
Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journal homepage: www.elsevier.com/locate/jnnfm

Improved both sides diffusion (iBSD): A new and straightforward
stabilization approach for viscoelastic fluid flows

C. Fernandesa, M.S.B. Araujo⁎,b, L.L. Ferrása, J. Miguel Nóbregaa

a Institute for Polymers and Composites/i3N, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
b Instituto de Ciências Exatas e Naturais, Faculdade de Matemática, Universidade Federal do Pará, 66075-110 Belem, PA, Brasil

A R T I C L E I N F O

Keywords:
OpenFOAM®

Upper-convected Maxwell model
Sudden contraction flow
Flow around a cylinder

A B S T R A C T

This paper reports the developments made to improve the numerical stability of the open-source finite-volume
computational library OpenFOAM® developed for the numerical computation of viscoelastic fluid flows described
by differential constitutive models. The improvements are based on the modification of the both-sides diffusion
technique, named improved both-sides diffusion (iBSD), which promotes the coupling between velocity and
stress fields. Calculations for two benchmark 2D case studies of an upper-convected Maxwell (UCM) fluid are
presented and compared with literature results, namely the 4:1 planar contraction flow and the flow around a
confined cylinder. The results obtained for the first case are computed in five meshes with different refinement
levels and are compared with literature results. In this case study it was possible to achieve steady-state con-
verged solutions in the range of Deborah numbers tested, =De {0, 1, 2, 3, 4, 5}, for all meshes. The corner vortex
size predictions agree well with the literature and a relative error below 0.6% is obtained for De≤ 5. In the flow
around a confined cylinder, steady-state converged solutions were obtained in the range of Deborah numbers
tested, =De {0, 0.3, 0.6, 0.8}, in four consecutively refined meshes. The predictions of the drag coefficient on the
cylinder are similar to reference data with a relative error below 0.08%. For both test cases the developed
numerical method was shown to have a convergence order between 1 and 2, in general very close to the latter.
Moreover, the results presented for both case studies clearly extend the previous ones available in the literature
in terms of accuracy. This was a direct consequence of the capability of performing the calculation with more
refined meshes, than the ones employed before.

1. Introduction

The use of computational fluid dynamics (CFD) increased sig-
nificantly over the last decades, mainly due to the development of
better and faster computers that allow the use of more realistic models,
and due to the development of more accurate and efficient numerical
methods. One of the approaches widely used in CFD is the finite-volume
method (FVM).

Since the latest 1960s various FVM codes were developed to simu-
late Newtonian fluid flows (e.g. [1–3]). In the 1990s a significant in-
terest in the use of FVM to simulate flows of viscoelastic fluids was
evident, mainly due to their inherent economy of computational re-
sources. The majority of the codes developed were initially limited to
orthogonal staggered grids, as in the works of Yoo and Na [4], Sasmal
[5] or Xue et al. [6], amongst others. Afterwards, other FVM codes have
been developed to predict viscoelastic flows in more complex geome-
tries. For example, Huang et al. [7] developed a method able to cope
with unstructured meshes to simulate inertialess flow of Phan-Thien-

Tanner (PTT) fluids in eccentric bearings. Oliveira et al. [8] developed a
collocated FVM based on non-orthogonal block-structured grids for
UCM and Oldroyd-B viscoelastic fluids which was subsequently ex-
tended to handle PTT fluids [9]. The method was applied to predict the
slip-stick flow, the flow around a confined cylinder and flow in planar
contractions [10,11]. Favero et al. [12] implemented several viscoe-
lastic differential models in the open-source software package Open-
FOAM® using the discrete elastic-viscous stress splitting formulation.
OpenFOAM® uses a collocated FVM, storing all variables at cell centers
and is capable of handling complex mesh types such as tetrahedral and
polyhedral meshes. The major drawback of the numerical algorithm
implemented by Favero et al. [12] to deal with viscoelastic fluid flows
in OpenFOAM® is that it is prone to numerical instabilities caused by a
velocity-stress decoupling, which are worst when there is no con-
tribution from the solvent viscosity, as happens for the UCM model.
More recently, Habla et al. [13] presented a new formulation for the
discretization of the divergence of the viscoelastic stress tensor for the
collocated FVM implemented in OpenFOAM®. The reformulation
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allowed for a semi-implicit handling of the constitutive equation, which
promotes the numerical stability of the code developed. The validation
was done using planar and square-square contraction flows of a sim-
plified Phan-Thien-Tanner (SPTT) fluid.

The rheological behavior of non-Newtonian viscoelastic fluids is
complex, requiring the use of non-linear constitutive equations to ob-
tain realistic predictions of the fluid flow. However, the use of simple
constitutive equations, such as the UCM and Oldroyd-B models [14] or
the White-Metzner [15] model, is very challenging from the numerical
point of view. Some characteristic difficulties found when using these
models are associated with stress singular behavior near sharp corners
or in stagnation points. Hence, these constitutive models are very re-
levant to test the accuracy and robustness of new numerical methods
for viscoelastic fluids. Indeed, the most severe numerical difficulties are
commonly attributed to the UCM equations [7,16], when compared
with other constitutive differential models.

Two popular benchmark case studies usually employed to test the
UCM fluid flow in newly developed viscoelastic codes, are the 4:1
planar sudden contraction flow and the flow around a confined cylinder
[17]. The former case is a simple geometry that can be discretized with
orthogonal grids, but generates locally complex flows, due to the high
stress gradients in the vicinity of the re-entrant corner. For the flow past
a confined cylinder, the maximum Deborah number that promotes a
steady solution can be limited either by the development of thin stress
layers on the cylinder surface and along the centerline in the cylinder
wake or because the flow is prone to viscoelastic (physical) instabilities.

Another important issue in the simulation of viscoelastic flows is the
accuracy of the numerical predictions. It is known that the first-order
upwind scheme (UDS) used in the discretization of the advective terms
is the most stable method, but generates inaccuracies due to excessive
artificial diffusion. The application of bounded high-resolution schemes
(HRS) to discretize the advective terms in the constitutive equation
improves the accuracy of the computations, and were employed by
Alves et al. [10] in the simulation of the 4:1 planar sudden contraction
flow, and by Alves et al. [11] for the flow around a confined cylinder.

In this work we propose a methodology to improve the stability of
the viscoelasticFluidFoam solver available in OpenFOAM®, aiming to in-
crease the numerical stability and accuracy when dealing with complex
fluid flows. The improvements were based on a modified version of the
both-sides diffusion (BSD) technique proposed by Guénette and Fortin
[18], and are simpler to apply than other methodologies proposed so far
for the same purpose [13,16,19]. Basically, in the proposed stabiliza-
tion approach the explicit contribution of the BSD technique is dis-
cretized using an extended computational stencil, which is done just by
changing the usual Laplacian operator in the traditional BSD technique
by the divergence of the velocity gradient field. Due to its relation with
the classic BSD, this methodology was designated improved both-sides
diffusion (iBSD). In addition, we used a deferred correction approach
for the discretization of the advective terms, as described in Pimenta
and Alves [16], which allowed to further enhance the accuracy and
stability of the results obtained. To verify the developed code, the re-
sults are compared with available results for the benchmark problems
of viscoelastic flow in a 4:1 planar sudden contraction and flow around
a confined cylinder.

The viscoelastic solver with the proposed enhancements in terms of
stability is integrated in the version 4 of foam-extend, publicly available
for download at https://sourceforge.net/p/foam-extend/foam-extend-
4.0/ci/master/tree/ReleaseNotes.txt. To facilitate its use a tutorial is
also provided in https://sourceforge.net/p/foam-extend/foam-extend-
4.0/ci/master/tree/tutorials/viscoelastic/viscoelasticFluidFoam/UCM.

The remainder sections of this paper are organized as follows:
Section 2 presents the governing equations to be solved and the im-
provements made to stabilize the numerical procedure. In Section 3, the
results obtained with the newly developed numerical code for the two
benchmark case studies are presented, discussed and compared with
results from the literature. The paper ends with the main conclusions.

2. Governing equations and numerical method

This section presents the mathematical formulation and the meth-
odology adopted to enhance the numerical stability of the developed
code.

2.1. Governing equations

The basic equations to be solved are those for incompressible and
isothermal laminar flow of an UCM fluid, namely the continuity
equation,

∇ =u· 0 (1)

and the momentum equation,

∂
∂

+ ∇ = − ∇ + ∇ τ
ρ
t

ρ p
u

uu
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·( ) · P (2)

together with a constitutive equation for the polymeric extra stress
tensor τP, which describes the relation between the stress and the fluid
deformation history. In the previous equations, u is the velocity vector,
ρ the fluid density, t the time and p the pressure.

For the extra-stress tensor τP, the upper-convected Maxwell differ-
ential equation is used:
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where λ is the relaxation time, ηP the polymer viscosity and
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The case studies which will be addressed in this work are all for
steady flows, but the numerical method used approaches the steady-
state by a time marching sequence. Hence, the time derivatives in Eqs.
(2) and (4) are retained. The UCM model simplifies to the Newtonian
fluid model when =λ 0.

2.2. The improved both-sides diffusion (iBSD) method

The equations presented in Section 2.1 are discretized using the
finite-volume method implemented in the OpenFOAM® framework.
Different implementations in OpenFOAM® have been done recently
[12,13,16,20–22], but for the UCM model, to the best of our knowl-
edge, there are no published studies using OpenFOAM ®. To improve the
numerical stability of the viscoelastic code, a different procedure is
proposed in this work, which is a modification to the one already
present in the OpenFOAM® framework [12]. This new procedure pro-
motes the coupling between stress and velocity fields.

Following the traditional both-sides diffusion (BSD) approach [12],
in order to increase the numerical stability, an additional diffusive term
is introduced in both sides of the momentum equation, Eq. (2), to ob-
tain:

∂
∂

+ ∇ − ∇ = − ∇ + ∇ − ∇☆ ☆τ
ρ
t

ρ η p η
u

uu u u
( )

·( ) ( ) · ( )P
2 2

(5)

in which ∇2 is the Laplacian operator, η⋆ is a positive parameter, the
terms on the left hand side are discretized implicitly (incorporated into
the coefficients of the algebraic equations) and those on the right hand
side are discretized explicitly (incorporated into the source term of the
algebraic equations). The major drawback of the BSD method, which
was implemented in the first version of the differential viscoelastic
solvers implemented in OpenFOAM® [12], is that it is prone to produce
velocity and stress checkerboard fields for null solvent viscosity, as
happens for the UCM model. This occurs because the coupling between
the velocity and stress fields is not assured [13], as will be shown below
with an example.
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To promote the velocity-stress coupling we were inspired on the
methodology presented in Guénette and Fortin [18] for the FEM. The
main purpose was to enlarge the computational cell used to discretize
the explicit (rhs of Eq. (5)) diffusive term. Hence, instead of the La-
placian operator of the velocity field, used in the traditional BSD
method, we compute the divergent of the velocity gradient [23]. In this
way the momentum conservation equation Eq. (5) is given by:

∂
∂

+ ∇ − ∇ = − ∇ + ∇ − ∇ ∇☆ ☆τ
ρ
t

ρ η p η
u

uu u u
( )

·( ) ( ) · ·( ( ))P
2

(6)

The proposed formulation, named improved both-sides diffusion
(iBSD), proved to be more stable than the BSD, due to the different
numerical discretization of ∇2(η⋆u) and of ∇ · (∇(η⋆u)), respectively on
the left and right hand sides of Eq. (6), as it will be shown hereafter.

Using Gauss theorem, the numerical discretization of the Laplacian
operator, ∇2(η⋆u), is given by:

∫ ∑

∑

∑

∇ = ∇

= ∇

= −

☆ ☆

☆

☆

η dV η

η

η

u S u

S u

S u u
d

( ) ·( )

·( )

V
f

f f

f
f f f

f
f f

N P

2
P

(7)

where Sf is the normal vector to face f, uN and uP are the velocity in the
cell centers which share face f and d is the distance vector between
those cells centers (see Fig. 1). Using Eq. (7), the face gradient of u is
calculated from the two known values around the face.

On the other hand, the cell-centered gradient for the two cells
sharing the face can be computed as:
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V

u S u( ) 1
P

P f
f f

(8)

which can be linearly interpolated to the face:

∇ = ∇ + − ∇w wu u u( ) ( ) (1 )( )f P N (9)

where w is the weight factor.
Using Eqs. (8) and (9), the numerical discretization of the

∇ · (∇(η⋆u)) operator is given by:
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where VP and VN are the cells volume with centroids P and N, respec-
tively. It should be noticed that both face velocities uf present in Eq.
(10) are obtained using Eq. (8), thus depend on P and N neighbor cells.

Although both of the above-described discretizations are second-
order accurate, Eq. (10) uses a larger computational stencil than Eq. (7),
which promotes the coupling between velocity and stress fields, and
thus the oscillations are removed. It can be shown that the coupling
comes from an extra term (added to the momentum equation when
performing this type of discretization) representative of a central dif-
ference approximation to the fourth order velocity derivative (analogue
to what is presented for pressure-velocity coupling in pages 196 – 200
of the book of Ferziger and Perić [3]).

To illustrate the advantages obtained from the proposed approach,
Fig. 2 shows the velocity and stress profiles for the Poiseuille flow of an
UCM fluid, obtained with the original formulation and with the mod-
ified approach proposed in this work. The geometry is a rectangular
channel with ratio =L H/ 10, where L and H are the length and height
of the channel, respectively. A uniform mesh with 250 and 28 cells
along the length and height, respectively, was used, which results in a
Δx/L and Δy/H of 0.004 and 0.036, respectively. The Reynolds and
Deborah numbers for this study were = =Re ρUH η/ 0.001P and

= =De λU H/ 0.03, where U is the inlet mean velocity. The following
boundary conditions were considered: uniform velocity profile and null
extra stress tensor at the inlet, no-slip at the walls and null pressure at
the outlet. Both problems converged to the same residual criterion of

−10 6 using a normalized time-step of = −t L UΔ /( / ) 10 4. As can be seen in
Fig. 2, the velocity and stress profiles obtained by the original velocity-
stress coupling formulation shows a checkerboard pattern, which dis-
appears when the proposed formulation is used.

2.3. Solution procedure

The basis for the implementation of this new approach was the
viscoelasticFluidFoam solver, developed by Favero et al. [12], in the
OpenFOAM® package. Pressure-velocity coupling was accomplished
using segregated methods, in which the continuity equation is used to
formulate an equation for the pressure, using a semi-discretized form of
Eq. (1) [3]. The resulting equation set is solved by a segregated ap-
proach, using iterative algorithms with under-relaxation, such as the
SIMPLE method [24]. The time derivatives in the momentum and
constitutive equations are discretized with the first-order implicit Euler
scheme. As stated before, the time marching is used only for relaxation
purposes as we will just be looking for the steady-state solution of the
case studies presented below. Thus, the method used to discretize the
transient term does not affect the accuracy of the steady-state result.
The advective terms in the momentum and constitutive equations are
discretized using high-resolution schemes. In this work we used the
same discretization schemes for the advective terms as Alves et al. [10]
and [11] (MINMOD scheme of Harten [25] and SMART scheme of
Gaskell and Lau [26]), allowing the comparison between our and their
results. However, notice that other schemes could have been used in
this study, as for example the CUBISTA scheme [27], which is widely
used for viscoelastic fluid flows due to his improved iterative con-
vergence properties. As discussed in detail in Pimenta and Alves [16],
for viscoelastic fluid flow, the implementation of HRS for the extra-
stress components is more stable using a component-wise deferred
correction approach, which was also followed in this work. We recall
that in OpenFOAM® the advective terms are first linearized using an
explicit construction of the flux (see page 144 of Jasak [28]). The dif-
fusive term in the momentum balance is discretized using second-order
accurate linear interpolation. A second-order Gaussian discretization is
applied for source terms. The velocity gradient is calculated using a
fourth-order accurate least-squares approach, where at first the stan-
dard least-square gradient [29] is assembled and then, the fourth-order
correction is added to the second-order accurate gradient to complete
the accuracy.Fig. 1. Vectors d and Sf of diffusion term discretization.
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The algorithm used to solve the governing equations can be sum-
marized in the following steps:

1. Solve the momentum balance Eq. (6), for a given initial field of
velocity u, pressure p, and extra-stress τP, to obtain a velocity field
u⋆ that does not necessarily comply with the continuity equation Eq.
(1).

2. Based on the SIMPLE algorithm [24], using the tentative velocity
field u⋆, obtained in 1., the new pressure correction field p⋆ is es-
timated solving a Poisson-type equation for pressure, that is devised
through the continuity equation, Eq. (1). Subsequently, the correc-
tion of velocity and pressure fields is carried out, leading to a new
velocity u⋆⋆, which satisfies the continuity and momentum equa-
tions. In this step the SIMPLE algorithm was used to obtain p⋆ and
u⋆⋆; more details of the SIMPLE procedure implemented in Open-
FOAM® can be found in [12].

3. Using the corrected velocity field u⋆⋆, solve the constitutive equa-
tion Eq. (3) to estimate the new extra-stress tensor field τP.

4. Repeat steps 1-3 for a given number, n, of steps ( =n 1 in this work,
to obtain steady-state solutions) to generate more accurate solutions
in transient flows and reducing the explicitness of the method. Only
the previous time-step values of u and τP are not updated in these
inner iterations.

5. Advance the time, update the old u and τP fields, and repeat again
steps 1-4 until convergence is achieved.

Notice that after each discretized governing equation is solved,
under-relaxation is applied to the solution (see page 115 of Jasak [28]).
The relaxation factors employed were 0.3 for the pressure and stress
fields and 0.5 for the velocity field. The Poisson-type equation for

pressure is solved with a conjugate gradient method with Cholesky
preconditioner and the velocity and stress linear systems are solved
using BiCGstab with an Incomplete Lower-Upper (ILU) preconditioning
[30–32]. The absolute tolerance for pressure, velocity and stress fields
was set as −10 20. The simulations were stopped when the solution
functionals (corner vortex size or drag coefficient) become invariant in
the third decimal place.

3. Case studies

Sections 3.1 and 3.2 present the results obtained for the simulation
of two well known benchmark cases, the 4:1 planar sudden contraction
and the flow around a confined cylinder. For assessment purposes the
results computed with the developed code will be compared with
available data from the literature for the same case studies.

3.1. Flow in a 4:1 planar sudden contraction

A planar sudden contraction with contraction ratio = =CR H H/ 41 2

was chosen as the first test geometry (Fig. 3), because of the availability
of numerical data in the literature [10]. The flow has a symmetry plane
along the centerline ( =y 0) for steady flow conditions, and to save
computational resources and reduce the CPU times only half of the
domain is considered. Fig. 3 shows the five structured blocks used to
generate the five consecutively refined meshes (which are similar to
those used in Alves et al. [10]), used to evaluate the order of con-
vergence of the developed method and to obtain accurate results. The
corner vortex size xR, which will be used to estimate the accuracy of the
developed code via the application of Richardson’s extrapolation to the
limit, was computed as the distance from the point where fluid velocity

Fig. 2. Predicted velocity and stress profiles for the Poiseuille flow of an UCM fluid with the (a) original (BSD) and (b) proposed (iBSD) approaches.

Fig. 3. Schematic representation of the 4:1
planar sudden contraction.
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change direction to the corner point in Block III, measured on the last
row of cells of this block (the cells near the north wall). Blocks I to III
are in the upstream channel and Blocks IV and V in the downstream
channel. The transition between Blocks IV and V occurs at =x H10 2 and
the transition between Blocks II and III occurs at =y H3 2. The char-
acteristics of the five hexahedral meshes used are presented in Table 1
and the region near the contraction of the most refined mesh (Mesh 5) is
shown in Fig. 4. All meshes were designed with higher refinement near
the walls and in the contraction region, as illustrated in Fig. 4 for Mesh
5, because these two regions are known to present the highest gradients
of the computed flow variables. The expansion or contraction

geometrical factors are defined for each direction as the ratio of two
consecutive cells lengths ( = +f x xΔ /Δx i i1 with Δxi being the length of
cell i in the x-direction). In this way, since fx>1 in Block V (see
Table 1), in the x direction the cells expand from left to right. With this
procedure, the minimum normalized cell size at the corner was

= =x H y HΔ / Δ / 0.0025min 2 min 2 for the finest mesh, in Mesh 5. For each
mesh refinement the number of cells along each direction (NX and NY)
was doubled, and the corresponding expansion/contraction ratios (fx
and fy) inside each sub-block were root-squared. We emphasize the
large number of cells (NC) used in Mesh 5, a total of 228 128 cells,
which is one of the finest meshes used so far for this benchmark pro-
blem.

The computational domain spans from = −x H20 2 to =x H50 2

which is sufficiently large to avoid the effect of the inlet/outlet
boundary conditions in the flow field in the contraction region, for the
range of Deborah numbers simulated.

The Reynolds and Deborah numbers, used to characterize specific
runs are defined on the basis of downstream channel variables (average
velocity U2 and channel height H2):

=Re
ρU H

ηP

2 2

(11)

=De λU
H

2

2 (12)

The Reynolds number was fixed at 0.01 (representative of creeping
flow) while De was varied from =De 0 (Newtonian fluid flow) up to

=De 5. In all calculations, the constant η⋆ in Eq. (6) was set equal to the
polymer viscosity coefficient, ηP. The incompressible steady-state solver
simpleFoam, already present in the OpenFOAM® computational library,
was used for the Newtonian calculations. The Newtonian stress was
discretized using the same scheme used for the implicit diffusive term in
the iBSD technique developed for viscoelastic fluid flows. The New-
tonian viscosity was assumed to be equal to the polymer viscosity (ηP)
of the UCM constitutive model.

The following boundary conditions were used for all the runs per-
formed:

• for velocity, no-slip at the walls, symmetry at the centerline, fully-
developed profile at the inlet [33] (with average velocity

=U U CR/1 2 ), and a zero gradient condition at the outlet, i.e., as-
suming fully-developed flow;

• for pressure, the inlet and wall boundary conditions were set as zero
gradient, the centerline as symmetry boundary condition and at the
outlet Dirichlet boundary condition was used, with a fixed value

=p 0. Notice that, although the zero pressure gradient specified at
the inlet does not match with the fully developed Poiseuille flow
with the average velocity U1, this inconsistency does not affect the

Table 1
Characteristics of the five meshes used for mesh convergence analysis in the 4:1 planar
sudden contraction flow.

Block Mesh 1 Mesh 2

NX×NY fx fy NX×NY fx fy

Block I 24× 10 0.8210 0.8475 47×20 0.9061 0.9206
Block II 24× 13 0.8210 1.2091 47×25 0.9061 1.0996
Block III 24× 5 0.8210 0.7384 47×9 0.9061 0.8593
Block IV 20×10 1.2179 0.8475 40×20 1.1036 0.9206
Block V 7×10 1.3782 0.8475 13×20 1.1740 0.9206
NC 942 3598

=x yΔ Δmin min 0.04H2 0.02H2

Block Mesh 3 Mesh 4

NX×NY fx fy NX×NY fx fy

Block I 94× 40 0.9519 0.9595 188×80 0.9756 0.9795
Block II 94× 50 0.9519 1.0486 188×100 0.9756 1.0240
Block III 94× 17 0.9519 0.9270 188×34 0.9756 0.9628
Block IV 80×40 1.0505 0.9595 160×80 1.0249 0.9795
Block V 25×40 1.0835 0.9595 50×80 1.0409 0.9795
NC 14258 57032

=x yΔ Δmin min 0.01H2 0.005H2

Block Mesh 5

NX×NY fx fy

Block I 376× 160 0.9877 0.9897
Block II 376× 200 0.9877 1.0119
Block III 376× 68 0.9877 0.9812
Block IV 320×160 1.0124 0.9897
Block V 100×160 1.0202 0.9897
NC 228128

=x yΔ Δmin min 0.0025H2

NX and NY are the number of cells along x and y directions, respectively, inside each
block. fx and fy are expansion/contraction ratios inside each block.
NC is the number of cells for each mesh.
Δxmin and Δymin are minimum cell size in each direction.

Fig. 4. Finest mesh used in the 4:1 planar
contraction case study (Mesh 5).
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results, because the length of the upstream channel is sufficiently
large to achieve fully developed flow conditions;

• finally, for the stress tensor, at the inlet a fully-developed profile was
assumed [33], at the centerline a symmetry boundary condition was
used, at the walls a linear extrapolation of the extra-stress compo-
nents to the boundary was used and at the outlet a zero gradient
condition was imposed.

All fields were set to zero at the initial time.
The use of a normalized time-step Δt/(H2/U2) of −10 4 allowed to

obtain converged solutions for all the runs performed. The maximum
local Courant number corresponding to the normalized time-step −10 ,4

obtained for the 4:1 planar sudden contraction was 0.07. The MINMOD
scheme was used in the discretization of the advective terms.

3.1.1. Asymptotic behavior near the re-entrant corner
First we investigated the asymptotic behavior near the re-entrant

corner. For Newtonian fluids, it is known [34,35] that the variation of
velocity and stress components at that location follows the asymptotic
expressions given by:

∝ rui
0.545 (13)

∝ −rτij
0.455 (14)

for any given angle θ in the polar co-ordinates (r, θ) centered at the re-
entrant corner (see Fig. 3). For the assumed creeping flow conditions
( =Re 0.01), the results obtained for =θ π/2 near the re-entrant corner
are shown in Fig. 5. The velocity components are normalized with U2

and the stress components with = η U Hτ 3 /w P 2 2 (for Newtonian fluid
flows ηP is the Newtonian viscosity). In general it can be stated that the
asymptotic behavior is well matched for all the five meshes except for
the uθ and τrθ, which shows noticeable differences relatively to the
slope in the coarser meshes. Similar differences were reported by Alves
et al. [10] in their results.

In case of viscoelastic fluid flows described by the Oldroyd-B model,
Hinch’s analysis [36] derived the following asymptotic behavior near
the re-entrant corner:

∝ rui
5/9 (15)

∝ −rτij
2/3 (16)

for low Deborah number flows. As stated by Hinch [36], in the corner
region the −r 2/3 elastic stress growth dominated the −r 4/9 solvent stress,
so that in a sense the analysis is also adequate for a UCM fluid. Hence,
the asymptotic expressions given by Eqs. (15) and (16) are also ex-
pected to hold for the UCM model. Thus, the developed numerical code
was first tested for =De 1. The asymptotic behavior for velocity and
stress components near the re-entrant corner, together with the theo-
retical asymptotes of Hinch [36], are shown in Fig. 6, for different
values of the angle (θ). The predicted asymptotic stress behavior agrees
with Hinch’s analysis. The larger differences found next to the wall are
expected since, as Hinch predicted, the stress growths with a power law
trend −r 2/3 is only valid in the corner region but far from the walls. The
similarity solution of Hinch is of the form −Qf θ r( ) α (Q is an amplitude
determined by conditions away from the corner and f has a sinusoidal
structure [36]) both for u and τ and, therefore, in a log-log plot the
effect of varying θ is to shift the straight lines but keeping the same
slope −α( ) [37].

The effect of De number on the asymptotic predictions is shown in
Fig. 7, by comparing the results obtained for =De 0.03, 1 and 5. The
velocity components and the normal stress τrr maintain the slope for all
De, 5/9 and − 2/3, respectively. However, the other normal (τθθ) and
shear (τrθ) stresses present a different trend at lower De, which follows
very well the, referred above, slope − 4/9 corresponding to the solvent
stress in the core region. Similar results were obtained by Alves et al.
[37].

3.1.2. Streamlines and corner vortex size
In this section we analyze the flow patterns (streamline plots) pre-

dicted in the different meshes as a function of De. The code developed
was able to produce converged solutions up to =De 5 in Mesh 5 (the
maximum value tested in this work) extending the results of Alves et al.
[10] using the MINMOD scheme.

Fig. 8 presents a comparison between the streamlines predicted,
with our implementation in OpenFOAM® and the results of Alves et al.
[10], in Mesh 3, with the MINMOD scheme and for De numbers be-
tween 0 to 5. The results obtained with the developed code follow the
same trend as in Alves et al. [10], showing a decrease of the corner
vortex as De is increased, up to =De 3. In addition, a small lip vortex
can be seen at =De 2, which increases in size with the increase of De
and subsequently merges with the salient corner vortex to become
dominant. The onset of the vortex merging and the increase of the lip
vortex with De is highly dependent on the mesh resolution, as also
found recently by Pimenta and Alves [16] for an Oldroyd-B model.

The quantitative comparison of the corner vortex is made measuring
its dimensionless length =X x H/R R 2 (see Fig. 3). The mesh refinement
used allowed to apply Richardson’s extrapolation for the XR variable
using the three finest meshes. Table 2 compares the results obtained
with the developed code and the data in Alves et al. [10]. The XR results
in the most refined mesh (Mesh 5), obtained with the developed code,
are within 0.6% from the extrapolated values.

The predicted flow pattern at moderate and high De, respectively
=De 3 and =De 5, was found to be more sensitive to mesh refinement,

as shown in Fig. 9 for Meshes 2-5. As De is increased, the mesh re-
finement level required to capture accurately the size and shape of the
corner vortex also needs to be higher. For instance, Mesh 3 has a re-
finement that seems to be enough to estimate, accurately, the corner
vortex size up to =De 3; however, for =De 5 a more refined mesh is
needed (Mesh 4), as shown in Table 2 and the streamline plots shown in
Fig. 9.

As discussed in Roache [38], Richardson extrapolation can be ap-
plied both to point-wise values or to solution functionals, when con-
sistent or high-order methods are used in their calculation. In the
contraction flow simulation, the corner vortex size XR is an adequate
and often used solution functional, which is highly sensitive to mesh
refinement. The corner vortex size, XR, was used to quantitatively es-
timate the uncertainty of the numerical results using Richardson ex-
trapolation. Fig. 10 shows the dependence of the estimated error for XR

(assuming the extrapolated values are the correct ones) on the mesh
size, for all De tested. Although second order schemes were used to
discretize all the governing equation terms, as can be seen on the figure,
the method used has an order of convergence between the first-order
and the second-order for all De tested. A similar problem, concerning
the degradation of the convergence order, was identified in Comminal
et al. [39], when the linear interpolation was used for the stress terms,
as happens in this work for the ∇ · τP in the momentum conservation
equation (Eq. (6)).

3.1.3. Distribution of velocity and first-normal stress difference near the
downstream wall and along the centerline

The distribution of the streamwise velocity component and the first
normal stress difference along the line =y H/ 0.982 is illustrated in
Fig. 11 for three cases, =De {0, 3, 5}. The figure shows that the first
normal stress difference, = −N τ τ ,xx yy1 is more sensitive to mesh re-
finement than the streamwise velocity along the line =y H/ 0.98,2 due to
the singular behavior of N1 at the re-entrant corner. In addition, as De is
increased the results become more sensitive to mesh refinement, which
induces a non-monotonic variation of N1.

The predicted centerline profiles for the longitudinal velocity and
N1 at the same Deborah numbers are shown in Fig. 12. As expected, the
results obtained are now less sensitive to mesh refinement.
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3.2. Flow around a confined cylinder

The second case study refers to the planar flow past a confined
circular cylinder placed at the centerline of a channel (see Fig. 13). The
blockage ratio in this study, defined as the ratio of cylinder radius R to
channel half-height h, is =β 0.5. The purpose of choosing this problem
is to test the capability of the code to achieve accurate results both in
Newtonian and viscoelastic fluid flows, when using non-orthogonal
meshes.

The computational domain extends from = −x R20 , where a fully
developed profile is imposed with average velocity U, up to =x R60 ,
which is sufficiently long to achieve fully-developed flow conditions at
the exit. The flow has a symmetry plane along the centerline ( =y 0)
and to save computational resources and reduce the CPU times, only
half of the domain is considered. The boundary conditions used for this
case study are:

• at the inlet ( = −x R/ 20), Dirichlet conditions based on fully devel-
oped profiles for velocity and stress components, and zero-gradient
for pressure. Notice again that the pressure-gradient of the fully
developed Poiseuille flow should have been used to avoid incon-
sistencies, but that does not affect the results as the length of the
channel entrance is long enough to achieve fully developed condi-
tions;

• at the outlet ( =x R/ 60), zero Neumann boundary conditions for the
velocities and the stress components are applied, and the pressure
value is fixed, =p 0;

• at the channel wall ( =y h) and at the cylinder surface ( =r R), we
applied a no-slip boundary condition to the velocity components
and a zero gradient for pressure, while the stress tensor components
were linearly extrapolated;

• at the symmetry plane =y( 0), symmetry conditions are imposed.

Fig. 5. Asymptotic behavior of the predicted velocity
and stress components near the re-entrant corner, for
a Newtonian fluid along direction =θ π/2 (see
Fig. 3).

C. Fernandes et al. Journal of Non-Newtonian Fluid Mechanics 249 (2017) 63–78

69



For the generation of the block-structured meshes eight blocks were
used, as represented in Fig. 13. The meshes were generated with a
higher density of cells near the cylinder surface in order to resolve
accurately the boundary-layer, where higher stress gradients are ex-
pected. Four meshes with different degrees of refinement were used for
the mesh convergence analysis, and are presented in Table 3. The
numbers in the mesh names indicate the number of radial cells between
the cylinder surface and the channel wall. Meshes M30, M60 and M120
were also used in Alves et al. [11]. The refined mesh M240 is shown in
Fig. 14. We emphasize the large number of cells used in this mesh, a
total of 278 400, which is one of the finest meshes used so far in this
benchmark problem.

The Reynolds and Deborah numbers are defined for this problem
based on the inlet average velocity, U, and the cylinder radius, R:

=Re
ρUR

ηP (17)

=De λU
R (18)

and Re was fixed at 0.01 (representative of creeping flow) while De was
varied in the range 0 to 0.8. Similarly to what was done in the 4:1
planar sudden contraction flow case study, the parameter η⋆ in Eq. (6)
was considered equal to the polymer viscosity, =☆η ηP.

The use of a normalized time-step Δt/(R/U) of −10 4 allowed to ob-
tain converged solutions for all the runs performed. The maximum local
Courant number corresponding to the normalized time-step −10 ,4 ob-
tained for the flow around a confined cylinder was 0.3. The SMART
scheme was used in the discretization of the advective terms.

3.2.1. Drag coefficient
The dimensionless drag coefficient CD, resulting from the surface

integration of the stress and pressure fields around the cylinder, was
computed as:

Fig. 6. Asymptotic behavior of the predicted velocity
and stress components near the re-entrant corner, for
a viscoelastic UCM fluid at =De 1, along directions

=θ π π{0, /2, 3 /4} (see Fig. 3).
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∫= −τC
η UL

p dSI n i1 ( )· ·D
P S P

(19)

where I is the unitary tensor, n the unit normal vector to the cylinder
surface S, i is the unit vector in the −x direction and L is the depth of the
cylinder in the neutral direction. A unitary depth was used in the
neutral direction.

The predicted CD values are listed in Table 4 and some data from the
literature is given for comparison. The column “Extrapolated” presents
the drag coefficient obtained from the application of Richardson’s ex-
trapolation to the limit. Accurate results were obtained with the de-
veloped code, as the most refined mesh (M240) produced a CD value
with a difference below 0.08% from the extrapolated values, for all De.
In addition, the results obtained are in good agreement with Alves et al.
[11] and Fan et al. [40]. Fig. 15 shows the dependence of the estimated
error for CD (assuming the extrapolated values the correct ones) on the
mesh size for all De numbers tested. As can be seen on the figure, the

method used has an order of convergence between the first-order and
the second-order for all De tested. The origin of this degradation in the
convergence order, similar to the one reported in Comminal et al. [39],
was commented in the first case study (see Section 3.1.2).

3.2.2. Velocity and stress profiles along cylinder surface and wake
centerline

Fig. 16 shows the axial velocity profiles along the centerline =y( 0)
for different De. As can be seen, for the Newtonian flow ( =De 0) we
obtain a symmetric shape for the velocity profile, due to the reversi-
bility of Newtonian creeping flows. The symmetry disappears progres-
sively as De increases, leading to an elongated recovery zone, except in
the region near the rear stagnation point (see the inset in Fig. 16),
where a local upstream velocity shift is observed, which is in agreement
with the results of Alves et al. [11] also shown in the figure.

Normal stress profiles along the centerline and around the cylinder

Fig. 7. Effect of the De number on the asymptotic be-
havior ( =θ π/2).
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Fig. 8. Streamlines obtained with Mesh 3, for
=De {0, 1, 2, 3, 4, 5} at =Re 0.01. Left: results ob-

tained by Alves et al. [10]; right: results obtained
with developed code in OpenFOAM®.
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Table 2
Dimensionless length of primary vortex (XR) as a function of Deborah number and mesh for UCM fluid. Comparison between the results obtained by the developed code and the ones
obtained by Alves et al. [10].

Developed code in OpenFOAM®

De Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Extrapolated Difference (%)a

0 1.438 1.479 1.492 1.495 1.496 1.4965 0.03
1 1.293 1.336 1.326 1.32711 1.32696 1.32694 0.002
2 1.207 1.200 1.130 1.101 1.091 1.0857 0.5
3 1.333 1.118 0.958 0.900 0.885 0.880 0.6
4 1.391 1.088 0.845 0.75 0.732 0.728 0.6
5 1.469 1.101 0.758 0.636 0.617 0.613 0.6

Alves et al. [10]

De Mesh 1 Mesh 2 Mesh 3 Mesh 4 Extrapolated Difference (%)b

0 1.472 1.488 1.494 1.495 1.496 0.1
1 1.349 1.371 1.349 1.339 1.335 0.3
2 1.631 1.259 1.154 1.118 1.105 1.2
3 1.517 1.266 1.014 0.946 0.923 2.5
4 1.644 1.337 0.987 c 0.87 13
5 1.687 1.517 1.127 c 0.997 13

a Calculated between Mesh 5 and extrapolated values.
b Calculated between Mesh 4 (or 3) and extrapolated values.
c Convergence criterion not attained (solution oscillates).

Fig. 9. Effect of mesh refinement in the streamline
patterns for =Re 0.01 at moderate and high Deborah
numbers, =De 3 (left) and =De 5 (right), respec-
tively.
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are shown in Fig. 17. This evolution presents two maxima, the first one
is within the thin boundary layer over the cylinder surface and the
second maximum occurs in the wake centerline, downstream of the rear
stagnation point. The results obtained with the developed code show a
similar tendency of the ones obtained by Alves et al. [11]. Namely, as
the De increases the slope of the maximum stress decreases at the cy-
linder surface and increases at the wake.

4. Conclusions

A general finite-volume methodology for the computation of the
flow of viscoelastic fluids described by differential-type constitutive
equations was developed using the open-source OpenFOAM® frame-
work. The developed code can be applied to orthogonal or non-ortho-
gonal meshes and was found to predict accurately steady-state solutions
of the UCM fluid, which is known to be challenging from a numerical
point of view.

An improved version of the both-sides diffusion technique (iBSD)

was proposed and implemented numerically. The modification in-
troduced was mainly related with the treatment of the additional dif-
fusion term on the right-hand-side of the momentum equation.

The improved numerical solver was shown to assure the coupling
between the velocity and stress fields, and thus provide physically
sound predictions, which are difficult when dealing with constitutive
models that do not consider the contribution of a solvent viscosity, as
happens for the UCM. High resolution interpolation schemes were used
for the discretization of the advective terms to enhance the results
precision. The code accuracy was assessed with two widely used
benchmark case studies: the 4:1 planar sudden contraction flow and the
flow around a confined cylinder. In both cases, the simulations were
performed at =Re 0.01, representing creeping flow conditions. For the
former case, the Deborah number varied from 0 to 5 and for the flow
past a confined cylinder, De was varied from 0 to 0.8.

Additionally, for the contraction flow case study, finer meshes were
employed, when compared with the ones of Alves et al. [10], and it was
possible to obtain converged solutions up to =De 5. Similarly, for the

Fig. 10. Estimated error for XR as a function of mesh
refinement and De for the UCM fluid in the 4:1
planar sudden contraction flow.

Fig. 11. Predicted streamwise velocity and first normal stress difference profiles at =y H/ 0.982 for (a) =De 0, (b) =De 3 and (c) =De 5.
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flow around a confined cylinder, meshes more refined than the ones of
Alves et al. [11] were employed, and converged solutions were
achieved up to =De 0.8. For both cases the method used has an order of
accuracy between the first-order and the second-order for all De tested.

The results obtained in both test cases were accurately predicted in the
sense that the vortex length size and drag coefficient show less than
0.6% and 0.08% differences, respectively, when comparing the finest
mesh result and the extrapolated value. These results improve the

Fig. 12. Predicted streamwise velocity and first normal stress difference profiles at centerline =y H/ 02 for (a) =De 0, (b) =De 3 and (c) =De 5.

Fig. 13. Schematic representation of the
flow past a circular cylinder. The roman
numbering refers to the identification of
the blocks used to generate the meshes
( =X x R/ ). The origin of the radial and
tangential coordinate system ( −r s) is
considered in = −X 1 and the tangential
coordinate, s, is computed as the length of
a circular arc.

Table 3
Characteristics of the four meshes used for mesh convergence analysis in the flow around a confined cylinder.

Block M30 M60 M120 M240

NS×NR fr NS×NR fr NS×NR fr NS×NR fr

Block I 25× 24 1.1029 50×48 1.0502 100×96 1.0248 200×192 1.0124
Block II 25× 30 1.1075 50×60 1.0524 100×120 1.0259 200×240 1.0129
Block III 13× 30 1.1075 25×60 1.0524 50×120 1.0259 100×240 1.0129
Block IV 13×30 1.1075 25×60 1.0524 50×120 1.0259 100×240 1.0129
Block V 13×30 1.1075 25×60 1.0524 50×120 1.0259 100×240 1.0129
Block VI 13× 30 1.1075 25×60 1.0524 50×120 1.0259 100×240 1.0129
Block VII 25× 30 1.1075 50×60 1.0524 100×120 1.0259 200×240 1.0129
Block VIII 25× 30 1.1323 50×60 1.0641 100×120 1.0316 200×240 1.0157
NCV 4410 17400 69600 278400
(NS)tot 102 200 400 800
(Δr/R)min 0.00963 0.00481 0.00238 0.00119
(Δs/R)min 0.0302 0.0157 0.00785 0.003925

NS, NR: number of cells in tangential and radial directions.
NCV: total number of control volumes.
(NS)tot: number of tangential cells around half-cylinder.
fr is expansion/contraction ratio inside each block in the radial direction. For the tangential direction the mesh is uniform.
Δr and Δs are the minimum cell size around the cylinder surface in the radial and tangential directions, respectively.
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accuracy of the data available in the literature for both benchmark case
studies.

In summary, the results obtained show that the newly improved
viscoelastic solver using an open-source code can predict accurately the
flow patterns of the upper-convected Maxwell fluid in the two bench-
mark problems tested. Based on these achievements, the authors con-
sider that it would be worth to test the iBSD approach with other

viscoelastic models, differential or integral, which show similar nu-
merical issues, but are in general easier to handle when compared with
the UCM model. Moreover, the extension to transient cases is
straightforward and is also worth to assess, just requiring additional
iterations at each time step, to assure that the contributions of the ad-
ditional diffusion terms, on the left and right side of the momentum
conservation equations, are equal.

Fig. 14. Finest mesh used in the flow around a confined cylinder case study (M240).

Table 4
Drag coefficient (CD) as a function of De and mesh for an UCM fluid. Comparison between the results obtained by the developed code and the ones of Alves et al. [11] and Fan et al. [40].

Developed code

De M30 M60 M120 M240 Extrapolated Difference (%)a

0 131.998 132.397 132.484 132.500 132.504 0.003
0.3 109.519 109.005 108.900 108.872 108.862 0.009
0.6 94.027 92.962 92.703 92.625 92.591 0.04
0.8 90.597 89.090 88.693 88.555 88.481 0.08

Alves et al. [11] Fan et al. [40]

De M30 M60 M120 Extrapolated DEVSS
0 132.23 132.342 132.369 132.378 132.36
0.3 – 108.515 108.614 108.647 108.68
0.6 – 92.277 92.298 92.305 92.37
0.8 – 88.253 88.178 88.153 88.18

a Calculated between M240 and extrapolated values.

Fig. 15. Estimated error for CD as a function
of mesh refinement and De number for the
UCM flow around a confined cylinder case
study.
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