
Multiplicity Lists for Symmetric Matrices
whose Graphs Have Few Missing Edges

Charles R. Johnson ∗ Yulin Zhang†

April 7, 2017

Abstract

We characterize the possible lists of multiplicities occurring among
the eigenvalues of real symmetric (or Hermitian) matrices whose graph
is one of Kn, Kn less an edge, or both possibilities for Kn less two
edges. The lists are quite different from those for trees. Some con-
struction techniques are developed here and additional results with
more missing edges are given, including the case of several indepen-
dent edges.
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1 Introduction

Let G be an (undirected) simple graph on n vertices and S(G) be the col-
lection of all n-by-n real symmetric matrices, the graph of whose (nonzero)
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off-diagonal entries is G. No restriction is placed by G upon the diagonal
entries of A ∈ S(G). We are interested in all possible lists of multiplicities
for the eigenvalues of matrices in S(G). Let L(G) be the set of all such lists.
Since the total of the multiplicities is n, view these as partitions of n.

It is natural to consider connected graphs G, and in the minimally con-
nected case of trees, the possible lists L(G) have been heavily studied [7,
8, 9, 10, 11, 12] etc and have much special structure. However, a complete
characterization is known only for some classes of trees.

We are interested here in the case in which G has few missing adges
(the other extreme from trees), i.e., G is the complete graph Kn, or Kn

with a few edges deleted. Of course, the maximum possible multiplicity,
M(G), occurring in L(G) is an important constraint on these lists. Since,
for symmetric matrices, algebraic multiplicity equals geometric multiplicity,
M(G) = n − mr(G), in which mr(G) is the smallest rank occuring among
matrices in S(G).

In general, mr(G) is difficult to know, but, fortunately, when there are
just a few edges missing from Kn, it is not hard to determine.

In the case of trees, there is a nice characterization of mr(G) [7], but there
are many additional constraints on L(G), such as at least two eigenvalues of
multiplicity 1.

The case of high edge-density graphs seems to be in strong contrast to
trees in several ways. Besides the mr(G) constraint, there are often, but not
always, no other constraints, and subject to the possible multiplicities, any
eigenvalues are often possible. i.e., the inverse eigenvalue problem (IEP) is
equivalent to the multiplicity list problem. It is an interesting question for
which graphs 1) L(G) is all lists allowed by mr(G) and 2) the IEP for G is
equivalent to the L(G) problem for G. When this occurs for the graphs we
study, we make note of it.

2 Useful Tools

We identify the edges missing from Kn by the graph that they, together with
their vertices, form. So, for a graph H on no more than n vertices, by Kn−H
we mean that the edges (only) of H are deleted from Kn. Let Sk denote the
star on k vertices, and Pk the path on k vertices. We give certain graphs
special names based on what is missing: G0 = Kn, G1 = Kn missing one
edge, G2 = Kn − S3, G1,1 = Kn less two independent edges. More generally,
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Gk = Kn − Sk+1 and G1,1,...,1 = Kn less k independent edges if there are k
1′s. The matrices in S(Gk) have all their 0 entries in one row and column,
and the matrices in S(G1,1,...,1) look like

∗ 0
0 ∗

∗ 0 *
0 ∗

∗ 0
0 ∗

. . .

* ∗
∗


.

We note that ∗′s appearing off the diagonal in such a display must be nonzero
(but otherwise are free), while ∗′s appearing on the diagonal may be 0 or
nonzero.

It is easy to check that

mr(G0) = 1
mr(G1) = 2
mr(Gk) = 2, for k < n− 1.

mr(G1,1,..,1) = 2

Therefore to attain mr = 3, at least 3 edges must be removed from the
graph, and this occurs for K4 − P4 = P4 as mr(P4) = 3.

Methodologically, we rely on the use of orthogonal similarities, beginning
with a diagonal matrix. Specifically, we use 2-by-2 orthogonal similarities
working on two rows and the same columns at a time, so that the actual
similarity matrix looks like
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

1

1 0
∗ 0 · · · 0 ∗
0 1 0
...

. . .
...

0 1 0
∗ 0 · · · 0 ∗

0 1
1


.

These are often called Givens transformations and our method might
be called “reverse Givens” as we seek to make entries of the object matrix
nonzero, rather than zero. And we call a matrix without zero entries “full
matrix”. The two simple observations we use are embodied in the following
two lemmas and .

Lemma 2.1 The matrix

[
a 0
0 b

]
∈M2(R) is transformed to a full symmet-

ric matrix

[
a′ c
c b′

]
with a′ and b′ any numbers properly between a and b,

subject to a′ + b′ = a+ b, by an orthogonal similarity via U if and only if U
is full and a 6= b. If a = b, the similarity returns the same diagonal matrix.

Lemma 2.2 If U is a full 2-by-2 orthogonal matrix and x = αe1 or βe2,
α, β 6= 0, then Ux is a full 2-vector. If x1, ..., xk are full 2-vectors, then U
may be chosen so that Ux1, ..., Uxk are also full.

We will often denote the 2-by-2 orthogonal similarity that we use by
the rows and columns on which it operates. The transform ij would alter
only rows and columns i and j. Usually a generic, full 2-by-2 similarity is
sufficient. According to the lemma, if the diagonal entries are not equal and
the ij entry was 0, the result will be that the ij entry becomes nonzero and
that the diagonal entries are pushed together in a manner we may choose. In
some cases, we choose a particular similarity so that one new diagonal entry
is a particular number between a and b. Other entries in rows and columns
i or j may be made nonzero. If the diagonal entries are the same, we may
still use the ij transform, only to alter some off-diagonal entries other than
i, j, which will be left 0.
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We illustrate how our similarities may be used with an important case.

Theorem 2.3 A diagonal matrix D ∈ Mn(R) is orthogonally similar to a
symmetric matrix with all off-diagonal entries nonzero, unless D is a multiple
of I.

Proof. Necessity is clear. For sufficiency, we may assume wlog that the
last two diagonal entries of D are distinct. Thus, this 2-by-2 diagonal princi-
pal submatrix may be replaced by a full 2-by-2 symmetric matrix whose di-
agonal entries differ from the other original diagonal entries, using an n−1, n
transform.

Now, an n − 2, n − 1 transform leaves the lower right 3-by-3 principal
submatrix full, as well as its diagonal entries different from the remaining
original diagonal entries. Continuing in this manner, transforming rows and
columns n− 3 and n− 2 next and so on, results in a full matrix. 2

3 Main Results

We give our main results for graphs with few missing edges. The first deals
with the complete graph Kn on n ≥ 2 vertices, which is covered by theorem
2.3 of the last section. This fact has been known for some time, having been
noticed by the author Johnson and mentioned in talks by him on the subject
for many years. The same has also been noticed much later in [2]. Here we
consider it as a starting point.

Theorem 3.1 L(Kn) consists of all multiplicity lists with at least two dis-
tinct eigenvalues, or, equivalently, all lists in which every eigenvalue has mul-
tiplicity less than n. Moreover, subject to this condition, the eigenvalues are
arbitrary; i.e, the inverse eigenvalue problem is equivalent to the multiplicity
list problem for Kn.

From the above theorem, we know that for the complete graph any multi-
plicity list with at least two distinct eigenvalues may occur. One may suspect
that graphs that are complete, except for missing a few edges, would also host
many multiplicity lists. This is so, and we will discuss a few natural cases
here, e.g., the complete graph missing just one or two edges. The next case,
the complete graph, less one edge was left as an open question in [2].
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Since mr(G1) = mr(G1,1) = 2, the candidate multiplicity lists are the
same, and, as will be seen, all of the lists, subject to mr = 2, do occur. The
case of G1 could be deduced from G1,1 by using one transform, indexed by
the vertices of one of the missing independent edges, unless the two diagonal
entries are equal for each of the missing edges. This can be avoided, but it
is perhaps simplest to do the cases of G1 and G1,1, separately.

Theorem 3.2 Suppose n ≥ 3 and let G1 = Kn−an edge, the graph on
n vertices with one edge missing from the complete graph. Then, L(G1)
consists of all multiplicity lists in which no eigenvalue has multiplicity more
than n−2. Moreover, subject to this condition, the eigenvalues are arbitrary;
i.e., the inverse eigenvalue problem for G1 is equivalent to the multiplicity
list problem for G1.

Proof. Since rank A ≥ 2 for every A ∈ S(G1), the stated condition is
clearly necessary.

For sufficiency of the condition, we consider two cases. (1) First, suppose
that there are at least 3 distinct eigenvalues (which implies the condition)
among the list a: a1, ..., an of real numbers and suppose that a1 is neither
the largest nor the smallest. Array them as a diagonal matrix with a1 first,
so that a2, ..., an include, at least, 2 distinct eigenvalues. Then, by theorem
2.3, the lower right (n − 1)-by-(n − 1) principal submatrix is orthogonally
similar to a symmetric matrix A2 whose graph is Kn−1. Furthermore, the
1,1 entry of A2 may be taken to be a1, as any value in the convex hull of the
eigenvalues may appear on the diagonal of a orthogonally similarity [5]. So
D = diag(a1, a2, ..., an) is unitarily similar to an Hermitian matrix A1 of the
form

A1 =


a1 0 . . . 0
0
... A2

0

 .
in which a1 is also the 1, 1 entry of A2 and G(A2) = Kn−1. Now, apply a 1,2
transform, which will yield a matrix A of the form
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A =


a1 0 ∗ . . . ∗
0 a1 ∗ . . . ∗
∗ ∗
...

... *
∗ ∗


whose graph is G1.

(2) In the remaining cases, there are just two distinct eigenvalues: a1 with
multiplicity k and a2 with multiplicity l, satisfying 2 ≤ k ≤ l ≤ n − 2 and
k + l = n. When n = 3, it is impossible. So, n ≥ 4. We construct a matrix
A ∈ S(G1) with eigenvalues a1 = 1 and a2 = 0 and then the eigenvalues
may be made arbitrary, distinct real numbers with a linear transformation
applied to A. Such a linear transformation does not change the graph. Let
V be a k-by-(n − 2) full matrix with orthonormal rows. Let 0 < s, t < 1

and scale the first 2 rows of V by
√

1− s and
√

1− t, respectively, to get Ṽ
and note that V, s and t could be chosen so that no two columns of Ṽ are
orthogonal. We assume this. Now,

W =



√
s 0

0
√
t

0 0 Ṽ
...

...
0 0


is k-by-n and has orthonormal rows. Then, W TW ∈ S(G1) and its spectrum
consists of k 1′s and l 0′s, which completes the proof. 2

We note that the second case of the proof importantly uses the theory of
DM matrices described in [4]. The proof of the first case cannot be adapted
to the second case.

Now, it turns out that if several independent edges are missing from Kn,
the possible multiplicity lists are similar.

Theorem 3.3 Let n ≥ 2k, and let G1,1,...,1 (k subscripted 1’s) be Kn − k
independent edges, the graph on n vertices with k non-adjacent edges missing
from the complete graph. Then, L(G1,1,...,1) consists of all multiplicity lists,
in which no eigenvalue has multiplicity more than n − 2. Moreover, subject
to this condition, the eigenvalues are arbitrary; i.e., the inverse eigenvalue
problem is equivalent to the multiplicity list problem for G1,1,...,1.
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Proof. It suffices to prove the claim for two arbitrary different eigenvalues
a, a, ..., a and b, b. Of course, if some of the eigenvalues marked “a” are
actually different, or some marked “b” are different (as long as no a’s coincide
with b’s), the same strategy works and the nonzeros are more obvious.

For convenience, we call the entries aij, with j = i+ k, in a matrix A the
k-diagonal. So the main diagonal has k = 0, the superdiagonal has k = 1,
the diagonal above the superdiagonal has k = 2, etc.

For the matrix aIn−2 ⊕ bI2, we begin to create nonzeros from the upper
right corner, then move southwest. First, we only transform the even labeled
diagonals. For example, when n is even, perform 1,n-1 and 2,n transforms
to make the (n − 2)th-diagonal nonzero, and then 1,n-3; 2,n-2; 3,n-1 and
4,n transforms make the (n − 4)th-diagonal nonzero, and go on with this
procedure, until k = 2, to make the matrix looks like a chess board,

a1 0 ∗ . . . ∗ 0 ∗ 0 ∗ 0

0 a2 0 ∗ . . . ∗ 0 ∗ 0 ∗
∗ 0 a3 0 ∗ . . . ∗ 0 ∗ 0
. . . ∗ 0 a4 0

. . . . . . ∗ 0 ∗
∗ . . . ∗ 0

. . . . . . . . . . . . ∗ 0

0 ∗ . . . . . . . . . . . . . . . ∗ . . . ∗
∗ 0 ∗ . . . . . . . . . . . . 0 ∗ . . .

0 ∗ 0 ∗ . . . ∗ 0
. . . 0 ∗

∗ 0 ∗ 0 ∗ . . . ∗ 0 an−1 0

0 ∗ 0 ∗ 0 ∗ . . . ∗ 0 an



.

While we perform this process, we must keep in mind that our objective
is to make just one zero in certain rows and columns. For example, if we
make a1 = a2, by lemma 2.1, then a 1,2 transform will make the first and
second rows and columns nonzero except the (1,2) and (2,1) entries. If we
make a3 = a4, then a 3,4 transform will make the third and fourth rows and
columns nonzero except the (3,4) and (4,3) entries, etc. At the end, we get
a matrix of the form
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

∗ 0 ∗ · · · ∗
0 ∗ ∗ ∗ · · · ∗
∗ ∗ ∗ 0 ∗ · · · ∗
∗ ∗ 0 ∗ ∗ . . .

∗ ∗ ∗ ∗ 0
... 0 ∗ . . .

...
. . . . . .

...
. . . . . .

... ∗ ∗
∗ ∗ ∗



.

When n is odd, begin with a 1,n transform, which makes the 1,n and n,1
entries nonzero. Following this with a series of transforms, as in the even
case, will give the desired pattern. 2

We illustrate the idea with a 6-by-6 example. WLOG, let the eigenvalues
of A be 1, 1, 1, 1, 0, 0 and suppose we want to end up with 3 independent zeros.

A =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0


1,5 transform

=⇒


a 0 0 0 ∗ 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
∗ 0 0 0 1− a 0
0 0 0 0 0 0


where a ∈ (0,1)

then, 2,6 transform
=⇒


a 0 0 0 ∗ 0
0 a 0 0 0 ∗
0 0 1 0 0 0
0 0 0 1 0 0
∗ 0 0 0 1− a 0
0 ∗ 0 0 0 1− a


1,3 transform

=⇒


a′ 0 ∗ 0 ∗ 0
0 a 0 0 0 ∗
∗ 0 1 + a− a′ 0 ∗ 0
0 0 0 1 0 0
∗ 0 ∗ 0 1− a 0
0 ∗ 0 0 0 1− a


where a′ ∈ (a,1)
2,4 transform

=⇒


a′ 0 ∗ 0 ∗ 0
0 a′ 0 ∗ 0 ∗
∗ 0 1 + a− a′ 0 ∗ 0
0 ∗ 0 1 + a− a′ 0 ∗
∗ 0 ∗ 0 1− a 0
0 ∗ 0 ∗ 0 1− a

 .
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Then perform 1,2 and 3,4 transforms, to get the desired pattern
∗ 0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 ∗ ∗
∗ ∗ 0 ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0 ∗

 .

If the matrix were larger, we would also need a 5,6 transform.

Corollary 3.4 Let n ≥ 4 and G1,1 = Kn−two independent edges, the graph
on n vertices with two non adjacent edges missing from the complete graph.
Then, L(G1,1) consists of all multiplicity lists in which no eigenvalue has
multiplicity more than n− 2. Moreover, subject to this condition, the eigen-
values are arbitrary; i.e., the inverse eigenvalue problem is equivalent to the
multiplicity list problem for G1,1.

Interestingly, the case of G2 is rather different from G1 or G1,1, though
the minimum rank is the same.

Theorem 3.5 Let G2 = Kn − S3, the graph on n vertices with two adjacent
edges missing from Kn. Then, L(G2) consists of all multiplicity lists in which
no eigenvalue has multiplicity more than n− 2, except for the list 2, 2 when
n = 4. Moreover, subject to this condition, the eigenvalues are arbitrary; i.e.,
the inverse eigenvalue problem is equivalent to the multiplicity list problem
for G2 = Kn − S3.

Proof. The graph G2, for n = 4 does not permit the multiplicity list 2, 2.
The pattern for a matrix in S(G2) may be displayed as

∗ ∗ 0 0
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
Suppose the eigenvalues are a, a, b, b. Then rank(A− aI) = 2, which implies
rows 1 and 3 and rows 1 and 4 each form a linearly independent set, and that
rows 3 and 4 are a dependent set. The same is true for rank(A−bI) = 2. But
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rows 3 and 4 cannot be dependent in both (A− aI) and (A− bI). (Another
more general result can be found in [3]).

Now, consider the multiplicity list to be 2, 1, 1 (or 1, 1, 1, 1), with n = 4.
Begin with 

a
b
a

c

 .
Suppose that b ∈ (a, c). Perform a 3, 4 transform, transforming a to b

a
b

b ∗
∗ c′

 .
followed by a 2,3 and then a 1,2 transform to arrive at

a′ ∗ 0 ∗
∗ b′ 0 ∗
0 0 b ∗
∗ ∗ ∗ c′

 ,
which is permutation similar to a matrix in S(G2). The argument for 1, 1, 1, 1
is essentially the same. In fact, this pattern is realizable if and only if there
is at most one equality in the four eigenvalues, see Theorem 5.1, third bullet
in [1]. For n = 5, begin with

a1
a2

a3
b1

b2

 .
Here a1 = a2 = a3 and b1 = b2 is allowed, but each ai is distinct from each
bj.

Perform transforms 1,4; 3,4; 2,5; and then a 1,2 transform, to get
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ 0 0 ∗

 .

11



Again this is permutation similar to something in S(G2).
For n > 5, we may begin with

an−2
. . .

a4
a1

a2
a3

b1
b2


,

then process the lower right 5 × 5 as above to make the lower right 5-by-
5 principal submatrix full, and then perform n-5,n-4; n-6,n-5;...; and 1,2
transforms to get the desired pattern. We require that each transform make
its diagonal entries different from the remaining original diagonal entries. 2

Despite the fact that the list (2, 2) /∈ L(G2) when n = 4, it should be
noted that the list (3, 2) ∈ L(G1,2) when n = 5. It is also straightforward to
show that all other lists with largest multiplicity 3 also lie in L(G1,2), when
n > 4.

Theorem 3.6 Let n = 5 and G1,2 = K5 less an edge and an independent
S3, so that A ∈ S(G1,2) has a single 0 in one row and column and two 0′s in
a different row column pair. Then, L(G1,2) consists of all multiplicity lists
in which no eigenvalue has multiplicity more than 3. Moreover, the inverse
eigenvalue problem is equivalent to the multiplicity list problem for G1,2.

Proof. We list all the possible eigenvalues of this case:

1. a1 > a2 > a3 > a4 > a5;

2. a1 > a2 > a3 > a4 = a5;

3. a1 > a2 > a3 = a4 > a5;

4. a1 > a2 = a3 > a4 > a5;

5. a1 = a2 > a3 > a4 > a5;

6. a1 > a2 > a3 = a4 = a5;

7. a1 > a2 = a3 = a4 > a5;

8. a1 = a2 = a3 > a4 > a5;

9. a1 > a2 = a3 > a4 = a5;

10. a1 = a2 > a3 = a4 > a5;

11. a1 = a2 > a3 > a4 = a5;

12. a1 = a2 = a3 > a4 = a5;
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13. a1 = a2 > a3 = a4 = a5;

We pick up one case to show our strategy, for example, when the list is (3;
2) and the two different eigenvalues are arbitrary. Begin with the diagonal
matrix, 

a
a

b
b
a

 ,
and perform a 4,5 transform followed by a 2,5 transform to arrive at

a
a′′ ∗ ∗

b
∗ b′ ∗
∗ ∗ a′

 ,
Now, perform a special 1,3 transform to arrive at

a′′ ∗
a′′ ∗ ∗

∗ b′′

∗ b′ ∗
∗ ∗ a′

 ,
As the first and second diagonal entries are equal (which can be arranged by
between-ness), a 1,2 transform produces the desired result

a′′ ∗ ∗ ∗
a′′ ∗ ∗ ∗

∗ ∗ b′′

∗ ∗ b′ ∗
∗ ∗ ∗ a′

 ,
In fact, we need list the eigenvalues in such a way that the (4, 4) entry

is different from (5, 5) entry and the (2, 2) entry is in between the (1, 1) and
(3, 3) entries or after 2,5 transform the (2, 2) entry is in between the (1, 1)
and (3, 3) entries. All cases can be done by the above mentioned process
except case (7), which we do in a different way.
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Suppose the eigenvalues of case (7) are a > b = b = b > c. By lemma 4.1
in Appendix, we have a matrix like

b
b
∗ x
x b y

y ∗

 , xy 6= 0, b 6= ∗

the lower right 3-by-3 principal submatrix is with a, b and c as eigenvalues.
Perform a 2,3 transform, we get

b
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ b y

y ∗

 ,
then a 1,4 transform give the required form

b ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ b ∗

∗ ∗ ∗

 .
2

Remark 3.7 In spite of the fact that the list (3, 2) ∈ L(G1,2), for n = 5, we
do not know if the list (4, 2) ∈ L(G1,2), for n = 6.

4 Appendix

Lemma 4.1 Given α1 > α2 > α3, there is a matrix A =

a x 0
x b y
0 y c

 , xy 6=

0, such that α1, α2, α3 are eigenvalues of A with b ∈ (α1, α3) prescribed.

Proof. We need only consider the facts that
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trA : a+ b+ c = α1 + α2 + α3 (1)

ab− x2 + ac+ bc− y2 = α1α2 + α1α3 + α2α3 (2)

detA : abc− cx2 − ay2 = α1α2α3. (3)

Now
(3)− c× (2) gives

y2 =
(c− α1)(c− α2)(c− α3)

a− c
(3)− a× (2) gives

x2 =
−(a− α1)(a− α2)(a− α3)

a− c
Prescribe the b in (α1, α3) and choose a ∈ (α1, α2), c ∈ (α2, α3) (or c ∈

(α1, α2), a ∈ (α2, α3)) to make x2 and y2 positive. This way we get the desired
matrix.

2
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Theorem 5.1 Let G1,2 = Kn less an edge and an independent S3, so
that A ∈ S(G1,2) has a single 0 in one row and column and two 0′s in
a different row column pair. If there are at least 3 distinct eigenvalues
and at least another eigenvalue is in between the largest and smallest
eigenvalues, then, there is a A ∈ S(G1,2) with prescribed eigenvalues.

Proof. We begin with n = 6 to show our strategy. Suppose that the
eigenvalues are

a1 ≥ a2 ≥ a3 ≥ a4 ≥ a5 ≥ a6 (4)

We first consider that there are at most two equalities in (4).

Let A be

A =


u1

u2
u3

a x 0
x b y
0 y c

 , xy 6= 0,

where the lower right 3-by-3 principal submatrix is with a1, ai (the first
different from a1) and a6 as eigenvalues and a6 < b < a1, uis are the
rest eigenvalues. We choose a 6= u3 and u1 is in between u2 and b.

Now perform (3,4) transform, we get

A =


u1

u2
u′3 ∗ ∗ 0
∗ a′ x′ 0
∗ x′ b y
0 0 y c

 ,

as u1 is in between u2 and b, perform (2, 5) transform to transfer b to
u1, we get
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A =


u1

u′2 ∗ ∗ ∗ ∗
∗ u′3 ∗ ∗ 0
∗ ∗ a′ ∗ 0
∗ ∗ ∗ u1 ∗
∗ 0 0 ∗ c

 ,

At the end, a (1, 5) transform gives us the desired form.

When there are 3 equalities in (4). They are only five possible cases (the
other cases can not guarantee that besides the three distinct eigenvalues,
another is in between the largest and smallest eigenvalues):

1. a1 = a2 = a3 > a4 = a5 > a6;

2. a1 = a2 > a3 = a4 = a5 > a6;

3. a1 = a2 > a3 = a4 > a5 = a6;

4. a1 > a2 = a3 = a4 > a5 = a6;

5. a1 > a2 = a3 = a4 = a5 > a6.

Case (1) to case (4) can be done by using essentianlly the same procedure
as aboved. Here we consider only case (5). Let A be

A =


a2

a2
a2

a x 0
x b y
0 y c

 , xy 6= 0,

where the lower right 3-by-3 principal submatrix is with a1, a2 and a6
as eigenvalues, we put a1 > a > a2, a2 > b > a6. Now perform (3, 4)
transform, we get

A =


a2

a2
a2 + k ∗ ∗ 0
∗ a− k ∗ 0
∗ ∗ b y
0 0 y c

 .
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Then a (2, 3) transform

A =


a2

a2 + k
2

∗ ∗ ∗ 0
∗ a2 + k

2
∗ ∗ 0

∗ ∗ a− k ∗ 0
∗ ∗ ∗ b y
0 0 0 y c

 ,

Now the (1,1) entry is in between (2,2) and (5,5) entries, a (2, 5) trans-
form makes (1,1) entry and (2,2) entry the same,

A =


a2

a2 ∗ ∗ ∗ ∗
∗ a2 + k

2
∗ ∗ 0

∗ ∗ a− k ∗ 0
∗ ∗ ∗ ∗ ∗
∗ 0 0 ∗ c

 ,

then a (1, 2) transform gives us the desired form.

We n > 6, suppose the eigenvalues are a1 ≥ a2 · · · ≥ an (except a1 >
a2 = · · · = an−1 > an, which we perform separately), and let A be

A =



u1
. . .

un−4
un−3

a x 0
x b y
0 y c


, xy 6= 0,

where the lower right 3-by-3 principal submatrix is with a1, ai (first
differ from a1) and an as eigenvalues, u1 is in between un−4 and b. Then
a (n-3,n-2) transform followed by a (n-4,n-1) transform makes b = u1,

19



A =



u1
. . .

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ u1 ∗
∗ 0 0 ∗ c


,

then perform n-5,n-4; n-6,n-5;...; and 2,3 transforms to get

A =



u1
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ . . .

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ u1 ∗
∗ ∗ 0 0 ∗ c


,

We require that each transform make its diagonal entries different from
the remaining original diagonal entries. At the last, a (1, n-1) transform
gives us the desired form.

When a1 > a2 = · · · = an−1 > an. We begin with

A =



a2
. . .

a2
a2

a x 0
x b y
0 y c


, xy 6= 0,

where the lower right 3-by-3 principal submatrix is with a1, a2 and an
as eigenvalues, as in the case n = 6, we choose a1 > a > a2, a2 > b > c,
then use the same procedure to get
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A =



a2
. . .

a2
a2 + k

2
∗ ∗ ∗ 0

∗ a2 + k
2

∗ ∗ 0
∗ ∗ a− k ∗ 0
∗ ∗ ∗ b y
0 0 0 y c


,

Now perform (n-4, n-1) transform, we get

A =



a2
. . .

a2
a2 + k′ ∗ ∗ ∗ ∗
∗ a2 + k

2
∗ ∗ 0

∗ ∗ a− k ∗ 0
∗ ∗ ∗ b′ ∗
∗ 0 0 ∗ c


,

keep b′ < a2, then go ahead with n-5,n-4; n-6,n-5;...; and 2,3 transforms
to get

A =



a2
a2 + δ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ b ∗
∗ ∗ ∗ 0 0 ∗ c


,

since a2 is in between b and a2 + δ, perform (2, n-1) transform to make
(2,2) entry a2, i.e.,
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A =



a2
a2 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 ∗ ∗


.

Then a (1,2) transform gives us the desired form.

2
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