of gliomas 

is still unclear. 

Regarding environmental risk factors, the only factor associated with increased glioma 

risk is ionizing radiation (Table 1.33), which can induce DNA damage (both single- and double-

strand breaks) that can cause genetic changes leading to cancer, including gliomas 26. It has 

been shown that exposure to a high-dose of therapeutic radiation is the most firmly established 

environmental cause of glioma and that some genetic factors can influence the extent of risk 

from these exposures 18, 27-31. Gliomas may appear as early as 7-9 years after irradiation11. In 

1999, Salminen and colleagues showed that patients with brain tumors that were previously 

treated with radiation therapy developed more frequently secondary brain tumors32. 

Additionally, association studies between atomic bomb survivors and incidence of glioma were 

performed showing that survivors have higher incidence rates of glioma33. A higher relative 

risk of glioma was also observed in children that were treated with ionizing radiation for tinea 

capitis and skin hemangioma34. Moreover, several studies have already evaluated the 

association between glioma risk and the exposure of typical environmental risk factors, such as 

mobile phones5, 35-37, electromagnetic fields38, 39, diet (e.g., nitrosamine compounds, vitamin E; 

calcium intake)40-46, infectious agents (e.g., influenza, chicken pox)47-50, lifestyle behaviors 

(e.g., tobacco smoking, alcohol consumption)44, 51, and allergies conditions (asthma, eczema, 

food allergies, hayfever)52-58. However, with the exception of allergies conditions, which has 

been associated with a reduced glioma risk 30, 52, 53, 55, 56, 58, 59, inconsistent associations, with 

one or more studies finding a positive association and others observing no association, have 

been reported (Table 1.33).  

For the above-mentioned reasons, it is important to further investigate which 

environmental risk factors are associated with glioma risk by performing large-scale studies 

with better assessment of exposure, together with the analysis of genetic factors that may 

influence the effects of such exposure. 

Heritable genetic contribution to glioma has been suggested by studies of genetic 

syndromes, familial aggregation and linkage60, 61. The familial tumor syndrome most frequently 

associated with glioma is Li-Fraumeni syndrome that is caused by a constitutive loss-of-

function mutation in TP53. Nevertheless, other rare Mendelian disorders are associated with 

increased glioma risk, such as Lynch and melanoma-neural system tumor syndromes, 

Neurofibromatosis 1 and Neurofibromatosis 2 and tuberous sclerosis (Table 1.4 3). Since only 

a minority of glioma cases are caused by ionizing radiation effects and inherited disorders, 
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segregation analyses have found that genetic risk factors for glioma are best explained with a 

polygenic model. Therefore, several studies assessing genetic polymorphisms thought to be 

involved in glioma susceptibility were performed.  

 

Table 1.3: Environmental risk factors studied as possible glioma risk factors3. 

Environmental factor Association 

Ionizing radiation + 

Mobile phone use x 

Electromagnetic fields x 

Tobacco smoking x 

Alcohol consumption x 

Nitrosamine compounds x 

Allergies conditions - 

Chicken pox x 

Abbreviations: +, association with increased glioma risk; -, 

association with decreased glioma risk; x, no consistent associations. 

 

Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation 

in the human genome62, and can impact gene expression, function, phenotypes and diseases 63. 

SNPs contribute deeply to cancer susceptibility, and their study has proven fundamental in 

defining disease candidate gene regions. Some of the most frequently studied polymorphisms 

are in genes involved in DNA repair (a mechanism extremely important in the preservation of 

genomic integrity), cell cycle/apoptosis (deregulation of cell proliferation and apoptosis is 

considered a hallmark of human tumors, including glioma), cancer metabolism (important in 

cellular detoxification process), growth pathways (deregulation of growth signaling pathways 

is another hallmark of gliomas), among others. Regarding DNA repair mechanisms, several 

genes, including MGMT (O-6-methylguanine-DNA methyltransferase), protein kinase, DNA‐

activated, catalytic (PRKDC), excision repair cross-complementation group (ERCC1) 1 and 2, 

X-Ray Repair Cross Complementing 1 (XRCC1), APEX1, TP53, Poly (ADP-ribose) polymerase 

1 (PARP1), and DNA ligase 1 (LIG1) have been studied in the susceptibility to develop 

glioma26, 64-67. Additionally, genes involved in cell cycle/apoptosis, such as caspase 8, cyclin 

D1 (CCND1), cyclin H (CCNH) MDM268, 69, in cancer metabolism, including Glutathione S-

transferases (GST), Cytochrome P450 2D6 (CYP2D6), Superoxide dismutase (SOD) 2 and 3, 
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glutathione peroxidase 1 (GPX1), and nitric oxide synthase 1 (NOS1)70-72, and growth 

pathways, including epidermal growth factor (EGF) and EGFR73, 74, were also investigated in 

glioma risk. 

 

Table 1.4: Hereditary cancer syndromes associated with increased risk of glioma 3. 

Gene Syndrome Features Associated Gliomas 

CDKN2A 

Melanoma-neural 

system tumor 

syndrome 

Predisposition to melanoma 

and astrocytic tumors 
Astrocytoma 

IDH1/IDH2 

Ollier disease/ 

Maffucci 

syndrome 

Intraosseous benign 

cartilaginous tumors, cancer 

predisposition 

Glioma 

MSH2, MLH1, 

MSH6, PMS2 
Lynch syndrome 

Gastrointestinal, endometrial, 

and other cancers 

Glioblastoma, 

astrocytoma 

NF1 
Neurofibromatosis 

1 

Neurofibromas, 

schwannomas, 

Café-au-lait macules 

Astrocytoma, optic 

nerve glioma 

NF2 
Neurofibromatosis 

2 

Acoustic neuromas, 

meningiomas, neurofibromas 
Spinal ependymoma 

POT1 

Melanoma-

oligodendroglioma 

susceptibility 

syndrome 

Predisposition to melanoma 

and oligodendroglial tumors 

Oligodendroglioma 

and mixed 

oligoastrocytoma 

TP53 
Li–Fraumeni 

syndrome 

Numerous cancers, especially 

breast, brain, and soft-tissue 

sarcoma 

Glioblastoma, 

astrocytoma, choroid 

plexus tumor 

TSC1, TSC2 Tuberous sclerosis 
Multisystem nonmalignant 

tumors 

Subependymal giant 

cell astrocytoma 

Abbreviations: MLH1, mutL homolog 1; MSH2/MSH6, mutS homolog 2/6; NF1/NF2, neurofibromin 1/2; PMS2, 

postmeiotic segregation increased 2; TSC1/TSC2, tuberous sclerosis ½ (Adapted from 5). 

 

These case-control studies only assessed a limited set of genetic polymorphisms, and a 

robustly replicated glioma risk loci was not found from those candidate genes. Additionally, 

inconsistent associations were found. Therefore, and taking advantage of recent technology that 

allows for a rapid whole genome sequencing, some genome-wide association studies (GWASs) 

of glioma patients were performed75-80. In a GWASs, healthy controls and individuals with the 

disease of interest are genotyped at hundreds of thousands of SNPs to discover inherited 

variants, which are significantly more common in those with disease than in those without80. 

The GWASs performed with glioma patients have identified 10 independently significant SNPs 

associations located in eight gene regions, which includes regions near to CCDC26 (Coiled-
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Coil Domain Containing 26) CDKN2B, EGFR, Pleckstrin Homology-Like Domain, Family B, 

Member 1 (PHLDB1), Regulator of Telomere Elongation Helicase (RTEL1), Telomerase RNA 

Component (TERC), TERT, and TP53 (Table 1.53). These germline SNPs (also called glioma 

risk loci, risk alleles, or risk variants) were found to be more frequent in glioma patients than 

controls, indicating that persons inheriting one of these variants have an increased glioma risk 

by 20-40% when compared with a person who did not inherit that variant81. Some of these risk 

variants have previously been identified in glioma-associated hereditary cancer syndromes (i.e., 

CDKN2B, TP53) and glioma tumor studies (i.e., CDKN2B, EGFR, TP53,), while others are 

located in or near genes or chromosomal regions that were not been previously associated with 

glioma (i.e., CCDC26, and PHLDB1, of unknown function; and RTEL1, TERC, TERT, involved 

in telomere maintenance). These risk variants are not within the exonic portions of these genes, 

suggesting that inherited differences in gene regulation confer risk for glioma at these loci 3. 

Four of these variants (EGFR, RTEL1, TERT, TP53) were associated with an increased risk of 

all glioma grades80-82, while the other four regions contain variants associated with increased 

risk for specific glioma grades, histologies, or molecular subtypes (CCDC26, CDKN2B, 

PHLDB1, TERC)80, 82-84. SNPs in CCDC26 (chromosome 8q24) have an increased risk of IDH-

mutated astrocytomas and also of oligodendrogliomas, regardless of IDH mutation status83. 

SNPs near CDKN2B (chromosome 9) increase risk of astrocytomas, regardless of grade, but 

are not associated with risk of oligodendrogliomas80. Finally, SNPs in PHLDB1 increase risk 

of IDH-mutated gliomas, regardless of grade or histology84. 

Important progress has been made in the identification of potential risk factors for 

glioma (ionizing radiation, and heritable genetic factors) although more studies are necessary. 

The new molecular tools, as well as the use of larger groups of patients, will probably provide 

the discovery of new inherent risk variants, which altogether can contribute to classify gliomas 

into more homogeneous subgroups concerning etiology. With this future analysis, the potential 

interaction between somatic alterations, inherited genetic variants, and environmental risk 

factors can be widely evaluated, leading to a further understanding in the process of 

gliomagenesis. 
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Table 1.5: Hereditary variants associated with risk of glioma from GWASs3. 

Gene SNP (risk allele) Hypothesized function Associated Glioma 

CCDC26 rs55705857 (G) Undetermined 
Oligodendroglial tumors, 

IDH-mutated astrocytomas 

CDKN2B rs1412829 (G) 
Increased ANRIL 

expression 
Astrocytoma II–IV 

EGFR rs2252586 (A) Undetermined Astrocytoma III–IV 

EGFR rs11979158 (A) Undetermined Astrocytoma III–IV 

RTEL1 rs6010620 (G) 
Alteration of RTEL1- 

PCNA interaction domain 
All glioma subtypes 

RTEL1 rs4809324 (C) 
Increased telomere 

length/telomerase activity 
Astrocytoma III–IV 

PHLDB1 rs498872 (A) Undetermined IDH-mutated glioma 

TERC rs1920116 (G) 
Increased telomere 

length/telomerase activity 
Astrocytoma III–IV 

TERT rs2736100 (C) 
Increased telomere 

length/telomerase activity 
All glioma subtypes 

TP53 rs78378222 (C) 
Alteration of TP53 

polyadenylation signal 
All glioma subtypes 

 

1.2.2 Molecular alterations/biomarkers on Glioma Pathophysiology 

Several recent studies have tried to characterize the complex biology of gliomas, 

focusing on molecular analysis of tumors with apparently similar pathological features85. 

Integrated analyses on mutational data, DNA methylation and copy number, mRNA, 

microRNA and protein expression information were able to identify subgroups of gliomas that 

were more precisely defined than by histologic analysis86-87. Additionally, it was already 

demonstrated that in subsamples of the same GBM patient there is a genetic diversity, and more 

importantly that single GBM cells presented different patterns of genetic alterations88-90. 

Several studies have divided GBMs into multiple molecular classes, opening a new area of 

research into molecular markers of GBM91-93. In this section, the most relevant molecular 

markers of glioma, particularly in GBM, will be discussed. 

 

Isocitrate dehydrogenase (IDH) 

IDH enzymes catalyze the oxidative carboxylation of isocitrate α-ketoglutarate (α -KG), 

resulting in the reduction of nicotinamide adenine dinucleotide phosphate (NADP) to NADPH. 

IDH1 and 2 are encoded by the IDH1 and IDH2 genes, respectively94. In the last decade, the 

discovered of somatic mutation in IDH1 and IDH2 genes, in a subset of GBMs, was probably 

the greatest discovery in the molecular understanding of gliomas15. The authors showed that 
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IDH mutations occurred mostly in younger patients with secondary GBMs and were 

significantly associated with an increase in overall survival (OS)15. Subsequently, studies 

showed that mutations in IDH1 or IDH2 were mutually exclusive and that mutations in these 

genes consist of single amino acid substitutions. IDH1 mutation (R132H) is the most common 

mutation of gliomas, accounting for about 90% of the mutated gliomas15, 16, 21, 95-98. Moreover, 

Christensen and colleagues demonstrated that the presence of IDH1 or IDH2 mutation was 

significantly associated with better survival of glioma patients, independently of patients’ age, 

sex, and grade-specific histology99. Globally, mutations on IDH1 and IDH2 genes are more 

frequently found in WHO grade IV secondary GBM and WHO grade II and III of young adults 

(70%)15, 21, 98. Contrarily, pediatric diffuse gliomas or primary GBMs rarely present IDH 

mutations15, 21, 100.  

Some mechanisms for the tumorigenic potential of mutant IDH proteins have been 

suggested. IDH1 mutation and its inactivation, activate hypoxia inducible factor 1 (HIF-1) 

pathways that are important in the inhibition of apoptosis, tumor growth, and cell survival under 

hypoxic conditions101. Additionally, Xu and colleagues have shown that IDH1/2 mutations 

convert α-KG to 2-hydroxyglutarate (2-HG), which in turn inhibits α-KG-dependent 

dioxygenases, including members of the TET family of 5-methylcytosine (5mC) 

hydroxylases102. Inhibition of these enzymes can contribute to gliomagenesis since there is an 

increase on DNA and histone methylation, which can lead to aberrant methylation 

(hypermethylation) of multiple cytosine-phosphate-guanine (CpG) dinucleotide-rich islands 

across the genome, a characteristic profile designated as glioma CpG island methylator 

phenotype (GCIMP) 87, 99, 103-106. 

IDH mutations occur early on gliomagenesis and possible represent the initiating 

somatic aberration in the vast majority of WHO grades II and III diffuse gliomas; nonetheless, 

these mutations do not appear to be sufficient for tumor growth induction107 In malignant 

glioma patients, IDH mutation is associated with better response to temozolomide (TMZ) and 

adjuvant radiation and longer OS22, 96, 97, 108-114. 

Recent studies demonstrated that inhibitors of mutant IDH1 promoted differentiation 

and inhibition of tumor growth of IDH1 mutant glioma cells115, 116. Similarly, in immunized 

mice models of intracranial glioma, immunotargeting of mutant IDH1 have shown antitumor 

immunity, tumor regression and prolonged survival117, 118. 
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Alpha-thalasemia mental retardation syndrome X-linked (ATRX) 

ATRX is a DNA helicase and a chromatin remodeling protein. ATRX incorporates H3.3 

histone proteins into the telomeric regions of chromosomes in collaboration with histone 

chaperone death associate protein 6 (DAXX)119. Mutations in ATRX gene result in the loss of 

protein function, which lead to abnormal telomeres, and are associated with an alternative 

lengthening of telomeres (ALT) phenotype, along with more widespread genomic 

destabilization120, 121. In gliomas, ATRX mutations have been associated with telomere 

maintenance and lengthening leading to evade apoptosis, and immortality of glioma cells121-125. 

Mutations in ATRX gene are less frequent in oligodendrogliomas and primary GBMs 

(4-20%). In contrast, these mutations are much more common in WHO grades II and III 

astrocytomas (> 60%) and in secondary GBMs (~57%)123. These mutations are more frequent 

in tumors that have IDH and TP53 mutations, but are mutually exclusive with 1p/19q co-

deletion 123-125. Patients with astrocytic tumors with loss of ATRX presented a significant better 

prognosis than those expressing this gene and simultaneously had IDH mutation126.  

 

Telomerase reverse transcriptase (TERT) 

Human telomerase is inactive in most adult cells being only active in the embryonic 

state or in high proliferative somatic cells. In the case of cancer cells, it is normal to observe a 

reactivation of telomerase. TERT, the catalytic subunit of the telomerase complex, is involved 

in telomere maintenance, by adding nucleotides to the telomeres. Mutations in the promoter 

region of TERT at positions 228 and 250 (C228T and C250T) increase the expression of 

telomerase127. In gliomas, the discovery of these mutations provided a biomarker for 

prognostication of brain tumors, being associated with a poor prognosis127. 

Activating mutations in TERT promoter occurred in a large percentage of primary GBM 

(54-83%) and oligodendrogliomas (77% of WHO II and III oligodendrogliomas and 82% of 

1p/19q co-deleted tumors), but were rare events in WHO grades II and III astrocytomas (26%) 

and secondary GBMs (5%)128, 129. These TERT mutations were inversely associated with tumors 

presetting ATRX and IDH mutations129, 130, but were positively correlated with EGFR 

amplification. Importantly, mutation on TERT promoter has been associated with poor overall 

survival in GBM patients, particularly when associated with EGFR amplifications130, 131. 

 

1p/19q co-deletion 

Co-deletion of 1p/19q is an early genetic event and has been associated with tumors of 

the oligodendroglial lineage132. 1p/19q co-deletion results from an unbalanced translocation 
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involving the centromeric regions of 1p and 19q. So far, the role that this co-deletion has in 

tumorigenesis is not clear, however, recent studies, in a subset of oligodendroglial tumors, have 

identified mutations in two potential tumor suppressor genes, FUSE-binding protein 1 (FUBP1) 

in chromosome 1p and homolog of the Drosophila gene capicua (CIC) on chromosome 19, that 

may explain this question133, 134. 

Gliomas that harbor this co-deletion present better prognosis, since these patients have 

good response to chemotherapy and longer survival compared to similar histologic grade, and 

malignant progression to GBM is rare135, 136. Moreover, recent studies have found a strong 

correlation between 1p/19q co-deletion and IDH mutation114, 130, 133, 137.  

  

Epidermal growth factor receptor (EGFR) 

EGFR is a transmembrane receptor tyrosine kinase that is frequently amplified in GBMs 

(40%), and less frequently in anaplastic astrocytomas (5-10%)24. EGFR amplification is highly 

frequent in primary GBMs138. Approximately 50% of GBMs with EGFR amplification are 

mutated in EGFRvIII form139-141. EGFRvIII is the most common EGFR mutation in GBM, 

being characterized by in-frame deletion of exons 2-7, which encode the extracellular surface 

of the protein that results in a truncated transmembrane receptor with constitutive activity. Both 

EGFR amplification and the EGFRvIII mutant are mutually exclusive with IDH mutations.  

Tumors presenting both forms, EGFR amplification and EGFRvIII overexpression, 

were associated with GBM patients’ poor prognosis. Nevertheless, it was shown that the 

prognostic value of EGFR amplification depends on GBM patient’s age. Younger patients 

presenting EFGR overexpression and TP53 wildtype presented a worse prognosis compared to 

older patients, indicating a relationship between age, EGFR and TP53142. Mechanistically, the 

constitutive activation of EGFR is associated with cell survival, growth, invasion, 

tumorigenicity and, radio- and chemo-resistance143, 144. In the last years, several therapies anti-

EGFR (antibodies and small molecules inhibitors) have been developed, however none of these 

therapies were sufficiently effective. 

 

O6-methylguanine-DNA methyltransferase (MGMT) 

One of the most clinically relevant DNA methylation in GBMs is in the promoter of 

MGMT. MGMT is a ubiquitously expressed nuclear enzyme that removes alkyl groups from 

the O6-position of O6methylguanine. This process interferes with the effect of TMZ (alkylating 

chemotherapeutic agent) since this DNA repair protein removes the alkyl groups induced by 

TMZ, leading to therapy resistance 145-147. Hypermethylation of MGMT promoter causes gene 
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silencing which interferes with DNA repair and increases TMZ sensitivity whereas an 

unmethylated promoter of MGMT lead to gene expression and consequently to elevated levels 

of the repair enzyme resulting in chemotherapy resistance 147. 

Approximately 50% of primary GBMs present methylation of MGMT promoter148-150. 

However, this phenomenon is associated with IDH1/2 mutant tumors because of which it is 

more common in secondary (75%) comparing with primary GBMs (36%)96. MGMT promoter 

methylation has prognostic and predictive significance in GBM patients, being associated with 

better OS independently of treatment147, 151, 152. Additionally, it is associated with better 

response to TMZ combined with radiotherapy (RT), improving progression free survival (PFS) 

and OS with combined treatment when compared with RT alone147, 152-154. Transcriptional 

silencing of the MGMT gene due to promoter hypermethylation occurs almost invariably in 

IDH mutant and G-CIMP positive diffuse gliomas, as opposed to approximately 50% of G-

CIMP negative, IDH wildtype diffuse gliomas130, 155. 

 

Transcriptional subtypes of GBM 

Over the last two decades, the extensive use of DNA microarray technology proved to 

be a powerful tool providing new ways for tumor classification that can be used in diagnosis, 

prognostication and prediction. Early studies in malignant glioma verified that transcriptional 

signatures efficiently distinguish lower-grade tumors from GBM, as well as identified several 

genes whose expression levels correlate with prognosis156-161. Subsequently, some studies 

found that specific expression profiles could strongly discriminate primary from secondary 

GBMs162-164. Phillips and colleagues, in WHO grades II and III diffuse gliomas, examined 

differential expression of markers associated with clinical outcome and identified three major 

subclasses of GBM: proneural, mesenchymal and proliferative92. The proneural subtype was 

shown to be associated with a better prognosis, as well as to the expression of genes with normal 

brain and neurogenic processes. The other two subtypes, mesenchymal and proliferative, were 

associated with poor prognosis and showed activation of gene expression related to cell 

proliferation or angiogenesis, respectively92. In 2009, Verhaak et al, with a sample set of 200 

GBMs from TCGA, employed unsupervised clustering of global transcriptional data. This 

analysis divided GBMs into four molecular subclasses: classical, mesenchymal, proneural and 

neural93. Classical, mesenchymal and proneural tumors were strongly associated with genomic 

abnormalities in EGFR, NF1, and PDGFRA and IDH1 or IDH2, respectively. Regarding the 

neural subtype, this tumor type was characterized by the expression of neuron markers, such as 

gamma-aminobutyric acid (GABA) A receptor, alpha 1 (GABRA1), neurofilament, light 
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polypeptide (NEFL), synaptotagmin 1 (SYT1), and solute carrier family 12 (potassium/chloride 

transporter), member 5 (SLC12A5)93. Moreover, gene signatures revealed that proneural tumors 

correlated best with oligodendrocytes, neural tumors with mature neurons, and classical and 

mesenchymal tumors with astrocytes 93. Regarding the response to aggressive therapy, the 

subtype that most improved with this therapeutic regime, was the classical, and no benefit was 

observed for proneural subtype93.  

 

1.3 Cell Biology of Glioma 

1.3.1 Theories on Cell of origin of Glioma 

The origin of gliomas is still a controversial subject. Nevertheless, it is accepted that all 

human malignant neoplasms arise from a series of molecular alterations that begin in a few 

numbers of cells, or even in a single. Currently, two distinctive models have been proposed for 

the origin of glioma: clonal model and cancer stem cell model165, 166. 

In 1976, Nowell and co-workers postulated that cancer was an evolutionary process, 

where tumors had diverse genetically and phenotypically cell subpopulations (clonal model). 

In this model, genetic or epigenetic mutations appear randomly and any new phenotypes are 

subjected to the pressure of natural selection, with the best adapted able to expand and 

proliferate 167. This variability would become important when environmental changes occur, 

such as those induced by chemo- or radio-therapy, when the previous acquisition of a resistant 

phenotype would allow a minor population to survive, expand, and become dominant 167. 

Regarding gliomas, it is hypothesized that these tumors have origin in differentiated mature 

glial cells (e.g., astrocytes or oligodendrocytes) that suffer a dedifferentiation after the primary 

alteration, during the carcinogenic process (Figure 1.2168). 

Lately, the cancer stem cell (CSC) theory has become a widely accepted model of cancer 

initiation and progression. This model emphasizes the importance in cancer of a subset of cells 

capable of generating other cell types in a unidirectional manner 169, 170. This theory postulates 

a hierarchical organization in which a tumor is generated from cells with stem cell 

characteristics, known as CSCs. By asymmetric division, these cells will maintain their 

population and, at the same time, generate more differentiated cells with limited proliferation 

that constitute the tumor bulk, while CSCs will remain as a small subpopulation. In this view, 

heterogeneity is the dualistic nature of CSCs and non-CSCs with various degrees of 

differentiation, regardless of their genetic background 171 presumably determined by epigenetic 

changes 165. In the case of glial tumors, the CSC hypothesis postulates that these tumors are 
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originated by an alteration on neural stem cells (NSCs) or neural progenitor cells (NPCs) 

(Figure 1.2168)166, 172, 173. 

 

Figure 1.2: Schematic representation of the differentiation process of neural stem cells into 

different cell lineages of the CNS and putative cells of origin of gliomas. Protein markers for neural 

stem cells, progenitor cells, and differentiated cells are indicated in boxes. The normal differentiation 

process (green arrows) originates three main types of cells in the mature CNS, including neurons and 

glial cells (particularly oligodendrocytes and astrocytes; ependymal cells are not represented). The most 

classical hypothesis on the origin of glioma cells is represented by orange arrows (differentiated glial 

cells are malignantly transformed through a dedifferentiation process). The most recent hypothesis 

postulating that gliomas originate from the direct transformation of neural stem cells or glial progenitor 

cells is represented by grey arrows168. 

 

Although clonal evolution and CSC models have been considered as mutually 

exclusive, both models could be complementary since intraclonal heterogeneity has been 

observed in tumors in which CSCs were identified. Moreover, heterogeneity can be also 

generated by cell plasticity in response to microenvironment cues, such as blood vessel density, 

differences in oxygen pressure and composition of extracellular matrix. These differences will 

affect tumor cells and may be a cause of genetic and phenotypic changes observed in tumor 

cells. Therefore, and considering this view, the CSC model can be updated with the concept of 

various degrees of “stemness” and/or tumorigenic potential, determined either by stochastic 

events or microenviromental cues174, 175. 
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Even though the CSC theory has been widely accepted, the origin of CSCs remains a 

mystery. Two distinct hypotheses are considered: i) CSC has origin in a normal stem cell or 

progenitor cell that undergoes specific genetic aberrations; ii) de-differentiation of 

differentiated cells in the early tumor occur to form CSCs. Stem cells produce transient cells, 

which in turn generate lineage-restricted progeny that become the differentiated effector cells 

(Figure 1.3). The pools of neural stem and progenitor cells (NSPCs) differ in location during 

development, suggesting that different cellular hierarchies may be co-opted by brain tumors176. 

In fact, normal stem cells or progenitor cells could be ideal targets for malignant transformation 

since they represent the most primitive cells, live longer, and typically re-enter cell division to 

replace the pool of both stem cells and differentiated progenies. Therefore, in theory, these 

stem/progenitor cells could accumulate sequential genetic or epigenetic mutations and initiate 

oncogenesis.  

 

Figure 1.3: Hypotheses of how a cancer stem cell may arise. (1) A stem cell undergoes a mutation, 

(2) A progenitor cell undergoes two or more mutations, or (3) A fully differentiated cell undergoes 

several mutations that drive it back to a stem-like state. In all 3 scenarios, the resultant cancer stem cell 

has lost the ability to regulate its own cell division (Adapted from177). 

 

The existence of a cell of origin (cell type that is uniquely susceptible to particular 

oncogenic mutation(s))178 for CNS tumors has been explored using several transgenic animal 

models. These models have into consideration that NSPCs in the brain are the primary cellular 

targets for gliomagenesis179. These animal models use NSPC-related cell promoters, as nestin 
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and glial fibrillary acidic protein (GFAP), to inactivate tumor suppressors (i.e., PTEN or p53) 

or drive oncogene expression (i.e., activated Ras) in specific cellular compartments. This 

process was effective in initiating cellular transformation and driving oncogenesis180-184. 

Moreover, in gliomas, differentiated cells in the CNS (neurons and astrocytes) demonstrated 

the ability to initiate tumorigenesis upon oncogenic transformation185. Additionally, several 

studies demonstrated that oligodendrocyte precursor cells (OPCs) can be the cell of origin for 

malignant gliomas, since these cells are susceptible to transformation by a wide range of 

mutations often found in human gliomas, such as PTEN, Nf1, Ras sarcoma (Ras) and p537. 

These studies demonstrated that any cell in the brain can serve as a cell of origin for 

CNS tumors, and emphasize the importance of the inter-conversion between CSCs and 

differentiated cancer cells for tumor initiation and maintenance 7. Therefore, to develop 

effective anticancer therapies, it is important to elucidate the molecular mechanisms behind this 

plastic behavior as well as to explore how conventional chemo- and radio-therapies can 

influence this process. 

 

1.3.2 Oncogenic Signaling Pathways 

GBM presents several different genetic and molecular alterations that lead to 

modifications of several major signaling pathways resulting in glioma growth and 

progression186, 187. It is well accepted that several signaling pathways such as, growth factor 

receptor tyrosine kinase (RTK)–triggered pathways, including the Ras pathway, the 

phosphatidylinositol 3-kinase (PI3K)/PTEN/AKT, transform growth factor- beta (TGF-β), 

retinoblastoma (RB)/CDKN2A-p16INK4a, and the TP53/MDM2/MDM 4/CDKN2A-p14ARF, 

are involved in gliomagenesis. Complex interactions among these pathways occur, which 

potentially contribute to the initiation and transformation of GBM (Figure 1.4164) 188. 

Growth Factor RTK’s Pathways 

Both PDGF and EGF play an important role in normal homeostasis and gliomagenesis, 

by affecting cell proliferation, differentiation and metabolism, through activation of complex 

intracellular cascades modulated by G-protein–coupled receptors. The PDGF family comprises 

four different ligands (PDGF-A, PDGF-B, PDGF-C, and PDGF-D) that signal through the 

PDGF receptor (PDGFR) α and PDGFRβ189. The high expression of PDGFR suggests that these 

RTK-signaling pathways are critical targets in gliomagenesis 190. Both the PDGF ligands and 

receptors are often co-expressed in glioma cell lines and primary GBM tissues that may 

contribute to tumor formation and progression. Since co-expression of PDGF and PDGFR has 
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been detected in astrocytomas of all grades, PDGF autocrine signaling may be considered as an 

early event. 

EGFR and its ligands have been associated with gliomagenesis, and are frequently 

overexpressed. EGFR is a transmembrane glycoprotein that operates as a RTK. In GBM cells, 

EGFR signaling may be activated in a ligand dependent or independent way, through 

overexpression of both the ligand(s) and the receptor. The oncogenic properties of EGFR are 

associated with a constitutive and uncontrolled increase in its phosphorylation (catalytic) 

activity. When its ligand bound to EGFR stimulates activation of signal transduction pathways 

involved in cell survival, proliferation, and differentiation. Additionally, EGFR amplification 

and/or its mutation leads to a constitutive activation in the absence of ligand191, 192. EGFR 

mutations or rearrangements are frequently found in GBM. The most frequent (30%) is variant 

3 (EGFRvIII), which leads to a constitutive activation of RTK’s pathway193. 

 

 

Figure 1.4: Main Signaling Pathways in Glioma Tumorigenesis. The receptor tyrosine kinase (RTK), 

p53, and Rb pathways are the core signaling pathways in gliomagenesis. In red are indicated oncogenes 

that are either overexpressed or amplified in GBM samples, and in blue are designated tumor suppressor 

genes that are somatically mutated or deleted (except for P27 and P21) (Adapted from164). 

 

Ras Pathway 

Activation and deactivation of Ras, a guanosine-nucleotide–binding protein (G-

protein), depends on the balance between active GTP-bound and inactive GDP-bound forms. 

Raf and PI3K are the downstream effectors of the active Ras-GTP protein, which culminates in 
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survival, cell cycle progression, and migration194. Interestingly, mutations in RAS are 

infrequently found in GBM, nevertheless, increased Ras pathway activity is common in GBMs, 

which can be justified by upstream factors, such as RTK activation (EGFR or PDGFR)195. One 

of downstream effects of Ras is mitogen activated protein kinases (MAPK) signaling, which is 

also activated in GBM, contributing for cell proliferation196. Moreover, Ras signaling pathway 

can also be activated through the loss of NF1, found in 20% of GBMs (loss-of-function 

mutation). 

 

PI3K/PTEN/AKT Pathway 

PI3K-mediated cell signaling pathway has been implicated in the pathogenesis of GBM. 

Activation of PI3K to the cell membrane leads to a downstream activation, such as AKT and 

mammalian target of rapamycin (mTOR), resulting in cell proliferation and increasing cell 

survival by apoptosis blocking197. In fact, this pathway appears to play a role in gliomagenesis, 

since 88% of GBM patients presented alterations in the EGFR/Ras/NF1/PTEN/PI3K 

pathway198. PI3K is negatively regulated by PTEN, a tumor-suppressor gene, which is 

frequently lost in GBM because of loss of heterozygosity (LOH) or its mutations (15-40%), 

leading to a constitutive activation of the PI3K pathway and higher levels of activated AKT in 

glioma cells198. 

 

RB/CDKN2A-p16INK4a Pathway 

RB/CDKN2A-p16INK4a pathway plays a pivotal role in the regulation of cell 

proliferation as well as cycle199. The RB1 protein controls the progression of the cell cycle 

through G1 into the S-phase. In proliferating cells, RB1 protein is phosphorylated by the 

CDK4⁄cyclin D1 complex which induces the release of E2F transcript factor that activates genes 

involved in the G1 to S-phase transition200. p16INK4a binds to CDK4, inhibits the CDK4⁄cyclin 

D1 complex, and consequently inhibits the G1 to S transition200. Thus, loss of normal RB1 

function may result from altered expression of any of the p16INK4a, CDK4, or RB1 genes. 

In primary GBMs, the overall frequency of genetic alterations in the RB1 signaling 

pathway has been described to be 78% through p16INK4a homozygous deletion or mutations 

(52%), p15INK4b homozygous deletion (47%), CDK4 amplification (18%), RB1 mutation or 

homozygous deletion (11%), p18INK4c homozygous deletion (2%), CCND2 amplification 

(2%), CDK6 amplification (1%) Alterations in the p16INK4a⁄CDK4⁄RB1 pathway were 

unusual in oligodendrogliomas (4%) but were frequent in WHO grade III oligodendrogliomas 

(65%)201. 
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P53/MDM2/MDM4/CDKN2A-p14ARF Pathway 

The TP53 protein is mainly involved the regulation of DNA damage, cell death, cell 

cycle, and differentiation. The TP53 is activated in response to cellular stress conditions, and 

consequently induces cell death in case of higher damage, in order to prevent mutated or 

damaged DNA cells from dividing, or activates DNA repair mechanisms202. TP53 

transcriptionally regulates the promoter of p21, which blocks cell cycle progression by binding 

and inhibiting the function of cyclin-D proteins203 TP53 and the RB pathways interact with each 

other via p21. It has also been demonstrated that TP53 regulates stem cells survival, 

proliferation, and differentiation, highlighting the relevance of TP53 in suppressing GBM204. 

After stress, TP53 activity is blocked by its negative regulator MDM2. However, inactivation 

of MDM2 by CDKN2A-p14ARF binding leads to activation of TP53. MDM4 (also called 

MDMX) also regulates TP53 activity, and p14ARF is negatively regulated by TP53. 

In GBM, TP53 signaling pathway is disrupted as result of TP53 mutation and/or 

amplification, and/or loss of expression of CDKN2A-p14ARF, and overexpression of MDM2, 

leading to uncontrolled cell proliferation and tumor formation138, 205. 

 

Transforming growth factor-beta (TGF-β) signaling 

TGF-β is a multifunctional cytokine that regulates cell growth, proliferation, 

differentiation, migration, extracellular matrix production and tissue homeostasis206, 207. The 

TGF-β superfamily includes various TGF-βs (TGF-β1, -β2, and -β3, which are highly 

homologous), bone morphogenetic proteins (BMPs), Nodal, Activin, growth and differentiation 

factors (GDFs), and anti-mullerian hormone (AMH) 208. In mammals, there are three isoforms 

of TGF-β (TGF-β-1, -2 and -3). TGF-β first binds to TGF-β receptor II (TGF-βRII) altering its 

conformation. Then, TGF-βRII phosphorylates TGF-βRI, which in turn phosphorylates 

receptor-regulated (R-)Smad proteins (Smad 2, 3). Activated R-Smads form heteromeric 

complexes with Co-Smad and Smad-4, and are translocated to the nucleus (Figure 1.5209). 

In tumorigenesis, TGF-β pathway has a dual role acting either as a tumor suppressor or 

a tumor promoter. TGF-β can promote proliferation, angiogenesis, invasion, metastasis and 

immune suppression210. TGF-β pathway plays a very crucial role in regulating the behavior of 

gliomas211. In fact, elevated levels of TGF-β have been reported in the blood serum of glioma 

patients and a remarkable correlation was observed between elevated TGF-β levels and high 

tumor grade, and poor patient outcome212-215. Moreover, this signaling pathway has been 

associated with glioma invasion, angiogenesis and immunosuppression216-220. Interestingly, 
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TGF- β signaling was demonstrated to play a critical role in the maintenance of stemness in 

GBM stem cells (GSCs)221-223. 

 

 

 

Figure 1.5. TGF-β signaling in gliomagenesis. The TGF-β signaling pathway contributes to glioma 

development through induction of multiple carcinogenic processes. This pathway promotes glioma 

proliferation via PDGF-B and miR-182, invasiveness via miR-182, miR-10 and MMP, as well as 

angiogenesis via VEGF, IGFBP7, and JNK. The TGF-β/Smads signaling pathway induces 

immunosuppression by inhibiting natural killer (NK) cells, cytotoxic T lymphocytes (CTL), dendritic 

cells (DC), and by upregulating T regulatory (Treg) cells. The TGF-β/Smads signaling pathway also 

drives GSC stemness via LIF, Sox4-Sox2, and Id1-Id3 (Adapted from204).  

 

1.4 Glioma Stem Cells 

CSCs or tumor initiating cells (TICs) are a subset of cells responsible for tumor 

initiation, progression and recurrence, and partly accountable for their marked heterogeneity, 

resistance to current therapies 224. These cells share important characteristics with normal stem 

cells, including self-renewal, proliferation, and multipotency (i.e., capacity to differentiate into 

other cell lineages, such as astrocytes, oligodendrocytes and neurons). Therefore, eradication 

of CSCs is necessary to interrupt tumor expansion or prevent re-growth after therapy179. The 

first evidence of the existence of CSCs was reported for acute myeloid leukemia225. This tumor 



 

General Introduction 

26 

contained rare cells that when injected into immunodeficient mice recapitulated the hierarchy 

of differentiated leukemic cells225. 

In 2000, Uchida and co-workers isolated human NSPCs using CD133226, which 

encourage the search for brain tumor stem cells (BTSCs). BTSCs were initially isolated from 

primary tumors by cell sorting based on CD133 expression227. Functionally, these CD133+ 

tumor cells generated non-adherent neurospheres, had self-renewal capacity, a high 

proliferation potential, and were multipotent227. Additionally, CD133+ BTSCs displayed a 

remarkable in vivo tumorigenicity when implanted in immunodeficient mice. As few as 100 

CD133+ tumor cells were able to originate tumors that recapitulated the parental tumor, whereas 

100,000 CD133- BTSCs did not have that property88. These results provided robust evidence 

for a key role of CSCs in brain tumor biology. Several subsequent studies implicated them in 

resistance to RT and chemotherapy228, 229. The resilience of the tumors to recur after treatment 

has been linked to specific characteristics of CSCs, such as quiescent phenotype, enhanced 

DNA repair capacity, preferential activation of DNA damage checkpoint responses228, and 

increased expression of drug efflux pumps and anti-apoptotic proteins230. This suggests that to 

achieve a complete durable response, the CSCs subpopulation must be specifically targeted in 

combination with currently available therapies.  

Great efforts have been implemented towards the discovery, validation and use of CSCs 

enrichment methods. However, the heterogeneity of the tumor specimens, the rarity of the CSCs 

population, the expression of surface epitopes common to both non-CSCs and other cell types 

are limitations to the methods of isolation and propagation of CSCs231.  

 

1.4.1 Methods of Isolation/Identification of Glioma Stem Cells 

GSCs are routinely isolated by cell sorting with specific cell-surface stem cell markers, 

as well as by in vitro enrichment using serum-free culture conditions supplemented with 

specific growth factors that allow neurospheres formation. 

There are two methods of growing GSCs as an adherent monolayer or as nonadherent 

neurospheres cultures232. The most widely used method is the neurosphere-forming assay, 

similar to those used for culture of NSCs where cells are cultured in serum-free stem cell media 

supplemented with L-glutamine, B27, N2 and growth factors b-FGF (basic fibroblast growth 

factor) and EGF233 (Figure 1.6). The neurospheres produced are heterogeneous aggregates 

derived from a single GSC or early progenitor cell with self-renewing and multipotency 

properties. Neurospheres derived from primary tumors express neural precursor markers, such 

as Nestin, CD133, Sox2, Musashi-1 and Bim 227, 234. Despite the extensive use of the 
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neurospheres-forming assay, this method presents some disadvantages. One of them is related 

to the low efficacy (1 to 30%) to establish GSC lines from primary tumors. This low efficacy 

results from the tendency of spheroid cells to spontaneously undergo differentiation and/or 

apoptosis during serial passages235, 236. Another limitation is that only a small percentage of 

cells within a neurosphere are true GSCs, while most cells are partially or fully differentiated 

progeny236. Additionally, it was shown that the selection of GSCs based on neurospheres culture 

fails to recapitulate the heterogeneity of the original tumor in vivo as assessed by gene 

expression, differentiation capacity and histological morphology237-239, characteristics that 

GSCs maintained when isolated by markers expression88. In the second method, GSCs are 

grown as monolayers of adherent cells in laminin-coated cell culture plates in serum-free media 

supplemented with growth factors (Figure 1.6). These cells can be cultured for at least 1 year 

(>20 passages) without losing the stem cell properties and tumor initiation capacity235. The cells 

in this culture express NSC markers, such as Nestin, Sox2, and Olig2. These cells have the 

ability to differentiate into various lineages, including neuronal and glial, and are highly 

tumorigenic when implanted into the brains of immunodeficient mice235. There are a high 

percentage of true GSCs in the culture with significantly fewer differentiated or apoptotic cells. 

A possible explanation for this optimized result is the fact that all cells have equal access to the 

components of the media, a phenomenon that does not occur in tridimensional neurospheres 

cultures in which the center of the neurosphere may go necrotic. 

 

 

Figure 1.6: Methods utilized for glioma stem cells (GSCs) isolation and culture. GSCs (red cells) 

present in the tumor specimen are isolated either by fluorescence activated cell sorting (FACS) or MACS 

(magnetic activated cell sorting) using cell surface markers, such as CD133, CD15, CD90 and A2B5. 

Alternatively, isolated cells are directly cultured in a serum-free medium, typically supplemented with 

L-glutamine, B27, N2, and growth factors, that enriches for cells with stem cell properties. 
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Most GSCs markers have been appropriated from normal NSPC, such as, Bmi1, 

Musashi240, Nanog241, 242, Nestin243, Sox2240, among others244, 245. However, the use of 

intracellular proteins for GSCs enrichment by fluorescence-activated cell sorting (FACS) or 

magnetic-activated cell sorting (MACS) has limitations. Therefore, several potential cell 

surface markers have been suggested, including CD133, CD15, A2B5, CD90, L1CAM and the 

combination of CD44 and ID1. FACS or MACS are the methods used for GSCs isolation and 

purification. These methods allow a purity at separation of 79.3-96.7% and 46.9-79.8%, 

respectively227, 246. 

CD133 (Prominin-1) is a 120-kDa five-transmembrane cell-surface protein expressed 

in NSCs, adult ependymal cells, and endothelial precursor cells247. This membrane bound 

glycoprotein is speculated to have a function in cell differentiation and EMT (epithelial to 

mesenchymal transition), however its confirmed function is still unknown248, 249. It is a CSC 

marker in a variety of tumors250, including brain88, 234. The number of CD133+ cells quantified 

by flow cytometry from human glioma samples, glioma sphere cultures, and established glioma 

cell lines is variable from low or rare251, 252 to as high as 20% to 60%246, 252, 253. This variation 

may be explained by the recognition of inconstant glycosylated epitopes by the current available 

antibodies (AC133 or AC141)254. The expression of CD133 on cell surface marks GSCs and 

decreases with differentiation, however, the expression of Prominin-1 mRNA is not regulated 

with stemness255, suggesting that only the glycosylated surface protein CD133 is GSCs-

dependent256. 

The expression of CD133 on the cell surface does not seem to be a requirement for 

neurospheres formation. Indeed, CD133- cells isolated from glioma specimens can have stem 

cell-like characteristics and tumorigenic potentia 233, 246. Moreover, some CD133+ cells lack 

GSC features, and are expressed by other cell types, including normal endothelial cells and 

endothelial glioma cells231.  

CD15, expressed in embryonic and adult neural stem/progenitor cells, is a putative 

useful marker for GSCs. It is also known as SSEA-1 (stage-specific embryonic antigen-1) or 

LeX (Lewis-X Antigen), a carbohydrate antigen associated with glycolipids and 

glycoproteins246, 257. CD15+ cells are capable of self-renewal and multilineage differentiation, 

and have increased expression of the stem cells markers Bmi1 and Sox2246. In a mouse model 

of medulloblastoma258, a subpopulation of cells that express CD15 can propagate tumors259. 

Moreover, CD15+ cells isolated from GBMs are also highly tumorigenic, while CD15- cells 

present limited tumor formation capacity260.  
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A2B5 is a cell surface ganglioside that is expressed by NSCs isolated from the 

subventricular zone of human embryos261, and by NPCs from the subcortical white matter in 

the adult human brain262. In GBM and anaplastic astrocytoma, 33-90% of the cells express 

A2B5263. Two different studies demonstrated that A2B5+ cells were able to form tumors in 

immunocompromised mice, while A2B5− cells were not able to do so261, 263. In addition, 

A2B5+/CD133+ and A2B5+/CD133− subpopulations from glioma were capable of forming 

neurospheres in vitro and initiating tumors in vivo, suggesting that A2B5 is a GSC marker261. 

A cohort of genes and pathways significantly dysregulated in A2B5+ tumor progenitor cells 

(TPCs), including SIX1, EYA1 and DACH2, was identified by using A2B5 to isolate glioma 

TPCs, followed by messenger RNA profiling and comparison to A2B5+ from normal white 

matter264. This set of genes is mostly expressed during development and not during adult life, 

what makes it particularly attractive for selective therapeutic target.  

Another potential marker for GSCs is CD90 (Thy-1), a N-glycosylated 

glycophosphatidylinositol (GPI)-anchored cell surface protein, a known marker for bone 

marrow-derived and hematopoietic stem cells265. Recently, it was identified as a marker for 

human GSCs266. In GBM, 100% of the CD133+ cells co-express CD90, but only a small portion 

of CD90+ cells co-express CD133. Moreover, CD90 expression levels was significantly higher 

in high-grade than in low-grade gliomas266.  

Integrin-α6 is a member of the integrin family of extracellular matrix receptors for 

laminin and platelets. In the brain, this receptor regulates GSCs maintenance267 and NSCs 

growth268. In GBM biopsies, cells positive for integrin-α6 were localized close to the tumor 

vasculature and co-expressed the stem cells markers CD133 and Nestin269. FACS sorting for 

integrin-α6 alone or in combination with CD133 led to an enrichment of cells with higher self-

renewal capacity in vitro. Orthotropic injection of integrin-α6 positive cells in the brains of 

immunocompromised mice resulted in shorter survival when compared to integrin-α6 negative 

cells. Furthermore, shRNA-mediated knockdown of integrin-α6 or treatment with integrin-

blocking antibody reduced both neurospheres formation in vitro and tumor growth in vivo269. 

These findings strongly indicate a role for integrin-α6 in GSCs self-renewal and maintenance.  

L1CAM (CD171) is a neural cell adhesion molecule that regulates neural cell growth, 

migration and survival during central nervous system development270, however its role in 

normal adult nervous system is not clear. In gliomas, L1CAM is overexpressed and plays a role 

in tumor invasion271, 272, being necessary for maintaining the survival and growth of CD133+ 

cells with stem like properties273. Additionally, targeting L1CAM with lentiviral-mediated 

shRNA interference in CD133+ glioma cells inhibited GSCs growth, neurospheres formation 
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capacity and induced GSCs apoptosis. L1CAM knockdown decreased olig2 expression and up-

regulated the p21 (WAF1/CIP1) tumor suppressor in CD133+ glioma cells273. shRNA targeting 

of L1CAM expression in vivo suppressed tumor growth and increased animal’s survival273. 

L1CAM-mediated signaling confers radiotherapy resistance in GSCs by improving Mre11, 

Rad50, and Nbs1 (MRN) complex function via Myc-NBS1-ATM axis and by leading to DNA 

checkpoint activation and DNA repair274. Therefore, L1CAM is a very promising GSCs marker 

and therapeutic target for GBM. 

CD44, a multifunctional class I transmembrane glycoprotein, acts as a specific receptor 

for hyaluronic acid, promoting migration in normal cells and is highly expressed in several 

cancer types275. This cell surface marker is used to identify cancer stem in different tumor types, 

such as, breast cancer, pancreas, and prostate carcinomas276-278. Regarding GBM, Anido and 

colleagues244 demonstrated that CD44high/Id1high cells were located in perivascular niches of the 

tumor and possessed stem cell characteristics. They also showed that TGF-β pathway inhibition 

decreased the CD44high/Id1high population through the repression of Id1 and Id3 levels, and 

prevented tumor initiation244. Additionally, high expression of both CD44 and ID1 conferred 

poor prognosis to GBM patients and were inversely correlated244. These results demonstrated 

that both CD44 and Id1 can be used to identify GSCs. 

However, presumably no marker will be sufficiently robust to identify GSCs since 

different tissues contain multiple populations of stem cells that express different markers, 

therefore the use of a panel of molecular markers in combination with the discovery of novel 

specific antigens on the surface of GSCs will improve the purity, specificity of this cell 

population, and resolve controversies of the current in vitro and in vivo studies.  

Besides the use of cell surface markers to isolate cancer stem cells from glioma tumors, 

the side population (SP) assay has also been used to identify and isolate GSCs. The SP is a 

subset of cells with differential efflux activity compared to the main cell population. This 

approach is based on the capacity that stem cells have of exporting the DNA binding Hoechst 

33342 dye, while other cells take up the dye. This is due to the high expression levels of ATP-

binding cassette (ABC) transporters MDR1 (ABCB1) and BCRP (ABCG2) in stem cells279, 280 

that bind ATP, hydrolyze it, and use the energy to transport several molecules across the plasma 

membrane. To identify the SP, cancer cells are stained with Hoechst 33342 dye, analyzed by 

flow cytometry and physically separated from the non-SP by FACS. Two emission wavelengths 

(red 675 nm and blue 450 nm) are used, and the small and non-stained cell population 

corresponds to the side population. The SP cells express high levels of stemness-related genes, 
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and are able to generate multiple lineages230. However, a common limitation of this method is 

contamination by non-GSCs281. 

Although CSCs markers are widely used to identify and isolate GSCs, their expression 

is not sufficient to define this subpopulation. Therefore, is crucial to perform functional 

validations to confirm that the isolated cells really display the functional characteristics of GSCs 

(Figure 1.7256). Both in vitro and in vivo methods are used to assess these functional 

characteristics, such as sustained self-renewal, persistent proliferation, differentiation ability, 

as well as in vivo tumor initiation. It is important to have into consideration that, however, 

neurospheres forming assay evaluates both self-renewal and proliferation, this assay does not 

allow to test cellular hierarchy and does not replicate the tumor microenvironment. Therefore, 

in order to determine the capacity to recapitulate the original patient tumor and to evaluate the 

influence of microenvironment it is necessary to perform orthotropic transplantation of GSCs, 

being this in vivo assay the gold standard experiment for GSCs determination.  

 

 

Figure 1.7: Functional characteristics of GSC. GSCs are defined by functional characteristics that 

include persistent self-renewal and proliferation, as well as tumor initiation upon secondary 

transplantation. GSCs also present additional characteristics such as stem cell marker expression 

(examples relevant to GBM and the brain are depicted), the ability to differentiate into multiple lineages, 

and the rarity within a tumor (Adapted from 256). 

 

1.4.2 Heterogeneity of Glioma Stem Cells 

As observed for GBM, GSCs also have heterogeneity282. This heterogeneity is 

influenced by the localization of the tumor and the microenviromental clues within the tumor283-
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285. GSCs showed a mixture of cellular morphology when cultured as neurospheres286, 287. 

Moreover, diverse types of GSC were shown to be able to convert into each other within one 

GBM282, 288. The inter-tumoral heterogeneity of GSCs may contribute to the molecular 

classification of GBM. On a transcriptional level, Phillips et al. described proneural, 

proliferative, and mesenchymal GBM that corresponded to different stages of neurogenesis92. 

Particularly, proneural GBM included patients with younger age, primary diagnosis, and better 

prognosis. In contrast, more aged patients and patients with tumor relapses showed 

mesenchymal GBM92, 289. Later on, Verhaak, and colleagues, based on TCGA data, reproduced 

these subgroups and add two new subtypes, neural and classical93. Recent studies proposed 

similarities of CD133- CSC with the mesenchymal subtype and CD133+ CSCs with the 

proneural subtype252, 290. Additionally, using a larger panel of CSC lines, results were 

corroborated, since CD133+ GBM CSC lines corresponded to proneural GBM whereas CD133- 

GBM CSC lines corresponded to mesenchymal GBM. This suggests that the heterogeneity of 

GSCs corresponds to the heterogeneity of GBM290. More recently, Suva and co-workers 

identified a set of four transcription factors (POU3F2, Sox2, SALL2, and Olig2) in proneural 

GBM subtype that were able to reprogram differentiated tumor cells into GSCs. These 

transcription factors were required to maintain the tumor-forming capacity of these cells, 

suggesting that mediators of stem cell programs could capture the oncogenic capacity of 

GSCs242. By single-cell RNA sequencing, Patel and colleagues demonstrated that cells from 

the same tumor have differential expression of genes involved in oncogenic signaling, 

proliferation, hypoxia and immune response. They also identified novel genes predominantly 

present in GSCs when compared to differentiated cells from the same GBM tumor90. Moreover, 

an inverse correlation between stemness gradient and cell cycle signature was showed, 

indicating that stem cells as well as cells that grow in neurospheres divide more slowly 

compared with differentiated tumor cells90. Another study by single-cell functional analysis of 

patient GBM samples showed that individual clones presented unique proliferation and 

differentiation abilities, as well as a strong variation of genomics and response to therapy89. 

This work suggested that using functional clonal profile to identify drug-resistant tumor clones 

will lead to the discovery of new treatments. 

 

1.5 Treatment of Malignant Glioma 

1.5.1 Clinical Approaches on Glioma Treatment 

Currently, the standard of care for low grade glioma includes RT as well as 

chemotherapy, however the timing of these treatments is still under investigation. Nevertheless, 
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it is important to take into consideration that surgical resection continues to be the best option 

in the first phase of treatment, being associated with good outcomes and prognosis. Historically, 

this type of gliomas have been treated with external beam radiation, so far the gold-standard 

treatment for low-grade gliomas. Regarding chemotherapy, different regiments are being used 

such as, PCV (procarbazine, CCNU and vincristine), TMZ, and lomustine (CCNU), however 

these treatments remain controversial12, 152. Some studies revealed that the addition of adjuvant 

PCV chemotherapy was associated with a PFS benefit, but not with an OS benefit291, while 

others showed that patients treated with both radiation plus PCV presented a median OS from 

7.8 to 13.3 years292. Additional studies must include histologic type of tumor and molecular 

markers such as 1p19q co-deletion and IDH mutations to assess treatment effect and target 

chemotherapeutics293. 

Regarding high grade gliomas treatment, a maximal possible and safe resection 

(preservation of neurologic function) continues to be the first step of treatment. In fact, it was 

demonstrated, in GBM patients, that surgical resection increases the OS in 4.2 months294. 

Currently, the standard of care includes the use of TMZ, an oral cytotoxic DNA-alkylating 

chemotherapy, with concomitant radiation therapy followed by adjuvant TMZ for 6 months295. 

This regime has been shown to improve in 2.5 months the median OS when compared to 

radiation alone (14.6 months compared to 12.1 months), with a two-fold increase in 2-year 

survival from 10.4 to 26.1%295. At recurrence, another treatment options consist in surgical 

resection with or without the placement of BCNU wafers, re-irradiation and chemotherapeutics 

such as nitrosoureas (CCNU, BCNU) or bevacizumab, a monoclonal antibody anti-VEGF. 

However, it is important to take into consideration that many limitations to the current 

chemotherapeutics in the treatment of glioma still remain: i) systemically delivered medications 

typically do not reach high concentrations within the CNS and at the site of the tumor, and ii) 

this type of treatments lead to significant systemic side effects such as myelosuppression293. 

 

1.5.2 Stem Cells-based Therapies for Glioma  

The ultimate goal of cancer therapy is to target tumor cells without affecting normal 

cells. Currently, the conventional anti-tumor therapies used in treatment of glioma are 

essentially palliative and lack sensitivity. Therefore, there has been an urgent need to develop 

both new therapies and innovative ways to deliver those therapies. 

Over the past decade, stem cells have been investigated has a relative new and promising 

therapeutic approach in the treatment of tumors, including gliomas. Stem cell-based therapies 

are considered attractive tools in cancer treatment because these cells present an intrinsic 
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capacity to migrate towards sites of injury, including gliomas, are able to cross the blood brain 

barrier (BBB), can be genetically modified, and have immunosuppressive properties that may 

abrogate host immunoreaction following implantation 296-300;. Indeed, this selective cancer-

tropism has been demonstrated for several stem cell types, including embryonic (ESCs), 

mesenchymal (MSCs), NSCs, endothelial, and hematopoietic301.  

It is accepted that the mechanism underlying the homing of stem cells to gliomas is 

similar to the mechanism underlying the homing of these cells to sites of injury. Injured tissues 

secrete factors, including chemokines, cytokines and growth factors that recruit stem cells by 

interact with membrane-bound receptors present in these cells. Therefore, it has been 

demonstrated, in a tumor context, including in glioma, that tumor cells are able to secrete 

chemokines, cytokines and growth factors that mediate the tumor tropism presented by stem 

cells. In an in vitro study, it has been verified that EGF, PDGFB, and stromal cell-derived factor 

1α (SDF-1α), increased migration of MSCs towards glioma 302. Additionally, other studies 

showed that TGF-β1, neurotrophin-3 (NT-3), interleukin (IL)-8, PDGF-D, TNF‑α, VEGF‑A 

also mediate glioma-tropic migration of MSCs303-306. Regarding NSCs, it has been revealed that 

monocyte chemotactic protein-1 (MCP‑1), VEGF, VEGFR2, C-X-C chemokine receptor type 

4 (CXCR4), and urokinase plasminogen activator receptor (uPAR) enhanced their migration 

towards gliomas307-309. Importantly, some studies demonstrated that therapeutic irradiation 

additional enhanced the tropism of MSCs towards glioma, via the inflammatory response310, 

311. 

In order to generate stem cells presenting anti-tumor abilities, these cells can be 

modified in numerous ways: i) stem cells can be engineered to secrete therapeutic proteins that 

will act directly on tumor cells or indirectly on cells of the tumor microenvironment (Figure 

1.8a); ii) stem cells can be modified to express a suicide gene which encodes an enzyme that 

converts a prodrug into a cytotoxic, inducing suicide of the SC and the death of tumor cells by 

the bystander effect (the movement of cytotoxin from the SC to adjacent cancer cells via a 

paracrine mechanism or gap junctions) (Figure 1.8b); iii) stem cells can be loaded with 

nanoparticles containing chemotherapeutic agents that are released in the tumor leading to 

cancer cells death (Figure 1.8c); and iv) stem cells can be infected with oncolytic viruses (OVs) 

that will replicate within the SCs, which will rupture and release the OV progeny that can infect 

tumor cells (Figure 1.8d)301. 
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Figure 1.8: Modifications of stem cells in order to promote tumor cell dead. a) Stem cells can be 

modified in order to deliver therapeutic proteins For example, tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL), epidermal growth factor (EGF) agonists or interferons (IFNα or IFNβ) can be 

secreted  by stem cells to directly act on tumor cells presenting death receptor 4 (DR4) and DR5, EGF 

receptor (EGFR) or IFN receptors (IFNRs), respectively. On the other hand, stem cells can secrete 

immune, stromal or blood vessel effectors stromal; b) Stem cells can be engineered to mediate suicide 

gene therapy by expressing a suicide gene such as cytosine carboxylesterase (CE), deaminase (CD), or 

herpes simplex virus thymidine kinase (HSV-tk) which will convert a prodrug into a cytotoxic agent; c) 

Nanoparticles containing chemotherapy or imaging agents can be internalized into stem cells; d) Stem 

cells can be infected with oncolytic viruses (OVs) that can infect tumor cells and amplify infection. 

Abbreviations: TSP1, anti-angiogenic thrombospondin 1; IL, interleukin; NK, natural killer; PEX, a 

fragment of matrix metalloproteinase 2301. 

 

NSCs were the first stem cell type to be explored as stem cell-based therapies to deliver 

therapeutic agents to gliomas300. In this first study, the authors demonstrated that NSCs 

(genetically immortalized) had the capacity to migrate towards the main tumor mass and 

invading tumor cells that extended out of the tumor bulk300. Additionally, they demonstrated 

that these NSCs could be genetically modified to transport the therapeutic transgene for 

cytosine deaminase (CD; an enzyme that converts 5-fluorocytosine into 5-fluorouracil). Since 

this publication, numerous other works have used NSCs to deliver several anti-glioma agents, 

including tumor necrosis factor–related apoptosis-inducing ligand (TRAIL), IL-23, IL-4, IL-8, 

antiangiogenic protein thrombospondin, and oncolytic viruses300, 312-321. 

NSCs are found in the subependymal zone of the lateral ventricles and the dentate gyrus 

of the hippocampus, and can differentiate into astrocytes, neurons, and oligodendrocytes322. 

These types of stem cells can be isolated from the brains of fetus or even from the adult brain, 
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however it is not easy to rapidly expand, modify and characterize these cells in preparation for 

implantation into glioma patients that present a short overall survival. Therefore, the use of 

immortalized NSC lines that are readily available should be performed. In fact, in 2010, a 

clinical pilot trial using genetically engineered immortalized NSCs was performed for patients 

with recurrent high-grade gliomas, where NSCs were implemented at the time of surgery 

(https://clinicaltrials.gov/; identifier, NCT01172964).  

Another type of stem cells that has been widely investigated as a stem cell-based therapy 

in the treatment of glioma are MSCs. Although both NSCs and MSCs present similar tumor 

tropism, infiltrative potential across BBB and can be genetically modified320, MSCs presented 

some advantages, such as i) can be easily isolated and subsequently expanded in vitro; ii) 

present an immune privileged nature; iii) can be isolated from patients, making autologous 

transplant possible and avoiding immune-mediated rejection; and vi) no ethical issues are 

associated with their use323-325. 

 

1.5.2.1 Potential of Mesenchymal Stem Cells-based application in Glioma 

Treatment 

MSCs were first described more than four decades ago326. Friedenstein and colleagues 

defined these cells as plastic-adherent fibroblast colony-forming units with clonogenic 

capacity326. Presently and according with the International Society for Cellular Therapy (ISCT) 

criteria, MSCs have been defined as tissue-culture plastic adherent multipotent cells, since they 

can differentiate towards the osteogenic, chondrogenic and adipogenic lineages, presenting 

simultaneously self-renewal capacity; while displaying the expression of surface markers 

(CD105, CD73, CD90), and the downregulation of hematopoietic cell surface markers (CD45, 

CD34, CD14 or CD11b, CD79a or CD19 and Human Leukocyte Antigen DR)327. They are 

multipotent stem cells that can be isolated from adipose tissue (ASCs), bone marrow (BMSCs), 

umbilical cord Wharton’s jelly (bulk-WJ-MSCs; perivascular region-human umbilical cord 

perivascular cells, HUCPVCs), dental pulp, placenta, amniotic fluid, umbilical cord blood, 

liver, lung, spleen, and brain314, 328-330. 

The first report that described the use of MSCs in the treatment of glioma was performed 

by Nakamura and colleagues331. Here, the authors demonstrated that MSCs derived from the 

bone marrow of rats could migrate toward syngeneic rat brain tumors derived (9L glioma cell 

line) via the corpus callosum after intracranial injection of the MSCs into the contralateral 

hemisphere. Interestingly, they observed that MSCs injected alone were able to decrease tumor 

burden and improved the OS of the animals. Moreover, it was also shown that these MSCs were 
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able to deliver the anti-tumor cargo IL-2. The second study that evaluated MSCs as stem cell-

based therapy was done by Nakamizo et al, where they showed that human MSCs derived from 

bone marrow had the ability to home human GBM xenografts derived from LN229, U251 and 

U87 after injection into the carotid artery of immunocompromised mice302. Additionally, they 

also observed an increased OS of tumor-bearing mice after administration of MSCs engineered 

to deliver IFN-β302 . Several subsequent studies were performed confirming the ability of MSCs 

to migrate towards gliomas301, 303, 304, 332-335. However, it is not clear if this tropism of MSCs is 

associated with tumor promotion or suppression functions336, 337. Akimoto and colleagues 

showed that umbilical cord blood-derived MSCs induced apoptosis in glioma cells; however, 

in the same study, adipose-derived MSCs enhanced the growth of GBM cells302, 303, 336, 338. In 

another study, co-culturing of adipose-derived MSCs with human glioma cells led to higher 

survival and proliferation of glioma cells339, whereas in another work, bone marrow-derived 

MSCs co-cultured with human glioma cells inhibited tumor cell proliferation338. Nevertheless, 

the rationale behind the modification of MSCs to express or deliver anti-glioma therapeutic 

agents, may be a promising therapeutic approach.  

As NSCs, also MSCs were explored as cargo delivery vehicles in the treatment of 

glioma (Table 1.6). MSCs were engineered to deliver IL-2, IL-7, IL-18, IL-23, IFN-β, a 

modified IL-12, and TRAIL leading to glioma cell death as well as to improved animal overall 

survival, in vivo302, 313, 335, 340. Additionally, MSCs were also modified to secrete prodrug 

enzymes (also known as suicide gene therapy) that will kill the surrounding tumor cells. In 

glioma, some prodrug enzymes have been investigated as cargoes in MSCs: the rabbit 

carboxylesterase enzyme (rCE), cytosine deaminase (CD) and the herpes simplex 

virus/thymidine kinase (HSV/tk) (van Dillen341-344. MSCs have also been used to deliver 

oncolytic viruses, including conditionally replicating adenovirus (CRAd), delta-24-RGD 

oncolytic adenovirus 345, 346, as well as to be loaded with nanoparticles347. MSCs can also be 

used as antibody delivery vehicles (antibody against the EGFRvIII mutant form of EGFR) 

resulting in tumor vascularization reduction and increased glioma-bearing survival348.  
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Table 1.6: MSCs as stem cell-based therapy in the treatment of brain tumors 

Transgene/modification MSC source Route Glioma (source) Ref 

IL-2 Rat IC/IT 9L (rat)  331  

IL-12 Human IT GL26 (mouse) 328 

IFN-β Human IT/ICR U87 (human) 302 

sTRAIL Human IT Gli36 (human) 335 

CD 

Human IC U87 (human) 349 

Rat IT C6 (rat) 350 

Rat IT 9L (rat) 351 

HSV-tk andVPA Human IT U87 (human) 352 

rCE Human IT F98 (rat) 353 

Endostatin Human IT U87 (human) 329 

CRAd Human ICR U87 (human) 346 

scFv anti-EGFRvIII Human IT U87 (human) 348  

Silica nanorattle-DOX Human IT U87 (human) 354 

Abbreviations: CD, cytosine deaminase; CRAd, conditionally replicating adenovirus; DOX, doxorubicin; 

EGFRvIII, epidermal growth factor receptor variant III; HSV-tk, herpes simplex virus type 1 thymidine kinase; 

IC, intracerebral; IT, intratumoral; ICR, intracarotid; IFN, interferon; IL, interleukin; LNCs, lipid nanocapsules; 

rCE, rabbit carboxylesterase enzyme; Ref, reference; scFv, single-chain antibody fragment; sTRAIL, soluble 

variant of tumor necrosis factor-related apoptosis-inducing ligand; VPA, valproic acid. 
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Abstract 

 

Glioblastoma stem cells (GSCs) have paramount roles in tumor initiation, progression, 

recurrence, and therapy resistance. Thus, GSCs must be specifically targeted to achieve 

improved clinical responses of glioblastoma (GBM) patients.  

Several markers have been proposed to identify/isolate GSCs, including CD133 and 

CD15. However, these markers lack full specificity and sensitivity (seem valid only for subsets 

of GBMs), and no generally accepted universal marker for GSCs has been defined yet, 

highlighting the need for the discovery of new markers. In the context of the recent 

identification of a subpopulation of cells with cancer stem cells (CSCs) features presenting an 

autofluorescent subcellular compartment in a variety of epithelial cancers, we proposed to 

evaluate whether this phenotype is also present in GBM, and identifies GSCs. Our work 

identifies a subpopulation of autofluorescent (Fluo+) GBM cells, both in established and 

primary GBM cells. Functionally, Fluo+ cells present typical features of GSCs, including higher 

capacity to grow as 3D neurospheres, long-term self-renewal ability, and increase expression 

of several stem cell and pluripotency-associated genes. In addition, exposure of GBM cells to 

temozolomide (TMZ) chemotherapy or to radiation treatment lead to a significant enrichment 

of the Fluo+ cells’ population in all tested models. Importantly, in vivo orthotopic models 

showed that mice with intracranial tumors derived from Fluo+ GBM cells have a significantly 

shorter overall survival than those with non-autofluorescent (Fluo-) GBM cells, further 

highlighting the GSC-associated malignant phenotype of Fluo+ cells. Mechanistically, and 

similarly to CSCs from carcinomas, the autofluorescent phenotype of GSCs is due to the 

accumulation of riboflavin in cytoplasmic vesicles bearing ATP-dependent ABCG2 

transporters. In conclusion, our work identified an intrinsic autofluorescent phenotype present 

in GBM cells with GSCs features, which can be straightforwardly used as a novel marker in 

these highly-malignant and therapy-insensitive tumors. 

 

Keywords: Glioblastoma; Glioblastoma stem cells; Stem cell markers; Autofluorescence; 

Riboflavin; ABCG2 
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3.1 Introduction 

Gliomas, the most common type of primary tumors of the central nervous system (CNS), 

account for almost 80% of brain malignancies, being glioblastoma (GBM) the most aggressive 

type1-3. Despite several advances in the field of neuro-oncology and the use of a multimodal 

treatment (surgery, radiotherapy and chemotherapy), the median survival for GBM patients 

remains extremely poor (~15 months)4, 5.  

Recent evidences suggest that tumor heterogeneity, and poor response and resistance to 

current therapies are partly due to the existence of cancer stem cells (CSCs). These cells share 

important characteristics with normal stem cells, including self-renewal, maintained 

proliferation, multipotency capacity, and have also been associated with therapy resistance and 

tumor initiation, progression, and recurrence6. CSCs have been isolated and characterized from 

several types of cancers, including gliomas. Human brain tumor stem cells (BTSCs) were 

isolated from primary tumors by cell sorting based on CD133 membrane expression7, 8. 

Functionally, CD133+-tumor cells were considered to be CSCs as they generated non-adherent 

neurospheres, presented self-renewal and a high proliferation potential, and were multipotent7. 

It was also proved that CD133+-BTSCs displayed in vivo tumorigenicity in 

immunocompromised mice, providing strong evidence for the crucial roles of CSCs in brain 

tumors8. Several subsequent studies corroborated the existence of BTSCs, as well as their 

increased resistance to radiotherapy and chemotherapy, as temozolomide (TMZ)9-12.  

Due to the high heterogeneity of GBMs, additional cell surface markers besides CD1337, 

13, 14 have been proposed to identify GBM stem cells (GSCs), including CD15 (SSEA-1)15-17, 

A2B518-20, CD9021, L1CAM22, 23, CXCR424, 25 and the combination of CD44 and ID126. 

However, these markers bear some caveats since not only their expression seems valid only for 

subset of GBMs and can change depending on environmental conditions27, but their expression 

is not exclusive of GSCs28-31. Indeed, no generally accepted universal marker for highly 

malignant GSCs has been defined yet. In this way, it is critical to identify GSC-specific markers 

that can be used for the identification/isolation of this subpopulation. Thus, alternative 

identification and isolation methods based on functional properties of GSCs would avoid the 

use of artifact-prone surface markers.  

Recently, Miranda-Lorenzo and colleagues have identified an intrinsic autofluorescent 

phenotype in CSCs derived from different human epithelial solid tumors, such as pancreatic 

ductal adenocarcinoma, colorectal carcinoma, hepatocellular carcinoma and non-small-cell 

lung carcinoma32. They showed that these autofluorescent cells could be identified and isolated 

by flow cytometry, and had features of CSCs, such as, were enriched in spheres culture and 



 

Intracellular autofluorescence as a new biomarker to identify Glioblastoma Stem Cells 

88 

during chemotherapy, expressed pluripotency-associated genes, and showed tumorigenicity 

and invasiveness in viv 32. Therefore, taking into account that this phenotype has not yet been 

studied in GBMs and that carcinomas and GBMs are very different types of tumors, we aimed 

to investigate if autofluorescence can be a new biomarker to improve GSCs identification, 

isolation and characterization. 

 

3.2 Materials and Methods 

3.2.1 Cell Culture 

Seven different GBM cell line models were used: two commercially-available human 

GBM cell lines (U373 and U251), and 5 human primary GBM cell lines (GBM-1, GBM-12, 

GBM-18, GBM-19, and GBM-42) established in our lab as previously described33. Written 

informed consent was obtained from all patients. 

GBM-1, GBM-12, GBM-19, and GBM-42 cell lines were cultured in Roswell Park 

Memorial Institute (RPMI) 1640 (Biochrom) and GBM-18, U373 and U251 cell lines were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM; Biochrom). All cell lines were 

supplemented with 10% fetal bovine serum (FBS; Biochrom) and 1% penicillin and 

streptomycin (Pen/Strep; Gibco), and were incubated at 37°C in a humidified atmosphere 

containing 5% (v/v) CO2.  

 

3.2.2 Flow cytometry analysis 

Human primary GBM cell lines and single cells obtained from neurospheres 

dissociation were resuspended in FACS flow buffer (BD Bioscience) with DAPI (for exclusion 

of dead cells; 1:1000) before flow cytometry analysis using FACS Canto II (BD Biosciences). 

In order to identify autofluorescent (Fluo+) cells, GBM cells were excited with a 488 nm blue 

laser and selected as the intersection with filters 530/40 and 580/30 (Supplementary Figure 

3.1A). 

To characterize autofluorescent cells, human primary GBM cells (GBM-1 GBM-18 and 

GBM-42) were analyzed by flow cytometry for the expression of CSC surface markers. Briefly, 

1x105 cells were incubated with the suitable dilution of appropriate isotype-matched control or 

specific antibody in 100 µL of PBS for 30 min at 4°C in the dark. Antibodies used were anti-

CD133/1 (1:10; Miltenyi Biotec), anti-CD15 (1:10; BD Bioscience) and anti-CXCR4 (1:10; 

BD Bioscience). All antibodies were APC-conjugated. Cells were resuspended with 200 µL of 

FACS flow buffer (BD Bioscience) with DAPI and analyzed by FACS Canto II (BD 

Bioscience). Data was analyzed with FlowJo 10.0 software. 
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3.2.3 Cell Sorting  

Before sorting, human primary and commercially available GBM cell lines were 

incubated overnight with 40 µM of Riboflavin (RBF; Sigma) in a humidified atmosphere at 

37°C and 5% (v/v) CO2. 

Highly autofluorescent cell fraction (Fluo+) and non-autofluorescent cells (Fluo-) of 

human GBM cell lines were sorted using a FACS Aria III equipment (BD Biosciences) and 

correspondent data was analyzed by FACS Diva 7 software (BD Biosciences). Before cell 

sorting, cell lines were resuspended at a concentration of 5x106 cells/mL in sorting buffer [PBS 

1x; 3% FBS (v/v); 3 mM EDTA (v/v)] and filtered through a 40 μm strainer (BD Biosciences) 

to eliminate cell clumps. Cells were then sorted through a 100 μm nozzle at a sheath pressure 

of 20 psi. A yield sorting modality (Yield mask sorting for FACS Aria III) was chosen. Gating 

strategy for sorting was performed as indicated in Supplementary Figure 3.1B. To obtain high 

purity during sorting procedures an appropriate distance between gates for Fluo+ and Fluo- cells 

is required. Sorted cells (Fluo+ and Fluo- subpopulations) were collected in 5 mL polypropylene 

tubes (BD Biosciences) containing 1 mL collection medium (DMEM or RPMI supplemented 

with 20% FBS) and transferred to cell culture flasks with pre-warmed media (DMEM or RPMI 

supplemented with 10% FBS and 2% Pen/Strep). 

 

3.2.4 Neurosphere formation assay 

Neurospheres were generated by culturing 1500 human primary GBM cells in 

NeuroCult NS-A Proliferation Kit (Life Technologies) supplemented with 20 ng/mL epidermal 

growth factor (EGF; Invitrogen), 20 ng/mL basic fibroblast growth factor (b-FGF; Invitrogen) 

and 1% B27 (Invitrogen) in 24-multi well plates (0.5 mL/well). Cells were incubated for up to 

21 days in a humidified atmosphere at 37°C and 5% (v/v) CO2. Neurospheres were 

supplemented with fresh media every 4 days (250 µL/well). The number of neurospheres were 

counted after 21 days and pictures were taken. For serial passaging, neurospheres were 

harvested and dissociated with Accutase (EMD Millipore), every 21 days. The content of Fluo+ 

cells in neurospheres was evaluated by flow cytometry as described before in 2.2 section from 

materials and methods. 

 

3.2.5 Limiting Dilution Assay (LDA) 

Cell number was adjusted to a starting concentration of 40x103 cells/mL from which 

multiple serial dilutions were performed and plated in 96-well plates. At the end, cell densities 

ranged from 1000 to 1 cells per well in a final volume of 100 µl. Cells were cultured in the 
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media used in the neurospheres and maintained in a humidified atmosphere at 37°C and 5% 

(v/v) CO2. Cultures were supplemented with fresh media every 4 days. After 21 days, the 

fraction of wells not containing neurospheres was obtained for each condition and plotted 

against the initially plated cellular density. Stem cell frequencies and statistical significance 

was calculated using the ELDA software (available at http://bioinf.wehi.edu.au/software/elda/). 

 

3.2.6 Temozolomide (TMZ) and Radiation treatment 

For TMZ treatment, GBM cell lines (GBM-1, GBM-18, GBM-19 and GBM-42) were 

plated in T25 cm2 flasks at an initial density of 1.5×105 and treated with the corresponding half-

maximal inhibitory concentration (IC50) of TMZ (600, 500, 850 and 400 μM, respectively) or 

vehicle (1% DMSO) for 9 days. The IC50 was previously determined in the lab (data not shown). 

Culture medium containing TMZ or vehicle was renewed every 3 days. At each timepoint (3, 

6 and 9 days), total cells were trypsinized and the percentage of Fluo+ cells was evaluated by 

flow cytometry as described above. 

After exposure to TMZ, FACS-sorted Fluo- and Fluo+ cells viability was determined by 

MTS (Promega). Fluo- and Fluo+ cells from human primary GBM cell lines GBM-1, GBM-18 

and GBM-42 were plated at an initial density of 2500 cells/well in 48-multiwell plates, in 

duplicate, and incubated in a humidified atmosphere at 37°C and 5% (v/v) CO2. After 3 days, 

to allow the cells to recover from sorting, both Fluo- and Fluo+ GBM cells were treated with 

600, 650 and 400 µM of TMZ (GBM-1, GBM-18 and GBM-42, respectively) or vehicle (1% 

DMSO) for 6 days. Culture medium containing TMZ or vehicle was renewed every 3 days. 

After the incubation period, cells were exposed to medium containing MTS in a 5:1 ratio for 2 

hours in a humidified atmosphere at 37°C and 5% CO2, and the optical density was determined 

at 490 nm. 

For irradiation treatment, 1.5×105 cells of GBM-1, GBM-18, GBM-19 and GBM-42 

cells were plated in 3.5 cm diameter plates, and were irradiated with 2, 4, 6, 8 and 10 Gy at 1.94 

Gy/min, at room temperature in a 137Cs irradiator (Shepherd Mark-I [model SN1068]; J. L. 

Shepherd and Assoc., San Fernando, CA). Subsequently, cells were washed once with PBS and 

fresh media was added to the plates that were maintained in a humidified atmosphere at 37°C 

and 5% (v/v) CO2. After three days, total cells were trypsinized and the percentage of Fluo+ 

was evaluated by flow cytometry as described above.  

 

 

 

http://bioinf.wehi.edu.au/software/elda/
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3.2.7 RNA extraction and qRT-PCR 

Total RNA from FACS-sorted human primary GBM cell lines was extracted with Trizol 

(Invitrogen) according to the manufacturer’s instructions. cDNA synthesis was performed using 

1 µg of total RNA with High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 

Gene-specific mRNA levels were assessed by quantitative real-time PCR (qPCR) in a real-time 

thermocycler (CFX96; Bio-Rad) using Fast SYBR Green (Qiagen) according to the 

manufacturer’s instructions, by the 2ΔΔCt method. The list of primers used can be found in 

Supplementary Table 3.1. 

 

3.2.8 Riboflavin (RBF), fumitremorgin C (FTC) and basal medium treatments  

RBF and FTC treatments: GBM cell lines were plated at an initial density of 3x105 

cells/well in 6-multiwell plates, in duplicate, and incubated in a humidified atmosphere at 37°C 

and 5% (v/v) CO2. After 24 hours, fresh media (control condition) or fresh media containing 

either RBF (40 µM) or FTC (5 µg/mL) was added to the respective wells. 

Basal medium treatment: 4x105 GBM cells were plated in 6-multiwell plates, in 

duplicate, and incubated in a humidified atmosphere at 37°C and 5% (v/v) CO2. After 24 hours, 

cells were washed twice with PBS and fresh media (control condition), basal media (medium 

without RBF) or basal media containing RBF (40 µM) was added to the respective wells. 

In all the assays, after 3 days of incubation, total GBM cells were trypsinized and 

washed twice with PBS and the content of Fluo+ cells was evaluated by flow cytometry. 

 

3.2.9 In vivo intracranial orthotopic GBM model 

All experiments with mice were approved by institutional and national ethical 

committees (Direção Geral de Alimentação e Veterinária, Portugal) and in accordance with 

European Union Directive 2010/63/EU. Human commercially available U373 GBM cells were 

sorted into Fluo- and Fluo+ cells using FACS Aria III equipment (BD Biosciences). A total of 

5×105 cells (U373 Fluo- and Fluo+) were stereotactically injected into the brain striatum (1.8 

mm right, 0.1 mm front, and 2.5 mm deep from the bregma) of 12-weeks-old NOD.Cg-

Prkdcscid Il2rgtm1Wjl/SzJ (NSG) male mice (6 mice per group). Animals’ body weight was 

evaluated 3 times per week, and general behavior and symptomatology daily. Humane 

endpoints for sacrifice were established as severe weight loss (> 30% of their total body weight 

relative to the highest body weight value), neurological dysfunction, seizures or moribund 

condition. All brains were collected for histological and molecular analyses.  
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3.2.10 Immunohistochemistry 

Tissues sections were deparaffinized and rehydrated by xylene and ethanol series. 

Sodium citrate buffer (10 mM, 0.05% Tween 20, pH 6) was used for antigen retrieval. 

Endogenous peroxidase activity was blocked with 3% H2O2 in TBS for 10 minutes. Ki-67 

(#550609, BD Biosciences; 1:200), Nestin (#MAB5326, EMD Millipore; 1:100) and SOX2 

(#AB5603, EMD Millipore; 1:500) immunohistochemical staining was performed based on the 

streptavidin-biotin-peroxidase complex principle using the LabVision kit (UltraVision Large 

Volume Detection System Anti-polyvalent, HRP) according to the manufacturer’s instructions. 

Regarding Ki-67 staining, tissues were permeabilized using TBS-Tween 0.5%, for 10 minutes, 

before antigen retrieval. For all staining DAB substrate (DAKO) was used as chromogen, 

followed by counterstaining with hematoxylin. 

 

3.2.11 Statistical analyses 

All statistical analyses were performed using GraphPad Prism 6.0 (GraphPad software, 

Inc.). To assess the statistical differences between groups in the in vitro assays, unpaired 

Student’s t-test analysis was used. Overall survival of orthotopic GBM xenografted mice was 

compared between groups (Fluo- vs. Fluo+) by the log-rank test and plotted as Kaplan-Meier 

curves. Results are presented as normalized means ± standard deviations (SD), and statistical 

significance was defined as p ≤0.05 for a 95% confidence interval. 

 

3.3 Results 

3.3.1 Identification of autofluorescent cells in primary GBM cell lines 

In order to investigate autofluorescence as a new marker to identify GSCs, we started 

by analyzing the presence of autofluorescent (Fluo+) cells in 2 human primary GBM cell lines, 

GBM-18 and GBM-1, cultured in adherent conditions. Using confocal microscopy, both cell 

lines presented a fraction of cells with a green fluorescent vesicle (Figure 3.1A, arrows). 

Additionally, a panel of 5 human primary GBM cell lines (GBM-1, GBM-12, GBM-18, GBM-

19, and GBM-42), in adherent conditions, were investigated for the presence of Fluo+ cells by 

flow cytometry analysis. All GBM cell lines presented a small percentage of Fluo+ cells when 

cultured in adherent conditions, ranging from 1.27% ± 0.13 to 4.59% ± 1.11 (Figure 3.1B). 

Growing these cells in stem cell conditions as neurospheres increased the percentage of Fluo+ 

cells (Figure 3.1C and D), suggesting that autofluorescence could be a biomarker of GSCs. 
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Figure 3.1: Primary GBM cell lines present autofluorescent cells in adherent and neurospheres 

conditions. A) Representative images of Autofluorescent (Fluo+) cells (arrows) in human primary GBM 

cell lines, GBM-18 and GBM-1 grown in adherent conditions. B) Quantification, by flow cytometry, of 

the percentage of Fluo+ cells across 5 different human primary GBM cell lines cultured in adherent 

conditions. C) Representative flow cytometry plots of the human primary GBM cell lines, GBM-18 and 

GBM-1 cultured in adherent and neurospheres conditions. D) Percentage of autofluorescence across 5 

human primary GBM cell lines cultured as adherent cells or neurospheres (n ≥ 3). Data is represented 

as the mean ± SD of at least three independent experiments (*p ≤ 0.05, **p ≤ 0.01, ****p ≤ 0.0001). 

 

 

3.3.2 Autofluorescent cells present characteristics of GBM stem cells 

In order to determine if these GBM autofluorescent cells displayed additional features 

of GSCs the expression of pluripotent/stem cell markers was evaluated. FACS-sorted Fluo+ 

cells from 3 human primary GBM cell lines (GBM-18, GBM-1 and GBM-42) had significantly 

increased expression of a variety of pluripotency-associated genes, including Bmi1, Klf4, 

Nanog, Nestin, Oct3/4 and SOX2, which are frequently overexpressed in cancer stem cells34-37 

comparing with their Fluo- counterparts cells (Figure 3.2A). Additionally, GSCs surface 

markers, such as CD133, CD15 and CXCR4 were increased in Fluo+ cells compared to Fluo- 

cells (Figure 3.2B; Supplementary Figure 3.2). 
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Figure 3.2: Autofluorescent GBM cells have increased expression of stemness- and pluripotency-

associated markers. A) RT-qPCR analysis of pluripotency-associated genes (Bmi-1, Klf4, Nanog, 

Nestin, Oct3/4 and SOX2) in FACS-sorted Fluo+ and Fluo− cells from human primary GBM cell lines, 

GBM-18, GBM-1 and GBM-42. Data shown are normalized for TBP expression and represent the 

relative ratio between Fluo+ vs. Fluo− (n ≥ 3). B) Quantification of flow cytometry analysis for the 

indicated cell surface stem cell markers (CD133, CD15 and CXCR4) in human primary GBM cell lines, 

GBM-18, GBM-1 and GBM-42. Fluo+ cells overexpressed stem cell markers at the protein level 

comparing with Fluo− subpopulation (n ≥ 3). All data is represented as the mean ± SD of at least three 

independent experiments (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). 

 

Since clonogenic growth as neurospheres is linked to GBM stemness and is an in vitro 

indicator of self-renewal ability in GSCs 7, 38, we sorted Fluo- and Fluo+ cells from GBM-18, 

GBM-1 and GBM-42 cell lines and evaluated the capacity of these cells to form neurospheres 

in vitro. Fluo+ cells significantly increased the number of neurospheres compared to their Fluo- 

counterparts (Figure 3.3A), in all tested primary GBM cells. Additionally, self-renewal capacity 

was measured over three consecutive passages in GBM-18 and GBM-1 cells grown under 

neurospheres conditions, demonstrating that Fluo+ cells formed significantly more 

neurospheres in all passages than Fluo- cells (Figures 3.3B and C). Similarly, LDA was carried 

out in FACS-sorted Fluo- and Fluo+ from GBM-18 and GBM-1 cells. Concordantly, Fluo+ cells 

displayed a higher frequency of neurosphere formation compared to Fluo- counterparts (1/(stem 

cell frequency): 1/8.32 for GBM-18 Fluo-, 1/1.91 for GBM-18 Fluo+, 1/13.4 for GBM-1 Fluo-, 

and 1/5.81 for GBM-1 Fluo+) (Figure 3.3D).  
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Figure 3.3: Autofluorescent cells have a higher self-renewal ability. A) Quantification of Fluo+ and 

Fluo- neurospheres number from GBM-18, GBM-1 and GBM-42 sorted cells (n ≥ 3; each performed in 

triplicate. B) Representative phase contrast photographs of GBM-18 Fluo+ and Fluo- neurospheres over 

three generations. C) Quantification of neurospheres number of Fluo+ and Fluo- sorted cells from human 

primary GBM cell lines GBM-18 and GBM-1, after three consecutive passages (generations) (n = 3, 

each performed at least in triplicate). D) Representative ELDA analysis of GBM-18 and GBM-1 Fluo+ 

and Fluo− sorted cells (n = 2). Data is representative of at least three independent experiments (*p ≤ 

0.05, **p ≤ 0.01, ***p ≤ 0.001).  

 

It has been described that GSCs are particularly resistant to chemo- and radio-therapy9, 

11, 12, 39, 40. In line with this hypothesis, we treated human primary GBM cell lines, GBM-1, 

GBM-18, GBM-19 and GBM-42 with the IC50 TMZ for each cell line (600, 500, 850 and 400 

µM, respectively). The content of Fluo+ cells was analyzed by flow cytometry after 3, 6 and 9 

days of TMZ treatment. TMZ treatment led to a significant increase in the percentage of Fluo+ 

cells, in all primary GBM cell lines, in a time-dependent manner (Figure 3.4A and 

Supplementary Figure 3.3A). Additionally, the same human primary GBM cell lines were 

exposed to increased doses of radiation (0, 2, 4, 6, 8 and 10 Gy). Radiation treatment increased 

the percentage of GBM Fluo+ cells in a dose-dependent manner (Figure 3.4B and 

Supplementary Figure 3.3B). 

Moreover, cell viability of FACS-sorted Fluo- and Fluo+ cells from human primary 

GBM cell lines (GBM-18, GBM-1 and GBM-42) was determined after 6 days of TMZ 

treatment. Regarding GBM-18 and GBM-1 cell lines, no significant differences on cell viability 

were found between Fluo- and Fluo+ cells (Supplementary Figure 3.3C). Contrarily, FACS-

sorted GBM-42 Fluo+ cells presented a statistically significant increase on cellular viability 

after TMZ treatment compared to Fluo- cells (Supplementary Figure 3.3C). 
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Figure 3.4: Temozolomide and radiation treatments increase the percentage of GBM 

autofluorescent cells. A-B) Quantification of Fluo+ percentage in control vs. Temozolomide (TMZ)-

treated GBM cells (A) and in control vs. irradiated cells (2, 4, 6, 8, and 10 Gy) (B). Data is represented 

as the mean ± SD of three independent experiments (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001). 

 

Altogether, our data demonstrate that the population of Fluo+ cells in GBM presents 

functional GSCs features, displaying increased expression of pluripotency-associated genes and 

stem cell markers, enriched capacity to grow as neurospheres, a higher self-renewal ability, and 

their proportion was increased after chemo- and radiotherapy treatment. 

 

3.3.3 Riboflavin as the source of autofluorescence 

Previously, Miranda-Lonrenzo and colleagues showed that the fluorescent vitamin 

riboflavin (RBF; vitamin B2) was the substrate, used by ABCG2 transporters, responsible for 

the autofluorescent phenotype in CSCs from carcinomas32. Therefore, we tested in human 

primary (GBM-1, GBM-12, GBM-18, GBM-19, and GBM-42) and commercially available 

(U373 and U251) GBM cell lines if RBF levels were associated with the autofluorescent 

phenotype observed in GBM. We observed that treatment with RBF led to a significant increase 

in the content of Fluo+ in all GBM cell lines (Figure 3.5A and B and Supplementary Figure 

4.4A). Additionally, GBM cell lines were cultured in basal media (medium without RBF) 

resulting in a significant decrease in the percentage of Fluo+ (Figure 3.5C and D and 

Supplementary Figure 4.4B). This was reversed when RBF was added to basal media (Figure 

3.5C and D and Supplementary Figure 4.4B). By RT-qPCR we observed that ABCG2 was 

significantly overexpressed in the Fluo+ subpopulation compared with the negative counterparts 
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(Fluo-) in the human primary GBM cell lines GBM-18, GBM-1 and GBM-42 (Figure 3.5E). 

Finally, and taking into account that fumitremorgin C (FTC) is a recognized inhibitor of 

ABCG2 transporting activity - by allosteric binding to the protein that causes a conformational 

change that results in the impairment of ABCG2-mediated transport - GBM cells were treated 

with this drug. The functional inhibition of ABCG2 with FTC significantly decreased the 

percentage of Fluo+ cells in all primary GBM cell lines tested (Figure 3.5F and G). Together, 

these data suggest that autofluorescence was a result of the accumulation of riboflavin in GSCs 

and that ABCG2 is involved in the transport of this vitamin. 

 

 

Figure 3.5: Riboflavin as the source of autofluorescence of glioblastoma stem cells. A-B) 

Representative flow cytometry analysis (A) and quantification (B) of Fluo+ cells in GBM-18 and GBM-

1 cultured in control medium or control medium supplemented with 40 μM of Riboflavin (RBF) during 

three days. C-D) Representative flow cytometry plots (C) and quantification (D) of Fluo+ cells in GBM-

18 and GBM-1 cells cultured in adherent conditions in control medium, basal medium or basal medium 

supplemented with 40 μM of RBF after three days in culture. E) RT-qPCR analysis of ABCG2 

transporter in Fluo+ and Fluo- sorted cells from GBM-18, GBM-1 and GBM-42 cell lines. Data is 

normalized for TBP expression and represent the relative ratio between Fluo+ vs. Fluo−. F-G) 

Representative flow cytometry analysis (F) and quantification (G) of autofluorescence in GBM-18 and 

GBM-1 cells treated with fumitremorgin C (FTC) during 72h at 5 mg/mL. Data from B, D, E and G 

panels is represented as the mean ± SD of at least three independent experiments, while A, C and F 

panels are representative plots of at least three independent experiments (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 

0.001 ****p ≤ 0.0001). 

 

3.3.4 Autofluorescence GSCs are associated with shorter survival in orthotropic 

GBM xenografts models 

In order to determine whether the subpopulation of Fluo+ cells present a more aggressive 

phenotype in vivo, the commonly used orthotopic U373 human GBM model was used10, 41, 42. 
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FACS-sorted U373 Fluo- and Fluo+ cells were orthotopically injected into the brain striatum of 

NSG male mice. Animals bearing U373 Fluo+-derived tumors presented significantly lower 

overall survival (median 70 days) than their respective Fluo- counterparts (median 99 days; Log 

rank test, p = 0.039; Figure 3.6A). Hematoxylin & Eosin (H&E) analyses confirmed tumor 

formation in mice brains that display characteristic hallmarks of GBMs, such as pleomorphic 

and spindle shape tumor cells, high mitotic activity and prominent nuclear polymorphism 

(Figure 3.6B). Additionally, tumors derived from U373 Fluo+ cells presented an increased 

number of Ki-67-positive cells, as well as increased expression of Nestin and Sox2, when 

compared to Fluo- tumors (Figure 3.6C). 

 

 

Figure 3.6: Autofluorescent cells are associated with increased aggressiveness in in vivo 

intracranial orthotopic GBM xenografts. A) Fluo+ and Fluo- cells from U373 GBM cell line were 

intracranially injected into NSG male mice (6/group). Kaplan-Meier survival curves of NSG mice 

injected with U373 Fluo- and Fluo+ sorted cells (Log-rank test, p = 0.039). B-C) Representative images 

of hematoxylin and eosin (B) and Ki-67, SOX2 and Nestin (C) staining in tissue sections of mice brains 

orthotopically injected with U373 Fluo- and Fluo+ sorted cells.  

 

3.4 Discussion 

In this work, we identified an intrinsic autofluorescent phenotype in GBM cells that is 

associated with GSCs in several human primary GBM cell lines, independently of the 

expression of common cell surface stem cell markers. We also showed that the underlying 

mechanism of the increased autofluorescent phenotype was the accumulation of riboflavin in 

cytoplasmic vesicles in GSCs. These Fluo+ cells could be identified by flow cytometry and 
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isolated by FACS from human primary and commercially available GBM cell lines without the 

need of antibodies. 

GSCs are defined by functional characteristics including persistent proliferation, self-

renewal capacity, stem cell markers expression, differentiation into multiple lineages and tumor 

initiation and progression43. Interestingly, our data demonstrates that Fluo+ cells possess some 

of these functional characteristics, including overexpression of stem and pluripotent-associated 

markers (Figure 3.2); increased self-renewal capacity (Figure 3.3); and were associated with 

shorter survival in vivo (Figure 3.6). Additionally, we demonstrated that treatment with TMZ 

and radiation increased the content of Fluo+ cells (Figure 3.4 and Supplementary Figure 3.3). 

Therefore, we evaluated the viability of both Fluo+ and Fluo- cells after TMZ treatment 

(Supplementary Figure 3.3C), observing that Fluo+ cells from GBM-42 had an increased cell 

viability compared to Fluo- subpopulation (Supplementary Figure 3.3C), while the viability of 

Fluo+ and Fluo- cells sorted from GBM-18 and GBM-1 after TMZ exposure (higher doses of 

TMZ compared to GBM-42 cell line) was similar (Supplementary Figure 3.3C). This might be 

due to TMZ-induced conversion of non-GSCs into GSCs cells, as previously demonstrated44, 

45. Together, these results demonstrated that Fluo+ cells possess defining and recognized GSCs 

features, strongly suggesting that this autofluorescent phenotype can be used to identify and 

isolate GSCs.  

Additionally, we demonstrated that the autofluorescent phenotype was due to the 

accumulation of RBF inside GBM cells (Figure 3.5A-D and Supplementary Figure 4.4A and 

B), which was also previously showed by Miranda-Lourenzo and colleagues 32. Moreover, we 

verified that Fluo+ subpopulation overexpressed ABCG2 compared to Fluo- cells (Figure 3.5E). 

This result is in line with previous studies that showed that ABCG2 is highly expressed in stem 

cells, including GSCs46-49. Previously, it was demonstrated that ABCG2 (i) secretes RBF 

(vitamin B2) into milk in the lactating mammary gland; (ii) is responsible for the uptake of this 

vitamin into cancer cells50, 51; and (iii) mediates a marked intravesicular concentration of RBF 

in ABCG2-overexpressing breast and lung cancer cells51. This is in agreement to Miranda-

Lourenzo and colleagues’ report showing that ABCG2 mediated the transport of RBF in 

CSCs32. Here, due to the role of ABCG2 in the uptake of RBF, we show that the 

pharmacological inhibition of ABCG2 pharmacological inhibition with FTC led to a significant 

decrease in the percentage of Fluo+ cells (Figure 3.5F and G). However, this decrease was not 

complete, raising the possibility that RBF uptake might be performed by other transporters than 

ABCG2. In fact, Fu and colleagues revealed that riboflavin transporter 2 (RFT2), a human RBF 

transporter, is expressed in glioma cells, correlated with WHO grade, and has a role in glioma 
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cells migration, invasion and proliferation52. Altogether these results demonstrated that the 

autofluorescent phenotype was in part due to an influx of RBF performed by ABCG2 

transporter. 

In the future, it will be important to clarify if RBF has a functional role in the biology 

of GSCs. In fact, it is known that RBF is involved in numerous enzymatic reactions in all forms 

of life and performs key metabolic functions by mediating the transfer of electrons in biological 

oxidation-reduction reaction, including bioenergetic metabolism53, 54. 

In conclusion, in this study, we show that autofluorescence can be used as marker to 

identify and isolate GSCs that will allow to overcome problems associated with the use of cell 

surface markers to more easily and specifically isolate GSCs, to search for new biomarkers by 

characterizing the cell surface proteome of this autofluorescent GSCs, and to develop new GSC-

specific therapies. 
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3.6 Supplementary Information 

 

 

Supplementary Figure 3.1: Identification of autofluorescent cells by flow cytometry. A) 

Representative flow cytometry plots demonstrating the strategy used for the identification of Fluo+ cells. 

These cells are excited with a 488-nm blue laser and selected with the intersection of 530/40 and 580/30 

filters, where Fluo+ corresponds to autofluorescent subpopulation and Fluo- corresponds to non-

autofluorescent cells. B) Gating strategy used for sorting Fluo+ and Fluo−. A FITC vs. PE dot plot was 

performed, P2 corresponds to Fluo+ fraction and P3 corresponds to Fluo- subpopulation. 
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Supplementary Figure 3.2: Autofluorescent GBM cells have increased expression of stem cell 

surface markers. A) Summary of CD133, CD15 and CXCR4 expression in different Fluo+ and Fluo− 

cells derived from GBM-18, GBM-1 and GBM-42 cells. Data is represented as the mean ± SD of three 

independent experiments (*p ≤ 0.05, ****p ≤ 0.0001). B) Representative flow cytometry analysis for 

the indicated stem cell surface markers in Fluo+ and Fluo− cells from GBM-18 cell line.  
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Supplementary Figure 3.3: Autofluorescent cells are more resistant to therapy. A-B) 

Representative images of autofluorescent cells in human primary GBM cell lines, GBM-18 and GBM-

1, in control (DMSO) vs. TMZ-treated cells over time (A) and in control vs. irradiated cells (2, 4, 6, 8, 

and 10 Gy) (B). C) Percentage of cell viability in Fluo+ and Fluo− sorted cells from GBM-18, GBM-1 

and GBM-42 cells after TMZ or DMSO treatment for 5 days (n = 3, each performed in duplicate). Data 

is represented as the mean ± SD of three independent experiments (***p ≤ 0.001, ****p ≤ 0.0001). 
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Supplementary Figure 3.4: Riboflavin is the source of autofluorescent cells in commercially 

available GBM cell lines. A) Quantification of autofluorescent cells in two commercially available 

GBM cell lines U251 and U373 cultured in control media (DMEM) or control media containing 40 μM 

of Riboflavin (RBF), during three days. B) Quantification of autofluorescent content in U373 GBM cell 

line cultured in control medium, basal medium or basal medium supplemented with 40 μM of RBF. 

Data is represented as the mean ± SD of three independent experiments (*p ≤ 0.05, ***p ≤ 0.001). 
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Supplementary Table 3.1: Sequence of primers used for RT-qPCR analyses. 

Gene Primer Sense Primer Antisense 

ABCG2 TCATGTTAGGATTGAAGCCAAAGGC TGTGAGATTGACCAACAGACCTGA 

Bmi1 TTCTTTGACCAGAACAGATTGG GCATCACAGTCATTGCTGCT 

Klf4 ACCCACACAGGTGAGAAACC ATGTGTAAGGCGAGGTGGTC 

Nanog TGAACCTCAGCTACAAACAGGTG AACTGCATGCAGGACTGCAGAG 

Nestin CAGGAGAAACAGGGCCTACA TGGGAGCAAAGATCCAAGAC 

Oct3/4 CTTGCTGCAGAAGTGGGTGGAGGAA CTGCAGTGTGGGTTTCGGGCA 

SOX2 AGAACCCCAAGATGCACAAC CGGGGCCGGTATTTATAATC 

TBP GAGCTGTGATGTGAAGTTTCC TCTGGGTTTGATCATTCTGTAG 

For all genes, qPCR parameters were as follows: 4 minutes at 94 °C, 40 cycles of denaturation for 30 seconds at 

94 °C, annealing for 30 seconds at 60 °C, and extension at 72 °C for 30 seconds, and final extension at 72 °C for 

8 minutes. 
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Bruno Manadas, António J. Salgado, Bruno M. Costa (2017). Impact of Mesenchymal Stem 

Cells’ Secretome on Glioblastoma Pathophysiology. Under review. 
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Abstract  

 

Background: Glioblastoma (GBM) is a highly aggressive primary brain cancer, for which 

curative therapies are not available. An emerging therapeutic approach suggested to have 

potential to target malignant gliomas has been based on the use of multipotent mesenchymal 

stem cells (MSCs), either unmodified or engineered to deliver anticancer therapeutic agents, as 

these cells present an intrinsic capacity to migrate towards malignant tumors. Nevertheless, it 

is still controversial whether this innate tropism of MSCs towards the tumor area is associated 

with cancer promotion or suppression. Considering that one of the major mechanisms by which 

MSCs interact with and modulate tumor cells is via secreted factors, we studied how the 

secretome of MSCs modulates critical hallmark features of GBM cells.  

Methods: The effect of conditioned media (CM) from human umbilical cord perivascular cells 

(HUCPVCs, a MSC population present in the Wharton jelly of the umbilical cord) on GBM 

cell viability, migration, proliferation and sensitivity to temozolomide treatment of U251 and 

SNB-19 GBM cells was evaluated. The in vivo chicken chorioallantoic membrane (CAM) assay 

was used to evaluate the effect of HUCPVCs CM on tumor growth and angiogenesis. The 

secretome of HUCPVCs was characterized by proteomic analyses. 

Results: We found that both tested GBM cell lines exposed to HUCPVCs CM presented 

significantly higher cellular viability, proliferation and migration. In contrast, resistance of 

GBM cells to temozolomide chemotherapy was not significantly affected by HUCPVCs CM. 

In the in vivo CAM assay, CM from HUCPVCs promoted U251 tumor cells growth, despite 

not affecting angiogenesis. Proteomic analysis to characterize the secretome of HUCPVCs 

identified several proteins involved in promotion of cell survival, proliferation and migration, 

revealing novel putative molecular mediators for the effects observed in GBM cells exposed to 

HUCPVCs CM.  

Conclusions: These findings provide novel insights to better understand the interplay between 

GBM cells and MSCs, raising awareness to potential safety issues regarding the use of MSCs 

as stem-cell based therapies for GBM. 

 

Keywords: Glioblastoma; Mesenchymal stem cells; Human umbilical cord perivascular cells; 

Conditioned media; Secretome; Viability; Proliferation; Migration; Proteomics 

 

 

 

 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

117 

4.1 Introduction 

Gliomas are the most common primary malignancies in the central nervous system 

(CNS), accounting for approximately 80% of all primary brain tumors1.. Glioblastoma (GBM, 

grade IV) is the most common and malignant type of glioma in adults, presenting a high 

mortality rate and very poor patient outcomes. In fact, despite multimodal therapeutic 

approaches consisting of surgery, chemotherapy and radiotherapy, virtually all GBMs recur and 

lead to death, presenting a median overall survival of ~15 months2 This poor outcome has not 

changed significantly in the last decades, stressing the need for novel therapeutic strategies that 

may, more efficiently, overcome the highly resistance nature of these tumors.  

A novel therapeutic approach currently being investigated for a variety of cancer types 

is based on the use of tumor-trophic stem cells, such as mesenchymal stem cells (MSCs)3-

17.These are multipotent progenitor cells that are defined according to 3 main characteristics: 1) 

expression of CD105, CD73 and CD90 (MSCs markers), and lack of expression of CD45, 

CD34, CD14 (hematopoietic markers); 2) ability to adhere to plastic surfaces; and 3) 

differentiation capacity into adipocytes, osteoblasts and chondrocytes (multipotency)18, 19. 

Additionally, MSCs are also characterized by their proliferative and self-renewal abilities, and 

can be isolated from bone marrow (BM-MSCs)20, adipose tissue (ASCs)21, umbilical cord (e.g., 

human umbilical cord perivascular cells; HUCPVCs)22-24, among other sources25-30. The use of 

MSCs is relatively promising since these cells: i) can be easily isolated and subsequently 

expanded in vitro; ii) show multi-lineage differentiation ability; iii) have an immune privileged 

nature; iv) present capacity to home for site of injury, including tumors; and v) are amenable to 

genetic modification31, 32. In fact, it was already demonstrated that MSCs present an intrinsic 

capacity to migrate towards gliomas and present low immunogenicity at autologous 

transplantation3, 10-12, 33-42. However, whether this selective MSC tumor-tropism is associated 

with cancer suppression or promotion functions is still controversial3, 10, 11, 13, 34, 35, 43. Several 

studies, using MSCs engineered to express anti-glioma agents, demonstrated that these cells are 

highly effective as anti-tumor delivery agents10, 11, 36, 38, 42, 44, 45. However, few studies have 

evaluated the impact of non-engineered MSCs on glioma behavior3, 12, 13, 46, demonstrating that 

MSCs can act either by inducing or repressing tumor cells behavior. Akimoto and colleagues 

showed that umbilical cord blood-derived MSCs induced apoptosis in glioma cells; however, 

in the same study, adipose-derived MSCs enhanced the growth of GBM cells3. In another study, 

co-culturing of adipose-derived MSCs with human glioma cells led to higher survival and 

proliferation of glioma cells12, whereas in another study, bone marrow-derived MSCs co-

cultured with human glioma cells inhibited tumor cell proliferation 46. Therefore, further studies 
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focusing on the crosstalk between tumor cells and MSCs should be performed to strengthen the 

evidence that MSCs-based therapies could be efficiently and safely translated into clinical 

settings. 

This study evaluates how the secretome of a population of MSCs isolated from Wharton 

Jelly of the umbilical cord (HUCPVCs) modulates critical hallmark features of GBM. In 

particular, using in vitro and in vivo models, we investigated the effect of HUCPVCs 

conditioned media (CM) on GBM cells viability, growth, migration, proliferation, 

angiogenesis, and response to chemotherapy. Proteomic analysis of HUCPVCs CM was 

performed to identify molecular players that can influence the behavior of GBM cells, which 

may identify novel targets for therapy. 

 

4.2 Materials and Methods 

4.2.1 Cell lines 

The human glioblastoma cell line SNB-19 was kindly provided by Rui M. Reis, (Life 

and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 

Portugal) and the human glioblastoma cell line U251 was kindly provided by Professor Joseph 

Costello, (Department of Neurological Surgery, University of California, San Francisco 

(UCSF), USA). Both cell lines were cultured as monolayers in Dulbecco's Modified Eagle 

Medium (DMEM; Biochrom) supplemented with 10% (v/v) inactivated fetal bovine serum 

(FBS; Biochrom), and 1% (v/v) penicillin/streptomycin (Invitrogen). The human umbilical cord 

perivascular cells (HUCPVCs) were kindly provided by Prof. John E. Davies (University of 

Toronto, Toronto, Canada; previous characterized by Teixeira and colleagues47) and were 

grown as monolayers in alpha-Minimum Essential Medium (α-MEM; Gibco®) supplemented 

with 10% FBS (Biochrom) and 1% penicillin/streptomycin (Invitrogen). All cell lines were 

incubated at 37 °C in a humidified atmosphere with 5% (v/v) CO2. 

 

4.2.2 HUCPVCs conditioned media (CM) collection  

Conditioned media (CM) were collected from HUCPVCs in culture at passage 6 (P6). 

For the in vitro assays (N = 7), HUCPVCs were plated at a density of 4×103 cells/cm2 and 

allowed to grow for 72 hours. Subsequently, cells were washed twice with phosphate buffer 

solution (PBS) and the medium was replaced by DMEM with 1 % penicillin/streptomycin. For 

proteomic analysis (N = 1), HUCPVCs were plated at a density of 12×103 cells/cm2 and allowed 

to grow for 72 hours. Subsequently, cells were washed five times with PBS and twice with 

DMEM, and the medium was replaced by DMEM containing 1% penicillin/streptomycin. CM 
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were collected after 48 hours (culture media was not renewed or added during this period), 

filtrated through 0.22 µm filters, immediately snap-frozen and stored at -80°C. Before use, CM 

from HUCPVCs were thawed overnight at 4°C and only for the in vitro assays, 1 % of FBS 

was added to the media (HUCPVCs CM). The control condition, for the in vitro studies, 

consisted of DMEM containing 1% FBS and 1% penicillin/streptomycin (control media). For 

proteomic analysis control media consisted in DMEM containing 1% penicillin/streptomycin. 

 

4.2.3 Cell viability assessment 

4.2.3.1 Trypan blue 

U251 and SNB-19 GBM cells were plated in triplicates, at an initial density of 5×104 

and 1×105 cells per well in 24-well plates, respectively. After 24 hours, HUCPVCs CM or 

control media were added to cells and incubated for 2, 4, and 6 days (CM and control media 

were renewed every 48 hours). At each time point, total cells were trypsinized and the 

suspension mixed with trypan blue (1:1 ratio). The number of viable cells were counted in 

duplicates using hemocytometers. Results represent the mean ± standard deviations (SD) of at 

least three independent experiments. 

 

4.2.3.2 MTT assay 

U251 and SNB-19 GBM cells were plated in triplicates, at an initial density of 2.5×104 

and 5×104 cells per well in 48-well plates, respectively. After 24 hours, HUCPVCs CM or 

control media were added to cells and incubated for 2, 4, and 6 days (CM and control media 

were renewed every 48h). At each time point, a MTT solution (Thermo Scientific; 0.5 mg of 

MTT per 1 mL of PBS) was added to each well, followed by incubation in a humidified 

atmosphere, at 37°C and 5% (v/v) CO2, for 1 hour. The optical density was measured at 570 

nm using a microplate reader. Results are presented as the mean ± SD of at least three 

independent experiments. 

 

4.2.4 Response to temozolomide chemotherapy 

To evaluate the effect of HUCPVCs CM on the response of GBM cells to temozolomide 

(TMZ, Sigma-Aldrich, dissolved in DMSO), the half-maximal inhibitory concentration (IC50) 

of TMZ on U251 and SNB-19 GBM cells was determined by MTT assay. U251 and SNB-19 

GBM cells were plated in triplicates, at an initial density of 1×104 and 2×104 cells per well in 

24-well plates, respectively. After 24 hours, cells were washed once with PBS and treated with 

different doses of TMZ (5, 10, 20, 35, 50, 100, 500 μM; or 25, 50, 100, 175, 250, 500, 1000 
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μM; for U251 and SNB-19 cells, respectively) or vehicle (1% DMSO) in HUCPVCs CM or 

control media for 5 days (medium with drugs or vehicle was renewed after 2 days). Results are 

presented as the mean ± SD of three independent experiments. 

 

4.2.5 Migration (wound healing) assay 

U251 and SNB-19 GBM cells were plated in triplicates, at an initial density of 5×105 

and 2.5×105 cells/well in 12-well plates, respectively. After 24 hours, a confluent cell 

monolayer was formed, and a wound was made by manually scratching with a 200 µL pipette 

tip. Cells in suspension were removed, and adherent cells were washed once with PBS. 

HUCPVCs CM or control media were carefully added to cells. At this point (0 hours), the 

“wounded” areas were photographed at 4 distinct places, at 40 x magnification by phase 

contrast microscopy. The same areas were subsequently photographed to monitor wound 

closure after 16, 24 and 48 hours. Migration distances were measured using the beWound - Cell 

Migration Tool (Version 1.5) as previously described48. Relative wound closure was calculated 

for each time point. Results are presented as percentages of wound closure and represent the 

mean ± SD of at least three independent experiments. 

 

4.2.6 Cell Proliferation assay 

To evaluate the impact of HUCPVCs CM on GBM cells proliferation, the Cell 

Proliferation ELISA, 5-bromo-2´-deoxyuridine assay (BrdU, Cell Proliferation ELISA, 

Applied Sciences) was used as indicated by the manufacturer. Briefly, U251 and SNB-19 GBM 

cells were plated in triplicates, at an initial density of 1.5×103 and 2.5×103 cells per well, in 96-

well plates, respectively, and grown overnight. Then, adherent cells were treated with 

HUCPVCs CM or control media for 3 days. After this period, cells were labeled with 10 

μL/well of 100 μM BrdU labeling solution, and reincubated for 16 hours. BrdU incorporation 

was assessed according to the manufacturer's protocol. In order to ensure that the absorbance 

obtained was a result of proliferating cells, and not simply from a higher number of viable cells, 

a 96-well plate containing U251 and SNB-19 cells plated and treated in the same conditions as 

described for BrdU assay, was done to perform MTT assay, following the method described 

above. Results are presented as the ratio between BrdU positive cells and MTT positive (viable) 

cells and represent the mean ± SD of three independent experiments. 
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4.2.7 Chicken Chorioallantoic Membrane (CAM) Assay 

CAM assay was performed as previously described49. Briefly, fertilized chicken eggs 

(supplied by Pinto Bar, Portugal) were incubated at 37 °C in a humidified atmosphere, and on 

day 3 of development, a window was made into the eggshell after puncturing the air chamber, 

and eggs were sealed with BTK tape and returned to the incubator. On day 9 of development, 

2x106 U251 cells, previously exposed to HUCPVCs CM or control media during 4 days, were 

re-suspended on 10 µL of Matrigel (BD Biosciences), placed on the CAM, and the eggs were 

tapped and returned to the incubator. At days 11, 13 and 15 of incubation, 100 µL of new CM 

or control media was added to each respective group. On developmental day 17, tumors were 

photographed in ovo using a stereomicroscope (Olympus S2x16). The chicken embryos were 

sacrificed at -80°C for 10 minutes. CAMs and tumors were dissected, fixed in 4 % 

paraformaldehyde at room temperature, and photographed ex ovo. The area of the tumors was 

measured using Cell B software (Olympus), and blood vessels from a selected area containing 

the tumor were quantified using the Image J software. A total of 38 fertilized chicken eggs were 

used, 14 in the control group and 24 in the HUCPVCs CM group. 

 

4.2.8 Proteomics Analysis 

4.2.8.1 Sample preparation 

HUCPVCs CM and control media spiked with the same amount of the recombinant 

protein malE-GFP (to be use as internal standard) were firstly concentrated using a Vivaspin 

20 sample concentrator (5 kDa; GE Healthcare) by centrifugation at 3000 g. Concentrated CM 

and control media were precipitated with Trichloroacetic acid (TCA)-Acetone50. The washed 

pellets were ressuspended in 2× Laemmli buffer (BioRad)), aided by ultrasonication and 

denaturated at 95 °C 51. After denaturation, samples were alkylated with acrylamide and 

subjected in gel digestion by using the short-GeLC approach 52. The entire lanes were sliced 

into 3 parts, and each part was sliced in small pieces and processed. Gel pieces were destained, 

dehydrated and re-hydrated in 75 µL of trypsin (0.01 µg/µL solution in 10 mM ammonium 

bicarbonate) for 15 minutes, on ice. Thirty µL of 10 mM ammonium bicarbonate were then 

added and in-gel digestion was performed overnight, at room temperature. After digestion, the 

formed peptides were extracted from the gel pieces by sequential addition of three solutions of 

acetonitrile (ACN) in 1 % formic acid (FA) (30%, 50%, and 98% of ACN, respectively). All 

the peptides were dried and subjected to SPE using OMIX tips with C18 stationary phase 

(Agilent Technologies) as recommended by the manufacture. Eluates were dried and 

ressuspended with a solution of 2 % ACN and 0.1% FA. 
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4.2.8.2 SWATH-MS Acquisition 

Samples were analyzed on a Triple TOFTM 5600 System (ABSciex®) in two different 

phases: information-dependent acquisition (IDA) and SWATH acquisition. Peptides were 

resolved by liquid chromatography (nanoLC Ultra 2D, Eksigent®) on a MicroLC column 

ChromXPTM C18CL (300 μm ID × 15 cm length, 3 μm particles, 120 Å pore size, Eksigent®) 

at 5 μL/minutes with a multistep gradient: 0-2 minutes linear gradient from 5 to 10%, 2-45 

minutes linear gradient from 10% to 30% and, 45-46 minutes to 35% of ACN in 0.1% FA. 

Peptides were eluted into the mass spectrometer using an electrospray ionization source 

(DuoSprayTM Source, ABSciex®) with a 50 μm internal diameter (ID) stainless steel emitter 

(NewObjective). IDA experiments were performed for each 3 peptide mixtures per samples. 

The mass spectrometer was set to scanning full spectra (350-1250 m/z) for 250 ms, followed 

by up to 100 MS/MS scans (100-1500 m/z from a dynamic accumulation time - minimum 30 

ms for precursor above the intensity threshold of 1000 - with the purpose of maintaining a cycle 

time of 3.3 s). Candidate ions with a charge state between +2 and +5 and counts above a 

minimum threshold of 10 counts per second were isolated for fragmentation and one MS/MS 

spectra was collected before adding those ions to the exclusion list for 25 seconds (mass 

spectrometer operated by Analyst® TF 1.7, ABSciex®). Rolling collision was utilized with a 

collision energy spread of 5.  

The 3 peptide mixtures of each sample were combined and concentrated, and a single 

analysis of each sample was set for quantitative analysis by acquisition in SWATH mode. For 

SWATH-MS based experiments, the mass spectrometer was operated in a looped product ion 

mode53 and the same chromatographic conditions used as in the IDA run described above. The 

SWATH-MS setup was specifically designed for the samples to be analyzed (Supplementary 

Table 4.1), in order to adapt the SWATH windows to the complexity of the set of samples. A 

set of 60 windows of variable width (containing 1 m/z for the window overlap) was conceived 

covering the precursor mass range of 350-1250 m/z. A 250 ms survey scan (350-1500 m/z) was 

acquired at the beginning of each cycle and SWATH MS/MS spectra were collected from 100-

1500 m/z for 50 ms resulting in a cycle time of 3.25 s from the precursors ranging from 350 to 

1250 m/z. The collision energy for each window was determined according to the calculation 

for a charge +2 ion centered upon the window with variable collision energy spread (CES) 

according with the window.  

A specific library of precursor masses and fragment ions was created by combining all 

files from the IDA experiments, and used for subsequent SWATH processing. Peptide 

identification and library generation were performed with Protein Pilot software (v5.1, 
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ABSciex®), using the following parameters: i) search against a database composed by Homo 

Sapiens from SwissProt (release at April 2016), and malE-GFP; ii) acrylamide alkylated 

cysteines as fixed modification; and iii) trypsin as digestion type. An independent false 

discovery rate (FDR) analysis using the target-decoy approach provided with Protein Pilot 

software was used to assess the quality of the identifications and positive identifications were 

considered when identified proteins and peptides reached a 5% local FDR54, 55. Data processing 

was performed using SWATHTM processing plug-in for PeakViewTM (v2.0.01, ABSciex®) as 

described in52. After retention time adjustment using the malE-GFP peptides, up to 15 peptides, 

with up to 5 fragments each, were chosen per protein, and quantitation was attempted for all 

proteins in the library file that were identified below 5 % local FDR from ProteinPilotTM 

searches.  Peptides’ confidence threshold was determined based on a FDR analysis using the 

target-decoy approach and the peptides that met the 1 % FDR threshold in HUCPVCs sample 

were retained, and the peak areas of the target fragment ions of those peptides were extracted 

across the experiments using an extracted-ion chromatogram (XIC) window of 4 minutes and 

a XIC width of 100 ppm. The levels of the human proteins were estimated by summing all the 

filtered transitions from all the filtered peptides for a given protein (an adaptation of 56) 

normalized to the internal standard (malE-GFP). 

 

4.2.9 Functional clustering analysis 

The identified expressed proteins in HUCPVCs CM were analyzed using the DAVID 

(Database for Annotation, Visualization and Integrated Discovery) bioinformatics resources 

version 6.7 (https://david.ncifcrf.gov/)57, 58. The list of Uniprot Accession IDs was loaded into 

the online tool and mapped against reference Homo sapiens dataset to extract and summarize 

functional classification. In DAVID analyses the proteins identified were displayed in Kyoto 

Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO), or Reactome pathways. 

 

4.2.10 Statistical analysis 

All statistical analyses were performed using GraphPad Prism 6.0 (GraphPad software, 

Inc.). To assess the statistical differences between groups, unpaired Student’s t-test analysis 

was performed. IC50 values were calculated by a nonlinear regression (curve Fit) based on 

sigmoidal dose-response (variable slope), and two-way repeated-measures analysis of variance 

(ANOVA) test was used to assess statistical differences between conditions. Results are 

presented as normalized means ± SD, and statistical significance was defined as p < 0.05 for a 

95% confidence interval. 
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4.3 Results 

4.3.1 HUCPVCs conditioned media (CM) enhance glioblastoma cell viability, 

migration and proliferation, and do not affect sensitivity to temozolomide 

chemotherapy 

Taking into consideration the controversial reports on the roles of MSCs on tumor 

behavior, we started by evaluating how the secretome of HUCPVCs modulates critical hallmark 

features of GBM cells, particularly viability, proliferation and migration. Using two GBM cell 

lines, U251 and SNB-19, and CM from HUCPVCs, we evaluated GBM cell viability using two 

complementary assays: MTT (Figure 4.1A and B) and trypan blue (Figure 4.1C and D). Both 

U251 and SNB-19 cell lines presented a statistically significant increase in cell viability after 

exposure to HUCPVCs CM, in all tested time points (shown both by MTT and trypan blue 

assays; Figure 4.1).  

 

 

Figure 4.1: Effect of HUCPVCs conditioned media (CM) on GBM cell viability. Cell 

viability was measured by MTT (A-B) and trypan blue (C-D) assays on U251 (A and C) and 

SNB-19 (B and D) GBM cell lines, after exposure to control media or HUCPVCs CM. 

HUCPVCs CM led to a statistically significant increase in viability of GBM cells in both assays, 

in all tested time points. All experiments were done in triplicate, at least in 3 independent 

experiments. Data is presented as the mean ± SD (*p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and 

**** p ≤ 0.0001). 

 

 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

125 

GBM cell migration was evaluated by a wound healing assay (Figure 4.2) on U251 

(Figure 4.2A and B) and SNB-19 (Figure 4.2C and D) cells exposed to HUCPVCs CM. We 

found that both GBM cell lines, when exposed to CM, presented a statistically significant higher 

migration capacity when compared to control/unexposed conditions (Figure 4.2). 

 

 

Figure 4.2: Effect of HUCPVCs conditioned media (CM) on GBM cell migration. (A and C) 

Representative pictures showing the migratory capacity of U251 (A) and SNB-19 (C) GBM cells 

exposed to control media or HUCPVCs CM. (B and C) Quantification of U251 (B) and SNB-19 (D) 

cell migration presented as % of wound closure. Treatment with HUCPVCs CM led to a statistically 

significant increase of GBM cell migration. Data is presented as the mean ± SD of at least 3 independent 

experiments, each in triplicate (*p ≤ 0.05 and ** p ≤ 0.01). 

 

Subsequently, the effect of HUCPVCs CM on GBM cell proliferation was evaluated by 

the BrdU cell proliferation assay (Figure 4.3A and C). Both U251 (Figure 4.3A) and SNB-19 

(Figure 4.3C) GBM cells exposed to HUCPVCs CM showed a statistically significant increase 

in cell proliferation when compared with control conditions. 

The influence of HUCPVCs CM exposure on the response of GBM cells to 

temozolomide (TMZ)-based chemotherapy was then evaluated (Figure 4.3B and D). The half 

inhibitory concentration (IC50) values after 5 days of TMZ treatment were determined for U251 

(Figure 4.3B) and SNB-19 (Figure 4.3D) cells. In contrast to the notorious effects previously 

observed in cell viability, migration, and proliferation, no significant differences were observed 

in the sensitivity of U251 and SNB-19 cells to TMZ when exposed to HUCPVCs CM versus 

their respective controls (Figure 4.3B and D). 
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Figure 4.3: Effect of HUCPVCs conditioned media (CM) on GBM cell proliferation and sensitivity 

to temozolomide treatment. (A and C) Proliferation capacity of U251 (A) and SNB-19 (C) GBM cells 

was determined by BrdU assay after treatment with control media or HUCPVCs CM. Exposure to 

HUCPVCs CM increased the proliferation rate of both GBM cell lines (**p ≤ 0.01). (B and D) 

Determination of the half inhibitory concentration (IC50) values of temozolomide (TMZ) treatment in 

U251 (B) and SNB-19 (D) cell lines. For both cell lines, no statistically significant differences in the 

TMZ IC50 values were found between cells treated with HUCPVCs CM or control media (p = 0.6738 

for U251, and p = 0.3115 in SNB-19). Results are expressed as the mean ± SD of 3 independent 

experiments, each in triplicate. 

 

4.3.2 HUCPVCs conditioned media (CM) increase in vivo tumor growth of U251 

GBM cells 

In order to complement the in vitro studies, the effect of HUCPVCs CM on GBM 3D 

tumor growth and angiogenesis was then evaluated using the in vivo Chick Chorioallantoic 

Membrane (CAM) assay, which allows efficient tumor formation and vascularization 49. 

Concordantly with the in vitro data, U251 GBM cells exposed to HUCPVCs CM implanted in 

the CAM formed statistically significantly larger tumors than those derived from cells exposed 

to control media (p = 0.0260; Figure 4.4A and B). No statistically significant differences were 

found in vessel density between control- and CM-exposed GBM tumors (p = 0.0956; Figure 

4.4C and D). 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

127 

 

Figure 4.4: Effect of HUCPVCs conditioned media (CM) in U251 GBM cell growth and 

angiogenesis, in vivo CAM model. Representative pictures of CAM assay after 8 days of tumor growth 

in ovo (A) and ex ovo (C) (16× magnification). (B) Tumor growth was measured in ovo. A higher tumor 

area was found in tumors originated from U251 cells exposed to HUCPVCs CM (p = 0.0260). (D) 

Number of blood vessels surrounding tumors. No differences were found in the number of blood vessels 

between control and cells treated with HUCPVCs CM. Results are expressed as the mean ± SD (*p ≤ 

0.05). 

 

4.3.3 HUCPVCs conditioned media (CM) contain key proteins involved in cell 

viability, migration, and proliferation, commonly dysregulated in GBM 

Considering the broad consistent effects of HUCPVCs CM on the behavior of tumor 

cells both in vitro and in vivo, we performed proteomic analyses of HUCPVC CM to identify 

the protein content of their secretome that may putatively influence GBM behavior. A total of 

699 proteins were identified in our proteomic analysis (N = 1; Supplementary Table 4.2).  

To better understand the biological functions of these secreted proteins, we employed 

functional clustering annotation using and integration into Gene Ontology (GO), Kyoto 

Encyclopedia of Genes and Genomes (KEGG) and Reactome analyses (Figure 4.5). Biological 

processes and cellular components related to extracellular matrix (ECM) organization were the 

most enriched in HUCPVCs CM (Figure 4.5A and B), whereas actin binding was the most 

represented molecular function among all identified proteins (Figure 4.5C). Proteins involved 

in cell cycle, adhesion, motion, survival, migration, and differentiation, which are well known 

to be key regulators of a variety of physiological processes but also to be dysregulated in cancer 

cells, were amongst the most abundantly identified (Figure 4.5A). The HUCPVCs secretome 

was enriched for several pathways by Reactome and KEGG analyses (Figure 4.5D and E), 
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including Wnt, platelet-derived growth factor (PDGF), vascular endothelial growth factor 

(VEGF) and pentose phosphate signaling pathways, as well as proteins involved in focal 

adhesion, ECM-receptor interaction and DNA replication. Globally, these data identify a set of 

biological processes and pathways that are well-known to be involved in the regulation of 

physiological processes, but also to be altered in cancer, which may partly explain the effects 

of HUCPVCs CM observed in GBM cell behavior.  

 

 

Figure 4.5: Functional analysis of proteins present in HUCPVCs conditioned media (CM). (A-C) 

DAVID was used to query the functional annotation of HUCPVCs secretome. The top 20 statistically 

significant enriched Gene Ontology (GO) terms in Biological Process (A), Molecular Component (B) 

and Molecular Function (C) are shown. (D-E) All statistically significant enriched Reactome (D) and 

KEGG (E) pathways are represented. The -log values of p-values are displayed. 

 

4.4 Discussion 

One of the major concerns in stem cell-based therapies is the impact that modified stem 

cells may have on tumor behavior. MSCs have been proposed as a new therapeutic approach 

for glioma treatment, because these cells have been found to have tumor chemotactic 

capabilities and migrate towards tumor sites through the blood-brain-barrier, where continuous 

bilateral molecular crosstalks occur between stromal and cancer cells59, 60. Although some 

studies suggested that MSCs inhibit tumor growth, others demonstrated that MSCs have a pro-

tumoral function by stimulating tumor growth, migration, invasion, and anticancer-drug 

resistance3, 12, 13, 61. The pro-tumoral effects are mediated by secreted molecules and/or via direct 

cellular interactions10, 15, 33-35, 62-69. Therefore, the clinical validity of MSCs as a potential 
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therapeutic approach for glioma is still a matter of debate, deserving further clarification. In this 

study, we evaluated the influence of HUCPVCs CM on GBM aggressiveness and highlighted 

proteins from HUCPVCs CM potentially involved in the observed effects.  

Our data shows that GBM cells exposed to HUCPVCs CM exhibit increased viability, 

migration and proliferation in vitro (Figures 4.1 - 4.3A and C). Interestingly, the in vivo CAM 

model also showed an increase in tumor growth when GBM cells were exposed to HUCPVCs 

CM (Figure 4.4). To the best of our knowledge, this is the first study on the influence of 

HUCPVCs CM in critical hallmark features of GBM. 

Previous studies in different tumor types, including gliomas, are in agreement with our 

results, showing that MSCs may contribute to tumor growth/proliferation3, 4, 14, 39. Additionally, 

it was also demonstrated that factors released by MSCs increased the migration ability of 

several types of cancer cells, including breast70, colon71 and gastric72 cancers. Regarding 

gliomas, Onzi and colleagues demonstrated that ASCs CM treatment was able to increase the 

migration capacity of U87 GBM cells, which is in line with our results73. Interestingly, despite 

the prominent effects of HUCPVCs CM in multiple dimensions of GBM cell biology, the 

sensitivity of these tumor cells to TMZ chemotherapy was not significantly affected by 

HUCPVCs CM (Figure 4.3B and D). These results are in agreement with the work of Onzi and 

colleagues, where they demonstrated that ASCs CM treatment did not alter the response of U87 

GBM cells to TMZ73. This absence of effect on the response of an anti-tumor drug 

(doxorubicin) was also recently observed in lung cancer cell lines when exposed to CM from 

Wharton's jelly derived MSCs by Hendijani and co-workers16. Our study is the first to evaluate 

the influence of HUCPVCs CM on glioma growth and angiogenesis in a CAM assay with 

formation of 3D microtumors (Figure 4.4).  

It is widely accepted that the major mechanism by which MSCs influence cancer 

pathophysiology is mediated by paracrine events74-76. In order to identify which factors secreted 

by HUCPVCs could be modulating the viability, proliferation, and migration of GBM cells, we 

performed proteomic analyses of HUCPVCs CM, identifying 699 proteins in the secretome. 

The functional clustering annotation and integration analyses (Figure 4.5) revealed that 

HUCPVCs secretome as an enrichment for several pathways (e.g. Wnt, PDGF and VEGF 

signaling pathways) that have been consistently found dysregulated in cancer, and are known 

to mediate the phenotypes observed in GBM cells exposed to HUCPVCs CM (namely the 

increase in proliferation, migration, and invasion), further supporting our experimental 

findings77-79. Similarly, several proteins presented in the secretome of HUCPVCs, such as C-C 

motif chemokine 2 (CCL2), platelet-derived growth factor C (PDGFC), semaphorin-7A 
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(SEM7A) (Table 4.1), are known to be important regulators of homeostasis in a variety of 

physiological conditions, but have also been described to influence tumor cell behavior, as is 

the case of a classic proto-oncogene. 

In conclusion, this work shows that HUCPVCs-secreted molecules increase GBM cell 

proliferation, migration and viability in vitro, accompanied by higher tumor growth in vivo. The 

proteomic characterization identifies several proteins that are putative modulators of these 

effects in GBM, warranting the need for further studies to understand their mechanisms of 

action on cancer cells. Our findings also contribute to the understanding of how tumor cells 

respond to MSCs-released factors, which raises concerns about the safety of their use as clinical 

tools for the treatment of GBM. Therefore, and taking into account that some studies 

demonstrated that MSCs can be safely used as drug delivery agents for these purposes10, 39-41, it 

is crucial to standardize the methods used in different studies in order to more accurately 

understand if MSCs are definitely a valid and safe therapeutic approach to tackle cancer. Future 

studies should have into account several aspects, such as, tissue source and in vitro culture 

conditions of MSCs; type of tumor cells; variability of experimental methodology; and studies 

using modified MSCs should include unmodified MSCs as control. Importantly, additional 

studies should be performed using primary GBM cell lines, as well as freshly isolated MSCs, 

since these cells resembles more the tissue characteristics, and therefore are more 

physiologically relevant, and are considered closer to the in vivo models.  
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Table 4.1: Examples of proteins secreted by HUCPVCs that have been described to 

influence tumor cells’ behavior. 

Protein Findings in the context of cancer cells References 

C-C motif chemokine 2 

(CCL2) 

CCL2 regulates migration and invasion in several 

cancer types, including gliomas. 
80-82 

Actin-related protein 

2/3 complex subunit 5 

(ARPC5) 

ARPC5 contributes to cell migration and invasion in 

head and neck squamous cell carcinoma. 
83 

Translationally-

controlled tumor 

protein (TCTP) 

TCTP is overexpressed in glioma tissue and is 

associated with tumor progression and poor clinical 

outcome of glioma patients. TCTP promotes glioma 

cell viability and proliferation, in vitro. 

84, 85 

Platelet-derived growth 

factor C (PDGF-C) 

PDGF-C plays an important role in glioma vessel 

maturation and stabilization and in the progression of 

brain tumors, such as glioblastoma and 

medulloblastoma; and promotes tumor growth by 

recruitment of cancer-associated fibroblasts. 

86-88 

Alpha-actinin-4  

(ACTN4) 

ACTN4 enhances the motility and invasion potential 

of various carcinoma cell lines. 
89 

Testican-1 
Testican-1 promotes the proliferation, migration and 

invasion and inhibits apoptosis in glioma cells. 
90 

Neuropilin-2  

(NRP-2) 

NRP-2 is essential for breast cancer tumor initiation 

being involved in the formation of focal adhesions 

and is associated with metastasis and poor prognosis; 

and promotes the invasion and migration of thyroid 

cancer cells. 

91-94 

Disintegrin and 

metalloproteinase 

domain-containing 

protein 10 (ADAM10) 

ADAM10 expression correlates with the grade of 

malignancy in human glioma; increases the migration 

capacity of glioma stem cells, and is implicated in 

U87 cell invasiveness. 

95-97 

Transforming growth 

factor-beta-induced 

protein (TGFβIp)/ig-h3 

TGFβIp/ig-h3 promotes cell adhesion of human 

astrocytoma cells, in vitro. 
98 

Plasminogen activator 

inhibitor 1 

(PAI-1) 

PAI-1 is essential in processes related to tumor 

development, like angiogenesis, adhesion, migration, 

invasion and metastasis. 

99 

Semaphorin-7A 

(Sema7A) 

Sema7A contributes to the increases motility and 

decreases adhesion necessary for U87 cell invasion. 
95 

Periostin 
Secreted periostin promotes glioma cell invasion and 

adhesion. 
100 

Note: The presented proteins were selected from the top 100 most abundant in HUCPVCs CM when compared to 

control medium. 

 

 

 



 

Impact pf Mesenchymal Stem Cells’ Secretome on Glioblastoma 

132 

4.5 References  

 

1 Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecular pathology 

of glioma. Nature clinical practice Neurology 2006; 2: 494-503. 

2 Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy 

plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987-996. 

3 Akimoto K, Kimura K, Nagano M, Takano S, To'a Salazar G, Yamashita T et al. Umbilical cord 

blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells 

promote, glioblastoma multiforme proliferation. Stem Cells Dev 2013; 22: 1370-1386. 

4 Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J et al. Immunosuppressive effect of 

mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837-3844. 

5 Ayuzawa R, Doi C, Rachakatla RS, Pyle MM, Maurya DK, Troyer D et al. Naive human 

umbilical cord matrix derived stem cells significantly attenuate growth of human breast cancer cells in 

vitro and in vivo. Cancer Lett 2009; 280: 31-37. 

6 Doi C, Maurya DK, Pyle MM, Troyer D, Tamura M. Cytotherapy with naive rat umbilical cord 

matrix stem cells significantly attenuates growth of murine pancreatic cancer cells and increases survival 

in syngeneic mice. Cytotherapy 2010; 12: 408-417. 

7 Eterno V, Zambelli A, Pavesi L, Villani L, Zanini V, Petrolo G et al. Adipose-derived 

Mesenchymal Stem Cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. 

Oncotarget 2014; 5: 613-633. 

8 Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem 

cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557-563. 

9 Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD. Dkk-1 secreted by mesenchymal stem cells inhibits 

growth of breast cancer cells via depression of Wnt signalling. Cancer letters 2008; 269: 67-77. 

10 Nakamizo A, Marini F, Amano T, Khan A, Studeny M, Gumin J et al. Human bone marrow-

derived mesenchymal stem cells in the treatment of gliomas. Cancer research 2005; 65: 3307-3318. 

11 Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al. Antitumor effect of 

genetically engineered mesenchymal stem cells in a rat glioma model. Gene therapy 2004; 11: 1155-

1164. 

12 Yu JM, Jun ES, Bae YC, Jung JS. Mesenchymal stem cells derived from human adipose tissues 

favor tumor cell growth in vivo. Stem cells and development 2008; 17: 463-473. 

13 Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J et al. Mesenchymal stem cells derived from bone 

marrow favor tumor cell growth in vivo. Experimental and molecular pathology 2006; 80: 267-274. 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

133 

14 Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F et al. Breast cancer stem cells 

are regulated by mesenchymal stem cells through cytokine networks. Cancer research 2011; 71: 614-

624. 

15 De Luca A, Lamura L, Gallo M, Maffia V, Normanno N. Mesenchymal stem cell-derived 

interleukin-6 and vascular endothelial growth factor promote breast cancer cell migration. Journal of 

cellular biochemistry 2012; 113: 3363-3370. 

16 Hendijani F, Javanmard Sh H, Rafiee L, Sadeghi-Aliabadi H. Effect of human Wharton's jelly 

mesenchymal stem cell secretome on proliferation, apoptosis and drug resistance of lung cancer cells. 

Res Pharm Sci 2015; 10: 134-142. 

17 Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC et al. Contribution of bone 

marrow-derived endothelial cells to human tumor vasculature. Nat Med 2005; 11: 261-262. 

18 Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC et al. 

Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position 

statement. Cytotherapy 2005; 7: 393-395. 

19 Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. Minimal 

criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular 

Therapy position statement. Cytotherapy 2006; 8: 315-317. 

20 Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological 

characterization. Int J Biochem Cell Biol 2004; 36: 568-584. 

21 Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. Human adipose tissue is 

a source of multipotent stem cells. Mol Biol Cell 2002; 13: 4279-4295. 

22 Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent 

mesenchymal stem cells from umbilical cord blood. Blood 2004; 103: 1669-1675. 

23 Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal 

human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 2003; 21: 

105-110. 

24 Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al. Mesenchymal stem cells in 

the Wharton's jelly of the human umbilical cord. Stem Cells 2004; 22: 1330-1337. 

25 Jackson WM, Nesti LJ, Tuan RS. Potential therapeutic applications of muscle-derived 

mesenchymal stem and progenitor cells. Expert Opin Biol Ther 2010; 10: 505-517. 

26 Janjanin S, Djouad F, Shanti RM, Baksh D, Gollapudi K, Prgomet D et al. Human palatine 

tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells. Arthritis Res Ther 

2008; 10: R83. 



 

Impact pf Mesenchymal Stem Cells’ Secretome on Glioblastoma 

134 

27 Jones EA, English A, Henshaw K, Kinsey SE, Markham AF, Emery P et al. Enumeration and 

phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in 

inflammatory and degenerative arthritis. Arthritis Rheum 2004; 50: 817-827. 

28 Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those 

from other sources: their biology and role in regenerative medicine. J Dent Res 2009; 88: 792-806. 

29 Jazedje T, Perin PM, Czeresnia CE, Maluf M, Halpern S, Secco M et al. Human fallopian tube: 

a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. J Transl 

Med 2009; 7: 46. 

30 Shih YR, Kuo TK, Yang AH, Lee OK, Lee CH. Isolation and characterization of stem cells 

from the human parathyroid gland. Cell Prolif 2009; 42: 461-470. 

31 Kakouri A. MSCs: Is This the Future Therapeutic for Cancer 2015. 

32 Ramdasi S, Sarang S, Viswanathan C. Potential of Mesenchymal Stem Cell based application 

in Cancer. International journal of hematology-oncology and stem cell research 2015; 9: 95-103. 

33 Wu X, Hu J, Zhou L, Mao Y, Yang B, Gao L et al. In vivo tracking of superparamagnetic iron 

oxide nanoparticle-labeled mesenchymal stem cell tropism to malignant gliomas using magnetic 

resonance imaging. Laboratory investigation. J Neurosurg 2008; 108: 320-329. 

34 Birnbaum T, Roider J, Schankin CJ, Padovan CS, Schichor C, Goldbrunner R et al. Malignant 

gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. Journal of neuro-

oncology 2007; 83: 241-247. 

35 Schichor C, Birnbaum T, Etminan N, Schnell O, Grau S, Miebach S et al. Vascular endothelial 

growth factor A contributes to glioma-induced migration of human marrow stromal cells (hMSC). 

Experimental neurology 2006; 199: 301-310. 

36 Choi SA, Lee JY, Wang KC, Phi JH, Song SH, Song J et al. Human adipose tissue-derived 

mesenchymal stem cells: characteristics and therapeutic potential as cellular vehicles for prodrug gene 

therapy against brainstem gliomas. European journal of cancer (Oxford, England : 1990) 2012; 48: 129-

137. 

37 Pisati F, Belicchi M, Acerbi F, Marchesi C, Giussani C, Gavina M et al. Effect of human skin-

derived stem cells on vessel architecture, tumor growth, and tumor invasion in brain tumor animal 

models. Cancer research 2007; 67: 3054-3063. 

38 Yong RL, Shinojima N, Fueyo J, Gumin J, Vecil GG, Marini FC et al. Human bone marrow-

derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to 

human gliomas. Cancer research 2009; 69: 8932-8940. 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

135 

39 Iser IC, Ceschini SM, Onzi GR, Bertoni AP, Lenz G, Wink MR. Conditioned Medium from 

Adipose-Derived Stem Cells (ADSCs) Promotes Epithelial-to-Mesenchymal-Like Transition (EMT-

Like) in Glioma Cells In vitro. Molecular neurobiology 2016; 53: 7184-7199. 

40 Kang SG, Jeun SS, Lim JY, Kim SM, Yang YS, Oh WI et al. Cytotoxicity of human umbilical 

cord blood-derived mesenchymal stem cells against human malignant glioma cells. Child's nervous 

system : ChNS : official journal of the International Society for Pediatric Neurosurgery 2008; 24: 293-

302. 

41 Kim SM, Lim JY, Park SI, Jeong CH, Oh JH, Jeong M et al. Gene therapy using TRAIL-

secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma. 

Cancer research 2008; 68: 9614-9623. 

42 Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al. 

Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer 

therapy. Proceedings of the National Academy of Sciences of the United States of America 2009; 106: 

4822-4827. 

43 Hu B, Thirtamara-Rajamani KK, Sim H, Viapiano MS. Fibulin-3 is uniquely upregulated in 

malignant gliomas and promotes tumor cell motility and invasion. Molecular cancer research : MCR 

2009; 7: 1756-1770. 

44 Choi SA, Hwang SK, Wang KC, Cho BK, Phi JH, Lee JY et al. Therapeutic efficacy and safety 

of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental 

brainstem glioma. Neuro Oncol 2011; 13: 61-69. 

45 Menon LG, Kelly K, Yang HW, Kim SK, Black PM, Carroll RS. Human bone marrow-derived 

mesenchymal stromal cells expressing S-TRAIL as a cellular delivery vehicle for human glioma therapy. 

Stem cells (Dayton, Ohio) 2009; 27: 2320-2330. 

46 Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM et al. Human bone marrow-derived 

mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 

2013; 31: 146-155. 

47 Teixeira FG, Carvalho MM, Neves-Carvalho A, Panchalingam KM, Behie LA, Pinto L et al. 

Secretome of mesenchymal progenitors from the umbilical cord acts as modulator of neural/glial 

proliferation and differentiation. Stem Cell Rev 2015; 11: 288-297. 

48 Morais-Santos F, Granja S, Miranda-Goncalves V, Moreira AH, Queiros S, Vilaca JL et al. 

Targeting lactate transport suppresses in vivo breast tumour growth. Oncotarget 2015; 6: 19177-19189. 

49 Hagedorn M, Javerzat S, Gilges D, Meyre A, de Lafarge B, Eichmann A et al. Accessing key 

steps of human tumor progression in vivo by using an avian embryo model. Proc Natl Acad Sci U S A 

2005; 102: 1643-1648. 



 

Impact pf Mesenchymal Stem Cells’ Secretome on Glioblastoma 

136 

50 Anjo SI, Lourenco AS, Melo MN, Santa C, Manadas B. Unraveling Mesenchymal Stem Cells' 

Dynamic Secretome Through Nontargeted Proteomics Profiling. Methods Mol Biol 2016; 1416: 521-

549. 

51 Manadas BJ, Vougas K, Fountoulakis M, Duarte CB. Sample sonication after trichloroacetic 

acid precipitation increases protein recovery from cultured hippocampal neurons, and improves 

resolution and reproducibility in two-dimensional gel electrophoresis. Electrophoresis 2006; 27: 1825-

1831. 

52 Anjo SI, Santa C, Manadas B. Short GeLC-SWATH: a fast and reliable quantitative approach 

for proteomic screenings. Proteomics 2015; 15: 757-762. 

53 Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L et al. Targeted data extraction of the 

MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate 

proteome analysis. Mol Cell Proteomics 2012; 11: O111 016717. 

54 Sennels L, Bukowski-Wills JC, Rappsilber J. Improved results in proteomics by use of local and 

peptide-class specific false discovery rates. BMC Bioinformatics 2009; 10: 179. 

55 Tang WH, Shilov IV, Seymour SL. Nonlinear fitting method for determining local false 

discovery rates from decoy database searches. J Proteome Res 2008; 7: 3661-3667. 

56 Collins BC, Gillet LC, Rosenberger G, Rost HL, Vichalkovski A, Gstaiger M et al. Quantifying 

protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nat 

Methods 2013; 10: 1246-1253. 

57 Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists 

using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57. 

58 Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the 

comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009; 37: 1-13. 

59 Hong IS, Lee HY, Kang KS. Mesenchymal stem cells and cancer: friends or enemies? Mutat 

Res 2014; 768: 98-106. 

60 Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem 

cell secretome and regenerative therapy after cancer. Biochimie 2013; 95: 2235-2245. 

61 Hu L, Hu J, Zhao J, Liu J, Ouyang W, Yang C et al. Side-by-side comparison of the biological 

characteristics of human umbilical cord and adipose tissue-derived mesenchymal stem cells. Biomed 

Res Int 2013; 2013: 438243. 

62 Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL et al. Stromal cell-derived 

factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular 

signal-regulated kinases 1/2 and Akt. Cancer research 2003; 63: 1969-1974. 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

137 

63 Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H et al. Paracrine action accounts for 

marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nature medicine 2005; 

11: 367-368. 

64 Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y et al. 

Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic 

cancer cells. Cancer science 2013; 104: 157-164. 

65 Kucerova L, Skolekova S, Matuskova M, Bohac M, Kozovska Z. Altered features and increased 

chemosensitivity of human breast cancer cells mediated by adipose tissue-derived mesenchymal stromal 

cells. BMC cancer 2013; 13: 535. 

66 Lee RH, Seo MJ, Reger RL, Spees JL, Pulin AA, Olson SD et al. Multipotent stromal cells from 

human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid 

mice. Proceedings of the National Academy of Sciences of the United States of America 2006; 103: 

17438-17443. 

67 Prantl L, Muehlberg F, Navone NM, Song YH, Vykoukal J, Logothetis CJ et al. Adipose tissue-

derived stem cells promote prostate tumor growth. The Prostate 2010; 70: 1709-1715. 

68 Roorda BD, Elst A, Boer TG, Kamps WA, de Bont ES. Mesenchymal stem cells contribute to 

tumor cell proliferation by direct cell-cell contact interactions. Cancer investigation 2010; 28: 526-534. 

69 Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through 

differentiation and angiogenesis. Stem cells (Dayton, Ohio) 2007; 25: 2648-2659. 

70 Corcoran KE, Trzaska KA, Fernandes H, Bryan M, Taborga M, Srinivas V et al. Mesenchymal 

stem cells in early entry of breast cancer into bone marrow. PloS one 2008; 3: e2563. 

71 Shinojima N, Hossain A, Takezaki T, Fueyo J, Gumin J, Gao F et al. TGF-beta mediates homing 

of bone marrow-derived human mesenchymal stem cells to glioma stem cells. Cancer research 2013; 

73: 2333-2344. 

72 Xue Z, Wu X, Chen X, Liu Y, Wang X, Wu K et al. Mesenchymal stem cells promote epithelial 

to mesenchymal transition and metastasis in gastric cancer though paracrine cues and close physical 

contact. J Cell Biochem 2015; 116: 618-627. 

73 Onzi GR, Ledur PF, Hainzenreder LD, Bertoni AP, Silva AO, Lenz G et al. Analysis of the 

safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy 2016; 18: 828-

837. 

74 Chagastelles PC, Nardi NB, Camassola M. Biology and applications of mesenchymal stem cells. 

Science progress 2010; 93: 113-127. 



 

Impact pf Mesenchymal Stem Cells’ Secretome on Glioblastoma 

138 

75 Favaro E, Carpanetto A, Lamorte S, Fusco A, Caorsi C, Deregibus MC et al. Human 

mesenchymal stem cell-derived microvesicles modulate T cell response to islet antigen glutamic acid 

decarboxylase in patients with type 1 diabetes. Diabetologia 2014; 57: 1664-1673. 

76 Salgado AJ, Sousa JC, Costa BM, Pires AO, Mateus-Pinheiro A, Teixeira FG et al. 

Mesenchymal stem cells secretome as a modulator of the neurogenic niche: basic insights and 

therapeutic opportunities. Frontiers in cellular neuroscience 2015; 9: 249. 

77 Paul G, Anisimov SV. The secretome of mesenchymal stem cells: potential implications for 

neuroregeneration. Biochimie 2013; 95: 2246-2256. 

78 Paul I, Bhattacharya S, Chatterjee A, Ghosh MK. Current Understanding on EGFR and 

Wnt/beta-Catenin Signaling in Glioma and Their Possible Crosstalk. Genes & cancer 2013; 4: 427-446. 

79 Pojo M, Goncalves CS, Xavier-Magalhaes A, Oliveira AI, Goncalves T, Correia S et al. A 

transcriptomic signature mediated by HOXA9 promotes human glioblastoma initiation, aggressiveness 

and resistance to temozolomide. Oncotarget 2015; 6: 7657-7674. 

80 Lindemann C, Marschall V, Weigert A, Klingebiel T, Fulda S. Smac Mimetic-Induced 

Upregulation of CCL2/MCP-1 Triggers Migration and Invasion of Glioblastoma Cells and Influences 

the Tumor Microenvironment in a Paracrine Manner. Neoplasia 2015; 17: 481-489. 

81 Loberg RD, Day LL, Harwood J, Ying C, St John LN, Giles R et al. CCL2 is a potent regulator 

of prostate cancer cell migration and proliferation. Neoplasia 2006; 8: 578-586. 

82 Tang CH, Tsai CC. CCL2 increases MMP-9 expression and cell motility in human 

chondrosarcoma cells via the Ras/Raf/MEK/ERK/NF-kappaB signaling pathway. Biochem Pharmacol 

2012; 83: 335-344. 

83 Kinoshita T, Nohata N, Watanabe-Takano H, Yoshino H, Hidaka H, Fujimura L et al. Actin-

related protein 2/3 complex subunit 5 (ARPC5) contributes to cell migration and invasion and is directly 

regulated by tumor-suppressive microRNA-133a in head and neck squamous cell carcinoma. Int J Oncol 

2012; 40: 1770-1778. 

84 Miao X, Chen YB, Xu SL, Zhao T, Liu JY, Li YR et al. TCTP overexpression is associated 

with the development and progression of glioma. Tumour Biol 2013; 34: 3357-3361. 

85 Gu X, Yao L, Ma G, Cui L, Li Y, Liang W et al. TCTP promotes glioma cell proliferation in 

vitro and in vivo via enhanced beta-catenin/TCF-4 transcription. Neuro Oncol 2014; 16: 217-227. 

86 Anderberg C, Li H, Fredriksson L, Andrae J, Betsholtz C, Li X et al. Paracrine signaling by 

platelet-derived growth factor-CC promotes tumor growth by recruitment of cancer-associated 

fibroblasts. Cancer Res 2009; 69: 369-378. 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

139 

87 di Tomaso E, London N, Fuja D, Logie J, Tyrrell JA, Kamoun W et al. PDGF-C induces 

maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF 

treatment. PLoS One 2009; 4: e5123. 

88 Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA. Platelet-derived growth factor 

(PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence 

that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer 

Res 2002; 62: 3729-3735. 

89 Honda K, Yamada T, Endo R, Ino Y, Gotoh M, Tsuda H et al. Actinin-4, a novel actin-bundling 

protein associated with cell motility and cancer invasion. J Cell Biol 1998; 140: 1383-1393. 

90 Yang J, Yang Q, Yu J, Li X, Yu S, Zhang X. SPOCK1 promotes the proliferation, migration 

and invasion of glioma cells through PI3K/AKT and Wnt/beta-catenin signaling pathways. Oncol Rep 

2016; 35: 3566-3576. 

91 Goel HL, Pursell B, Chang C, Shaw LM, Mao J, Simin K et al. GLI1 regulates a novel 

neuropilin-2/alpha6beta1 integrin based autocrine pathway that contributes to breast cancer initiation. 

EMBO Mol Med 2013; 5: 488-508. 

92 Goel HL, Pursell B, Standley C, Fogarty K, Mercurio AM. Neuropilin-2 regulates alpha6beta1 

integrin in the formation of focal adhesions and signaling. J Cell Sci 2012; 125: 497-506. 

93 Yasuoka H, Kodama R, Hirokawa M, Takamura Y, Miyauchi A, Inagaki M et al. Neuropilin-2 

expression in papillary thyroid carcinoma: correlation with VEGF-D expression, lymph node metastasis, 

and VEGF-D-induced aggressive cancer cell phenotype. J Clin Endocrinol Metab 2011; 96: E1857-

1861. 

94 Yasuoka H, Kodama R, Tsujimoto M, Yoshidome K, Akamatsu H, Nakahara M et al. 

Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and 

regulation of CXCR4 expression. BMC Cancer 2009; 9: 220. 

95 Formolo CA, Williams R, Gordish-Dressman H, MacDonald TJ, Lee NH, Hathout Y. 

Secretome signature of invasive glioblastoma multiforme. J Proteome Res 2011; 10: 3149-3159. 

96 Qu M, Qiu BO, Xiong W, Chen D, Wu A. Expression of a-disintegrin and metalloproteinase 10 

correlates with grade of malignancy in human glioma. Oncol Lett 2015; 9: 2157-2162. 

97 Siney EJ, Holden A, Casselden E, Bulstrode H, Thomas GJ, Willaime-Morawek S. 

Metalloproteinases ADAM10 and ADAM17 Mediate Migration and Differentiation in Glioblastoma 

Sphere-Forming Cells. Mol Neurobiol 2016. 



 

Impact pf Mesenchymal Stem Cells’ Secretome on Glioblastoma 

140 

98 Kim MO, Yun SJ, Kim IS, Sohn S, Lee EH. Transforming growth factor-beta-inducible gene-

h3 (beta(ig)-h3) promotes cell adhesion of human astrocytoma cells in vitro: implication of alpha6beta4 

integrin. Neurosci Lett 2003; 336: 93-96. 

99 Look MP, Foekens JA. Clinical relevance of the urokinase plasminogen activator system in 

breast cancer. APMIS 1999; 107: 150-159. 

100 Mikheev AM, Mikheeva SA, Trister AD, Tokita MJ, Emerson SN, Parada CA et al. Periostin 

is a novel therapeutic target that predicts and regulates glioma malignancy. Neuro Oncol 2015; 17: 372-

382. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Impact of Mesenchymal Stem Cells’ Secretome on Glioblastoma Pathophysiology 

141 

4.6  Supplementary Information 

 

Supplementary Table 4.1: SWATH-MS method. 
 

m/z range Width (Da) CES 

Window 1 349.5-364.5 15 5 

Window 2 363.5-380.6 17.1 5 

Window 3 379.6-395 15.4 5 

Window 4 394-408.5 14.5 5 

Window 5 407.5-420.7 13.2 5 

Window 6 419.7-432.4 12.7 5 

Window 7 431.4-442.7 11.3 5 

Window 8 441.7-452.2 10.5 5 

Window 9 451.2-461.6 10.4 5 

Window 10 460.6-470.2 9.6 5 

Window 11 469.2-478.7 9.5 5 

Window 12 477.7-487.3 9.6 5 

Window 13 486.3-494.9 8.6 5 

Window 14 493.9-503 9.1 5 

Window 15 502-510.7 8.7 5 

Window 16 509.7-518.8 9.1 5 

Window 17 517.8-526.4 8.6 5 

Window 18 525.4-533.6 8.2 5 

Window 19 532.6-541.3 8.7 5 

Window 20 540.3-549 8.7 5 

Window 21 548-556.2 8.2 5 

Window 22 555.2-564.3 9.1 5 

Window 23 563.3-571.9 8.6 5 

Window 24 570.9-579.1 8.2 5 

Window 25 578.1-586.8 8.7 5 

Window 26 585.8-594.4 8.6 5 

Window 27 593.4-602.5 9.1 5 

Window 28 601.5-610.2 8.7 5 

Window 29 609.2-618.3 9.1 5 

Window 30 617.3-625.9 8.6 5 

Window 31 624.9-634 9.1 5 
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Window 32 633-642.6 9.6 5 

Window 33 641.6-651.1 9.5 5 

Window 34 650.1-660.1 10 5 

Window 35 659.1-668.7 9.6 5 

Window 36 667.7-678.1 10.4 5 

Window 37 677.1-687.1 10 5 

Window 38 686.1-697 10.9 5 

Window 39 696-706.9 10.9 5 

Window 40 705.9-716.8 10.9 5 

Window 41 715.8-727.2 11.4 5 

Window 42 726.2-738 11.8 5 

Window 43 737-748.8 11.8 5 

Window 44 747.8-760.5 12.7 5 

Window 45 759.5-772.6 13.1 5 

Window 46 771.6-785.7 14.1 5 

Window 47 784.7-799.2 14.5 5 

Window 48 798.2-813.6 15.4 8 

Window 49 812.6-829.3 16.7 8 

Window 50 828.3-845.1 16.8 8 

Window 51 844.1-861.3 17.2 8 

Window 52 860.3-878.4 18.1 8 

Window 53 877.4-897.7 20.3 8 

Window 54 896.7-920.2 23.5 8 

Window 55 919.2-949.9 30.7 8 

Window 56 948.9-984.1 35.2 8 

Window 57 983.1-1020.1 37 10 

Window 58 1019.1-1064.2 45.1 10 

Window 59 1063.2-1135.3 72.1 10 

Window 60 1134.3-1249.6 115.3 10 
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Supplementary Table 4.2. Proteins identified in the secretome of HUCPVCs. 

No. 

Identifie

d 

Peptides 

No. 

Quantifie

d 

Peptides 

Uniprot 

Accesion 

Name 

Protein 

Name 

Relative Protein 

Levels (normalized 

to internal standard) 

Ratio 

HUCPV

Cs/Ctrl 

    Control HUCPVCs  

4 1 CCL2_Human 
C-C motif 

chemokine 2 
0.000 0.036 709.1 

1 1 
MOXD1_Hum

an 

DBH-like 

monooxygenase 

protein 1 

0.000 0.009 221.9 

4 1 
ARPC5_Huma

n 

Actin-related 

protein 2/3 complex 

subunit 5 

0.000 0.008 154.0 

1 1 
PALLD_Huma

n 
Palladin 0.000 0.004 104.6 

8 5 TCTP_Human 

Translationally-

controlled tumor 

protein 

0.000 0.045 92.2 

1 1 LYOX_Human 
Protein-lysine 6-

oxidase 
0.000 0.002 87.2 

54 15 MMP2_Human 
72 kDa type IV 

collagenase 
0.017 1.421 84.3 

1 1 
PDGFC_Huma

n 

Platelet-derived 

growth factor C 
0.000 0.002 77.6 

61 15 PXDN_Human 
Peroxidasin 

homolog 
0.003 0.219 72.4 

32 14 PDIA3_Human 
Protein disulfide-

isomerase A3 
0.004 0.266 70.4 

59 14 
ACTN4_Huma

n 

Alpha-actinin-4 

{ECO:0000305} 
0.003 0.220 67.8 

8 6 TICN1_Human Testican-1 0.001 0.045 67.4 

2 1 ADHX_Human 

Alcohol 

dehydrogenase 

class-3 

0.000 0.006 66.5 

4 2 PTPA_Human 

Serine/threonine-

protein phosphatase 

2A activator 

0.000 0.010 63.4 

39 14 
QSOX1_Huma

n 

Sulfhydryl oxidase 

1 
0.007 0.412 63.1 

1 1 STIP1_Human 
Stress-induced-

phosphoprotein 1 
0.000 0.002 62.6 

33 14 C1R_Human 
Complement C1r 

subcomponent 
0.005 0.294 62.4 

26 11 
CO5A1_Huma

n 

Collagen alpha-1(V) 

chain 
0.002 0.139 62.2 

2 1 EPCR_Human 
Endothelial protein 

C receptor 
0.000 0.007 61.8 

18 13 PGS1_Human Biglycan 0.007 0.422 60.6 
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13 8 
TXND5_Huma

n 

Thioredoxin 

domain-containing 

protein 5 

0.001 0.064 60.3 

1 1 SEC13_Human 
Protein SEC13 

homolog 
0.000 0.002 60.3 

1 1 NIF3L_Human 

NIF3-like protein 1 

{ECO:0000305|Pub

Med:11124544} 

0.000 0.003 60.0 

42 15 NID2_Human Nidogen-2 0.003 0.182 60.0 

3 2 BTD_Human Biotinidase 0.000 0.014 59.2 

2 2 
CO8A1_Huma

n 

Collagen alpha-

1(VIII) chain 
0.000 0.008 57.9 

21 15 PTX3_Human 
Pentraxin-related 

protein PTX3 
0.024 1.346 56.8 

33 14 NRP2_Human Neuropilin-2 0.002 0.128 56.1 

37 15 
CSTN1_Huma

n 
Calsyntenin-1 0.012 0.660 55.5 

22 14 GDN_Human Glia-derived nexin 0.006 0.312 55.5 

95 14 FLNA_Human Filamin-A 0.005 0.299 55.2 

3 2 
NUCB2_Huma

n 
Nucleobindin-2 0.000 0.007 54.3 

6 3 
ADA10_Huma

n 

Disintegrin and 

metalloproteinase 

domain-containing 

protein 10 

0.000 0.016 54.0 

1 1 
STRAP_Huma

n 

Serine-threonine 

kinase receptor-

associated protein 

0.000 0.001 53.9 

2 1 S10A6_Human Protein S100-A6 0.000 0.005 53.8 

13 11 PNPH_Human 
Purine nucleoside 

phosphorylase 
0.002 0.088 52.4 

37 15 
ACTN1_Huma

n 
Alpha-actinin-1 0.006 0.319 52.3 

33 15 TSP2_Human Thrombospondin-2 0.006 0.322 52.0 

8 3 STC2_Human Stanniocalcin-2 0.002 0.102 50.1 

2 1 
FBLN5_Huma

n 
Fibulin-5 0.000 0.008 49.3 

30 15 PLST_Human Plastin-3 0.005 0.245 48.6 

47 16 BGH3_Human 

Transforming 

growth factor-beta-

induced protein ig-

h3 

0.044 2.137 48.3 

8 7 
CTHR1_Huma

n 

Collagen triple helix 

repeat-containing 

protein 1 

0.003 0.151 48.3 

108 15 
CO6A3_Huma

n 

Collagen alpha-

3(VI) chain 
0.004 0.214 47.9 

4 2 IF4A2_Human 
Eukaryotic initiation 

factor 4A-II 
0.000 0.010 47.8 
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29 13 
CO5A2_Huma

n 

Collagen alpha-2(V) 

chain 
0.003 0.126 47.6 

2 1 ARP2_Human 
Actin-related 

protein 2 
0.000 0.006 47.4 

11 5 PEPD_Human Xaa-Pro dipeptidase 0.001 0.030 47.3 

4 3 
RBMX_Huma

n 

RNA-binding motif 

protein, X 

chromosome 

0.000 0.018 47.2 

50 15 TSP1_Human Thrombospondin-1 0.012 0.576 47.1 

58 15 
CO6A1_Huma

n 

Collagen alpha-

1(VI) chain 
0.035 1.626 46.5 

37 15 PAI1_Human 
Plasminogen 

activator inhibitor 1 
0.060 2.769 46.1 

8 3 PSB4_Human 
Proteasome subunit 

beta type-4 
0.001 0.031 46.1 

20 14 CATB_Human Cathepsin B 0.007 0.306 45.8 

31 15 
MANBA_Hum

an 
Beta-mannosidase 0.004 0.193 45.7 

40 15 MMP1_Human 
Interstitial 

collagenase 
0.037 1.683 45.7 

37 15 
CO4A2_Huma

n 

Collagen alpha-

2(IV) chain 
0.007 0.325 45.7 

100 15 FBN1_Human Fibrillin-1 0.009 0.392 45.5 

29 15 
SEM7A_Huma

n 
Semaphorin-7A 0.005 0.209 44.8 

22 14 
FBLN1_Huma

n 
Fibulin-1 0.003 0.143 44.6 

1 1 
MINP1_Huma

n 

Multiple inositol 

polyphosphate 

phosphatase 1 

0.000 0.006 44.4 

44 14 MOES_Human Moesin 0.008 0.356 44.1 

3 1 
CALD1_Huma

n 
Caldesmon 0.000 0.003 43.8 

96 14 CO3_Human Complement C3 0.008 0.367 43.7 

4 2 
CPPED_Huma

n 

Serine/threonine-

protein phosphatase 

CPPED1 

0.000 0.005 43.5 

20 12 PGS2_Human Decorin 0.004 0.186 43.4 

2 1 
ENOPH_Huma

n 

Enolase-

phosphatase E1 

{ECO:0000255|HA

MAP-

Rule:MF_03117} 

0.000 0.004 42.8 

1 1 
SC23A_Huma

n 

Protein transport 

protein Sec23A 
0.000 0.002 42.8 

9 8 VASN_Human Vasorin 0.002 0.090 42.6 

2 1 BACH_Human 

Cytosolic acyl 

coenzyme A 

thioester hydrolase 

0.000 0.004 42.4 
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23 15 ECM1_Human 
Extracellular matrix 

protein 1 
0.007 0.307 42.3 

142 15 FINC_Human Fibronectin 0.045 1.887 42.3 

2 2 
PGFRL_Huma

n 

Platelet-derived 

growth factor 

receptor-like protein 

0.000 0.003 42.0 

2 1 
OTUB1_Huma

n 

Ubiquitin 

thioesterase OTUB1 
0.000 0.003 41.9 

87 16 
CO1A2_Huma

n 

Collagen alpha-2(I) 

chain 
0.036 1.513 41.8 

7 2 KAD2_Human 

Adenylate kinase 2, 

mitochondrial 

{ECO:0000255|HA

MAP-

Rule:MF_03168} 

0.000 0.009 41.8 

3 3 
EXTL2_Huma

n 
Exostosin-like 2 0.000 0.009 41.6 

39 12 
LAMB1_Huma

n 

Laminin subunit 

beta-1 
0.003 0.111 41.6 

11 5 TIMP1_Human 
Metalloproteinase 

inhibitor 1 
0.007 0.276 41.5 

7 6 
LMAN2_Hum

an 

Vesicular integral-

membrane protein 

VIP36 

0.001 0.024 41.3 

9 2 
PRDX5_Huma

n 

Peroxiredoxin-5, 

mitochondrial 
0.000 0.013 41.2 

4 2 
DX39B_Huma

n 

Spliceosome RNA 

helicase DDX39B 
0.000 0.008 41.1 

17 14 
OLFL3_Huma

n 

Olfactomedin-like 

protein 3 
0.007 0.278 41.1 

46 15 
LTBP1_Huma

n 

Latent-transforming 

growth factor beta-

binding protein 1 

0.003 0.127 40.9 

12 10 GAS6_Human 
Growth arrest-

specific protein 6 
0.001 0.060 40.9 

3 2 DOPD_Human 
D-dopachrome 

decarboxylase 
0.000 0.010 40.9 

23 12 
LOXL2_Huma

n 

Lysyl oxidase 

homolog 2 
0.002 0.101 40.5 

2 1 
HMCN1_Hum

an 
Hemicentin-1 0.000 0.002 40.4 

29 14 
POSTN_Huma

n 
Periostin 0.006 0.237 40.1 

6 3 NPC2_Human 
Epididymal 

secretory protein E1 
0.000 0.013 40.1 

20 15 SPRC_Human SPARC 0.027 1.097 40.0 

3 1 UBC9_Human 
SUMO-conjugating 

enzyme UBC9 
0.000 0.003 40.0 

39 15 CFAH_Human 
Complement factor 

H 
0.003 0.116 39.8 
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4 3 
FABP5_Huma

n 

Fatty acid-binding 

protein, epidermal 
0.000 0.018 39.7 

35 13 C1S_Human 
Complement C1s 

subcomponent 
0.008 0.317 39.4 

53 14 
CO3A1_Huma

n 

Collagen alpha-

1(III) chain 
0.015 0.589 39.4 

2 1 CD81_Human CD81 antigen 0.000 0.003 39.2 

29 12 
MA2A1_Huma

n 

Alpha-mannosidase 

2 
0.002 0.075 39.1 

2 1 SGT1_Human 

Protein SGT1 

homolog 

{ECO:0000250|Uni

ProtKB:Q08446} 

0.000 0.002 39.0 

21 15 
LG3BP_Huma

n 

Galectin-3-binding 

protein 
0.007 0.268 38.5 

10 8 DSG2_Human Desmoglein-2 0.001 0.044 38.0 

12 8 
CO4A1_Huma

n 

Collagen alpha-

1(IV) chain 
0.002 0.064 38.0 

4 2 
NPTX1_Huma

n 

Neuronal pentraxin-

1 
0.000 0.007 38.0 

4 3 SRPX_Human 

Sushi repeat-

containing protein 

SRPX 

0.000 0.016 37.9 

23 12 
GRP78_Huma

n 

78 kDa glucose-

regulated protein 
0.005 0.174 37.7 

1 1 
SUMO4_Huma

n 

Small ubiquitin-

related modifier 4 
0.000 0.002 37.7 

15 10 LUM_Human Lumican 0.009 0.351 37.5 

4 2 
HNRPD_Huma

n 

Heterogeneous 

nuclear 

ribonucleoprotein 

D0 

0.000 0.014 37.5 

3 3 
PA2G4_Huma

n 

Proliferation-

associated protein 

2G4 

0.000 0.011 37.3 

18 15 
PLOD2_Huma

n 

Procollagen-

lysine,2-

oxoglutarate 5-

dioxygenase 2 

0.003 0.102 37.2 

19 15 
GALT2_Huma

n 

Polypeptide N-

acetylgalactosaminy

ltransferase 2 

0.003 0.102 37.2 

14 11 
HTRA1_Huma

n 

Serine protease 

HTRA1 
0.002 0.076 37.1 

14 9 
UCHL1_Huma

n 

Ubiquitin carboxyl-

terminal hydrolase 

isozyme L1 

0.004 0.156 37.1 

5 4 COPA_Human 
Coatomer subunit 

alpha 
0.000 0.014 36.9 
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36 15 
CO6A2_Huma

n 

Collagen alpha-

2(VI) chain 
0.013 0.487 36.7 

3 3 NDKA_Human 

Nucleoside 

diphosphate kinase 

A 

0.001 0.021 36.5 

3 1 SRP09_Human 

Signal recognition 

particle 9 kDa 

protein 

0.000 0.002 36.4 

34 15 NID1_Human Nidogen-1 0.003 0.121 36.4 

3 2 OAF_Human 
Out at first protein 

homolog 
0.000 0.010 36.4 

25 12 PDIA1_Human 
Protein disulfide-

isomerase 
0.004 0.153 36.1 

14 3 DLDH_Human 

Dihydrolipoyl 

dehydrogenase, 

mitochondrial 

0.000 0.014 36.0 

20 13 CALR_Human Calreticulin 0.004 0.162 36.0 

22 13 
PCOC1_Huma

n 

Procollagen C-

endopeptidase 

enhancer 1 

0.006 0.206 35.8 

10 7 EF1A3_Human 
Putative elongation 

factor 1-alpha-like 3 
0.002 0.088 35.7 

42 15 
LAMC1_Huma

n 

Laminin subunit 

gamma-1 
0.004 0.151 35.7 

10 7 CD248_Human Endosialin 0.002 0.059 35.7 

6 3 NUDC_Human 
Nuclear migration 

protein nudC 
0.000 0.009 35.7 

16 11 
SERPH_Huma

n 
Serpin H1 0.002 0.079 35.5 

22 12 
FSCN1_Huma

n 
Fascin 0.003 0.114 35.3 

8 6 BMP1_Human 

Bone 

morphogenetic 

protein 1 

0.001 0.037 35.3 

6 4 PSA3_Human 
Proteasome subunit 

alpha type-3 
0.001 0.028 34.8 

15 10 
MA1A1_Huma

n 

Mannosyl-

oligosaccharide 1,2-

alpha-mannosidase 

IA 

0.002 0.085 34.8 

8 7 GGH_Human 
Gamma-glutamyl 

hydrolase 
0.002 0.055 34.7 

18 14 IBP7_Human 

Insulin-like growth 

factor-binding 

protein 7 

0.026 0.890 34.7 

11 6 PTK7_Human 
Inactive tyrosine-

protein kinase 7 
0.001 0.036 34.7 

19 14 
CBPA4_Huma

n 

Carboxypeptidase 

A4 
0.006 0.217 34.6 
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3 1 
RAB1A_Huma

n 

Ras-related protein 

Rab-1A 
0.000 0.006 34.6 

3 2 
COGA1_Huma

n 

Collagen alpha-

1(XVI) chain 
0.000 0.007 34.6 

6 4 
AP2B1_Huma

n 

AP-2 complex 

subunit beta 
0.000 0.010 34.5 

2 2 
MFAP2_Huma

n 

Microfibrillar-

associated protein 2 
0.000 0.008 34.4 

33 15 ENOA_Human Alpha-enolase 0.022 0.743 34.3 

19 14 
MDHM_Huma

n 

Malate 

dehydrogenase, 

mitochondrial 

0.006 0.218 34.2 

16 7 GDIA_Human 

Rab GDP 

dissociation 

inhibitor alpha 

0.002 0.057 34.2 

32 14 
HSP7C_Huma

n 

Heat shock cognate 

71 kDa protein 
0.007 0.243 34.2 

104 14 
COCA1_Huma

n 

Collagen alpha-

1(XII) chain 
0.009 0.319 33.9 

2 1 RUXE_Human 
Small nuclear 

ribonucleoprotein E 
0.000 0.003 33.8 

4 2 
FBLN4_Huma

n 

EGF-containing 

fibulin-like 

extracellular matrix 

protein 2 

0.000 0.007 33.7 

4 3 RAN_Human 
GTP-binding 

nuclear protein Ran 
0.001 0.026 33.7 

7 5 
B4GT1_Huma

n 

Beta-1,4-

galactosyltransferas

e 1 

0.001 0.044 33.6 

2 1 PLD3_Human Phospholipase D3 0.000 0.002 33.6 

39 12 
LTBP2_Huma

n 

Latent-transforming 

growth factor beta-

binding protein 2 

0.004 0.136 33.5 

4 2 FPPS_Human 

Farnesyl 

pyrophosphate 

synthase 

0.000 0.008 33.4 

29 11 
LAMA4_Hum

an 

Laminin subunit 

alpha-4 
0.002 0.067 33.3 

4 2 PPIC_Human 
Peptidyl-prolyl cis-

trans isomerase C 
0.001 0.017 33.3 

3 1 MIF_Human 

Macrophage 

migration inhibitory 

factor 

0.001 0.033 33.3 

23 11 
EMIL1_Huma

n 
EMILIN-1 0.002 0.065 33.0 

3 1 FCL_Human 
GDP-L-fucose 

synthase 
0.000 0.003 32.8 

5 2 SERB_Human 
Phosphoserine 

phosphatase 
0.000 0.008 32.6 
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18 11 1433E_Human 
14-3-3 protein 

epsilon 
0.005 0.165 32.4 

23 14 
CH3L1_Huma

n 

Chitinase-3-like 

protein 1 
0.029 0.938 32.4 

16 15 TPA_Human 

Tissue-type 

plasminogen 

activator 

0.003 0.106 32.4 

4 4 
MYDGF_Hum

an 

Myeloid-derived 

growth factor 

{ECO:0000303|Pub

Med:25581518, 

ECO:0000312|HGN

C:HGNC:16948} 

0.002 0.058 32.1 

3 2 
RBBP4_Huma

n 

Histone-binding 

protein RBBP4 
0.000 0.011 32.1 

18 13 
LKHA4_Huma

n 

Leukotriene A-4 

hydrolase 
0.002 0.049 32.1 

1 1 RS10_Human 
40S ribosomal 

protein S10 
0.000 0.001 32.1 

4 3 TSP3_Human Thrombospondin-3 0.000 0.007 31.8 

3 2 SGCE_Human Epsilon-sarcoglycan 0.000 0.004 31.8 

14 13 IDHC_Human 

Isocitrate 

dehydrogenase 

[NADP] 

cytoplasmic 

0.002 0.077 31.7 

6 3 
RL10A_Huma

n 

60S ribosomal 

protein L10a 
0.001 0.031 31.7 

41 15 KPYM_Human 
Pyruvate kinase 

PKM 
0.019 0.594 31.6 

5 5 HEXA_Human 

Beta-

hexosaminidase 

subunit alpha 

0.001 0.022 31.6 

3 3 4F2_Human 
4F2 cell-surface 

antigen heavy chain 
0.000 0.011 31.6 

7 5 CATZ_Human Cathepsin Z 0.001 0.037 31.6 

26 13 TKT_Human Transketolase 0.009 0.291 31.4 

25 12 PGK1_Human 
Phosphoglycerate 

kinase 1 
0.006 0.179 31.4 

27 12 GDIB_Human 

Rab GDP 

dissociation 

inhibitor beta 

0.004 0.123 31.2 

1 1 CALX_Human Calnexin 0.000 0.002 31.2 

4 1 HGF_Human 
Hepatocyte growth 

factor 
0.000 0.003 31.0 

2 2 SC22B_Human 
Vesicle-trafficking 

protein SEC22b 
0.000 0.003 30.9 

6 4 GLGB_Human 
1,4-alpha-glucan-

branching enzyme 
0.001 0.017 30.9 

1 1 
LTOR3_Huma

n 

Ragulator complex 

protein LAMTOR3 
0.000 0.002 30.8 
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12 8 HSP74_Human 
Heat shock 70 kDa 

protein 4 
0.001 0.038 30.8 

11 8 ROA1_Human 

Heterogeneous 

nuclear 

ribonucleoprotein 

A1 

0.004 0.110 30.5 

37 13 PAPP1_Human Pappalysin-1 0.003 0.101 30.4 

5 5 RSU1_Human 
Ras suppressor 

protein 1 
0.001 0.017 30.4 

21 12 CD109_Human CD109 antigen 0.002 0.049 30.4 

25 15 G6PI_Human 

Glucose-6-

phosphate 

isomerase 

0.007 0.199 30.3 

17 13 
CSPG2_Huma

n 

Versican core 

protein 
0.004 0.111 30.3 

22 12 EXT2_Human Exostosin-2 0.003 0.077 30.2 

14 8 GSHB_Human 
Glutathione 

synthetase 
0.001 0.035 30.2 

88 15 
CO1A1_Huma

n 

Collagen alpha-1(I) 

chain 
0.071 2.125 30.1 

12 7 
DPYL3_Huma

n 

Dihydropyrimidinas

e-related protein 3 
0.001 0.037 29.9 

13 9 HEXB_Human 

Beta-

hexosaminidase 

subunit beta 

0.002 0.047 29.9 

8 7 PDIA6_Human 
Protein disulfide-

isomerase A6 
0.001 0.033 29.8 

27 15 VINC_Human Vinculin 0.004 0.116 29.7 

4 2 FRIL_Human Ferritin light chain 0.000 0.010 29.7 

3 2 
ELAV1_Huma

n 

ELAV-like protein 

1 
0.000 0.005 29.6 

6 4 
CAPZB_Huma

n 

F-actin-capping 

protein subunit beta 
0.000 0.014 29.5 

14 10 PEDF_Human 
Pigment epithelium-

derived factor 
0.003 0.085 29.4 

4 2 
PSME1_Huma

n 

Proteasome 

activator complex 

subunit 1 

0.000 0.007 29.4 

2 2 
GLRX3_Huma

n 
Glutaredoxin-3 0.000 0.008 29.4 

27 15 
ALDOA_Hum

an 

Fructose-

bisphosphate 

aldolase A 

0.012 0.345 29.4 

6 2 LGUL_Human 
Lactoylglutathione 

lyase 
0.000 0.013 29.3 

6 5 
GANAB_Hum

an 

Neutral alpha-

glucosidase AB 
0.001 0.018 29.3 

53 12 FLNB_Human Filamin-B 0.002 0.070 29.1 

7 4 TFR1_Human 
Transferrin receptor 

protein 1 
0.000 0.009 29.1 
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19 13 TERA_Human 

Transitional 

endoplasmic 

reticulum ATPase 

0.002 0.049 29.1 

9 2 PTBP1_Human 

Polypyrimidine 

tract-binding protein 

1 

0.000 0.010 29.1 

22 13 
SPON2_Huma

n 
Spondin-2 0.035 1.002 29.0 

7 3 IMB1_Human 
Importin subunit 

beta-1 
0.000 0.008 28.8 

13 11 
GSTP1_Huma

n 

Glutathione S-

transferase P 
0.007 0.197 28.7 

18 8 
AGRIN_Huma

n 
Agrin 0.001 0.033 28.6 

19 13 LDHB_Human 

L-lactate 

dehydrogenase B 

chain 

0.012 0.340 28.6 

2 2 LIS1_Human 

Platelet-activating 

factor 

acetylhydrolase IB 

subunit alpha 

{ECO:0000255|HA

MAP-

Rule:MF_03141} 

0.000 0.008 28.5 

1 1 
PA1B3_Huma

n 

Platelet-activating 

factor 

acetylhydrolase IB 

subunit gamma 

0.000 0.002 28.5 

6 4 ENPL_Human Endoplasmin 0.001 0.019 28.2 

11 10 
NUCB1_Huma

n 
Nucleobindin-1 0.002 0.056 28.2 

2 2 
ADA19_Huma

n 

Disintegrin and 

metalloproteinase 

domain-containing 

protein 19 

0.000 0.012 28.2 

25 15 TAGL_Human Transgelin 0.026 0.717 28.1 

1 1 FUCO_Human 
Tissue alpha-L-

fucosidase 
0.000 0.004 28.0 

27 16 
INHBA_Huma

n 
Inhibin beta A chain 0.010 0.280 28.0 

7 3 
HSPB1_Huma

n 

Heat shock protein 

beta-1 
0.000 0.012 28.0 

26 13 LDHA_Human 

L-lactate 

dehydrogenase A 

chain 

0.026 0.713 27.9 

2 2 
ARC1B_Huma

n 

Actin-related 

protein 2/3 complex 

subunit 1B 

0.000 0.006 27.8 
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12 7 AMD_Human 

Peptidyl-glycine 

alpha-amidating 

monooxygenase 

0.001 0.030 27.7 

1 1 ROAA_Human 

Heterogeneous 

nuclear 

ribonucleoprotein 

A/B 

0.000 0.005 27.6 

8 5 
DPYL2_Huma

n 

Dihydropyrimidinas

e-related protein 2 
0.001 0.016 27.5 

3 2 
AN32B_Huma

n 

Acidic leucine-rich 

nuclear 

phosphoprotein 32 

family member B 

0.000 0.005 27.4 

16 12 AMPB_Human Aminopeptidase B 0.002 0.065 27.4 

6 5 PSB2_Human 
Proteasome subunit 

beta type-2 
0.001 0.039 27.3 

13 11 
CLC11_Huma

n 

C-type lectin 

domain family 11 

member A 

0.003 0.081 27.2 

16 12 
PCD10_Huma

n 
Protocadherin-10 0.002 0.054 27.2 

5 2 ECI1_Human 

Enoyl-CoA delta 

isomerase 1, 

mitochondrial 

0.000 0.008 27.1 

16 13 
MDHC_Huma

n 

Malate 

dehydrogenase, 

cytoplasmic 

0.007 0.189 27.0 

9 6 IBP5_Human 

Insulin-like growth 

factor-binding 

protein 5 

0.001 0.029 26.9 

13 11 
TAGL2_Huma

n 
Transgelin-2 0.003 0.091 26.9 

9 4 ARP3_Human 
Actin-related 

protein 3 
0.001 0.015 26.8 

10 9 
AK1A1_Huma

n 

Alcohol 

dehydrogenase 

[NADP(+)] 

0.001 0.033 26.7 

10 6 FSTL1_Human 
Follistatin-related 

protein 1 
0.001 0.025 26.6 

1 1 BAF_Human 

Barrier-to-

autointegration 

factor 

0.000 0.001 26.5 

7 3 UGPA_Human 

UTP--glucose-1-

phosphate 

uridylyltransferase 

0.000 0.007 26.4 

1 1 KAT3_Human 

Kynurenine--

oxoglutarate 

transaminase 3 

0.000 0.002 26.2 

15 11 
PRDX6_Huma

n 
Peroxiredoxin-6 0.003 0.090 26.2 
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1 2 GLO2_Human 

Hydroxyacylglutath

ione hydrolase, 

mitochondrial 

{ECO:0000303|Pub

Med:15117945} 

0.000 0.003 26.2 

16 11 DPP3_Human 
Dipeptidyl 

peptidase 3 
0.002 0.043 26.1 

5 1 ARF1_Human 
ADP-ribosylation 

factor 1 
0.000 0.002 26.0 

21 6 
XYLT1_Huma

n 
Xylosyltransferase 1 0.001 0.028 25.9 

2 1 
MA1B1_Huma

n 

Endoplasmic 

reticulum 

mannosyl-

oligosaccharide 1,2-

alpha-mannosidase 

0.000 0.002 25.9 

1 1 
S10AG_Huma

n 
Protein S100-A16 0.000 0.001 25.8 

4 2 
GALT6_Huma

n 

Polypeptide N-

acetylgalactosaminy

ltransferase 6 

0.000 0.005 25.8 

10 7 CATD_Human Cathepsin D 0.002 0.039 25.7 

49 15 VIME_Human Vimentin 0.029 0.750 25.6 

7 6 PDLI5_Human 
PDZ and LIM 

domain protein 5 
0.001 0.019 25.5 

14 9 
HS71B_Huma

n 

Heat shock 70 kDa 

protein 1B 

{ECO:0000312|HG

NC:HGNC:5233} 

0.003 0.064 25.4 

7 5 
ERAP1_Huma

n 

Endoplasmic 

reticulum 

aminopeptidase 1 

0.000 0.011 25.4 

5 4 
TXD17_Huma

n 

Thioredoxin 

domain-containing 

protein 17 

0.001 0.033 25.4 

2 1 STC1_Human Stanniocalcin-1 0.000 0.002 25.2 

1 1 CUTA_Human Protein CutA 0.000 0.004 25.2 

15 14 G3P_Human 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

0.011 0.285 25.2 

3 2 SEPR_Human 

Prolyl 

endopeptidase FAP 

{ECO:0000305} 

0.000 0.005 25.1 

18 14 TPIS_Human 
Triosephosphate 

isomerase 
0.021 0.521 25.1 

18 10 
TRXR1_Huma

n 

Thioredoxin 

reductase 1, 

cytoplasmic 

0.002 0.057 24.9 

7 3 ATL1_Human 
ADAMTS-like 

protein 1 
0.001 0.017 24.8 
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4 2 
VP26A_Huma

n 

Vacuolar protein 

sorting-associated 

protein 26A 

0.000 0.007 24.7 

1 1 STRP1_Human 
Striatin-interacting 

protein 1 
0.000 0.001 24.6 

1 1 ERP44_Human 

Endoplasmic 

reticulum resident 

protein 44 

0.000 0.002 24.6 

5 1 
PURA2_Huma

n 

Adenylosuccinate 

synthetase isozyme 

2 

{ECO:0000255|HA

MAP-

Rule:MF_03127} 

0.000 0.002 24.6 

13 6 CBR1_Human 
Carbonyl reductase 

[NADPH] 1 
0.002 0.038 24.5 

8 5 
GLU2B_Huma

n 

Glucosidase 2 

subunit beta 
0.001 0.022 24.5 

4 4 
PROF2_Huma

n 
Profilin-2 0.000 0.011 24.4 

3 2 TPM3_Human 
Tropomyosin alpha-

3 chain 
0.000 0.004 24.2 

17 11 SODM_Human 

Superoxide 

dismutase [Mn], 

mitochondrial 

0.003 0.074 24.2 

14 9 
PRDX1_Huma

n 
Peroxiredoxin-1 0.007 0.161 24.0 

22 13 WDR1_Human 
WD repeat-

containing protein 1 
0.005 0.126 23.9 

33 14 EF2_Human Elongation factor 2 0.006 0.145 23.9 

9 6 
B4GA1_Huma

n 

Beta-1,4-

glucuronyltransferas

e 1 

{ECO:0000303|Pub

Med:25279697, 

ECO:0000303|Pub

Med:25279699, 

ECO:0000312|HGN

C:HGNC:15685} 

0.002 0.038 23.8 

3 1 
U2AF2_Huma

n 

Splicing factor 

U2AF 65 kDa 

subunit 

0.000 0.004 23.8 

9 3 
ARPC2_Huma

n 

Actin-related 

protein 2/3 complex 

subunit 2 

0.001 0.018 23.6 

11 8 QPCT_Human 
Glutaminyl-peptide 

cyclotransferase 
0.002 0.045 23.6 

18 10 ROA2_Human 
Heterogeneous 

nuclear 
0.003 0.077 23.6 
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ribonucleoproteins 

A2/B1 

1 1 SEPT9_Human Septin-9 0.000 0.002 23.6 

6 4 6PGD_Human 

6-phosphogluconate 

dehydrogenase, 

decarboxylating 

0.001 0.014 23.5 

13 9 
TALDO_Huma

n 
Transaldolase 0.002 0.057 23.4 

4 1 CALU_Human Calumenin 0.000 0.009 23.3 

8 4 
CNDP2_Huma

n 

Cytosolic non-

specific dipeptidase 
0.001 0.017 23.1 

1 1 TFPI1_Human 
Tissue factor 

pathway inhibitor 
0.000 0.002 23.1 

12 11 CYTC_Human Cystatin-C 0.015 0.341 23.0 

2 2 LXN_Human Latexin 0.000 0.007 22.7 

6 4 
SRPX2_Huma

n 

Sushi repeat-

containing protein 

SRPX2 

0.001 0.021 22.6 

23 12 LRP1_Human 

Prolow-density 

lipoprotein receptor-

related protein 1 

0.002 0.037 22.6 

9 7 PSA1_Human 
Proteasome subunit 

alpha type-1 
0.002 0.051 22.5 

1 1 
HIBCH_Huma

n 

3-

hydroxyisobutyryl-

CoA hydrolase, 

mitochondrial 

0.000 0.002 22.5 

6 4 
PRDX3_Huma

n 

Thioredoxin-

dependent peroxide 

reductase, 

mitochondrial 

0.001 0.017 22.4 

5 3 
PVRL2_Huma

n 
Nectin-2 0.000 0.009 22.4 

2 2 CYTB_Human Cystatin-B 0.000 0.010 22.4 

16 12 PPIA_Human 
Peptidyl-prolyl cis-

trans isomerase A 
0.010 0.226 22.4 

2 2 1A66_Human 

HLA class I 

histocompatibility 

antigen, A-66 alpha 

chain 

0.000 0.004 22.4 

11 7 IL6_Human Interleukin-6 0.006 0.140 22.4 

3 2 KAD1_Human 

Adenylate kinase 

isoenzyme 1 

{ECO:0000255|HA

MAP-

Rule:MF_03171} 

0.000 0.006 22.4 

42 10 PLEC_Human Plectin 0.002 0.043 22.3 

10 10 CH60_Human 

60 kDa heat shock 

protein, 

mitochondrial 

0.001 0.032 22.3 
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3 3 SYK_Human 
Lysine--tRNA 

ligase 
0.000 0.007 22.3 

3 1 LDLR_Human 
Low-density 

lipoprotein receptor 
0.000 0.003 22.2 

6 3 CAN2_Human 
Calpain-2 catalytic 

subunit 
0.000 0.007 22.1 

3 2 TPP1_Human 
Tripeptidyl-

peptidase 1 
0.000 0.002 22.1 

10 8 CLIC1_Human 

Chloride 

intracellular channel 

protein 1 

0.003 0.076 22.1 

2 1 
BPNT1_Huma

n 

3'(2'),5'-

bisphosphate 

nucleotidase 1 

0.000 0.003 22.0 

2 2 ITB1_Human Integrin beta-1 0.000 0.004 22.0 

17 11 EXT1_Human Exostosin-1 0.003 0.068 21.9 

29 12 TLN1_Human Talin-1 0.002 0.046 21.9 

12 10 CLUS_Human Clusterin 0.004 0.088 21.8 

6 5 PSB3_Human 
Proteasome subunit 

beta type-3 
0.001 0.027 21.7 

7 7 FUMH_Human 
Fumarate hydratase, 

mitochondrial 
0.001 0.024 21.6 

3 2 
CAPR1_Huma

n 
Caprin-1 0.000 0.005 21.6 

13 11 ALDR_Human Aldose reductase 0.005 0.101 21.5 

6 4 
SDCB1_Huma

n 
Syntenin-1 0.001 0.012 21.5 

2 2 ILF3_Human 

Interleukin 

enhancer-binding 

factor 3 

0.000 0.008 21.4 

2 2 TPM1_Human 
Tropomyosin alpha-

1 chain 
0.000 0.004 21.4 

7 3 TPM4_Human 
Tropomyosin alpha-

4 chain 
0.000 0.010 21.3 

24 10 ACTG_Human 
Actin, cytoplasmic 

2 
0.011 0.235 21.2 

14 12 MYH9_Human Myosin-9 0.003 0.055 21.2 

97 14 PGBM_Human 

Basement 

membrane-specific 

heparan sulfate 

proteoglycan core 

protein 

0.013 0.267 21.1 

7 6 IF6_Human 

Eukaryotic 

translation initiation 

factor 6 

{ECO:0000255|HA

MAP-

Rule:MF_03132} 

0.001 0.018 21.1 

9 8 IPO5_Human Importin-5 0.001 0.023 21.1 
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38 13 
CSPG4_Huma

n 

Chondroitin sulfate 

proteoglycan 4 
0.004 0.084 21.1 

9 7 
MXRA8_Hum

an 

Matrix-remodeling-

associated protein 8 
0.002 0.049 21.0 

19 13 
CADH2_Huma

n 
Cadherin-2 0.005 0.103 21.0 

16 9 CAP1_Human 
Adenylyl cyclase-

associated protein 1 
0.004 0.092 21.0 

4 2 TFPI2_Human 
Tissue factor 

pathway inhibitor 2 
0.000 0.008 21.0 

4 1 1A69_Human 

HLA class I 

histocompatibility 

antigen, A-69 alpha 

chain 

0.000 0.001 20.9 

10 4 SPB7_Human Serpin B7 0.001 0.019 20.8 

5 3 ERP29_Human 

Endoplasmic 

reticulum resident 

protein 29 

0.000 0.009 20.8 

15 11 CLIC4_Human 

Chloride 

intracellular channel 

protein 4 

0.003 0.064 20.7 

4 3 T132A_Human 
Transmembrane 

protein 132A 
0.000 0.006 20.7 

4 1 
COPG1_Huma

n 

Coatomer subunit 

gamma-1 
0.000 0.005 20.7 

3 1 
BCAT1_Huma

n 

Branched-chain-

amino-acid 

aminotransferase, 

cytosolic 

0.000 0.004 20.7 

2 2 
AP2A1_Huma

n 

AP-2 complex 

subunit alpha-1 
0.000 0.005 20.7 

3 1 
GALNS_Huma

n 

N-

acetylgalactosamine

-6-sulfatase 

0.000 0.002 20.6 

1 1 
PP2BA_Huma

n 

Serine/threonine-

protein phosphatase 

2B catalytic subunit 

alpha isoform 

0.000 0.002 20.6 

16 13 PPIB_Human 
Peptidyl-prolyl cis-

trans isomerase B 
0.024 0.495 20.4 

2 2 
PDGFD_Huma

n 

Platelet-derived 

growth factor D 
0.000 0.004 20.4 

9 8 
CATL1_Huma

n 
Cathepsin L1 0.002 0.038 20.4 

7 3 
GRP75_Huma

n 

Stress-70 protein, 

mitochondrial 
0.000 0.010 20.3 

1 1 HEM2_Human 

Delta-

aminolevulinic acid 

dehydratase 

0.000 0.003 20.2 
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5 2 
UB2V1_Huma

n 

Ubiquitin-

conjugating enzyme 

E2 variant 1 

0.001 0.011 20.1 

7 2 
LAMA2_Hum

an 

Laminin subunit 

alpha-2 
0.000 0.003 20.1 

7 7 
CSRP1_Huma

n 

Cysteine and 

glycine-rich protein 

1 

0.002 0.040 20.1 

6 3 
GLT10_Huma

n 

Polypeptide N-

acetylgalactosaminy

ltransferase 10 

0.001 0.013 20.0 

4 4 
HNRPC_Huma

n 

Heterogeneous 

nuclear 

ribonucleoproteins 

C1/C2 

0.002 0.030 19.9 

9 6 EZRI_Human Ezrin 0.001 0.021 19.8 

14 10 NEO1_Human Neogenin 0.002 0.037 19.8 

15 14 SERC_Human 
Phosphoserine 

aminotransferase 
0.005 0.099 19.8 

2 2 
MLP3B_Huma

n 

Microtubule-

associated proteins 

1A/1B light chain 

3B 

0.001 0.013 19.8 

8 6 
GLOD4_Huma

n 

Glyoxalase domain-

containing protein 4 
0.001 0.025 19.7 

1 1 PUF60_Human 

Poly(U)-binding-

splicing factor 

PUF60 

0.000 0.001 19.7 

11 8 
CAB45_Huma

n 

45 kDa calcium-

binding protein 
0.002 0.035 19.6 

6 3 THIM_Human 

3-ketoacyl-CoA 

thiolase, 

mitochondrial 

0.001 0.011 19.5 

8 6 
PRDX2_Huma

n 
Peroxiredoxin-2 0.002 0.043 19.4 

7 4 ATPB_Human 

ATP synthase 

subunit beta, 

mitochondrial 

0.001 0.014 19.4 

8 5 DEST_Human Destrin 0.003 0.063 19.4 

5 2 
COR1C_Huma

n 
Coronin-1C 0.001 0.010 19.4 

3 1 
FA49B_Huma

n 
Protein FAM49B 0.000 0.002 19.3 

18 13 TIMP2_Human 
Metalloproteinase 

inhibitor 2 
0.011 0.217 19.3 

2 1 
RD23B_Huma

n 

UV excision repair 

protein RAD23 

homolog B 

0.000 0.004 19.2 
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3 3 
FKBP3_Huma

n 

Peptidyl-prolyl cis-

trans isomerase 

FKBP3 

0.000 0.008 19.2 

6 6 
GDIR1_Huma

n 

Rho GDP-

dissociation 

inhibitor 1 

0.004 0.073 19.1 

28 11 FBN2_Human Fibrillin-2 0.002 0.031 19.1 

1 2 ZYX_Human Zyxin 0.000 0.003 18.9 

3 3 
SCRN1_Huma

n 
Secernin-1 0.000 0.007 18.9 

6 5 
FLRT2_Huma

n 

Leucine-rich repeat 

transmembrane 

protein FLRT2 

0.001 0.018 18.8 

5 4 
GDF15_Huma

n 

Growth/differentiati

on factor 15 
0.001 0.015 18.8 

13 7 LEG1_Human Galectin-1 0.006 0.122 18.7 

17 6 
PLOD1_Huma

n 

Procollagen-

lysine,2-

oxoglutarate 5-

dioxygenase 1 

0.001 0.022 18.7 

5 2 
PABP1_Huma

n 

Polyadenylate-

binding protein 1 
0.000 0.006 18.6 

2 1 
PA1B2_Huma

n 

Platelet-activating 

factor 

acetylhydrolase IB 

subunit beta 

0.000 0.003 18.6 

14 9 1433Z_Human 
14-3-3 protein 

zeta/delta 
0.008 0.153 18.6 

7 4 PLIN3_Human Perilipin-3 0.001 0.017 18.5 

1 1 
APOA1_Huma

n 
Apolipoprotein A-I 0.000 0.003 18.5 

16 11 NRP1_Human Neuropilin-1 0.003 0.051 18.5 

10 7 6PGL_Human 

6-

phosphogluconolact

onase 

0.003 0.054 18.5 

3 2 NEUS_Human Neuroserpin 0.000 0.004 18.4 

3 1 RS28_Human 
40S ribosomal 

protein S28 
0.001 0.009 18.3 

3 1 SAHH_Human 
Adenosylhomocyste

inase 
0.000 0.002 18.3 

12 7 
GSTO1_Huma

n 

Glutathione S-

transferase omega-1 
0.006 0.111 18.3 

5 2 
IMPA1_Huma

n 

Inositol 

monophosphatase 1 
0.000 0.005 18.3 

2 1 RCN1_Human Reticulocalbin-1 0.000 0.002 18.2 

6 5 
UBE2N_Huma

n 

Ubiquitin-

conjugating enzyme 

E2 N 

0.002 0.034 18.2 
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6 3 ILF2_Human 

Interleukin 

enhancer-binding 

factor 2 

0.001 0.016 18.1 

3 2 
METK2_Huma

n 

S-

adenosylmethionine 

synthase isoform 

type-2 

0.000 0.006 18.0 

8 6 IF5A1_Human 

Eukaryotic 

translation initiation 

factor 5A-1 

0.001 0.024 18.0 

25 11 FLNC_Human Filamin-C 0.002 0.038 18.0 

6 5 CYC_Human Cytochrome c 0.004 0.064 17.9 

11 8 PSB5_Human 
Proteasome subunit 

beta type-5 
0.002 0.036 17.8 

5 5 1433B_Human 
14-3-3 protein 

beta/alpha 
0.003 0.049 17.8 

3 1 SYG_Human 
Glycine--tRNA 

ligase 
0.000 0.001 17.8 

3 3 
LAMB2_Huma

n 

Laminin subunit 

beta-2 
0.000 0.006 17.8 

2 1 IFT25_Human 

Intraflagellar 

transport protein 25 

homolog 

0.000 0.003 17.6 

30 14 
LMNA_Huma

n 
Prelamin-A/C 0.007 0.126 17.6 

11 8 CTGF_Human 
Connective tissue 

growth factor 
0.003 0.049 17.6 

4 3 ANAG_Human 

Alpha-N-

acetylglucosaminida

se 

0.000 0.006 17.5 

17 11 PSA_Human 
Puromycin-sensitive 

aminopeptidase 
0.002 0.041 17.5 

5 4 
FKBP4_Huma

n 

Peptidyl-prolyl cis-

trans isomerase 

FKBP4 

0.000 0.008 17.5 

13 11 
COTL1_Huma

n 

Coactosin-like 

protein 
0.016 0.276 17.5 

2 2 RO60_Human 
60 kDa SS-A/Ro 

ribonucleoprotein 
0.000 0.005 17.4 

4 1 NTF2_Human 
Nuclear transport 

factor 2 
0.000 0.004 17.4 

11 8 PSA4_Human 
Proteasome subunit 

alpha type-4 
0.002 0.043 17.3 

3 3 RINI_Human 
Ribonuclease 

inhibitor 
0.000 0.007 17.3 

11 7 
PARK7_Huma

n 

Protein deglycase 

DJ-1 

{ECO:0000303|Pub

Med:25416785} 

0.004 0.077 17.3 
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12 11 AATC_Human 

Aspartate 

aminotransferase, 

cytoplasmic 

0.003 0.058 17.3 

6 5 1433T_Human 14-3-3 protein theta 0.001 0.021 17.1 

5 3 
MARE1_Huma

n 

Microtubule-

associated protein 

RP/EB family 

member 1 

0.000 0.007 17.0 

2 1 
MMP14_Huma

n 

Matrix 

metalloproteinase-

14 

0.000 0.001 17.0 

3 1 
BLVRB_Huma

n 

Flavin reductase 

(NADPH) 
0.000 0.001 17.0 

2 2 MT1X_Human Metallothionein-1X 0.000 0.003 17.0 

2 1 CAPG_Human 
Macrophage-

capping protein 
0.000 0.002 16.9 

6 5 FAAA_Human 
Fumarylacetoacetas

e 
0.001 0.021 16.9 

3 2 PCNA_Human 
Proliferating cell 

nuclear antigen 
0.000 0.004 16.9 

3 1 NNRE_Human 

NAD(P)H-hydrate 

epimerase 

{ECO:0000255|HA

MAP-

Rule:MF_03159} 

0.000 0.003 16.9 

5 2 
COEA1_Huma

n 

Collagen alpha-

1(XIV) chain 
0.001 0.009 16.9 

7 5 RL40_Human 

Ubiquitin-60S 

ribosomal protein 

L40 

0.014 0.242 16.7 

3 2 EF1D_Human 
Elongation factor 1-

delta 
0.001 0.012 16.6 

5 1 PDLI7_Human 
PDZ and LIM 

domain protein 7 
0.001 0.010 16.5 

1 1 ROA3_Human 

Heterogeneous 

nuclear 

ribonucleoprotein 

A3 

0.000 0.003 16.4 

5 4 DKK1_Human 
Dickkopf-related 

protein 1 
0.001 0.018 16.4 

10 9 
MATN2_Hum

an 
Matrilin-2 0.002 0.030 16.4 

1 1 ITA2_Human Integrin alpha-2 0.000 0.001 16.3 

9 7 PSA2_Human 
Proteasome subunit 

alpha type-2 
0.003 0.041 16.2 

16 10 
LAMC2_Huma

n 

Laminin subunit 

gamma-2 
0.002 0.034 16.2 

3 3 CBPQ_Human Carboxypeptidase Q 0.000 0.007 16.1 

7 4 TSN_Human Translin 0.001 0.009 16.1 
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4 2 
MAP1B_Huma

n 

Microtubule-

associated protein 

1B 

0.000 0.005 16.1 

13 6 
CO7A1_Huma

n 

Collagen alpha-

1(VII) chain 
0.001 0.015 16.1 

19 15 
AATM_Huma

n 

Aspartate 

aminotransferase, 

mitochondrial 

0.011 0.172 16.0 

1 1 
N2DL2_Huma

n 
NKG2D ligand 2 0.000 0.003 15.9 

10 7 
CCD80_Huma

n 

Coiled-coil domain-

containing protein 

80 

0.002 0.031 15.9 

5 3 ILEU_Human 
Leukocyte elastase 

inhibitor 
0.000 0.005 15.8 

2 2 
MAT2B_Huma

n 

Methionine 

adenosyltransferase 

2 subunit beta 

0.000 0.003 15.8 

1 1 SMD1_Human 

Small nuclear 

ribonucleoprotein 

Sm D1 

0.000 0.003 15.8 

3 3 
YBOX1_Huma

n 

Nuclease-sensitive 

element-binding 

protein 1 

0.001 0.009 15.8 

4 2 
FAM3C_Huma

n 
Protein FAM3C 0.000 0.004 15.8 

3 2 
CSTN3_Huma

n 
Calsyntenin-3 0.000 0.004 15.7 

4 3 SH3L3_Human 

SH3 domain-

binding glutamic 

acid-rich-like 

protein 3 

0.003 0.042 15.6 

3 3 
HS90A_Huma

n 

Heat shock protein 

HSP 90-alpha 
0.001 0.009 15.6 

6 5 
CXCL6_Huma

n 

C-X-C motif 

chemokine 6 
0.006 0.096 15.6 

10 5 
HNRPQ_Huma

n 

Heterogeneous 

nuclear 

ribonucleoprotein Q 

0.001 0.016 15.6 

9 3 RENR_Human Renin receptor 0.000 0.006 15.6 

2 1 IF2A_Human 

Eukaryotic 

translation initiation 

factor 2 subunit 1 

0.000 0.003 15.5 

6 5 
APEX1_Huma

n 

DNA-(apurinic or 

apyrimidinic site) 

lyase 

0.001 0.011 15.4 

1 1 
MFAP4_Huma

n 

Microfibril-

associated 

glycoprotein 4 

0.000 0.002 15.4 
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6 4 COPE_Human 
Coatomer subunit 

epsilon 
0.001 0.009 15.4 

6 2 MANF_Human 

Mesencephalic 

astrocyte-derived 

neurotrophic factor 

0.000 0.004 15.2 

7 3 
CPNS1_Huma

n 

Calpain small 

subunit 1 
0.001 0.015 15.1 

1 1 SPEE_Human 
Spermidine 

synthase 
0.000 0.003 15.1 

3 2 
RBM8A_Hum

an 

RNA-binding 

protein 8A 
0.000 0.005 15.1 

9 7 
CANT1_Huma

n 

Soluble calcium-

activated 

nucleotidase 1 

0.001 0.021 15.1 

7 4 
ARPC4_Huma

n 

Actin-related 

protein 2/3 complex 

subunit 4 

0.002 0.030 15.0 

4 4 RL12_Human 
60S ribosomal 

protein L12 
0.001 0.022 15.0 

1 1 
TBL1R_Huma

n 

F-box-like/WD 

repeat-containing 

protein TBL1XR1 

0.000 0.001 15.0 

8 5 
TGFB1_Huma

n 

Transforming 

growth factor beta-1 
0.001 0.020 14.9 

1 1 SEP11_Human Septin-11 0.000 0.002 14.9 

12 4 NDKB_Human 

Nucleoside 

diphosphate kinase 

B 

0.003 0.042 14.9 

3 3 CAN1_Human 
Calpain-1 catalytic 

subunit 
0.001 0.008 14.8 

2 1 SPB9_Human Serpin B9 0.000 0.002 14.7 

2 1 PPGB_Human 
Lysosomal 

protective protein 
0.000 0.001 14.7 

1 1 
NUDT5_Huma

n 

ADP-sugar 

pyrophosphatase 
0.000 0.003 14.7 

2 1 IL11_Human Interleukin-11 0.000 0.002 14.7 

1 1 
EFHD2_Huma

n 

EF-hand domain-

containing protein 

D2 

0.000 0.002 14.6 

4 2 TCPQ_Human 
T-complex protein 1 

subunit theta 
0.000 0.005 14.6 

14 12 SPB6_Human Serpin B6 0.006 0.087 14.6 

11 6 ACPH_Human 
Acylamino-acid-

releasing enzyme 
0.001 0.020 14.5 

11 9 
ANXA2_Huma

n 
Annexin A2 0.002 0.025 14.4 

15 9 
PROF1_Huma

n 
Profilin-1 0.057 0.813 14.3 

23 12 GELS_Human Gelsolin 0.004 0.051 14.3 
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11 8 PSA6_Human 
Proteasome subunit 

alpha type-6 
0.003 0.039 14.3 

6 2 MPRI_Human 

Cation-independent 

mannose-6-

phosphate receptor 

0.000 0.005 14.2 

5 4 KCY_Human 

UMP-CMP kinase 

{ECO:0000255|HA

MAP-

Rule:MF_03172} 

0.001 0.011 14.2 

11 10 PSA7_Human 
Proteasome subunit 

alpha type-7 
0.005 0.076 14.2 

10 5 B2MG_Human 
Beta-2-

microglobulin 
0.017 0.236 14.2 

1 1 
CHSTE_Huma

n 

Carbohydrate 

sulfotransferase 14 
0.000 0.002 14.2 

1 1 
MXRA5_Hum

an 

Matrix-remodeling-

associated protein 5 
0.000 0.001 14.2 

6 2 COF2_Human Cofilin-2 0.001 0.010 14.1 

2 1 
ITM2B_Huma

n 

Integral membrane 

protein 2B 
0.000 0.002 14.1 

6 3 
PRDX4_Huma

n 
Peroxiredoxin-4 0.001 0.010 14.1 

4 2 
UBP14_Huma

n 

Ubiquitin carboxyl-

terminal hydrolase 

14 

0.000 0.005 14.0 

5 1 
VEGFC_Huma

n 

Vascular endothelial 

growth factor C 
0.000 0.003 14.0 

2 1 
ANXA6_Huma

n 
Annexin A6 0.000 0.001 13.9 

2 1 
ADA12_Huma

n 

Disintegrin and 

metalloproteinase 

domain-containing 

protein 12 

0.000 0.003 13.9 

38 11 TENA_Human Tenascin 0.004 0.058 13.9 

4 3 
ARPC3_Huma

n 

Actin-related 

protein 2/3 complex 

subunit 3 

0.001 0.011 13.9 

4 4 ACTS_Human 
Actin, alpha skeletal 

muscle 
0.003 0.048 13.8 

10 8 PEBP1_Human 

Phosphatidylethanol

amine-binding 

protein 1 

0.007 0.095 13.8 

5 4 RLA0_Human 

60S acidic 

ribosomal protein 

P0 

0.001 0.017 13.7 

5 5 VAT1_Human 

Synaptic vesicle 

membrane protein 

VAT-1 homolog 

0.001 0.014 13.7 

2 2 DAG1_Human Dystroglycan 0.000 0.005 13.6 
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2 1 
CAZA1_Huma

n 

F-actin-capping 

protein subunit 

alpha-1 

0.000 0.005 13.6 

3 2 PICAL_Human 

Phosphatidylinositol

-binding clathrin 

assembly protein 

0.000 0.003 13.6 

2 1 H2AJ_Human Histone H2A.J 0.000 0.002 13.5 

4 2 
SC31A_Huma

n 

Protein transport 

protein Sec31A 
0.000 0.004 13.5 

5 4 NUCL_Human Nucleolin 0.001 0.015 13.5 

1 1 
RHG01_Huma

n 

Rho GTPase-

activating protein 1 
0.000 0.001 13.4 

2 1 
PCDGK_Huma

n 

Protocadherin 

gamma-C3 
0.000 0.001 13.3 

9 3 HPRT_Human 

Hypoxanthine-

guanine 

phosphoribosyltrans

ferase 

0.001 0.008 13.3 

1 1 EPN3_Human Epsin-3 0.000 0.001 13.2 

14 8 COF1_Human Cofilin-1 0.012 0.153 13.2 

3 2 CIRBP_Human 

Cold-inducible 

RNA-binding 

protein 

0.000 0.005 13.2 

2 2 RADI_Human Radixin 0.000 0.004 13.2 

2 2 VAPA_Human 

Vesicle-associated 

membrane protein-

associated protein A 

0.000 0.005 13.2 

6 3 1433F_Human 14-3-3 protein eta 0.001 0.010 13.2 

13 10 EF1G_Human 
Elongation factor 1-

gamma 
0.005 0.060 13.1 

7 5 
CHID1_Huma

n 

Chitinase domain-

containing protein 1 
0.001 0.015 13.1 

9 5 1433G_Human 
14-3-3 protein 

gamma 
0.004 0.048 13.1 

10 8 PSA5_Human 
Proteasome subunit 

alpha type-5 
0.003 0.039 13.1 

9 7 TWF2_Human Twinfilin-2 0.001 0.019 13.1 

9 8 IBP4_Human 

Insulin-like growth 

factor-binding 

protein 4 

0.005 0.066 13.1 

2 2 
MFGM_Huma

n 
Lactadherin 0.000 0.005 13.0 

4 1 ORN_Human 
Oligoribonuclease, 

mitochondrial 
0.000 0.006 13.0 

2 2 AMPL_Human 
Cytosol 

aminopeptidase 
0.000 0.004 13.0 

5 2 NAGK_Human 
N-acetyl-D-

glucosamine kinase 
0.000 0.005 13.0 

6 3 
LMNB2_Huma

n 
Lamin-B2 0.000 0.005 12.7 
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3 3 SIL1_Human 

Nucleotide 

exchange factor 

SIL1 

0.001 0.007 12.7 

15 8 
IQGA1_Huma

n 

Ras GTPase-

activating-like 

protein IQGAP1 

0.002 0.023 12.6 

1 1 SLIT2_Human 
Slit homolog 2 

protein 
0.000 0.001 12.6 

4 2 CNN3_Human Calponin-3 0.000 0.003 12.6 

2 1 RL5_Human 
60S ribosomal 

protein L5 
0.000 0.001 12.6 

4 2 
HEBP2_Huma

n 

Heme-binding 

protein 2 
0.000 0.005 12.5 

4 1 
PTPRS_Huma

n 

Receptor-type 

tyrosine-protein 

phosphatase S 

0.000 0.002 12.4 

15 12 
LAMA5_Hum

an 

Laminin subunit 

alpha-5 
0.002 0.023 12.3 

12 2 
HS90B_Huma

n 

Heat shock protein 

HSP 90-beta 
0.001 0.012 12.3 

2 2 
PARVA_Huma

n 
Alpha-parvin 0.000 0.003 12.3 

1 1 
XYLT2_Huma

n 
Xylosyltransferase 2 0.000 0.002 12.3 

2 1 
TMOD3_Hum

an 
Tropomodulin-3 0.000 0.001 12.3 

10 2 PYGB_Human 

Glycogen 

phosphorylase, 

brain form 

0.000 0.003 12.0 

1 2 
GRPE1_Huma

n 

GrpE protein 

homolog 1, 

mitochondrial 

0.000 0.003 12.0 

3 2 
FKB1A_Huma

n 

Peptidyl-prolyl cis-

trans isomerase 

FKBP1A 

0.001 0.009 11.9 

5 2 SH3L1_Human 

SH3 domain-

binding glutamic 

acid-rich-like 

protein 

0.001 0.009 11.8 

6 4 QORX_Human 

Quinone 

oxidoreductase 

PIG3 

0.002 0.022 11.8 

4 2 
COIA1_Huma

n 

Collagen alpha-

1(XVIII) chain 
0.001 0.009 11.8 

1 1 UFD1_Human 

Ubiquitin fusion 

degradation protein 

1 homolog 

0.000 0.003 11.7 

1 1 RL30_Human 
60S ribosomal 

protein L30 
0.000 0.001 11.7 
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17 14 
PGAM1_Huma

n 

Phosphoglycerate 

mutase 1 
0.014 0.160 11.6 

7 3 QOR_Human 
Quinone 

oxidoreductase 
0.001 0.010 11.6 

4 2 G6PD_Human 

Glucose-6-

phosphate 1-

dehydrogenase 

0.000 0.005 11.6 

1 1 SND1_Human 

Staphylococcal 

nuclease domain-

containing protein 1 

0.000 0.003 11.5 

2 2 CNN2_Human Calponin-2 0.000 0.004 11.5 

3 2 VTNC_Human Vitronectin 0.002 0.020 11.5 

3 2 UBP5_Human 
Ubiquitin carboxyl-

terminal hydrolase 5 
0.000 0.003 11.5 

8 3 PSB7_Human 
Proteasome subunit 

beta type-7 
0.002 0.020 11.4 

6 3 CH10_Human 

10 kDa heat shock 

protein, 

mitochondrial 

0.001 0.011 11.3 

4 2 GNPI1_Human 

Glucosamine-6-

phosphate 

isomerase 1 

0.001 0.007 11.3 

6 2 
PTPRF_Huma

n 

Receptor-type 

tyrosine-protein 

phosphatase F 

0.000 0.004 11.2 

5 3 PSB6_Human 
Proteasome subunit 

beta type-6 
0.002 0.020 11.2 

3 1 ARL3_Human 
ADP-ribosylation 

factor-like protein 3 
0.000 0.001 11.2 

2 2 
CRIM1_Huma

n 

Cysteine-rich motor 

neuron 1 protein 
0.000 0.002 11.2 

2 1 PHS_Human 

Pterin-4-alpha-

carbinolamine 

dehydratase 

0.000 0.003 10.9 

3 2 SODC_Human 
Superoxide 

dismutase [Cu-Zn] 
0.000 0.005 10.8 

5 3 
VGFR1_Huma

n 

Vascular endothelial 

growth factor 

receptor 1 

0.001 0.008 10.8 

1 1 
C1QT1_Huma

n 

Complement C1q 

tumor necrosis 

factor-related 

protein 1 

0.000 0.002 10.7 

3 2 
LRC59_Huma

n 

Leucine-rich repeat-

containing protein 

59 

0.000 0.003 10.7 

6 3 
UBE2K_Huma

n 

Ubiquitin-

conjugating enzyme 

E2 K 

0.001 0.009 10.7 
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3 1 GSHR_Human 

Glutathione 

reductase, 

mitochondrial 

0.000 0.002 10.7 

4 2 FST_Human Follistatin 0.000 0.004 10.6 

3 2 
ESYT1_Huma

n 

Extended 

synaptotagmin-1 
0.000 0.003 10.5 

7 2 
ML12A_Huma

n 

Myosin regulatory 

light chain 12A 
0.000 0.005 10.5 

6 7 DDB1_Human 
DNA damage-

binding protein 1 
0.002 0.021 10.4 

3 1 UFC1_Human 

Ubiquitin-fold 

modifier-

conjugating enzyme 

1 

0.000 0.003 10.3 

3 2 
PCBP1_Huma

n 

Poly(rC)-binding 

protein 1 
0.001 0.006 10.3 

1 1 
MATN3_Hum

an 
Matrilin-3 0.000 0.002 10.3 

13 6 COPD_Human 
Coatomer subunit 

delta 
0.002 0.021 10.3 

10 6 PSB1_Human 
Proteasome subunit 

beta type-1 
0.003 0.034 10.3 

2 1 IBP6_Human 

Insulin-like growth 

factor-binding 

protein 6 

0.000 0.003 10.2 

2 1 MTAP_Human 

S-methyl-5'-

thioadenosine 

phosphorylase  

0.000 0.003 10.2 

2 2 SYQ_Human 
Glutamine--tRNA 

ligase 
0.000 0.003 10.2 

6 5 TBB5_Human Tubulin beta chain 0.002 0.017 10.1 

8 6 PLTP_Human 
Phospholipid 

transfer protein 
0.002 0.022 10.1 

5 4 CFAB_Human 
Complement factor 

B 
0.002 0.018 10.0 

3 3 
GNPTG_Huma

n 

N-

acetylglucosamine-

1-

phosphotransferase 

subunit gamma 

0.001 0.008 10.0 

1 1 RS12_Human 
40S ribosomal 

protein S12 
0.001 0.006 10.0 

3 2 NEUL_Human 
Neurolysin, 

mitochondrial 
0.000 0.003 10.0 

2 2 
PTGR1_Huma

n 

Prostaglandin 

reductase 1 
0.000 0.004 9.9 

2 1 ANM1_Human 
Protein arginine N-

methyltransferase 1 
0.000 0.002 9.7 

3 1 TFG_Human Protein TFG 0.000 0.004 9.7 
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1 1 TGM2_Human 

Protein-glutamine 

gamma-

glutamyltransferase 

2 

0.000 0.002 9.7 

6 5 MYL6_Human 
Myosin light 

polypeptide 6 
0.001 0.012 9.6 

4 2 RET1_Human 
Retinol-binding 

protein 1 
0.000 0.003 9.4 

6 6 K2C8_Human 
Keratin, type II 

cytoskeletal 8 
0.002 0.019 9.3 

7 6 PGM2_Human 
Phosphoglucomutas

e-2 
0.002 0.020 9.3 

7 5 K1C18_Human 
Keratin, type I 

cytoskeletal 18 
0.002 0.017 9.3 

5 3 
ANXA1_Huma

n 
Annexin A1 0.001 0.005 9.2 

3 1 
PAMR1_Huma

n 

Inactive serine 

protease PAMR1 
0.000 0.001 9.2 

3 3 SYTC_Human 
Threonine--tRNA 

ligase, cytoplasmic 
0.001 0.007 9.1 

4 4 P3H1_Human 

Prolyl 3-

hydroxylase 1 

{ECO:0000312|HG

NC:HGNC:19316} 

0.001 0.012 9.1 

2 1 DTD1_Human 

D-tyrosyl-

tRNA(Tyr) 

deacylase 1 

0.000 0.003 9.0 

2 1 
S10AD_Huma

n 
Protein S100-A13 0.000 0.001 8.9 

2 2 LA_Human Lupus La protein 0.000 0.003 8.9 

3 1 
DDAH2_Huma

n 

N(G),N(G)-

dimethylarginine 

dimethylaminohydr

olase 2 

0.000 0.003 8.9 

5 4 
S10AB_Huma

n 
Protein S100-A11 0.002 0.017 8.8 

1 1 
SH24A_Huma

n 

SH2 domain-

containing protein 

4A 

0.001 0.005 8.8 

2 2 LEG3_Human Galectin-3 0.000 0.004 8.8 

1 1 MMP3_Human Stromelysin-1 0.000 0.003 8.8 

2 1 ENOG_Human Gamma-enolase 0.000 0.002 8.7 

2 1 
LMNB1_Huma

n 
Lamin-B1 0.000 0.001 8.7 

1 1 PSB8_Human 
Proteasome subunit 

beta type-8 
0.000 0.003 8.6 

2 2 MYL9_Human 
Myosin regulatory 

light polypeptide 9 
0.000 0.003 8.5 

8 6 DSC3_Human Desmocollin-3 0.006 0.054 8.5 
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5 3 
FAHD1_Huma

n 

Acylpyruvase 

FAHD1, 

mitochondrial 

0.001 0.007 8.5 

3 1 ARSA_Human Arylsulfatase A 0.000 0.001 8.5 

3 1 
COPB2_Huma

n 

Coatomer subunit 

beta' 
0.000 0.002 8.4 

6 5 
RB11B_Huma

n 

Ras-related protein 

Rab-11B 
0.003 0.021 8.4 

3 3 IDI1_Human 

Isopentenyl-

diphosphate Delta-

isomerase 1 

0.000 0.004 8.3 

4 3 TSG6_Human 

Tumor necrosis 

factor-inducible 

gene 6 protein 

0.002 0.017 8.2 

5 2 THIO_Human Thioredoxin 0.001 0.012 8.2 

5 1 
MGT5A_Hum

an 

Alpha-1,6-

mannosylglycoprote

in 6-beta-N-

acetylglucosaminylt

ransferase A 

0.000 0.002 8.1 

1 1 SMD3_Human 

Small nuclear 

ribonucleoprotein 

Sm D3 

0.001 0.004 8.1 

3 2 SAP3_Human 
Ganglioside GM2 

activator 
0.001 0.005 8.1 

1 1 FIS1_Human 
Mitochondrial 

fission 1 protein 
0.000 0.000 8.0 

2 2 FHL1_Human 
Four and a half LIM 

domains protein 1 
0.001 0.006 8.0 

1 1 TARA_Human 
TRIO and F-actin-

binding protein 
0.000 0.001 8.0 

2 1 HBD_Human 
Hemoglobin subunit 

delta 
0.004 0.029 8.0 

1 1 ARF4_Human 
ADP-ribosylation 

factor 4 
0.000 0.001 7.9 

2 2 GNPI2_Human 

Glucosamine-6-

phosphate 

isomerase 2 

0.000 0.002 7.8 

3 3 EF1B_Human 
Elongation factor 1-

beta 
0.001 0.008 7.8 

2 2 
MTND_Huma

n 

1,2-dihydroxy-3-

keto-5-

methylthiopentene 

dioxygenase 

{ECO:0000255|HA

MAP-

Rule:MF_03154} 

0.000 0.004 7.7 

1 1 ISLR_Human 
Immunoglobulin 

superfamily 
0.000 0.001 7.7 
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containing leucine-

rich repeat protein 

18 15 
CAD11_Huma

n 
Cadherin-11 0.021 0.162 7.7 

2 2 NIBL1_Human Niban-like protein 1 0.001 0.004 7.7 

3 1 
DCTN3_Huma

n 
Dynactin subunit 3 0.000 0.001 7.6 

6 5 FSTL5_Human 
Follistatin-related 

protein 5 
0.001 0.011 7.5 

7 4 GROA_Human 
Growth-regulated 

alpha protein 
0.005 0.035 7.5 

5 2 ACOC_Human 
Cytoplasmic 

aconitate hydratase 
0.001 0.004 7.4 

4 1 
NPS3A_Huma

n 

Protein NipSnap 

homolog 3A 
0.000 0.002 7.3 

1 1 
CDC42_Huma

n 

Cell division control 

protein 42 homolog 
0.000 0.001 7.2 

4 3 ITIH2_Human 

Inter-alpha-trypsin 

inhibitor heavy 

chain H2 

0.002 0.012 7.1 

3 2 
LASP1_Huma

n 

LIM and SH3 

domain protein 1 
0.001 0.004 7.1 

2 2 
HNRPR_Huma

n 

Heterogeneous 

nuclear 

ribonucleoprotein R 

0.000 0.003 7.1 

13 5 
COBA1_Huma

n 

Collagen alpha-

1(XI) chain 
0.002 0.013 7.0 

4 4 MGN2_Human 
Protein mago nashi 

homolog 2 
0.001 0.006 6.8 

8 5 AMPN_Human Aminopeptidase N 0.002 0.013 6.7 

7 2 HYI_Human 

Putative 

hydroxypyruvate 

isomerase 

0.001 0.003 6.6 

1 1 UFM1_Human 
Ubiquitin-fold 

modifier 1 
0.000 0.003 6.6 

3 2 CNN1_Human Calponin-1 0.000 0.003 6.4 

2 1 
CDC37_Huma

n 

Hsp90 co-chaperone 

Cdc37 
0.000 0.002 6.4 

2 2 MTPN_Human Myotrophin 0.000 0.002 6.4 

1 1 FAS_Human Fatty acid synthase 0.000 0.001 6.4 

2 2 
THOP1_Huma

n 

Thimet 

oligopeptidase 
0.001 0.004 6.3 

10 5 A4_Human 
Amyloid beta A4 

protein 
0.003 0.017 6.3 

1 1 NQO2_Human 

Ribosyldihydronicot

inamide 

dehydrogenase 

[quinone] 

0.000 0.001 6.3 

11 7 
TBA1B_Huma

n 

Tubulin alpha-1B 

chain 
0.004 0.025 6.2 
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2 1 2AAA_Human 

Serine/threonine-

protein phosphatase 

2A 65 kDa 

regulatory subunit 

A alpha isoform 

0.000 0.001 6.1 

13 6 
SPTN1_Huma

n 

Spectrin alpha 

chain, non-

erythrocytic 1 

0.001 0.006 6.0 

2 1 CPSF5_Human 

Cleavage and 

polyadenylation 

specificity factor 

subunit 5 

0.000 0.001 5.6 

2 1 PHP14_Human 

14 kDa 

phosphohistidine 

phosphatase 

0.000 0.001 5.6 

1 1 INPP_Human 

Inositol 

polyphosphate 1-

phosphatase 

0.000 0.001 5.6 

4 4 
GREM1_Huma

n 
Gremlin-1 0.002 0.011 5.6 

3 1 
HNRPK_Huma

n 

Heterogeneous 

nuclear 

ribonucleoprotein K 

0.000 0.001 5.5 

1 1 RAC1_Human 

Ras-related C3 

botulinum toxin 

substrate 1 

0.000 0.001 5.4 

1 1 HXK1_Human Hexokinase-1 0.000 0.001 5.3 

1 1 HEM6_Human 

Oxygen-dependent 

coproporphyrinogen

-III oxidase, 

mitochondrial 

0.000 0.001 5.2 

10 9 
AEBP1_Huma

n 

Adipocyte 

enhancer-binding 

protein 1 

0.007 0.039 5.2 

2 1 
MOB1A_Hum

an 

MOB kinase 

activator 1A 
0.000 0.002 5.2 

3 1 
CSRP2_Huma

n 

Cysteine and 

glycine-rich protein 

2 

0.000 0.001 4.8 

3 2 GRB2_Human 

Growth factor 

receptor-bound 

protein 2 

0.001 0.003 4.8 

2 1 KAD3_Human 

GTP:AMP 

phosphotransferase 

AK3, mitochondrial 

{ECO:0000255|HA

MAP-

Rule:MF_03169} 

0.000 0.001 4.7 

4 2 SSBP_Human 
Single-stranded 

DNA-binding 
0.000 0.002 4.5 
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protein, 

mitochondrial 

2 1 IF1AX_Human 

Eukaryotic 

translation initiation 

factor 1A, X-

chromosomal 

0.000 0.000 4.5 

1 1 
PTPRK_Huma

n 

Receptor-type 

tyrosine-protein 

phosphatase kappa 

0.000 0.002 4.5 

2 1 
SVEP1_Huma

n 

Sushi, von 

Willebrand factor 

type A, EGF and 

pentraxin domain-

containing protein 1 

0.000 0.001 4.4 

1 1 
GSLG1_Huma

n 

Golgi apparatus 

protein 1 
0.000 0.001 4.3 

8 3 SYWC_Human 
Tryptophan--tRNA 

ligase, cytoplasmic 
0.001 0.006 4.2 

2 2 SPTB2_Human 
Spectrin beta chain, 

non-erythrocytic 1 
0.001 0.002 4.1 

2 1 PRIO_Human Major prion protein 0.001 0.003 4.1 

6 1 
UB2L3_Huma

n 

Ubiquitin-

conjugating enzyme 

E2 L3 

0.000 0.001 4.0 

1 1 H31T_Human Histone H3.1t 0.001 0.002 4.0 

5 2 
RNAS4_Huma

n 
Ribonuclease 4 0.001 0.005 3.9 

2 1 
AHSA1_Huma

n 

Activator of 90 kDa 

heat shock protein 

ATPase homolog 1 

0.001 0.003 3.8 

2 1 EIF3G_Human 

Eukaryotic 

translation initiation 

factor 3 subunit G 

{ECO:0000255|HA

MAP-

Rule:MF_03006} 

0.000 0.001 3.7 

8 3 
RACK1_Huma

n 

Receptor of 

activated protein C 

kinase 1 

0.003 0.009 3.4 

1 1 DUT_Human 

Deoxyuridine 5'-

triphosphate 

nucleotidohydrolase

, mitochondrial 

0.001 0.002 3.3 

3 1 ANT3_Human Antithrombin-III 0.002 0.006 3.1 

7 5 DHE3_Human 

Glutamate 

dehydrogenase 1, 

mitochondrial 

0.007 0.021 3.1 

1 1 PROS_Human 
Vitamin K-

dependent protein S 
0.000 0.001 3.0 
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1 1 
NB5R2_Huma

n 

NADH-cytochrome 

b5 reductase 2 
0.000 0.001 3.0 

1 1 HDGF_Human 
Hepatoma-derived 

growth factor 
0.001 0.002 3.0 

1 1 PIN4_Human 

Peptidyl-prolyl cis-

trans isomerase 

NIMA-interacting 4 

0.000 0.001 2.9 

3 1 TRFL_Human Lactotransferrin 0.010 0.028 2.9 

3 1 PPIL1_Human 

Peptidyl-prolyl cis-

trans isomerase-like 

1 

0.001 0.003 2.8 

2 1 HBA_Human 
Hemoglobin subunit 

alpha 
0.002 0.005 2.8 

3 2 RBM3_Human 
RNA-binding 

protein 3 
0.001 0.004 2.7 

1 1 MSRA_Human 

Mitochondrial 

peptide methionine 

sulfoxide reductase 

0.000 0.001 2.6 

3 3 
FETUA_Huma

n 

Alpha-2-HS-

glycoprotein 
0.007 0.017 2.3 

4 4 
TRHDE_Huma

n 

Thyrotropin-

releasing hormone-

degrading 

ectoenzyme 

0.004 0.008 2.3 

2 1 VTDB_Human 
Vitamin D-binding 

protein 
0.002 0.003 2.2 

3 2 SYNC_Human 
Asparagine--tRNA 

ligase, cytoplasmic 
0.001 0.002 2.2 

3 2 
FBLN3_Huma

n 

EGF-containing 

fibulin-like 

extracellular matrix 

protein 1 

0.002 0.003 2.0 

18 11 
HPLN1_Huma

n 

Hyaluronan and 

proteoglycan link 

protein 1 

0.072 0.142 2.0 

7 3 A2MG_Human 
Alpha-2-

macroglobulin 
0.015 0.028 1.9 

9 7 SYHC_Human 
Histidine--tRNA 

ligase, cytoplasmic 
0.011 0.020 1.8 

1 1 RUXG_Human 
Small nuclear 

ribonucleoprotein G 
0.001 0.001 1.7 

3 1 
SCOT1_Huma

n 

Succinyl-CoA:3-

ketoacid coenzyme 

A transferase 1, 

mitochondrial 

0.000 0.001 1.7 

4 1 TRFE_Human Serotransferrin 0.000 0.001 1.6 
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5 General Discussion 

 

Gliomas are the most malignant and aggressive form of brain tumors1, 2. Of these, 

Glioblastoma (GBM; WHO grade IV) is the most common and lethal subtype of glioma 

(55.1%)3, and patients suffering from this tumor present a short overall survival after 

diagnosis. During the last decades, substantial advances have been made in the understanding 

of the origin, biology, genetics and clinical aspects of gliomas. However, the etiology of these 

tumors remains largely undetermined, and only moderate improvements in patients’ clinical 

outcome were achieved. Also, despite a multimodal treatment, which includes surgical 

resection, radio- and chemo-therapy, these patients have a poorer prognosis with a median 

survival of 15 months4. Therefore, new and more efficient therapies are needed. Furthermore, 

gliomas are characterized as highly heterogeneous tumors, presenting a significant therapy 

resistance, which can be partly explained by the presence of a population of cells with stem 

cells characteristics, called glioma stem cells (GSCs). Taking this into account, it is clear that 

more studies are needed to better understand this devastating disease.  

The work presented throughout this thesis focused in understanding glioma 

pathophysiology, with a special emphasis in GBM. Since single-variables studies are limited, 

we focused our studies on different intrinsic and extrinsic factors. For this, we studied 

multiple dimensions of glioma, from factors/events that may be causative, to those that 

influence their pathology, evolution, progression and aggressiveness, but always keeping 

their therapeutic importance in the loop. By using this approach, we contribute to the better 

understanding and management of these highly malignant tumors in the clinical setting. 

We started by evaluating the genetic variants of two SNPs in the TFG-β1 gene as 

molecular determinants involved on glioma etiology and prognosis. In the second work, we 

identified a new biomarker of GSCs identification, opening the possibility for further 

characterization of this malignant subpopulation. Finally, we studied the interplay between 

GBM cells and MSCs, a putative new therapeutic approach for cancer. Here, we evaluated 

the influence of MSCs’ secretome on GBM behavior, and characterized the protein content 

of their secretome, identifying molecules that mediate the interaction between MSCs and 

GBM cells. 
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5.1 Relevance of TGF-β1 genetic variants in glioma 

Several studies have been exploring the role of genetic polymorphisms in the 

etiology, prognosis, and therapy response of human tumors5. It has been suggested that SNPs 

are the most frequent sources of human genetic variation, and that they can contribute to 

individual’s susceptibility to cancer, including glioma6. SNPs in genes encoding proteins 

involved in the regulation of cancer hallmarks have been described as putative biomarkers 

for glioma susceptibility, including DNA repair, cell growth, apoptosis, cell cycle, 

proliferation, and metabolism7-18. Here, we examined for the first time in glioma the 

significance of two SNPs in the TFG-β1 gene (-509C/T and 869T/C). 

TGF-β1 is a member of the transforming growth factor beta superfamily of cytokines 

that is involved in the regulation of cellular proliferation, growth, apoptosis, differentiation, 

and immunity19, 20. This cytokine is a potent inhibitor of epithelial cells and astrocytes growth 

and proliferation, and the loss of this inhibition is associated with aggressive progression of 

cancer21-23. A hallmark feature of tumor cells is their acquired resistance to the inhibitory 

effect of TGF-β1 by mutations or inactivation of the TGF-β1 receptors (TGF-βRI and (TGF-

βRII). In the late stages of cancer, TGF-β1 acts as an oncogenic factor stimulating 

angiogenesis, growth, invasion, proliferation, evasion to apoptosis, and decreases host 

immune response24-26. Moreover, it has been described that TGF-β1 plasma levels are 

increased and associate with cancer progression27-33. In glioma patients, a highly active TGF-

β pathway confers poor prognosis and TGF-β1 acts as a proliferative and oncogenic factor34, 

35. Due to its relevance in regulating cancer-related pathways, it is possible that SNPs in TGF-

β1 may contribute to individual’s susceptibility to cancer, including glioma. Indeed, the 

genetic variants of the TGF-β1 gene have been implicated in the susceptibility of a large 

range of tumors, including nasopharyngeal, esophageal, hepatocellular, lung, breast, gastric, 

head and neck, oropharyngeal, prostate, and liver cancers31, 36-54. However, until our study, 

none have reported the impact of TGF-β1 SNPs on glioma susceptibility and prognosis.  

Here, we performed a case-control study of cancer-free controls and glioma patients 

from a Portuguese population, and evaluated the putative impact of TGF-β1 SNPs -509C/T 

and 869T/C variants in glioma risk and patient prognosis. Our results (chapter 2) show that 

the TGF-β1 -509C/T and 869T/C polymorphism variants are not significantly associated with 

glioma susceptibility. These data is in line with previous studies in other tumor types 
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reporting no associations between -509C/T polymorphism and increased risk of colorectal 

cancer, hepatocellular and nasopharyngeal carcinomas55-59 or 869T/C and the risk to develop 

breast cancer and hepatocellular carcinoma56, 60-67. However, other works showed that these 

two polymorphisms were associated with the susceptibility to breast, gastric, ovarian, and 

prostate cancers38, 68-70. These inconsistent findings may result from studies with small 

sample sizes, different genetic and ethnic backgrounds of the studied populations, 

interactions with or contributions of other relevant etiologic factors that are virtually 

impossible to control for, disease heterogeneity, sample selection bias (of both controls and 

cases), small sample power, the use of different genotyping methods, and differences in the 

etiology and biology of different tumor types71-75. Aiming to better understand the real impact 

of TGF-β1 SNPs in cancer susceptibility, recent meta-analyses showed that TGF-β1 -509C/T 

variants increased the risk to certain cancer types, such as gastric, hepatocellular, and lung 

cancers76-78, in specific populations. Particularly, it was demonstrated that TT genotype was 

significantly associated with susceptibility to gastric cancer in Asian population but not in 

Caucasians78. Interestingly, Li and colleagues have demonstrated that TT genotype from -

509C/T and CC genotype from 869T/C polymorphisms were associated with the risk of 

asthma79, results that fit well with our work (no association of TT or CC variants from -

509C/T and 869T/C SNPs with glioma risk), since an inverse association between asthma 

and glioma has been reported in several case-control studies80-83.  

Very few robust prognostic and predictive markers are well established, which 

contributes for the devastating outcome of GBM patients84. Thus, the identification of other 

robust and clinically valuable molecular markers that associate with patient outcome is 

crucial. In our work, we found that GBM patients presenting the TT variant in -509C/T 

polymorphism and patients with CC genotype in 869T/C polymorphism presented longer 

OS, which indicates their potential as predictive markers of survival in GBM patients. This 

is in line with a previous work where it was shown that breast cancer patients carrying the 

CC genotype in 869T/C polymorphism presented longer overall survival39. This new finding 

requires further validation in independent studies, to confirm the clinical relevance of these 

SNPs in GBM patients. 

A SNP located within the coding sequence of a gene may lead to an amino acid 

substitution, which in turn might alter the protein function, which could be functionally 
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relevant and therefore be associated with susceptibility to cancer85. Considering that TGF-β1 

869T/C polymorphism could lead to a leucine-to-proline substitution78, 86, and that, in an in 

vitro study, it was shown that the C allele of the 869T/C cause an increase in TGF-β1 

secretion compared with T allele87, in the future it would be important to evaluate if the local 

secretion of TGF-β1 by glioma cells is also higher for CC homozygotes.  

In future studies, and considering that the -509C/T polymorphism is located in the 

promoter region, it would be important to understand if the different genotypes influence the 

expression levels of TGF-β1. For that, mRNA extracted from glioma tumor tissues would be 

used to perform qRT-PCR analysis to evaluate the intratumoral levels of TGF-β1, and to 

correlate this expression with the different genotypes. Then, to establish a causal effect of the 

variant that affects TGF-β1 expression, we could clone the promoter region of TGF-β1 using 

a luciferase reporter vector. HEK293T cells (an easy-to-transfect cell line) should be 

transfected with two different vectors (with variant CC or TT), and the levels of luciferase 

measured. The levels of luciferase would be substitute for the levels of TGF-β1 activation in 

both conditions. Additionally, it was described that TGF-β1 -509C/T SNP influence the 

response to radio- and chemo-therapy of lung cancer patients88. Taking into consideration 

that glioma patients present high resistance to the current standard of care, it is possible that 

variants of TGF-β1 -509C/T and 869T/C SNPs influence glioma patient response to 

treatment and should be clarified in future studies. Additionally, and considering that other 

functional SNPs of the TGF-β1, such as -800G/A (rs1800468) and 915G/C (rs1800471) were 

already associated with several cancer types susceptibility67, 89, in the future, it would be 

important to evaluate if these SNPs are associated with glioma risk and prognosis. Moreover, 

GWAS, an approach that allows for a rapid whole genome sequencing and associates SNPs 

with disease90, could be used to select and study other TGF-ß1 polymorphisms that might be 

relevant in the context of glioma. Finally, future and independent studies are required to 

validate and expand our results to populations with different genetic backgrounds to better 

understand the broader importance of these SNPs in gliomas. 

 

 

 



 

General Discussion 

183 

5.2 Is autofluorescence a valid and useful marker for Glioma Stem Cells 

identification and isolation? 

In addition to an unclear etiology, malignant glioma is a dramatic disease as no 

curative therapies are available. GSCs are a subpopulation of cells that are involved in tumor 

initiation, progression and recurrence and evidences of their role in glioma pathophysiology 

continue to grow. GSCs are relatively undifferentiated cells presenting self-renewal ability 

that are recognized as a driving force supporting resistance to therapy, gliomagenesis, and 

aggressive recurrence91. Thus, it is imperative to efficiently identify and isolate GSCs for 

their better understanding and to find therapeutic targets capable of eliminating this highly 

malignant subpopulation. 

So far, many characteristics and markers have been identified with varying degrees 

of specificity for GSCs and contributions to their phenotypes91-93. The most used method to 

isolate GSCs consists in sorting cells based on antibody recognition of specific cell 

membrane-bound proteins. Over the last years, several putative GSCs markers have been 

identified, including CD133, CD15, A2B5, among others (Table 5.1, reviewed in 94). 

However, the use of these cell-surface markers has some limitations, since their expression 

is variable between gliomas, and they are also expressed in non-tumor stem cells95. It is likely 

that no marker will ever be uniformly informative for GSCs due to the inherent adaptability 

of cancer cells and because most tissue types contain multiple populations of stem cells 

expressing different markers96. Therefore, there is an unmet need to find more accurate and 

efficient isolation markers for GSCs identification and isolation. In this context, in the second 

work presented in this thesis (chapter 3) we investigated if an intrinsic autofluorescent 

phenotype was a biomarker of GSCs, as previously suggested for CSCs from carcinomas97. 
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Table 5.1: Molecular markers associated with glioma stem cells (GSC)94. 

Marker 

Non-glioma cell 

types often 

associated with 

Origin of GSCs (% of expression) Refs 

A2B5 OPCs Adult GBM and anaplastic astrocytoma (33-90%). 98, 99 

Bmi1 HSCs 
Pediatric medulloblastoma, Anaplastic 

astrocytoma and GBM (n.a.). 
100 

CD133 HECs, and NSCs 

Pediatric Medulloblastoma, Pilocytic  and grade II 

astrocytomas, ependymoma and adult and 

pediatric GBMs (0.3-60%). 

101, 

102 

CD15 Mouse ESCs Adult medulloblastoma and GBM (0.7-70%) 
103, 

104 

CD44 
Mesenchymal 

cells 
Adult GBM (17-79%). 105 

CD90 
BM-SCs and 

HSCs 
Adult GBM (2-19%). 106 

Integrin 6α NSCs Adult GBM (1-16%). 107 

KLF4 ESCs and MSCs Brain tumors (n.a.). 108 

L1CAM NPCs Pediatric GBM and Adult gliomas (4-7%). 109 

Musashi 
Glial cells and 

NPCs 

Adult Ependymoma, grade II oligodendroglioma 

and oligodendroastrocytoma, pilocytic 

astrocytomas, anaplastic astrocytomas and 

oligodendroglioma, and GBM (80%). 

100, 

110 

NANOG ESCs Adult GBM (%). 111 

Nestin NSCs 

Adult Ependymoma, grade II oligodendroglioma 

and oligodendroastrocytoma, pilocytic 

astrocytomas, anaplastic astrocytomas and 

oligodendroglioma, and GBM (96%). 

110, 

112 

Oct-4 ESCs Adult GBM (n.a.). 111 

Olig2 
OPCs and motor 

nuerons 
Adult GBM (n.a.). 

113, 

114 

SOX2 
ESCs and neural 

tubes 
Adult medulloblastoma, and GBM (46-95%). 115-117 

Abbreviations: OPCs, Oligodendrocyte progenitor cells; HSC, Hematopoetic stem cells; HECs, Hematopoetic, 

endothelial cells; NSCs, Neuronal stem cells; ESCs, Embryonic stem cells; BM-SCs, bone marrow-derived 

stem cells; MSCs, Mesenchymal stem cells; NPCs, Neural progenitor cells; n.a., not available. 

 

In our work, we show that several human primary and established GBM cell lines 

present a proportion of Fluo+ cells. These cells overexpressed GSCs markers (CD133, CD15, 

CXCR4, Bmi1, Klf4, Nanog, Nestin, Oct3/4 and SOX2), presented an higher self-renewal 

ability, were resistant to therapy (treatment with TMZ and radiation led to an increased in the 
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percentage of Fluo+ cells), and were associated with shorter overall survival in vivo. 

Considering that GSCs are defined by functional characteristics including stem cell markers 

expression, therapy resistance, self-renewal capacity, differentiation into multiple lineages 

and tumor initiation and progression96, all these results indicate that these Fluo+ cells are 

GSCs. It is important to emphasize that although Fluo+ cells have increased expression of a 

variety of CSCs makers, none of them was exclusively limited to this subpopulation, which 

contributes to the notion that these markers individually are not uniformly informative for 

CSCs. 

Additionally, we show that the mechanism by which this GSCs are autofluorescent is 

due to the transport of RBF by the ABCG2 transporters into cytoplasmic vesicles. ABCG2, 

also known as BCRP belongs to one of the largest families of transporter proteins, the ABC 

transporters. ABC proteins can use the energy derived from ATP hydrolysis to perform a 

directed intermembrane movement of their substrates (primary active transporters), open or 

close a certain membrane channel (e.g. ion-channels) or regulate the permeability of multi-

protein channel complexes (receptors)118. The overexpression of some members of the ABC 

transporters such as ABCG2, ABCB1, and ABCC1, is one of the major mechanisms 

responsible for multidrug resistance (MDR) phenotype. This phenotype is characterized by 

the ability that tumor cells have to display resistance to a wide range of drugs by performing 

the efflux of drugs across the cell membrane118, 119. ABC transporters are active in brain 

endothelial cells, contributing to the BBB, and playing a pivotal role in detoxification120. 

Particularly, ABCG2 is part of the protective mechanism that restricts entry of exogenous 

compounds, including small molecule chemotherapeutics into the brain. In fact, it was shown 

that some tyrosine kinase inhibitors (erlotinib and gefitinib) are substrates of ABCG2, which 

leads to very low brain concentrations of these drugs121, 122.  

Importantly, ABCG2 is expressed in normal stem cells, and plays an important role 

in promoting stem cell proliferation and the maintenance of the stem cell phenotype. 

However, this transporter is also expressed in a number of cancer cells and is a potential CSC 

marker, including in GSCs, being associated with tumorigenicity, proliferation, 

chemoresistance, and metastasis ability of cancer cells123-126. In GBM, it was demonstrated 

that CD133+ cells highly express mRNA levels of ABCG2 compared to CD133- cells127. 

Additionally, it was shown that ABCG2: i) has a molecular determinant role on the SP 
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phenotype presented by GSCs, characterized by chemoresistance and tumorigenic 

properties124; ii) is a potential driver of glioma stemness by actively driving the expression 

of stem cell markers, and promotes GSCs self-renewal128; and iii) is associated with poor 

survival among GBM patients129. However, ABCG2 does not seem to affect either the 

response to radiation or tumor formation in vivo128. Importantly, the inhibition of this 

transporter with small molecule inhibitors result in reduced self-renewal of GBM 

neurospheres, suggesting, that ABCG2 is not just a marker of GSCs but also a promoter of. 

GSC self-renewa129. Taking into consideration all these previous studies, it will be important 

to evaluate the role of ABCG2 in our GBM Fluo+ cells. In future studies we could silence 

ABCG2 expression and evaluate if these Fluo+ cells lose some of the GSCs characteristics, 

including stem cell markers expression and self-renewal ability of 3D neurospheres, as well 

as evaluate the in vivo tumorigenicity. Moreover, to evaluate if ABCG2 is an essential 

molecule in the stem phenotype, we should perform its overexpression in GBM Fluo- cells 

and observed if these cells become GSCs. Importantly, and using these GBM Fluo+ cells 

silenced for ABCG2 we should also confirm by flow cytometry analysis if a decrease in the 

autofluorescent content occurs. If these experiments reveal promising results, there are 

several compounds described to inhibit the action of ABCG2, including FTC, Ko-143, 

GF120918 (Elacridar), YHO-13177, YHO-1335, among others (reviewed in130) that could 

be used for further in vitro and in vivo experiments using either single agent or combination 

with TMZ strategies, in GBM Fluo+ and Fluo- cells. However, it is important to notice that, 

to date, only few studies have investigated ABCG2 inhibitors clinical benefits in human trials 

and, none of these inhibitors are in clinical use.  

Here, we show that the autofluorescent phenotype was due to an accumulation of 

RBF, a specific substrate for ABCG2 transporter131, 132. RBF is an essential vitamin that is 

present in food as free riboflavin or as the derivate flavin adenine dinucleotide (FAD) or 

flavin adenine mononucleotide (FMN). This vitamin is involved in numerous enzymatic 

reactions, in all forms of life, and performs key metabolic functions by mediating the transfer 

of electrons in biological oxidation-reduction reactions133. Additionally, RBF plays 

important roles in several cellular metabolic pathways, such as oxidative metabolism of fatty 

acids, amino acids and carbohydrates, and presents antioxidant properties134, 135. It is also 

involved in the metabolism of vitamin B6, folate, vitamin B12, and other vitamins; helps to 
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maintain the integrity of the nervous system136, 137; is involved in the early postnatal 

development of the brain and gastrointestinal track138-141, and is able to modulate carcinogen-

induced DNA damage142, 143 and inflammatory and immune responses144, 145. Some studies 

indicate that RBF deficiency increases the risk of cancer at certain sites whereas, others point 

to a possible attenuating effect of RBF in the presence of some carcinogens143, 146. Currently, 

besides ABCG2, other three RBF transporters have been characterized in humans: RFT1, 

RFT2, and RFT3147-149. RFT2 is mostly expressed in normal cells in the brain and is believed 

to play a key role in regulating brain RBF homeostasis147. Recently, it was demonstrated that 

RFT2 was overexpressed in glioma samples compared with normal brain, and was associated 

with WHO grade150. In addition, the silencing of RFT2 was associated with glioma cell 

proliferation inhibition by promoting apoptosis and cell cycle arrest; a reduced invasion and 

migration; and a decreased tumor growth in vivo150. In fact, this same transporter was also 

described to be overexpressed in esophageal squamous cell carcinoma and involved in 

regulating cell cycle progression, cell proliferation, energy metabolism, tumorigenicity in 

vivo, and maintaining normal intracellular flavin status151, Regarding, its expression in CSCs, 

including GSCs nothing is known. In our work, we see that FTC (inhibitor of ABCG2 

transporting activity) treatment does not completely abrogate Fluo+, and thus we hypothesize 

that the transport of RBF can be performed by other transporters, as RTF1, RFT2 and RTF3. 

In the future, the characterization of their expression, by Western blot, should be performed 

in FACS-sorted Fluo+ and Fluo- GBM cells. If we observed that one or all of these 

transporters are involved in the uptake of RBF, similar studies as described above for ABCG2 

inhibition, could be performed. Since, no inhibitors are described for these RBF transporters, 

we should modulate their expression in Fluo+ and Fluo- GBM cells with alternative 

approaches as gene expression silencing. Additionally, future studies are needed to determine 

the exact role of RBF in GSCs. In fact, since this vitamin is involved in several redox 

reactions and has been described as presenting antioxidant properties, probably the presence 

of RBF on GSCs gives survival advantages to this highly malignant subpopulation. Thus, 

evaluating cell metabolism, as ROS production and mitochondrial respiration, of GSCs 

exposed to RBF or control conditions (no RBF) can help us to better understand its effects in 

GSCs. 
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It is of relevance that when we exposed our human GBM cell lines to basal medium 

(medium without riboflavin), we see that some cells remained autofluorescent. As cellular 

and tissue autofluorescence has been attributed to a spectrum of unrelated molecules such as 

vitamins (vitamin A, riboflavin, thiamine), structural proteins, porphyrins, lipofuscin, and 

ceroid pigment152, it is reasonable to hypothesize that other fluorescent molecules can also 

partly contribute to the autofluorescent phenotype. One of the candidates is retinoic acid that 

presents a spectroscopic profile (330/500 nm) very similar to the profile of riboflavin 

(450/520 nm). Thus, in future experiments we should add retinoic acid to the culture media 

of GBM cells, and evaluate their level of autofluorescence. 

Finally, and considering that GSCs share several characteristics with NSCs, it will be 

important to assess if this non-tumor stem cells also present an autofluorescent phenotype. 

Thus far, the autofluorescent phenotype has not been described in NSCs, however it was 

shown that these cells express ABCG2, even though in a small percentage comparing to 

GSCs153. In the future, the expression of ABCG2 and other RBF transporters should be 

evaluated in human NSCs cell lines, and in NSCs isolated from mice. Also, the 

autofluorescence content of NSCs should be assessed before and after RBF exposure, by flow 

cytometry analysis. 

Taking into consideration all our results, it is clear that autofluorescence can be used 

as a marker to identify and isolate GSCs. This new GSC marker has a greater advantage 

comparing with those that are being used, such as CD133, CD15 (Table 5.1), since no 

extensive manipulation or antibodies are needed, eliminating any problem associated with 

epitope recognition. 

In the future, it will be important to deeper characterize Fluo+ and Fluo- GBM cells. 

Firstly, using FACS-sorted Fluo+ and Fluo- GBM we could evaluate the signaling pathways 

that are altered in these subpopulations by performing phospho-arrays analysis. These results 

could tell us which pathways are differentially activated and which could hint for alternative 

therapeutic intervention to eliminate GSCs. Secondly, RNA sequencing could be performed 

to detect several differentially expressed genes. Those differentially up-regulated in the Fluo+ 

subpopulation may constitute potential therapeutic targets for GSCs elimination. Thirdly, 

membrane proteomic analysis can also be performed in the two subpopulations, and in NSCs, 

to find new specific markers of the Fluo+ GSCs subpopulation. This finding will constitute a 
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great contribution to the field since, so far, no specific biomarker of GSCs exists, and could 

also represent potential therapeutic targets. 

 

5.3 Can MSCs be safely used as a stem-cell based therapy for glioma treatment? 

A relatively new and promising therapeutic approach to target malignant glioma is 

based on the use of MSCs. These cells have been explored as tolls for stem cell-based 

therapies since they present an intrinsic ability to migrate towards gliomas and can cross the 

BBB. However, the role that MSCs impose on glioma behavior is still controversial, and thus 

their validation as a safe therapeutic approach for glioma must be clarified. Some in vitro and 

in vivo studies demonstrated that MSCs present a tumor suppression function demonstrated 

by a tumor growth inhibition154-160 while others showed that MSCs have a pro-tumoral 

function by stimulating tumor migration, invasion, and growth161-165.  

In order to clarify the influence of non-engineered MSCs on GBM behavior, in our 

last work (chapter 4) we evaluated the influence of HUCPVCs CM on GBM aggressiveness. 

One of the major mechanism by which MSCs impact cancer cells is by paracrine effects. 

Thus, to determine the effects of soluble factor released by MSCs on GBM cells we use CM 

from MSCs. The use of CM is advantageous in our setting due to its simplicity in allowing 

the detection and identification of any soluble factor-related effects in the culture media. Our 

data shows that GBM cells presented increased cellular viability, migration, proliferation and 

in vivo tumor growth when exposed to HUCPVCs CM. These results are in agreement with 

previous studies in different tumor types, including gliomas that demonstrated that MSCs 

may contribute to tumor growth/proliferation and migration161, 165-172. Several studies 

demonstrated that tumors have MSCs in their microenvironment, and these tumor associated-

MSCs (TA-MSCs) enhanced tumor growth and invasiveness, and may contribute to the 

formation of distant metastases162, 169, 173-176.  

Particularly in gliomas, it has been shown that MSCs are recruited into these tumors 

where they play a functional role in the growth and aggressiveness of these tumors. Two 

independent studies demonstrated that cells similar to MSCs exist in glioma specimens177, 

178. Later, Behnan and colleagues demonstrated that brain tumor-derived MSCs (BT-MSCs) 

increased GL261 cells’ proliferation in vitro172. Similarly, Hossain et al were able to isolate 

cells presenting characteristics of MSCs, including surface antigens, classical MSC colony 
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formation and mesenchymal differentiation potential, from fresh surgical glioma specimens, 

which they called glioma-associated human MSCs (GA-hMSCs)163. These GA-hMSCs 

presented similar functions as TA-MSCs in other cancer types by increasing the proliferation 

of GSCs, but were not tumorigenic. Moreover, they demonstrated that GA-hMSCs enhanced 

the stemness capacity of GSCs by both in vitro and in vivo assays163. Together, these studies 

indicate that TA-MSCs are present in glioma specimens, contributing to the aggressiveness 

of these tumors. Another study that demonstrated that caution must be considered in using 

MSCs as a new therapeutic approach was performed by Liu and colleagues, where they 

showed that rat BM-MSCs cultured with malignant rat glioma C6 cells without direct cell-

cell contact became phenotypically malignant cells (decreased expression of p53 WT and 

increased expression of mutant p53 and mdm2, along with an aneuploid karyotype). 

Additionally, by an in vivo assay, these authors demonstrated that MSCs previously indirectly 

co-cultured with glioma C6 cells (when transplanted subcutaneously into immuno-deficient 

mice led to tumor development179. These results demonstrated that MSCs became malignant 

cancer cells when exposed to the tumor microenvironment and suggest that factors released 

from the cancer cells have a critical role in the malignant transformation of MSCs, 

highlighting the potential high risk of using MSCs as cell-based therapies for glioma 

treatment. 

Taking into consideration that other studies demonstrated that MSCs do not promote 

glioma aggressiveness or present glioma-suppressing function174, 180, 181, it is essential to 

standardize the methods used in different studies in order to more accurately understand if 

MSCs are definitely a valid and safe therapeutic approach to tackle cancer. For example, 

future studies should have into account tissue source and in vitro culture conditions of MSCs; 

type of tumor cells (primary and commercially available cell lines); variability of 

experimental methodologies concerning CM collection, and indirect or direct co-cultures; 

and studies using modified MSCs should include unmodified MSCs as control. In fact, it 

could be a better approach to use primary brain tumor in co-culture assays, as they may more 

accurately reflect the in vivo effects in future clinical applications. Moreover, since the major 

goal of these studies is their translation into the clinical setting, it is crucial that future studies 

use human MSCs and tumor cells, as we did in our work.  
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MSCs secrete a wide variety of biologically active molecules that modulate the 

activity of other cells. So far, several signaling molecules secreted by MSCs have been 

described to be involved in different biological processes such as ECM remodeling, 

angiogenesis, mitogenic remodeling, apoptosis inhibition, and tumor aggressiveness, among 

others (Figure 5.1)182-184. MSC-secreted proteins are capable of coordinating survival, 

migration, proliferation, and differentiation responses on healthy tissues and cancer cells 

through the activation of many signaling cascades. Additionally, the secretome of MSCs also 

presents proangiogenic effects, ECM components and proteins that regulate its composition. 

Finally, MSCs secrete a variety of chemoattractant molecules capable of recruiting diverse 

cell types, such as immune and progenitor cells (including MSCs themselves). Therefore, in 

order to clarify which proteins were mediating the response of GBM cells to HUCPVCs 

secretome, we performed proteomic analysis of HUCPVCs CM. We identified proteins that 

were significantly enriched in several pathways frequently altered in cancer (e.g. Wnt, PDGF 

and VEGF signaling pathways), in processes related to ECM organization and interaction, 

and in cellular adhesion and motion. Our results are in agreement with studies that evaluated 

the secretome of MSCs, since the proteins released by HUCPVCS that we identified were 

also described in other studies 185-187. Particularly, proteins related with ECM and its 

organization (the most significantly represented molecular component and biological 

process), such as fibronectin, laminin, thrombospondin, metalloproteinases (MMP-1, MMP-

2, MMP-3; MMP-14), and tissue inhibitors of metalloproteinases (TIMP-1, TIMP-2) were 

found to be present in HUCPVCs secretome. Moreover, it has been described that MSCs 

secrete pro-angiogenic factors, such as VEGF 187, and once again in our study we observed 

that HUCPVCs CM present expression of VEGFC. Finally, several cytokines, growth factors 

and chemoattractant molecules, known to be secreted by MSCs, were also present in the 

secretome of HUCPVCs, including TGF-β1, HGF, TIMP-1 and -2, collagenases, IL-6, IL-

F2, IL-F3, EGF, CCL2, and CXCL6, results that are in agreement with previous studies 185-

188. It is accepted that the pro-tumoral effects are mediated by secreted molecules and/or via 

direct cellular interactions 189-198. For example, MSCs were shown to overexpress and secrete 

chemokine CCL5, which promoted breast cancer metastasis by stimulating chemokine CCR5 

upregulation in breast cancer cells199. Furthermore, through upregulation and secretion of 

various cytokines (IL-6, IL-8), and chemokine CXCL12, TA-MSCs have been shown to 
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promote tumor cell proliferation, metastatic spread, and resistance to chemotherapy in 

ovarian cancers200. 

 

 

Figure 5.1: Paracrine effects of MSCs. MSC secretome functions include regulation of 

angiogenesis, apoptosis inhibition, cell differentiation, chemoattraction, ECM remodeling, immune 

response modulation, mitosis, antimicrobial properties, and tumor aggressiveness. Some of the main 

factors known to be secrete by cultured MSCs are indicated. MSCs respond to feedback signals 

coming from their target cells by modifying accordingly their “behavior” and secretome (Adapted 

from 201). 

 

All these results clearly demonstrated that MSCs secrete proteins that act on tumor 

cells, including GBM, raising concerns in using these stem cells as a therapeutic approach. 

In the future, and in order to better understand the crosstalk between MSCs and GBM cells, 

a direct (GBM cells and MSCs are cultured together) or indirect (communication through 

diffusible soluble factors without a direct cell-cell contact) co-culture system must be tested. 

In this way, we will be able to better evaluate how GBM cells modulate MSCs, as it allows 

both physical contact and soluble factor interactions, and how this modulation can influence 
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back GBM cells. Additionally, it is important to evaluate other types of MSCs, such as BM-

MSCs and ASCs, since a previous study performed by Akimotto et al, demonstrated that 

umbilical cord blood-derived MSCs (UCB-MSCs) inhibit, however ASCs promote, GBM 

proliferation161. In particular, if BM-MSCs prove promising they have many advantages to 

use in cell-based therapies compared to UCB-MSCs since they have a relatively large ex vivo 

expansion capacity, a low risk of viral infection, reduced donor morbidity and less-

pronounced immunogenicity. In conclusion, for the clinical application of MSCs further 

investigations are necessary to establish effective and safety treatment strategies. These 

should have particular attention the source of the MSCs, the appropriate time intervals of 

administration and expression of tumor-supporting factors. 

 

 

Figure 5.2: Molecules secreted by MSCs enhanced aggressiveness features of GBM. Proteins 

secreted by MSCs are related to cell adhesion and motion, ECM organization and interaction, and 

signaling pathways frequently altered in cancer, and are able to modulate GBM cells, by increasing 

tumor cell viability, proliferation, migration and, invasion.  

 

 

5.4 Concluding remarks and future perspectives 

Along this thesis, it has become clear that human gliomas are particularly dramatic 

diseases. Several discoveries are still to be made, especially regarding etiological and 

prognostic factors, as well as better therapeutic approaches. Here, we demonstrate for the 

first time that although TGF-β1-509C/T and 869T/C polymorphisms are not involved in 

glioma risk, they present a prognostic value in GBM patients (-509TT and 869CC genotypes 
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are predictive markers of longer survival). Therefore, the study of these and other TGF-β1 

SNPs may prove relevant to the better understanding of the disease and for glioma patient 

prognostication. Since this is the first and only study on these SNPs in glioma, our data must 

be further validated. Moreover, we found a new and reliable marker for GSCs identification 

that is based on phenotypic characteristics of tumor cells, which can be used as a tool for a 

better understanding of this malignant subpopulation that does not require the use of 

antibodies, allowing to overcome problems associated with the use of cell surface markers. 

This straightforward and efficient isolation may be useful to better understand the biology of 

GSCs and identify additional biomarkers by characterizing their cell surface proteome. 

Finally, we give new insights regarding the use of MSCs for GBM treatment, demonstrating 

that caution should be taken of their use as clinical tolls for GBM treatment, and identify 

proteins released by MSCs that can promote GBM aggressiveness. Taken together, this work 

provides insights into some molecular and cellular players that regulate the pathophysiology 

of malignant gliomas, setting the stage for future works exploring therapeutic opportunities. 

One molecule that is common between all the experimental works is TGF-β, which 

acts as an oncogenic factor in glioma, is overexpressed in GSCs, and plays a key role in 

MSCs recruitment to gliomas and to GSCs in vivo195, 202, 203. TGF-β induces the expression 

of many components of the ECM and cellular adhesion factors, and is involved in ECM 

remodeling through regulation of MMPs. Additionally, TGF-β acts in a paracrine fashion to 

regulate stromal cells, blood vessels, and local immune response. The net result of these 

interactions in malignant cancers is increase tumor cell invasion and angiogenesis. Regarding 

MSCs, it was shown that these cells express TGF-βRII on their surface. By using intracranial 

orthotopic human GSCs xenograft models, TGF-β1 was found to bind to both TGF-βRII and 

CD105, a coreceptor of TGF-βRII, and a canonical MSCs surface marker. The pro-

inflammatory factor TGF-β1 is released by many gliomas, and interacts with TGF-βRII 

receptors located on the surface of MSCs. The presence of TGF-β1 was also correlated with 

the ability of MSCs to home to specific GSCs tumors 200, 202. Importantly, it has been shown 

that the TGF-β/Smads signaling pathway induces immunosuppression by inhibiting NK 

cells, cytotoxic T lymphocytes, dendritic cells, and by upregulating T regulatory cells 

(reviewed in 204), therefore, immunotherapeutic strategies to suppress TGF-β signaling may 

be promising for improving the prognosis of patients with malignant gliomas. 
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TGF-β plays a major role in glioma progression, in the future more studies are needed 

to better understand the molecular function associated with this cytokine. Using primary 

GBM cell lines that endogenously express TGF-β1 we could silence its expression by shRNA 

or more specifically perform TGF-β1 knockout using CRISPR-Cas9 technology, to evaluate 

both in vitro and in vivo glioma cells invasion, angiogenesis, immune responses, and 

interaction with cells present in the microenvironment. Finally, it would be important to 

better clarify if targeting TGF-β or its downstream signaling in combination with radio- and 

chemo-therapy could be a promising therapeutic approach in glioma patients. For that, 

compounds anti-TGF-β, such as AP12009, LY2157299, and GC1008, could be used. 

However, some caution to all anti-TGF-beta therapies is warranted as they may cause 

significant systemic side effects due to the critical role that TGF-beta plays in many normal 

physiological processes. Importantly, the combination of TGF-β signaling inhibitors with 

U.S. FDA-approved immune check-point blockade agents, such as anti-PD-L1, anti-CTLA4, 

and anti-PD1, antibodies, most likely would improve clinical outcomes over targeting a 

single pathway, especially as these antibodies have recently been shown to have efficacy in 

glioma models of glioma205, 206. 
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