Geomorphometry for Geosciences

Editors:
Jarosław Jasiewicz, Zbigniew Zwoliński, Helena Mitasova, Tomislav Hengl

g geomorphometry.org
This volume is a contribution to the 4th International Conference on Geomorphometry
Geomorphometry 2015: Conference and Workshops
Geomorphometry for natural hazards geomodelling
Poznań (Poland), June 22-26, 2015
Geomorphometry for Geosciences

Editors:
Jarosław Jasiewicz, Zbigniew Zwoliński, Helena Mitasova, Tomislav Hengl

Poznań 2015
© 2015 by Authors & Institute of Geoecology and Geoinformation, Adam Mickiewicz University in Poznań

Editors:
Jarosław Jasiewicz, Institute of Geoecology and Geoinformation, Adam Mickiewicz University in Poznań, Poland
Zbigniew Zwoliński, Institute of Geoecology and Geoinformation, Adam Mickiewicz University in Poznań, Poland
Helena Mitasova, Department of Marine Earth and Atmospheric Sciences, North Carolina State University, NC, USA
Tomislav Hengl, International Soil Reference and Information Centre, Wageningen University and Research, the Netherlands


This publication is supported by: Ministry of Science and Higher Education of Poland, Adam Mickiewicz University in Poznań, Esri Polska

Book folding: Jarosław Jasiewicz, Jakub Nowosad


Publisher: Bogucki Wydawnictwo Naukowe, Poznań 2015

Printed in Poland from camera-ready materials provided by the Authors
Table of Contents

Manfred Zink, Alberto Moreira
TanDEM-X: A Challenging Radar Mission for Generating a New Earth's Topography 1

Christopher Wecklich, Carolina Gonzalez, Benjamin Bräutigam
Height Accuracy for the First Part of the Global TanDEM-X DEM Data 5

Carlos Grohmann
‘Radiography of the Amazon’ DSM/DTM data: comparative analysis with SRTM, ASTER GDEM 9

Piotr Woźniak
High resolution elevation data in Poland 13

Shangmin Zhao, Li Wang and Wenjiao Wu
Vertical error distribution of ASTER GDEM V2 data based on ICESat/GLA14 data: taking Shanxi Plateau of China as an example 15

Zbigniew Zwoliński and Joanna Gudowicz
Geomorphometric analysis of morphoclimatic zones on the Earth 19

Vincent Lecours, Vanessa Lucieer, Margaret Dolan and Aaron Micallef
An Ocean of Possibilities: Applications and Challenges of Marine Geomorphometry 23

Jozef Minar, Jozef Minar and Ian S. Evans
Towards exactness in geomorphometry 27

Karin Ebert, Jerker Jaršjö and Karin Ekstedt
Effects of future sea level rise – the example of the island of Gotland, Sweden 31

Liyang Xiong and Guoan Tang
Pre-Quaternary paleotopography reconstruction in the Ordos platform and its integration in the loess landform evolution modeling 35

Peter Guth
Geomorphometry of Normal Faults: Abyssal Hills and Continental Rifts 39

Marco Bacenetti, Luca Ghiraldi, Marco Giardino and Luigi Perotti
Analysis of morphometric index to evaluate the tectonic activity: case study from Germanasca valley (NW Italy) 43

Peter Bandura, Jozef Minár, Tatiana Harciníková and Lucian Drăguţ
Towards delineation of the morphostructural division of the Western Carpathians using object-based image analysis 47

Yuichi S. Hayakawa, Hidetsugu Yoshida, Lucian Dragut and Takashi Oguchi
Comparative analysis of manual and automatic extractions of hummock landforms in Mt. Gassan, northwestern Japan 51

Domenico Guida, Antonello Cestari, Alba Cuomo, Francesco Dramis, Vincenzo Palmieri and Vincenzo Siervo
The Salerno University Geomorphological Informative Mapping System: the Licosa polygenetic case study (Cilento European geopark, southern Italy) 53

Piotr Wężyk
Making the invisible visible – the DTM modelling in complex environments 57

Waldemar Kociuba
Geometrical parameters of TLS-based DEM acquisition for a small Arctic catchment (Svalbard SW) 61
Marjan Temovski and Ivica Milevski
DEM based geomorphometric analyses of karst surface in the Republic of Macedonia 65

Michal Gallay, Ján Kaňuk, Jaroslav Hofierka, Zdenko Hochmuth and John Meneely
Mapping and geomorphometric analysis of 3-D cave surfaces: a case study of the Domica Cave, Slovakia 69

Marek Kasprzak, Artur Sobczyk, Szymon Kostka and Anna Haczek
Surface geophysical surveys and LiDAR DTM analysis combined with underground cave mapping – an efficient tool for karst system exploration: Jaskinia Niedźwiedzia case study (Sudetes, SW Poland) 75

Ian Evans and Nicholas J. Cox
Size and shape of glacial cirques 79

Andrea Mandarino, Francesca Ferraris and Marco Firpo
Understanding landscape evolution by using DEM analysis, low order channels gradient and Asymmetry Factor: the case study of the upper Scrivia river basin (Northern Apennines, Italy) 83

Fayuan Li and Mingwei Zhao
Slope landscape change in a simulated watershed 87

Ivica Milevski and Anita Milevska
Improvement of slope angle models derived from medium to fine-scale DEM's Key study: Skopje area 91

Markus Metz
Searching for water: hydrological modelling concepts in GRASS GIS 95

Tomasz Niedzielski, Bartlomiej Mizinski, Dapeng Yu
Hydrological forecasting in real time: an experimental integrated approach 97

Jaroslaw Jasiewicz, Jolanta Czerniawska
Conditional hydrological simulations as a tool for analysis of denudational transformation of post-glacial plains 103

Laura Coco, Viviana Cestrone and Marcello Buccolini
Geomorphometry for studying the evolution of small basins: an example in the Italian Adriatic foredeep 107

Libor Burian, Andrey Mitusov and Jean Poesen
Relationships of attributes of gullies with morphometric variables 111

Adam Łajczak, Barbara Czajka and Ryszard Kaczka
Reinterpretation of morphometry of headwater areas using LiDAR data in homoclinal flysch mountain ridge modelled by landslides. Case study of the Babia Góra Mt., the Western Carpathians 115

Ovidiu Csillik, Ian S. Evans and Lucian Drăguț
Automated transformation of slope and surface curvatures to avoid long tails in frequency distributions 119

Xiaoli Huang, Kai Liu and Liyang Xiong
The Influence of DEM Resolution on the Extraction of Terrain Texture 123

Bartlomiej Szympula
Relief Index (RI) as a simple tool for geomorphometry 127

Shuanglin Liu, Fayuan Li, Ruqiao Jiang, Ruixue Chang and Wei Liu
A Method of Automatic Topographic Recognition Based on Slope Spectrum 129

Vincent Lecours, Alvin Simms, Rodolphe Devillers, Vanessa Lucieer and Evan Edinger
Finding the Best Combinations of Terrain Attributes and GIS software for Meaningful Terrain Analysis 133

Scott Peckham
Longitudinal Elevation Profiles of Rivers: Curve Fitting with Functions Predicted by Theory 137

Tomasz F. Stepinski, Jaroslaw Jasiewicz, Pawel Netzel and Jacek Nieterowicz
Doing Geomorphometry with Pattern Analysis 141

Przemyslaw Stpiczyński, Dominik Szalkowski, Leszek Gawrysiak and Łukasz Chabudziński
Hybrid implementation of evaluation of primary topographic parameters using GPU-accelerated clusters 145

Sergio Camiz and Maurizio Poscolieri
Geomorpho: a program for the classification of terrain units 149

Jaroslaw Jasiewicz, Alfred Stach, Jakub Nowosad
Terrain misclassification problem – analysis using pattern simulation approach 153
Anita Bernatek
Visualizing morphometric changes in a piping system using DEM and GIS analysis: the Bieszczady Mts., Poland

Charles Jackson
Caution: dust storms may do exist (and so do mountains): Modeling dust source suitability within an object-oriented geocology

Viktor Kaufmann and Andreas Kellerer-Pirklbauer
Regional quantification of rock glacier movement in Central Austria using authoritative data sources

Rafal Wawer and Artur Lopatka
Thermal satellite scenes in single event modelling of wind erosion

Vaclav Petras, Helena Mitasova and Anna Petrasova
Mapping gradient fields of landform migration

Marco Giardino, Luigi Perotti, Walter Alberto, Sara Ratto
Multidimensional approach to natural instabilities in mountain areas: how geomorphometry can improve both hazard modelling and risk perception

Janusz Wasowski, Fabio Bovenga, Raffaele Nutricato, Davide Oscar Nitti and Maria Teresa Chiaradia
High resolution satellite SAR multi temporal interferometry for regional scale detection of landslide and subsidence hazards

François Clapuyt, Veerle Vanacker, Kristof Van Oost and Fritz Schlunegger
Very-high resolution monitoring of movement of surface material within a landslide

Xavier Bodin, Dario Trombotto and Alvaro Soruco
Evaluation of a terrestrial photogrammetry method for the study of high mountain dynamics. Quebrada del Medio rock glacier, Mendoza, Argentina

Mario Kummert and Reynald Delaloye
Quantifying sediment transfer between the front of an active alpine rock glacier and a torrential gully

Rafal Kroczak and Tomasz Bryndal
An attempt to assess the influence of road network on flash flood wave parameters. The case study of the Carpathian Foothills

Mihai Niculita
Automatic extraction of landslide flow direction using geometric processing and DEMs

Daniele Strigaro, Massimiliano Moretti, Matteo Mattavelli, Mattia De Amicis, Valter Maggi and Antonello Provenzale
Development of GIS methods to assess glaciers response to climatic fluctuations: a Minimal Model approach

Cheng-Zhi Qin, Xue-Wei Wu, Yanjun Lu, Jing-Chao Jiang and A-Xing Zhu
Case-based formalization of knowledge on digital terrain analysis

Magdy Torab and Nora Dalal
Natural hazards mapping of mega waves on the NW coast of Egypt

Piotr Kłapyta and Natalia Kolecka
Combining laser scanning with field mapping and Schmidt-hammer relative age dating - examples from the Babia Góra range (Westen Carpathians, Poland)

Aleksander Adamczyk, Marcin Sobiech, Agata Urbańska and Wojciech Wysota
Geomorphometric analysis of glacial curvilineations (GCL) in Dobrzyń Lakeland, Central Poland

Lucas Ruiz and Xavier Bodin
Analysis and improvement of surface representativeness of high resolution Pléiades DEMs: Examples from glaciers and rock glaciers in two areas of the Andes

Ruqiao Jiang and Guoan Tang
A Method of Depression Filling with Consideration of Local Micro-relief Features

Marcin Brach and Jarosław Chormański
Comparison of digital elevation models of riparian wetland generated from airborne laser scanning of different accuracy
Edina Józsa
Extracting possible terrace surfaces from digital elevation models – methodological issues and case study from Hungary

Ângelo Moura Araújo, Paulo Pereira, Renato Henriques and Diamantino Pereira
Water resources assessment using GIS procedures: application in Ceará State (Brazil)

Adriana Sărășan and Lucian Drăguț
Assessing contextual information from SRTM data as a basis for classifying landform types. Case study: dune fields

Maciej Hajdukiewicz
The potential accuracy of the survey of landform changes using archival orthophotos: case study of the Białka River valley

Milena Różycka, Aleksandra Michniewicz, Piotr Migoń and Marek Kasprzak
Identification and morphometric properties of landslides in the Bystrzyckie Mountains (Sudetes, SW Poland) based on data derived from airborne LiDAR

Małgorzata Mazurek
Geomorphometric attributes of channel heads initiated by seepage erosion in a postglacial zone (NW Poland)

Virginia Ruiz-Villanueva, Markus Stoffel and Hanna Hajdukiewicz
Understanding large wood deposition during floods: a modelling approach

Cezary Kaźmierowski, Jakub Ceglarek, Jerzy Cierniewski, Jarosław Jasiewicz, Sławomir Królewicz and Michał Wyczalek
Soil surface roughness quantification using DEM obtained from UAV photogrammetry

Claudia Scopesi, Ivano Rellini, Marco Firpo, Michael Maerker, Elmar Schmaltz and Silvia Olivari
Assessment of an extreme flood event using rainfall-runoff simulation based on terrain analysis in a small Mediterranean catchment (Vernazza, Cinque Terre National Park)

Zbigniew Zwoliński and Ewa Sznigir
Spatial distribution of hypsometric curves within the Parsęta River drainage basin (Poland) as a geoindicator of geomorphological hazards

Zbigniew Zwoliński and Estera Stefańska
Relevance of moving window size in landform classification by TPI
Water resources assessment using GIS procedures: application in Ceará State (Brazil)

Ángelo Moura Araújo, Paulo Pereira, Renato Henriques, Diamantino Pereira

Institute of Earth Sciences
Pole of the University of Minho
Braga, Portugal
arangeo@gmail.com

Abstract—A methodological approach and preliminary results on water resources assessment in large areas are described with the case study of Ceará State (Brazil). The methodology includes analysis and interpolation of climatic and hydrological data, Digital Elevation Model (DEM) production and interpretation, and GIS procedures. The present results include the distribution of historical rainfall and fluvial discharges and the definition of a 7-levels river and watershed hierarchy in the Ceará State. The highest rainfall and discharge average values are located in the northeastern sector of the state confirming the important role of climatic features in hydrological diversity. Water resources management must then consider technical tools for water resources assessment, in the line of other methods for quantitative assessment of natural features either biotic or abiotic.

I. INTRODUCTION

Water must be understood as an environmental and social asset, an economical resource and a matter of extreme importance for all societies. Therefore water management must be handled as a technical subject but also as a political topic once water needs can lead to conflicts and ambitions by different factions evolving priority decisions [1]. Water resources quantitative assessment [2] [3] [4] has a special importance in the scope of the hydrological diversity approach [5]. In spite of being a rather new notion, geodiversity is defined [6] as the natural range (diversity) of geological (rocks, minerals, fossils), geomorphological (landforms, topography, physical processes), soil and hydrological features. It includes their assemblages, structures, systems and contributions to landscape. Water features are then elements of geodiversity being a very important agent in geological and biological processes and evolution. To be accepted as a useful tool, that diversity must be assessed according to objective methodologies in order to be used for nature conservation and land-use planning, as biodiversity currently is [7]. Common geological, geomorphological, soil or hydrographical maps are important in qualitative, but not in quantitative diversity assessment. In addition, as technical documents, they are difficult to read for non-specialists, thus limiting their use in routine planning. In that scope, the first results on the assessment of water resources diversity in the Ceará State (Brazil) are presented. This work followed a methodology based on hydro and climatological data, spatial information and GIS procedures analysis.

II. METHODS

Relevant outcomes [8] [9] [10] [11] on water resources quantification using GIS based procedures were considered in the development of the method for the assessment of the hydrological diversity in the Ceará State. Ceará is one of the 27 states of Brazil, located in the northeastern part of the country, on the Atlantic coast, covering an area of 148,016 km². With about 8.5 million inhabitants it is the eighth-largest Brazilian State by population. Ceará lies partly upon the northeast slope of the Brazilian Highlands, and partly upon the sandy coastal plain. The rivers of the state are small and, with one or two exceptions, become completely dry in the dry season. The largest is the Jaguaribe River, which flows entirely across the state in a northeast direction. Several data was acquired and a database was created for eventual analysis and processing. The database includes: DEM (Digital Elevation Model) of Ceará State based on the SRTM (Shuttle Radar Topography Mission) 90 metres per pixel resolution and enhanced to 30 metres resolution [12]; rainfall and discharge data (34 years series) in selected locations [13]; spatial information in vector format [14]. Methodological procedures included: statistical analysis of a 30 years sequence rainfall and discharge data and its distribution all over the territory; DEM treatment for automatic fluvial channels, networks and watersheds generation; hierarchy order of fluvial channels according to Strahler model [15]. Microsoft Excel© software was used to perform statistical operations. ESRI ArcGIS© 10.1 version, ESRI Arc Hydro© extension and Quantum GIS© 2.6.1 version software were used in DEM production, water resources analysis and GIS procedures.

A. Fluvial network, channel orders and watershed delimitation

The DEM is a computational representation of the altitude distribution in Ceará State, using a pixel grid with 30 metres of...
resolution. From it a set of information can be analysed and
different maps can be produced: hypsometry (Fig. 1); slopes;
aspect; morphological surfaces; hydrography; runoff flow
directions. Besides, it is an important tool in erosional patterns,
roughness textures and geomorphological analysis, allowing
tridimensional visualization of different features [16].

In order to establish the fluvial network definition, the
channel order classification and the watersheds delimitation the
following tasks were performed using the ESRI Arc Hydro©
tool:

1. Assemblage of the mosaic from the original DEM files;
2. Conversions in datum projection (from WGS 84 to
SIRGAS 2000 - 24S Zone);
3. Cropping of the DEM mosaic, accordingly to the limits
of the Ceará State area.
4. Specific in-software procedures to fluvial network and
basins delimitation → Fill Sinks → Flow Direction → Flow
Accumulation → Stream Definition → Stream Segmentation →
Catchment Grid Delineation → Catchment Polygon Processing →
Drainage Line Processing → Adjoin Catchment Processing →
Drainage Point Processing → Batch Point Generation →
Watershed Delineation → Export shapefile

B. Rainfall and discharge analysis

The climatological and hydrological features regarding the
proposed method were handled by the following procedures:

1. Research and acquisition of official rainfall data from 1974
to 2014;
2. Average values for more than 700 precipitation stations,
from automatic calculation using Microsoft Excel© software.
3. Exclusion of stations with absent or irregular values and
inclusion of stations that have at least 85% of complete rainfall
information for the 1974-2014 period;
4. Calculation of discharge historical average values for 69
stations, from the rainfall average values (34 years period and
year 2014) and the discharge values of the year 2014;
5. Data exportation to ESRI ArcGIS© and Quantum GIS©
software;
6. Interpolation of rainfall (Kriging method) and discharge
(Inverse Distance Weighting) values.

III. RESULTS

The processing of values according to the described
methodology provided maps with the distribution of historical
rainfall (Fig. 2) and fluvial discharges (Fig. 3) in Ceará State.

Seven hierarchy orders (levels) were credited to rivers in
result of the DEM analysis. Then, watersheds were classified
according to the river hierarchy, and a polygon was produced for
each river segment considered in the analysis [17]. Level 1 and
level 2 watersheds were excluded to avoid a large number of
polygons thus level 3 rivers express the 327 watersheds defined
in Ceará State. These are included in 57 level 4, 13 level 5, 3
level 6 and 1 level 7 watersheds.

IV. DISCUSSION

The annual rainfall average values (Fig. 2) in Ceará State
range from 284 e 1400 mm, constituting a large disparity (1116
mm) between some regions. The northeastern sector of the state
has the highest rainfall values mostly due to the Atlantic
influence and the variety of air fronts in different times of the
year. The lowest values in the central-western sector (less than
300 mm per year) are related with the local inland atmospheric
circulation [18]. These climatic features have an important role in
a water resources overview. The river discharge values (Fig. 3)
are even more wide-ranging, between 7 m3/s and 12069 m3/s
because different types of river were included in the analysis and
also regarding the station location, if more upwards or
downwards the watershed.
However, considering rivers and watersheds of the same level, the highest discharge values are present in the northeastern sector of the state, combining the influence of the highest rainfall and the specific fluvial dynamics in that region.

These are some preliminary results aiming to quantify the water resources and their distribution in a large region with important within climatic differences. They constitute a basis for the knowledge of regional issues concerning water needs, flood and droughts events and even engineering solutions for water resources management. Although at this point we look forward to discuss and define the best way to represent water resources diversity. The improvement of these preliminary results in a second stage of quantification is expected, using data interpolation techniques and eventually producing a hydrological diversity index and the map of the water resources diversity of the Ceará State.

ACKNOWLEDGMENT

The authors express their gratitude to the Brazilian research fostering institution ‘Cordenação de Aperfeiçoamento de Pessoal de Nível Superior’ (CAPES) for awarding the Ciência Sem Fronteiras (CSC) PhD scholarship that enabled this work and for the financial support given by the Fundação para a Ciência e a Tecnologia (FCT) to the Institute of Earth Sciences (Pole of the University of Minho), which partially supported this research.

REFERENCES

water transfer project on water resource area in a changing environment”. Hydrology and Earth System Sciences, 16: 2685-2702.


