
U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

Journal of Alzheimer’s Disease xx (20xx) x–xx
DOI 10.3233/JAD-160121
IOS Press

1

Review1

Does the Interplay Between Aging
and Neuroinflammation Modulate
Alzheimer’s Disease Clinical Phenotypes?
A Clinico-Pathological Perspective

2

3

4

5

Ricardo Taipaa,b,c,∗, Ana Luı́sa Sousad, Manuel Melo Piresa and Nuno Sousab,c
6

aDepartment of Neuroscience, Neuropathology Unit, Centro Hospitalar do Porto, Portugal7

bLife and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga,
Portugal

8

9

cICVS/3B’s Associate Lab, PT Government Associated Lab, Braga/Guimarães, Portugal10
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Abstract.12

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder and is the most common cause of dementia worldwide.
Cumulative data suggests that neuroinflammation plays a prominent and early role in AD, and there is compelling data
from different research groups of age-associated dysregulation of the neuroimmune system. From the clinical point of view,
despite clinical resemblance and neuropathological findings, there are important differences between the group of patients
with sporadic early-onset (<65 years old) and late-onset AD (>65 years old). Thus, it seems important to understand the
age-dependent relationship between neuroinflammation and the underlying biology of AD in order to identify potential expla-
nations for clinical heterogeneity, interpret biomarkers, and promote the best treatment to different clinical AD phenotypes.
The study of the delicate balance between pro-inflammatory or anti-inflammatory sides of immune players in the different
ages of onset of AD would be important to understand treatment efficacy in clinical trials and eventually, not only direct
treatment to early disease stages, but also the possibility of establishing different treatment approaches depending on the age
of the patient. In this review, we would like to summarize what is currently known about the interplay between “normal” age
associated inflammatory changes and AD pathological mechanisms, and also the potential differences between early-onset
and late-onset AD taking into account the age-related neuroimmune background at disease onset.
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INTRODUCTION27

Alzheimer’s disease (AD) is a chronic neu-28

rodegenerative disorder and is the most common
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cause of dementia worldwide. The two major neu- 29

ropathological hallmarks of the disease are senile 30

plaques, which are mainly composed of extracellu- 31

lar deposits of amyloid-� (A�) and neurofibrillary 32

tangles, which consist of intracellular aggregates 33

of aberrantly phosphorylated tau protein. This is 34

accompanied by neuronal and synaptic loss, den- 35

dritic and axonal changes, and inflammatory reaction 36
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lesions [1, 2]. Cumulative data suggests that neu-37

roinflammation plays a prominent and early role38

in AD [3–8]. Microglia cells are the predominant39

resident immune cells in the central nervous sys-40

tem (CNS) [9]. Recently, some studies highlighted41

the biological process of age-related changes associ-42

ated with microglial cells [10–12] and suggest that43

microglial senescence can be directly associated to44

neurofibrillary degeneration [13]. From the clini-45

cal point of view, despite clinical resemblance and46

neuropathological findings, there are important dif-47

ferences between the group of patients with sporadic48

early-onset (<65 years old, EOAD) and late-onset AD49

(>65 years old, LOAD). Thus, it seems important to50

understand the age-dependent relationship between51

neuroinflammation and the underlying biology of AD52

in order to identify potential explanations for clinical53

heterogeneity, interpret biomarkers, and promote the54

best treatment to different clinical AD phenotypes.55

In this article, we will discuss the current56

knowledge regarding the interplay between “nor-57

mal” age associated inflammatory changes and AD58

pathological mechanisms. In addition, we will dis-59

cuss the potential differences between EOAD and60

LOAD taking into account the age-related neuroim-61

mune background at disease onset. We will give62

particular emphasis to microglia due to their predom-63

inant role in the immunological process within the64

CNS.65

BRAIN IMMUNE SYSTEM66

Microglia are the resident immune cells of the CNS67

and considered the tissue-resident macrophages.68

These cells were first described by Nissl in 1899,69

who distinguished microglia from other neural cells70

based on the shape and their nuclei [14]. Microglia71

cells arise from myeloid precursors and constitute72

an autonomous population distinct from the periph-73

eral circulating mononuclear phagocytes [15]. These74

cells account for up to 16% of total cell CNS pop-75

ulation and this is dependent on the brain region76

[9]. There is limited replication and turnover of77

microglia, suggesting that microglia are a very long-78

lived and stable cell population [9, 12]. Microglia79

can provide several macrophage-related activities80

that provide an innate immune response as the first81

and main form of active immune defense in the82

brain [9]. The term microglial activation encloses83

the process where microglia change shape, molec-84

ular signature, and cellular physiology in order to85

respond to injury or disease [16]. Resting microglia 86

are characterized by a small cell body, highly ram- 87

ified processes with weak expression of associated 88

cell surface marker antigens [17]. In contrast, acti- 89

vated microglia display shortened and extensively 90

branched processes and hypertrophy of cell body 91

[18]. The definition of resting microglia does not 92

mean a passive spectator in the healthy adult CNS. In 93

vivo two-photon microscopy imaging studies showed 94

that microglia survey the brain parenchyma by con- 95

stantly extending and retracting their processes, and 96

react rapidly to brain injury or insult, and are more 97

properly termed “surveillant” [19–21]. The functions 98

of microglia in the normal healthy brain beyond 99

immune surveillance are unclear, but recently more 100

sophisticated functions were described such as par- 101

ticipating actively in the maintenance and plasticity 102

of neuronal circuits and contributing to the protection 103

and remodeling of synapses [22, 23]. 104

Microglial activation states have been classically 105

described as activated (M1) or alternatively activated 106

(M2) [24]. The M1 phenotype is characterized by 107

production of proinflammatory cytokines, such as IL- 108

1�, tumor necrosis factor alpha (TNF�), and IFN-�, 109

whereas in the M2 phenotype microglia secrete anti- 110

inflammatory cytokines, such as IL-4, IL-10, and 111

transforming growth factor-�, which downregulate 112

inflammation and promote tissue remodeling/repair 113

and angiogenesis [25]. However, this categorizing 114

system relays on peripheral macrophages studies, 115

which do not recapitulate all microglial functions and 116

is likely an oversimplification [21]. 117

The second type of neuroimmune cells is the 118

perivascular macrophages [26]. They seem to be 119

derived from circulating macrophages, and are able 120

to perform all the known functions of periph- 121

eral macrophages; they undergo complete turnover 122

approximately every 3 months [27, 28]. Finally, the 123

circulating blood monocyte can enter the CNS, but 124

it is not clear how often it happens under non- 125

inflammatory conditions. In conditions of disrupted 126

blood-brain barrier, and when properly stimulated, 127

they can differentiate into microglia-like cells or 128

perivascular macrophages morphologically and phe- 129

notypically [26]. 130

Astrocytes are the most abundant glial cells in 131

the CNS and their function is critical for the sup- 132

port of neuronal homeostasis. The term astrogliosis 133

describes a wide range of both molecular and func- 134

tional changes in astrocytes aimed to neuroprotection 135

and repair of injured neural tissue [29, 30]. Recently it 136

has been shown that that reactive astrogliosis and glial 137
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scar formation play essential roles in regulating CNS138

inflammation [29]. Reactive astrocytes in response139

to different kinds of insult can produce molecules140

with either pro- or anti-inflammatory potential. Addi-141

tionally, reactive astrocytes can exert both pro- and142

anti-inflammatory effects on microglia [31, 32].143

NEUROINFLAMMATION IN BRAIN144

AGING145

There is clinical and experimental evidence that146

neuroinflammation in the aged brain is characterized147

by a shift toward a pro-inflammatory state [9, 33].148

In vivo imaging studies using 11-C-R-PK1195 PET149

ligand, which is upregulated in activated microglia150

cells, showed an increase in the specific binding with151

age in several cortical and subcortical structures, indi-152

cating that activated microglia gradually appear in153

the aging human brain [34]. In parallel, age senes-154

cent alterations can contribute to a dysfunctional155

microglia [12, 35, 36]. In the next paragraphs, we156

will address these apparent competitive perspectives157

of age-related neuroinflammation.158

Inflammation in the brain is defined by upregulated159

astrocyte and microglial cell reactivity in association160

with increased levels of circulating cytokines such161

as TNF�, IL-1�, and IFN-� [37–39]. With aging,162

microglia phenotype shifts progressively toward the163

activated form, together with enhanced sensitivity to164

inflammatory stimuli (priming phenomena) [9, 40].165

In normal human brain aging, microglia is character-166

ized by upregulation of glial activation markers such167

as IL-1� [41] and major histocompatibility complex168

II (MHC II) [42]. MHC II is important because it is169

conserved across species and is interpreted to indicate170

microglial priming [9]. There is compelling evidence171

from different research groups and aging models, that172

following different types of challenge (bacteria, virus,173

stress, surgical intervention), aged animals exhibited174

a clear and exaggerated neuroinflammatory response,175

when compared to young adult animals [33, 43–46].176

These studies provided evidence that during lifespan,177

episodes of systemic inflammation and cytokine stim-178

ulation can “instruct” microglia and increase their179

reactivity [23, 33]. Interestingly, some of these sen-180

sitized neuroinflammatory responses are specific to181

the hippocampal formation, which is important for182

memory function [33]. Microglia from the aged CNS183

could be described as hyper-vigilant to disturbances184

in central homeostasis with less capability of shifting185

among functional states.186

Proteins expressed in CNS microenvironment, 187

which are known to inhibit microglia activation or 188

pro-inflammatory immune responses, were impli- 189

cated in the mechanism how microglia becomes 190

chronically sensitized during normal aging [47]. In 191

fact, some lines of research describe various proteins 192

that activate anti-inflammatory signals following lig- 193

and receptor interactions [48], particularly CD200 194

[49–51] and fractalkine (CX3CL1) [51–53]; interest- 195

ingly, both are preferentially expressed in neurons. 196

These proteins inhibit microglia through their cog- 197

nate receptor, which is expressed predominantly in 198

myelomonocytic cell types. During aging, the expres- 199

sion of levels of these ligands decreases concurrently 200

with increases in microglial activation status. More 201

recently, another line of research suggests that sig- 202

nificant and prolonged elevation in hippocampal 203

corticosterone (the endogenous glucocorticoid in 204

rodents) leads to microglial priming [51]. However, 205

the simplistic view that aging CNS shifts microglial 206

polarization from alternative M2 state to the clas- 207

sical, proinflammatory state, should be interpreted 208

cautiously because many studies found that both 209

M1 markers and M2 markers are increased in aged 210

mice [12]. For example, active microglia from aged 211

mice actually had higher levels of IL-10 production 212

(an anti-inflammatory cytokine) than those of adult 213

mice and lower expression of TGF� (an inflamma- 214

tory cytokine) [54]. In this case, the maintenance 215

of inflammatory response could be attributed to an 216

impaired response to IL-10 in the aged brain [9]. Fur- 217

thermore, primed microglia phenomena have been 218

described mainly in mouse models [9, 55], and less 219

in human brain research [56]. More recently, research 220

studies showed that the cerebrospinal fluid (CSF) 221

levels of YKL-40 (a microglial marker) increase in 222

normal aging [57–59]. 223

Together with this perspective that microglia 224

becomes primed and more reactive with age, others 225

showed that microglia becomes senescent and less 226

reactive with age [10, 11, 13]. In the healthy young 227

CNS, microglia have a typical ramified morphology 228

and are distributed throughout the neural parenchyma 229

in a “space-filling” manner [60]. Due to the pro- 230

longed lifespan of CNS microglia, they are more 231

susceptible to accumulate aging-related changes [61], 232

such as in the distribution, morphology, and behav- 233

ior [12, 60] (Table 1). Many microglial cells in the 234

aged brain show dystrophic features indicative of age- 235

related alterations. This dystrophic microglia have 236

de-ramification or decrease arborization of their pro- 237

cesses, loss of finely branched cytoplasmic process, 238
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Table 1
Summary of principal changes associated to microglial aging (adapted from Wong [60] and Wyss-Coray [6])

Changes in aged microglia
Changes in microglial distribution
Replicative senescence (reduced mitotic activity in response to CNS injuries)
Decreases in regularity in distribution
Changes in morphology
Decrease in individual microglial ramification (dendritic arbor area, branching, and total process length)
Appearance of morphological changes suggestive of increase activation state

(shortened and extensively branched processes and hypertrophy of cell body)
Appearance of dystrophic microglia (deramified, fragmented, or tortuous processes,

cytoplasmic beading/spheroid formation)
Changes in microglial dynamic behavior and function
Decrease in the motility and migration process
Changes in intercellular signaling and marker expression (MHC II, CD11b)
Impaired phagocytosis
Impaired proteostasis

cytoplasmic beading/spheroid formation, and short-239

ened and twisted cytoplasmic processes, and in some240

instances there is partial or complete cytoplasmic241

fragmentation [38]. The meaning of these morpho-242

logical changes or why they happen is still to be243

understood.244

Age-related changes were also described in astro-245

cytes, particularly emphasizing that aged astrocytes246

show characteristics of the senescence-associated247

secretory phenotype, which involves increased secre-248

tion of inflammatory components [62].249

In summary, aged microglia are primed with exag-250

gerated and prolonged responses to inflammatory251

stimuli and also display dysfunctional dystrophic age252

associated features. Yet, it is still to be determined253

if microglia activation is the cause of neurodegen-254

eration or a secondary reactive (beneficial) process;255

or if the neurodegeneration is actually secondary256

to microglia senescence and associated loss of257

microglial protection.258

NEUROINFLAMMATION IN259

ALZHEIMER’S DISEASE260

After two decades of the amyloid cascade hypothe-261

ses proposed by Hardy and Higgins [63], multiple262

lines of research still support the A� aggregation as263

the critical step that initiates AD pathology. How-264

ever, despite required, it seems that A� aggregation265

is not sufficient for the development of the neu-266

ropathological and clinical syndrome of AD [64].267

Several research studies report links between AD and268

genes regulating immunity as well as the expres-269

sion of immune factors in blood, CSF, and brain270

tissue [8, 65–68]. There is compelling data that neu-271

roinflammation in AD is not a passive mechanism272

activated by senile plaques and neurofibrillary tan- 273

gles, but instead contributes, as much or even more, 274

to pathogenesis as do plaques and tangles [65, 68, 275

69]. Epidemiological studies indicate that systemic 276

markers of the innate immunity are risk factors of 277

LOAD [70–73] and more recently, inflammation 278

in AD gained strong support from genome-wide 279

association studies that identified genes involved in 280

inflammation that are associated with increased risk 281

of developing AD [74], including TREM2 [75, 76] 282

and CD33 [77, 78]. Prospective cohorts’ studies 283

suggested that elevations in inflammatory media- 284

tors may be present years before clinical disease 285

onset [70, 79, 80]. However, other longitudinal stud- 286

ies did not report associations between inflammation 287

and AD risk [81, 82]. Furthermore, non-steroidal 288

anti-inflammatory drug (NSAID) epidemiology and 289

clinical trials showed mostly negative results, play- 290

ing against the importance of inflammation in AD 291

pathogenesis. However, these disappointing results 292

are no surprising taking into account that normal 293

physiological cytokine regulation of glia activation 294

and microglial phenotypes are highly dependent of 295

the context and the disease stage [65]. More recently, 296

studies have consistently found an increase in CSF 297

YKL-40 levels in AD. They also found a correla- 298

tion between CSF YKL-40 levels with markers of 299

neurodegeneration, such as tau, and with at-risk �4 300

carriers during mid middle age [57–59]. 301

Neuropathological studies have shown the pres- 302

ence of a broad variety of inflammation-related 303

proteins (complement factors, acute-phase proteins, 304

proinflammatory cytokines) and clusters of activated 305

microglia around amyloid plaques (Fig. 1) in AD sub- 306

jects and also AD mice models [8], and these findings 307

have been implicated in the neurodegeneration pro- 308

cess [4, 83]. Neuropathological studies also showed 309
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Fig. 1. Alzheimer’s disease neuropathology. A) Senile plaques and globose diffuse deposits demonstrated with anti-A� antibody (M 0804,
Dako). B) Neurofibrillary tangles demonstrated by phosphorylated tau protein immunohistochemistry (PHF-Tau; AT8, Thermo Scientific).
C) Diffuse distribution of activated microglia in the cortex with clustering within and around amyloid plaques. D) Higher magnification
of amyloid plaque with activated microglial in the CA4 region of the hippocampus (C and D: CD68 immunohistochemistry; PGM1 clone,
Dako).

that the neuroinflammatory response in the neocor-310

tex is present in the early stages of AD pathology and311

precedes the late stage, tau-related pathology [84].312

Furthermore, microglial activation has been shown313

to progress with the clinical stage of dementia, with314

neuropathological stage of disease severity, and with315

stage of progression of A� plaques [67, 85, 86].316

In vivo imaging studies, using 11-C-R-PK1195 PET317

ligand, showed that activated microglia accumulate318

near the amyloid plaque pathology, and that activated319

microglia burden correlates with cognitive decline320

[87].321

The pathological accumulation of A� is consid-322

ered the key factor that drives neuroinflammation323

responses in AD [65]. The chronic deposition of324

A� stimulates the persistent activation of microglial325

cells in AD [88]. Microglia undergoes a progres-326

sive switch from a neuroprotective M2 status to a327

classically activated phenotype M1, characterized328

by production of proinflammatory cytokines [89].329

The persistent microglia activation and consequently330

microglia-derived cytokine overexpression, caused331

by continuous formation of A� and positive feedback332

loops between inflammation and amyloid-� protein333

precursor processing, can increase A� production 334

and decrease A� clearance, ultimately causing neu- 335

ronal damage [65, 86, 89]. In addition, ongoing 336

exposure to A�, chemokines, cytokines, and other 337

inflammatory mediators can be responsible for the 338

functional impairment of microglial cells seen at 339

plaque sites [11, 90] and thus impede the protec- 340

tive role of microglia in A� clearance [91]. Recently, 341

Kim et al. [92] showed that soluble A� oligomers 342

impair synaptic plasticity and cause synaptic loss in 343

mouse AD models and brains of AD patients bind- 344

ing to the murine PirB (paired immunoglobulin-like 345

receptor B) and its human ortholog LilrB2 (leu- 346

cocyte immunoglobulin-like receptor B2) receptors, 347

respectively. The PirB receptor was first described 348

exclusively in the immune system but is now know 349

to be expressed by neurons. 350

Microglia can have different roles and effects 351

depending on the particular disease stage and which 352

brain region is affected in each model [65]. AD 353

mouse models studies showed that in younger ages, 354

together with the appearance of the first A� plaques, 355

the microglia is activated toward the alternative 356

state and at older ages, together with the increased 357
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accumulation of extracellular oligomeric A�, there358

is a widespread microglial activation toward the clas-359

sic phenotype [93]. Recently, Sudduth et al. described360

that in the early-stage AD brains there is an apparent361

polarization toward either M1 or M2 brain inflam-362

matory states [94]. The M2 polarized group had363

great number of neuritic plaques, eventually reflect-364

ing disease progression. The heterogeneity found in365

the early stage AD can influence the response to366

therapeutic agents that act on immune system and367

inflammation [94]. The neuropathological study of368

AD patients that had undergone active A� vaccina-369

tion as part of the AN1792 trial showed significantly370

reduced levels of A� and reduction of aggregated371

tau in neural processes (not in neurofibrillary tan-372

gles), and, although there was no difference on total373

microglial load, there were reduced levels of a range374

of activated microglial species when compared to375

patients who died from AD without treatment [95,376

96]. These findings suggest that downregulation of377

microglial activation through A� immunotherapy378

possibly reduces the inflammatory component of the379

neurodegeneration of AD [95]. However, a different380

line of research supports that aging-related microglial381

degeneration and loss of microglial neuroprotection382

rather than microglial activation contributes to the383

onset of sporadic AD [11]. A role for peripheral-384

derived macrophage cells in AD pathophysiology385

have recently come under attention [97]. There is386

extensive evidence that blood-derived monocytes can387

phagocytose A� [98] and that these cells can be388

recruited to the AD brain, albeit in low numbers [99].389

Reactive astrocytes tend to accumulate around fib-390

rillar amyloid plaques [100]. Similar to microglia,391

astrocytes release cytokines and other potentially392

cytotoxic molecules after exposure to A� thus aggra-393

vating the neuroinflammatory response [65]. Glial394

cell activation can be an early event in AD process,395

even preceding A� deposition. Recently, Rodriguez-396

Vieitez and colleagues [101], using a PET tracer397

for astrocytes (11C-deuterium-L-deprenyl), showed398

prominent initially high and then declining astrocy-399

tosis in autosomal dominant AD carriers, contrasting400

with the increasing A� plaque load during disease401

progression. This study provided in vivo evidence that402

astrocyte activation is a very early feature of, at least403

familial, AD pathology [101]. Other lines of research404

have linked senescent astrocytes to the increase risk405

of sporadic AD [102].406

In summary, the role of microglia remains con-407

troversial in AD pathogenesis and the question408

of whether activated microglia aids in promoting409

clearance of toxic A� species or if their proinflamma- 410

tory profile exacerbates pathology is currently a topic 411

of debate [103]. Although there is broad evidence of 412

a large immune response component in AD, the issue 413

of which activation phenotype affects the onset or 414

progression of the disease and, consequently, which 415

should be the therapeutic target remains to be deter- 416

mined [104]. Furthermore, the questions regarding 417

the role of excessive astrogliosis or astrocyte senes- 418

cent loss of function in AD pathogenesis remains to 419

be solved [100]. 420

EARLY AND LATE-ONSET 421

ALZHEIMER’S DISEASE 422

Regardless of the clinical resemblance and 423

neuropathological findings, important differences 424

between EOAD and LOAD patients have been 425

reported. The separation of EOAD from LOAD at 65 426

years old is a conventional cutoff point indicative of 427

a sociological partition in terms of employment and 428

retirement, but there is no specific biological signifi- 429

cance to use this specific age, and there is a range of 430

disease features that do not respect this arbitrary divi- 431

sion [105, 106]. However, this arbitrary cutoff point 432

has been used widely by different research groups 433

and allowed the uniform study of AD patients with 434

different ages of onset. 435

Clinical presentation 436

Whether age of onset defines the clinical presen- 437

tation of AD has been a matter of debate for decades 438

and reports on this issue are often contradictory. 439

Nonetheless, some differences have been consis- 440

tently recognized. Earlier onset is associated with a 441

worse prognosis and a faster progression. Younger- 442

onset patients have comparatively worst outcomes 443

in the Mini-Mental State Examination at baseline, 444

show a steeper cognitive and functional decline, and 445

seem to have higher mortality risks when compared 446

to older-onset patients [107–109]. In addition, dif- 447

ferent patterns of cognitive deficits are apparent; 448

non-amnestic presentations are more often found in 449

early-onset disease, described in 33–64% of EOAD 450

compared to 6–12.5% of LOAD patients [105, 110]. 451

Earlier neuropsychological studies have shown 452

that younger patients have more language disability 453

when compared to older-onset patients [111–113]. 454

The risk of having language difficulties detected by 455

caregivers has also been shown to nearly duplicate 456

for each 10-year decrease in AD patients’ age [114]. 457
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Other groups have recognized a greater impairment in458

measures of attention, praxis, and visuo-contruction459

tasks in EOAD [115–117]. On the other hand, LOAD460

patients seem to consistently have preferential mem-461

ory involvement [118–120]. To explore the relation462

between this clinical duality and pathologic features,463

Murray et al. [121] divided a cohort of AD patients464

into “hippocampal sparing”, “limbic predominant”,465

and “typical AD” according to neurofibrillary pathol-466

ogy distribution. They have shown that a younger age467

of onset (mean 63 years) was associated with greater468

neurofibrillary tangle burden in cortical association469

areas and that older age (mean 76 years) was more470

often associated with limbic predominant pathology.471

The hippocampal sparing group had greater preva-472

lence of atypical presentations and a faster cognitive473

decline, similar to what has been described in EOAD.474

Seizures and extrapyramidal features seem to be475

more frequent in EOAD [111, 122]. There are con-476

tradictory reports in other symptoms in both groups.477

For example, there are reports of higher anxiety lev-478

els in EOAD [123], while others have shown greater479

neuropsychiatric and behavioral symptoms in LOAD,480

including anxiety, depression, agitation, hallucina-481

tions, and delusions [124, 125].482

Limited research has been reported into sex differ-483

ences in brain aging, particularly neuroinflammation484

process. However, gender effect is an interesting485

issue due to the differences of the neuroendocrine486

milieu and its possible relation to inflammation cas-487

cades (particularly steroid-related pathways). The488

dynamic change in hormonal status in women during489

the menopause transition may promote a dysregula-490

tion of cellular processes involved in hypothalamic-491

pituitary-adrenal axis and thus have potential implica-492

tions on stress-mediated neurotoxicity [126]. It is also493

important to recognize the importance of immunolog-494

ical differences in males and females within the CNS495

at different development time points and their possi-496

ble relevance for the susceptibility in the development497

of neurological conditions later in life [127]. A recent498

work in mice by Mangold and colleagues showed a499

greater induction of MHC class I components and500

receptors with aging with this finding being greater501

in females than in males [128]. However, despite the502

prevalence of AD being greater in women, the pre-503

vailing view has been that this difference is due to504

the fact that women live longer than men on average,505

and older age is the greatest risk factor for AD. Many506

studies of incidence of AD have found no significant507

difference between men and women in the proportion508

who develop AD at any given age [129].

Biomarkers 509

Magnetic resonance imaging (MRI) studies show 510

that younger-onset patients have greater general- 511

ized neocortical atrophy than LOAD subjects when 512

compared to healthy controls [118, 130]. This is 513

in accordance with glucose metabolism studies, 514

which demonstrate a premature decline in glucose 515

metabolism and a more severe and widespread 516

hypometabolism in EOAD [131]. Regarding regional 517

differences, older patients tend to have a more circum- 518

scribed involvement, with preferential reduction in 519

the hippocampus and related structures, including the 520

amygdala [132] and retrosplenial and temporopari- 521

etal junction volumes [130], while younger patients 522

tend to have a greater temporoparietal and parietooc- 523

cipital grey matter atrophy [115, 120]. White matter 524

atrophymimics thispattern[133].Moreover,bothper- 525

fusion and glucose metabolism studies have shown 526

a predilection for temporo-parietal-occipital associ- 527

ation areas in EOAD versus medial temporal cortex 528

susceptibility in LOAD [119, 134]. Interestingly, 529

another study has shown no significant difference in 530

total or regional amyloid burden, measured by Pitts- 531

burg compound-B PET, despite showing decreased 532

glucose metabolism in bilateral temporoparietal and 533

occipital cortex in EOAD. This finding suggests that 534

both early A� and increased susceptibility to pathol- 535

ogy in younger onset patients might be responsible 536

for cortical dysfunction in EOAD [135]. The greater 537

involvement of hippocampal-related structures in 538

LOAD is also apparent in functional connectivity 539

studies that have shown that older patients have 540

decreasedactivationof theanteromedial temporalnet- 541

work, correlatingwithpoorerperformance inmemory 542

tasks; EOAD was associated with less activation of the 543

dorsolateral prefrontal network, manifested by worse 544

performance on executive function tasks [118]. 545

CSF pathophysiological markers for AD include 546

decrease levels of A�1–42 and increase levels of 547

total tau and hyperphosphorylated tau. The use of 548

these biomarkers combined is associated with sig- 549

nificant sensitivity and specificity in the diagnosis 550

of AD [136]. There is some evidence that EOAD 551

patients have a greater reduction of A�1-42 (and 552

corresponding greater elevation of tau) than LOAD 553

patients when compared to young and old controls, 554

respectively, although no differences emerge in the 555

direct comparison between EOAD and LOAD [137]. 556

Others have reported lower levels of A�1-42 in EOAD 557

[138] or no differences [120, 139]. A study compar- 558

ing CSF biomarkers along different EOAD subtypes, 559
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including amnestic, logopenic progressive aphasia560

and posterior cortical atrophy found no differences in561

the A� levels, but showed that posterior cortical atro-562

phy had lower levels of total tau and phosphorylated563

tau [140].564

Genetics565

Amyloid precursor protein, presenilin 1, and pre-566

senilin 2 mutations can cause autosomal dominant567

AD, and although they may be present in up 71%568

of familial cases, they account for only about 1–5%569

of all AD patients. These patients typically have an570

early or very early-onset disease (<45 years) [136,571

141, 142]. A well-recognized genetic risk factor for572

AD is the APOE �4 allele. It is usually associated573

with greater hippocampal atrophy and a poorer per-574

formance in memory based tasks [121, 142] and it575

decreases the age of onset by up to 2.45 years for576

each copy of the allele [142, 143]. Conversely, non-577

APOE �4 patients tend to have greater structural and578

clinical involvement of non-hippocampal, neocorti-579

cal areas [121]. ApoE �4 allele carriers among AD580

patients are most frequently found in the 60–69-year-581

old range [144], therefore including both older EOAD582

patients and younger LOAD patients. The ApoE �2583

allele is less frequently found in AD patients than in584

normal controls and there seems to be no difference585

in its prevalence between EOAD and LOAD [144].586

Genome wide association studies have identified sev-587

eral other risk genes for LOAD. The association588

between nine of them (PICALM, CLU, CR1, BIN1,589

CD2AP, EPHA1, MS4A4A, CD33, and ABCA7) has590

been shown to account for 1.1% of age of onset vari-591

ation, versus 3.9% of variation provided by ApoE.592

The most significant association was found for the593

CR1, BIN1, and PICALM genes [143]. Another can-594

didate gene that may have an impact on age of onset595

is DCHS2, a gene expressed in the cerebral cortex596

[145]. Yet, and surprisingly, these genetic variants do597

not seem to bring significant value for the distinction598

between EOAD and LOAD, as they simply seem to599

anticipate pathology.600

INTERPLAY BETWEEN BRAIN AGING,601

NEUROINFLAMMATION, AND AD602

PHENOTYPES603

AD prevalence is strongly associated with increas-604

ing age and aging changes in microglia have been605

hypothesized to play a prominent role in disease606

pathogenesis [60]. Recently, the consistent pattern607

of increases in YKL-40 level with aging supports 608

the concept that neuroinflammation is a process that 609

occurs normally with aging [57–59]. The additional 610

finding of a stronger association with at-risk �4 611

carriers during mid middle age suggests that this age- 612

related process may be further exacerbated in the 613

presence of insults including amyloid deposition and 614

neuronal injury [59]. There are important clinical dif- 615

ferences between sporadic EOAD and LOAD. Taking 616

into account the data regarding the importance of 617

neuroinflammation in the pathogenesis of AD, par- 618

ticularly the role of microglia, and the differences 619

of the neuroimmunological milieu of the aged brain, 620

it is conceivable that the neuroinflammation associ- 621

ated to the AD can, at least in the beginning, differ 622

between these two groups and contribute for the clini- 623

cal differences. Not many studies have addressed this 624

issue. 625

Hoozemans et al. [146] compared the presence 626

of microglia and astrocytes, in clinically and patho- 627

logically confirmed AD and non-demented control 628

cases in relation to age. In their study they suggested 629

that the association between neuroinflammation and 630

AD is much stronger in relatively young patients as 631

compared to the older patients (age at death <80 ver- 632

sus >80 years old). Microglial activation increases 633

with the neuropathological stage and disease severity 634

[67, 85]. A key issue would be to know if inflamma- 635

tion differs between these two groups (EOAD versus 636

LOAD) at different pathological and clinically AD 637

stages. 638

Another remarkable finding is that, in contrast 639

to AD, activated microglia is not found in the 640

similar-appearing A� diffuse deposits of the brains of 641

neurologically normal elderly individuals [147]. One 642

of the possibilities is that for those unusual elderly 643

individuals with only diffuse A� deposits there is an 644

inherent difference in the responsiveness of microglia 645

[86]. Interestingly, plaque-associated microglia were 646

not seen in diffuse plaque-only young Down’s syn- 647

drome brain [148]. This subgroup of cases was from 648

very young patients (between 12 and 29 years old), 649

possible supporting the notion that A� inflammatory 650

response can also differ in the very young. More 651

recently, a study showed that in Down’s syndrome 652

patients with AD pathology (>40 years old), there is 653

a distinct neuroinflammatory phenotype compared to 654

sporadic AD due to microglia bias toward an M2b 655

phenotype [149]. Clinicopathological studies from 656

brain donation programs showed that the presence of 657

moderate and severe AD type pathology changes is 658

more associated to dementia in younger old persons 659
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than in older old persons [150]. These findings sug-660

gest that additional factors are involved in the clinical661

expression of dementia in the oldest old, such as vari-662

able tolerance to neuropathological lesions [150]. We663

speculate that different neuroinflammation apparatus664

in this age can partial explain this discrepancy.665

The study of inflammatory cytokines in CSF as666

biomarkers of AD has shown very different and con-667

tradictory results between different research groups668

[89]. The analysis of different neuroinflammation-669

related proteins in the blood, including several670

interleukines (IL-1�, Il-1�, IL-6, IL-10), �2-671

macroglobulin, brain-derived neurotrophic factor672

(BDNF), complement factor H, and heat shock pro-673

tein 90 (Hsp90) has not shown significant differences674

between EOAD and LOAD, but studies are scarce and675

with small samples [151, 152]. TNF� levels have676

been shown to be both higher and lower in EOAD677

[152, 153].678

Some of the risk loci in modifying age of disease679

onset identified in genome wide association stud-680

ies have recognized roles in the immune system,681

including phagocytosis and immune cell traffick-682

ing [154]. Both CLU and CR1 encode for proteins683

that regulate complement activation; EPHA1, mostly684

expressed in leukocytes, is involved in T cell regula-685

tion; ABCA7 is highly expressed in the hippocampal686

neurons and in microglia and is involved in A� pro-687

cessing; and CD33, overexpressed in AD patient’s688

microglia, encodes for an endocytic receptor that689

takes part in cell-cell interactions and in immune cell690

regulation [154, 155]. TREM2, another loci associ-691

ated to increase risk for AD identified, is involved692

in immune response [75]. There are studies that693

found a significantly earlier symptom of onset in694

patients with TREM2 variants [156], but others found695

only an association to shortened disease duration696

and not to age of onset [76]. A� cerebral amyloid697

angiopathy (CAA) and particularly A� related angi-698

itis (ABRA), is other AD related clinical feature that699

bridges AD, inflammation and age. CAA describes a700

group of biochemically and genetically diverse dis-701

orders, which have in common the deposition of702

amyloid in media and adventitia of cortical and lep-703

tomeningeal vessels [157]. Sporadic CAA and AD704

have overlapping biology with shared risk factors705

[158]. A� vascular deposition affects about 30% of706

the otherwise normal elderly and over 90% of those707

with AD, in whom CAA tends also to be more severe708

[157, 159]. ABRA is characterized by a vasculitic709

transmural, often granulomatous, inflammatory infil-710

trates affecting leptomeningeal and cortical vessels711

Fig. 2. Diagram illustrating age associated microglia dynamics
and temporal Alzheimer’s disease onset. Arrows exemplify two
time points for the beginning of AD biomarkers [A� accumulation
(CSF/PET), sequentially followed by tau-mediated neuronal injury
(CSF)] at the preclinical stage.

that have abundant A� deposition within the vessel 712

walls [159, 160]. The recent finding of autoantibod- 713

ies against A�1-40 and A�1-42 forms of amyloid in 714

the CSF of two patients with ABRA and inflamma- 715

tion associated to CAA [161, 162], together with the 716

description of meningoencephalitis caused by active 717

or passive immunotherapeutic approaches to reduce 718

A� burden in AD [163], suggests that an immune 719

response directed against A� may represent a com- 720

mon disease mechanism shared by ABRA and in 721

complications of therapy for AD [160]. The mean 722

age of presentation of ABRA is lower than that 723

of sporadic non-inflammatory A�-related CAA (66 724

versus 76 years, respectively) [159, 160]. These find- 725

ings support a role for the interactions between age, 726

and inflammation in AD related pathophysiology and 727

clinical expression. 728

In summary, the pathophysiological mechanisms 729

underlying the clinical differences between EOAD 730

and LOAD are still not well known, but the dif- 731

ferences of neuroinflammation characteristics with 732

aging can help to partially explain it (Fig. 2). 733

CONCLUSION 734

Understanding both sides of microglial and astro- 735

cytosis inflammation process at functional and 736

molecular level will be necessary for the development 737

of treatment strategies for AD and aging [12]. 738

Additionally, the study of this delicate balance in 739

the different ages of onset of AD would be important 740
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to understand treatment efficacy in clinical trials and741

eventually, not only direct treatment to early disease742

stages, but also the possibility of establishing differ-743

ent treatment approaches in light of the age of the744

patient. The boost on AD diagnostic biomarkers will745

increase diagnostic certainty in life for the diagno-746

sis of dementia with AD pathology. This refinement747

will allow the increased recognition of the more748

often atypical clinical presentations in EOAD and749

thus increase the knowledge (epidemiology, clinical750

progression, biomarkers studies, neuroinflammation751

associated process, etc.) for a possible better under-752

standing of this complex disorder.753
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K, Höglund K, Basun H, Annas P, Lannfelt L, 960

Andreasen N, Minthon L, Blennow K, Hansson O (2013) 961

Microglial markers are elevated in the prodromal phase of 962

Alzheimer’s disease and vascular dementia. J Alzheimers 963

Dis 33, 45-53. 964

[58] Alcolea D, Martı́nez-Lage P, Sánchez-Juan P, Olazarán 965
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NA, Marzorati L, Remida P, Tagliavini F, Savoiardo M, 1477

Ferrarese C (2011) Anti-A� autoantibodies in the CSF of 1478

a patient with CAA-related inflammation: A case report. 1479

Neurology 76, 842-844. 1480

[162] Hermann DM, Keyvani K, van de Nes J, Weimar C, 1481

Wiltfang J, Nitsch RM, Szodorai A (2011) Brain-reactive 1482

�-amyloid antibodies in primary CNS angiitis with cere- 1483

bral amyloid angiopathy. Neurology 77, 503-505. 1484

[163] Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel 1485

M, Kirby LC, Jouanny P, Dubois B, Eisner L, Flitman S, 1486

Michel BF, Boada M, Frank A, Hock C (2003) Subacute 1487

meningoencephalitis in a subset of patients with AD after 1488

Abeta42 immunization. Neurology 61, 46-54. 1489


