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Abstract: Novel thienyl and bithienyl amino acids with different substituents were obtained by a 

multicomponent Ugi reaction between a heterocyclic aldehyde, an amine, an acid and an isocyanide. 

Due to the presence of the sulphur heterocycle at the side chain, these unnatural amino acids are 

highly emissive and bear extra electron donating atoms so they were tested for their ability to act as 

fluorescent probes and chemosensors in the recognition of biomedically relevant ions in acetonitrile 

and acetonitrile/water solutions. The results obtained from spectrophotometric/spectrofluorimeric 

titrations in the presence of organic and inorganic anions, and alkaline, alkaline-earth and transition 

metal cations indicated that the bithienyl amino acid bearing a methoxy group is a selective 

colorimetric chemosensor for Cu2+, while the other (bi)thienyl amino acids act as fluorimetric 

chemosensors with high sensitivity towards Fe3+ and Cu2+ in a metal–ligand complex with 1:2 

stoichiometry. The photophysical and ion sensing properties of these amino acids confirm their 

potential as fluorescent probes suitable for incorporation into peptidic frameworks with 

chemosensory ability. 

 

 

Introduction 

Non-canonical amino acids of synthetic origin are useful for the preparation of functional peptides 

with tailored properties for varied applications such as increased fluorescence, conformational 

rigidity, and metal complexation ability, among other properties. Recent reports include the 

application of such amino acids in studies of molecular flexibility and protein folding, substrate 

binding activity of proteins, antigenicity or enzymatic activity, targeting peptides for molecular 

imaging, peptidomimetics biological activity and protein engineering (Kajihara et al. 2006; Hennig et 

al. 2007; Katritzki and Narindoshvili 2009; Lee et al. 2010; Wang et al 2012; Pless and Ahern 2013; 

Niu and Guo, 2013; Liu et al. 2015, Zhou et al 2016). 

Many biochemical processes rely on the coordinating ability that amino acids and peptides display 

towards metal ions because they possess electron donor atoms like nitrogen, oxygen and sulphur at 
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the main and side chains (Zheng et al. 2003; Shimazaki et al. 2009). Therefore, the insertion of 

suitable heterocycles at the side chain of natural amino acids, along increasing the number of binding 

sites, can provide increased UV absorption and fluorescence, which can be valuable for 

biochemistry, cellular biology and cellular imaging applications.  Fluorescent probes are 

indispensable tools for monitoring ions and biomolecules with high sensitivity in cells and tissues, as 

they present distinct advantages in fluorescence detection in terms of sensitivity, selectivity, response 

time and local observation, etc. There are various examples of fluorescent unnatural amino acids, 

displaying better photophysical properties than tryptophan, that have been inserted in peptide and 

protein frameworks in order to afford fluorescently labelled entities (Katritzki and Narindoshvili 

2009; Cheruku et al. 2015). 

Thiophene and its derivatives exhibit interesting optical properties that have led to their application 

as sensors and fluorescent reporters (Capobianco et al. 2012). Oligomers of thiophene present 

improved luminescent properties are more readily soluble in organic solvents, improves absorption 

efficiency and thermal stability of the resultant molecule without reducing fluorescence (Pina et al. 

2010).  

Selective recognition of anions is also a very dynamic topic due to their importance in medicinal and 

environmental areas. Especially, the development of colorimetric and fluorimetric chemosensors for 

anions has been widely investigated due to the relevance of several anions in biological processes 

(Veale and Gunnlaugsson 2010; Moragues et al. 2011; Santos-Figueroa et al. 2013). 

Bearing the above facts in mind, there is a practical interest on the design of unnatural amino acids 

and our research group has been engaged on the synthesis of heterocyclic amino acids and their 

application as fluorescent markers and fluorimetric probes for metal ions (Batista et al. 2012; Costa 

et al. 2007, 2008a, 2008b; Esteves et al. 2009, 2010, 2011, 2016; Oliveira et al. 2011). We now 

report the synthesis and characterization of novel non-canonical amino acids bearing thiophene and 

bithiophene moieties, by an Ugi multicomponent reaction between a heterocyclic aldehyde, an 

amine, an acid and an isocyanide. This reaction is a straightforward method for the synthesis of α- 

and α,α-substituted glycines that allows the introduction of a variety of groups and functionalities at 

the side chain (Dömling 2006). The thiophene coordinating/reporting unit was linked with different 

substituents to tune the photophysical properties of the new probes and optimize the recognition of 

target analytes through greater fluorescence sensitivity. The recognition ability of these non-

canonical amino acids toward different ions of analytical and biological relevance was evaluated by 

UV–vis absorption and fluorescence spectroscopy. Spectrophotometric and spectrofluorimetric 

titrations were made to assess their potential to act as fluorescent probes suitable for incorporation 

into peptidic frameworks with chemosensory ability. 
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Experimental Section 

 

General 

All melting points were measured on a Stuart SMP3 melting point apparatus. TLC analyses were 

carried out on 0.25 mm thick precoated silica plates (Merck Fertigplatten Kieselgel 60F254) and spots 

were visualised under UV light. Chromatography on silica gel was carried out on Merck Kieselgel 

(230-240 mesh).  IR spectra were determined on a BOMEM MB 104 spectrophotometer. NMR 

spectra were obtained on a Varian Unity Plus Spectrometer at an operating frequency of 300 MHz 

for 1H and 75.4 MHz for 13C or a Bruker Avance III 400 at an operating frequency of 400 MHz for 

1H and 100.6 MHz for 13C using the solvent peak as internal reference at 25 ºC. All chemical shifts 

are given in ppm using tetramethylsilane as reference and J values are given in Hz. Assignments 

were supported by spin decoupling-double resonance and bidimensional heteronuclear correlation 

techniques.  Low and high resolution mass spectrometry analyses were performed at the “C.A.C.T.I. 

- Unidad de Espectrometria de Masas”, at University of Vigo, Spain. Fluorescence spectra were 

collected using a FluoroMax-4 spectrofluorometer. UV-visible absorption spectra (200 – 600 nm) 

were obtained using a Shimadzu UV/2501PC spectrophotometer. All reagents were commercially 

available and used as received.  

 

General procedure for the synthesis of thienyl amino acid derivatives 2a-j by an Ugi 

multicomponent reaction 

The appropriate aldehyde 1a-j (1 equiv) and 4-methoxybenzylamine (1 equiv) were dissolved in dry 

methanol (5 mL/mmol of aldehyde) and stirred for 1 hour at 50 ºC, to form the corresponding imine. 

Acetic acid (1 equiv) was added to the previous mixture and stirred for 15 minutes at room 

temperature. Then, cyclohexyl isocyanide was added (1 equiv) and the mixture was left stirring at 

room temperature for 24 h. The solvent was evaporated and the crude was chromatographed through 

a silica gel column with dichloromethane-hexane (2:1) (to elute any unreacted isocyanide), followed 

by dichloromethane (to elute any unreacted aldehyde) and dichloromethane-methanol (90:1) (to elute 

the desired product). The fractions containing the product were evaporated to dryness in a rotary 

evaporator. 

The synthetic details and characterization for compounds 2a and 2h, considered as models for the 

thienyl and bithienyl set of amino acids, respectively, are given below. The synthetic details and 

characterization for compounds 2b-g,i-j are given in the Supplementary Material. 

 



 4 

N-Cyclohexyl-2-(N-(4’-methoxybenzyl)acetamido)-2-(thiophen-2-yl)acetamide 2a. Starting from 

2-formylthiophene 1a (0.156 g, 1.39 × 10-3 mol), 4-methoxybenzylamine (0.18 mL, 1.39 × 10-3 mol), 

acetic acid (0.08 mL, 1.39 × 10-3 mol) and cyclohexyl isocyanide (0.17 mL, 1.39 × 10-3 mol), 

compound 2a was obtained as an orange oil (0.184 g, 4.6 × 10-4 mol, 33%). 1H NMR (400 MHz, 

CDCl3):  = 1.05-1.13 (m, 3H, 3 × H-cHex), 1.24-1.33 (m, 2H, 2 × H-cHex), 1.50-1.62 (m, 3H, 3 × 

H-cHex), 1.77-1.86 (m, 2H, 3 × H-cHex), 2.01 (s, 3H, CH3CO), 3.70 (s, 4H, OCH3 and H1-cHex), 

4.58 (s, 2H, NCH2), 6.07 (s, 1H, -H), 6.23 (d, J 8.0 Hz, 1H, NH), 6.72 (d, J 8.4 Hz, 2H, H3’ and 

H5’), 6.87 (dd, J 3.4 and 5.0 Hz, 1H, H4), 6.95 (d, J 8.4 Hz, 2H, H2’ and H6’), 7.05 (d, J 3.4 Hz, 1H, 

H3), 7.21 (d, J 5.0 Hz, 1H, H5). 13C NMR (100.6 MHz, CDCl3):  = 22.15 (CH3CO), 24.43 (C-

cHex), 24.48 (C-cHex), 25.24 (C-cHex), 32.38 (2 × C-cHex), 48.32 (C1-cHex), 50.07 (NCH2), 54.96 

(OCH3), 57.52 (-CH), 113.63 (C3’ and C5’), 126.26 (C4), 127.14 (C5), 127.31 (C2’ and C6’), 

129.02 (C3), 129.30 (C1’), 136.91 (C2), 158.42 (C4’), 167.62 (C=O amide), 171.95 (CH3CO);  IR 

(liquid film, cm–1): ν  = 3306, 3070, 2933, 2855, 1633, 1586, 1542, 1513, 1464, 1451, 1409, 1364, 

1350, 1289, 1247, 1207, 1176, 1111, 1093, 1036, 979, 912, 892, 840, 811, 735, 699, 665, 543. 

UV/Vis (ethanol, nm): max (log ) = 275 (4.19). MS: m/z (ESI, %) 401 (M+, 100). HMRS: m/z (ESI) 

calc. for C22H29N2O3S 401.18934, found 401.18900. 

 

 

2-([2,2’-Bithiophen]-5-yl)-N-cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)acetamide 2h. 

Starting from 5-formyl-2,2’-bithiophene 1h (0.210 g, 1.08 × 10-3 mol), 4-methoxybenzylamine (0.14 

mL, 1.08 × 10-3 mol), acetic acid (0.06 mL, 1.08 × 10-3 mol) and cyclohexyl isocyanide (0.13 mL, 

1.08 × 10-3 mol), compound 2h was obtained as an orange oil (0.215 g, 4.45 × 10-4 mol, 41%). 1H 

NMR (400 MHz, CDCl3):  = 1.06-1.17 (m, 3H, 3 × H-cHex), 1.27-1.36 (m, 2H, 2 × H-cHex), 1.54-

1.66 (m, 3H, 3 × H-cHex), 1.80-1.92 (m, 2H, 2 × H-cHex), 2.08 (s, 3H, CH3CO), 3.73 (s, 4H, OCH3 

and H1-cHex), 4.56-4.67 (m, 2H, NCH2), 5.91 (s, 1H, -H), 6.23 (d, J 7.2 Hz, 1H, NH), 6.77 (d, J 

8.8 Hz, 2H, H3’’ and H5’’), 6.92 (d, J 3.6 Hz, 1H, H3), 6.95 (d, J 3.6 Hz, 1H, H4), 6.96-6.98 (m, 1H, 

H4’), 7.06 (d, J 8.8 Hz, 2H, H2’’ and H6’’), 7.12 (d, J 2.8 Hz, 1H, H5’), 7.18 (d, J 5.2 Hz, 1H, H3’). 

13C NMR (100.6 MHz, CDCl3):  = 22.21 (CH3CO), 24.53 (C-cHex), 24.60 (C-cHex), 25.32 (C-

cHex), 32.48 (C-cHex), 32.53 (C-cHex), 48.51 (C1-cHex), 50.49 (NCH2), 55.08 (OCH3), 58.25 (-

CH), 113.81 (C3’’ and C5’’), 122.60 (C4), 123.75 (C5’), 124.50 (C3’), 127.59 (C2’’ and C6’’), 

127.69 (C4’), 128.83 (C1’’), 129.92 (C3), 135.73 (C2), 135.73 (C2’), 139.28 (C5), 158.65 (C4’’), 

167.41 (C=O amide), 172.01 (CH3CO). IR (liquid film, cm-1):  = 3297, 3069, 2932, 2854, 1654, 

1586, 1542, 1513, 1451, 1409, 1351, 1303, 1248, 1209, 1177, 1111, 1093, 1035, 979, 956, 918, 892, 
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840, 811, 735, 699, 665, 543. UV/Vis (ethanol, nm): max (log ) = 310 (4.23). MS: m/z (ESI, %) 483 

(M+, 100). HMRS: m/z (ESI) calc. for C26H31N2O3S2 483.17706, found 483.17668. 

 

Spectrophotometric titrations and chemosensing studies for thienyl amino acids 2a-j 

Solutions of compounds 2a-j (1.0 × 10-5 to 1.0 × 10-6 M) and of the ions under study (1.0 × 10-1 to 

1.0 × 10-3 M) were prepared in UV-grade acetonitrile (in the form of hydrated tetrafluorborate salts 

for Cu+, Ag+, Pd2+ and Co2+, hydrated perchlorate salts for K+, Cd2+, Ca2+, Fe3+, Fe2+, Cr3+, Cu2+, 

Ni2+, Cs+, Na+, Hg2+, Pb2+, Zn2+ and hydrated tetrabutylammonium salts for CH3COO-, F-, I-, ClO4
-, 

CN-, NO3
-, BzO-, Cl-, Br- and OH-). Titration of the compounds with the several ions was performed 

by the sequential addition of ion to the compound solution, in a 10 mm path length quartz cuvette 

and emission spectra were measured by excitation at the wavelength of maximum absorption for 

each compound, indicated in Table 2, with a 2 nm slit. The linearity of the absorption versus 

concentration was checked within the used concentration. The binding stoichiometry of the thienyl 

amino acids with the ions was determined by Job’s plots. The association constants were obtained 

with HypSpec program.  

 

Results and Discussion 

 

Synthesis  

New non-canonical amino acids bearing thiophene and bithiopene units with substituents of different 

electronic character as side chains were obtained by an Ugi reaction. This reaction is an isocyanide-

based four-component reaction proposed in 1959 by Ivar Ugi as an alternative to the classical 

methods for amino acid synthesis, by reacting an acid, an amine, an isocyanide and a carbonyl 

compound.  Following the original application of the Ugi reaction, it can be used for the synthesis of 

α-amino acids (if an aldehyde is used as the carbonyl component) and α,α-dialkylamino acids (if a 

ketone is used as the carbonyl component) (Dömling 2006; Costa et al. 2003). In this work, acetic 

acid, 4-methoxybenzylamine and cyclohexyl isocyanide were used, along with a series of thiophene 

and bithiophene aldehydes 1a-j bearing different substituents. The protected amino acids 2a-j were 

prepared in fair to moderate yields (15-60%) (Scheme 1, Table 1). These new compounds were fully 

characterised by the usual spectroscopic techniques. 
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Scheme 1. Synthesis of (bi)thienyl amino acid derivatives 2a-j.  

 

Table 1. Yields, UV-visible absorption and fluorescence data for amino acids 2a-j in absolute 

ethanol. 

Cpd. 

 

Yield 

(%) 

UV/Vis absorption Fluorescence 

λabs log ε λem 
Stokes’ 

shift (cm-1) 

Stokes’ 

shift (nm) 
ΦF 

2a 33 276 3.60 303 3627 27 0.005 

2b 60 286 4.01 353 6636 67 0.089 

2c 25 298 3.55 362 5933 64 0.293 

2d 26 299 3.54 362 5821 63 0.284 

2e 21 299 4.25 358 5512 59 0.221 

2f 27 317 4.22 386 5639 69 0.039 

2g 34 349 4.21 511 9084 162 0.002 

2h 41 310 3.49 375 5591 65 0.420 

2i 41 327 4.31 402 5705 75 0.037 

2j 15 336 4.21 415 5666 79 0.124 
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The acid, amine and isocyanide components were chosen considering previous work that ensures 

straightforward removal of the groups at the N- and C-terminal by acidolysis to afford the free non 

canonical amino acids for subsequent use in peptide synthesis (Costa et al. 2003; Castro et al. 2016).  

 

Photophysical study of (bi)thienyl amino acid derivatives 2a-j 

The electron donor or acceptor character of the substituents envisaged the modulation of the 

photophysical and the recognition properties of the resulting compounds. Therefore, the absorption 

and emission spectra of (bi)thienyl amino acids derivatives 2a-j were measured in absolute ethanol 

(10-6-10-5 M solution) (Table 1). The nature of the substituent had a clear influence on the absorption 

and emission bands of compounds 2a-j (Figures 1 and 2). 

 

 

Figure 1. Normalised UV-visible absorption spectra of (bi)thienyl amino acids 2a-j in ACN at T = 

298 K. 

 

By comparison to compound 2a, as the parent compound, the presence of a phenyl ring bearing and 

electron donor group (as in 2c-e) lead to an expected bathochromic shift (ca. 20 nm) of the maximum 

wavelength of absorption (λabs). The bathochromic shift was more pronounced when electron 

acceptor groups were present: a 41 nm shift with the cyano group (for 2f) and a 73 nm shift with the 

nitro group (for 2g). The same trend was seen in the fluorescence spectra, with larger bathochromic 

shifts (especially for the nitro derivative with a 208 nm shift). 

Comparison of the electronic absorption and emission spectra of compound 2b (R = phenyl) with 

compound 2h (R = thiophene), compound 2c (R = methoxyphenyl), with 2i (R = methoxythiophene), 

as well as comparison of derivative 2f (R = cyanophenyl), with 2j (R = cyanothiophene) revealed 

that the substitution of an aryl group by a thiophene caused a red shift of the maximum absorption 



 8 

(between 19-29 nm) and emission (between 22-40 nm) wavelengths. This observation clearly 

indicates that the incorporation of thiophene units enhances the charge-transfer properties of the 

overall system and the optical data obtained can be largely explained by the bathochromic effect of 

sulphur and also the increase of the -overlap between the thiophene units.  

 

 

Figure 2. Normalised fluorescence spectra of (bi)thienyl amino acids 2a-j in ACN at T = 298 K (λexc 

= λabs for each compound). 

 

The synthesized compounds showed moderate to large Stokes’ shifts (the lowest being 3009 cm-1 for 

2a and the highest 9084 cm-1 for 2g). A large Stokes’ shift is an interesting characteristic for a 

fluorescent probe, when using fluorescence based techniques, that allows an improved separation of 

the light inherent to the matrix and the light dispersed by the sample (Holler et al. 2002).  

The relative fluorescence quantum yields of the ethanolic solutions of compounds 2a-j were 

determined using a 10-6 M solution of 9,10-diphenylanthracene in ethanol as standard (ΦF = 0.95) 

(Morris et al. 1976). It was found that the thienyl amino acids 2c-e (bearing donor groups) and 

bithienyl amino acids 2h,j were the most emissive (0.124 ≤ F ≤ 0.420). The most fluorescent 

derivative was compound 2h (bithiophene) and the presence of the nitro group resulted in an 

expected fluorescence quenching, with compound 2g being practically non-emissive in ethanol. 

For the subsequent chemosensing study towards different ions, the absorption and emission spectra 

of (bi)thienyl amino acids 2a-j were also measured in acetonitrile (10-6-10-5 M solution) and its 

mixture with water (9:1) (Table 2).  It was found that the presence of water did not influence the 

fluorescence quantum yields but the character of the solvent did, as the quantum yield was lower in 

ethanol (a protic solvent) when compared to acetonitrile (an aprotic solvent). 
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Table 2. UV-visible absorption and fluorescence data for amino acids 2a-j in ACN, ACN/H2O (9:1) 

and EtOH//H2O (9:1). 

Cpd. 
 

Solvent 

UV/Vis  Fluorescence 

λmax log ε λem 
Stokes’ 

shift ( cm-1) 

Stokes’ 

shift ( nm) 
ΦF 

2a 

ACN 276 3.48 301 3009 25 0.005 

ACN/H2O (9:1) 276 3.61 301 3009 25 0.004 

EtOH 276 3.60 303 3627 27 0.005 

EtOH/H2O (9:1) 276 3.48 304 3337 28 0.005 

2b 

ACN 290 3.99 358 6550 68 0.099 

ACN/H2O (9:1) 290 3.99 357 6472 67 0.094 

EtOH 286 4.01 353 6636 67 0.089 

EtOH/H2O (9:1) 286 3.97 354 6716 68 0.088 

2c 

ACN 298 3.53 362 5933 64 0.306 

ACN/H2O (9:1) 299 3.56 363 5897 64 0.285 

EtOH 299 3.55 362 5821 63 0.293 

EtOH/H2O (9:1) 299 3.59 362 5821 63 0.273 

2d 

ACN 299 3.48 362 5821 63 0.288 

ACN/H2O (9:1) 299 3.49 363 5897 64 0.290 

EtOH 300 3.54 362 5709 62 0.284 

EtOH/H2O (9:1) 299 3.55 364 5972 65 0.294 

2e 

ACN 298 4.26 358 5624 60 0.250 

ACN/H2O (9:1) 299 4.27 358 5512 59 0.221 

EtOH 299 4.25 357 5434 58 0.221 

EtOH/H2O (9:1) 299 4.24 358 5512 59 0.219 

2f 

ACN 318 4.22 386 5540 68 0.043 

ACN/H2O (9:1) 318 4.21 389 5740 71 0.042 

EtOH 317 4.22 386 5639 69 0.039 
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EtOH/H2O (9:1) 318 4.20 387 5607 69 0.038 

2g 

ACN 353 4.20 511 8759 158 0.006 

ACN/H2O (9:1) 353 4.21 511 8759 158 0.004 

EtOH 349 4.21 511 9084 162 0.002 

EtOH/H2O (9:1) 352 4.18 511 8840 159 0.002 

2h 

ACN 310 3.51 375 5591 65 0.420 

ACN/H2O (9:1) 309 3.47 375 5696 64 0.402 

EtOH 310 3.49 375 5591 65 0.397 

EtOH/H2O (9:1) 310 3.51 375 5591 65 0.374 

2i 

ACN 327 4.31 403 5767 76 0.043 

ACN/H2O (9:1) 328 4.31 405 5796 77 0.042 

EtOH 327 4.31 402 5705 75 0.037 

EtOH/H2O (9:1) 328 4.31 401 5550 73 0.039 

2j 

ACN 337 4.20 417 5693 80 0.176 

ACN/H2O (9:1) 337 4.21 419 5807 82 0.175 

EtOH 336 4.21 415 5666 79 0.124 

EtOH/H2O (9:1) 337 4.20 415 5577 78 0.143 

 

 

Spectrophotometric and spectrofluorimetric titrations with ions 

The new (bi)thienyl amino acids 2a-j were tested for their ability to act as fluorescent chemosensors 

in the recognition of biomedically relevant ions by performing spectrophotometric and 

spectrofluorimetric titrations in ACN and ACN/H2O (9:1), in the presence of relevant organic and 

inorganic anions (AcO-, F-, Cl-, Br-, I-, ClO4
-, CN-, NO3

-, BzO-, OH-, H2PO4
- and HSO4

-) and of 

alkaline, alkaline-earth and transition metal cations  (Na+, K+, Cs+, Ag+, Cu+, Cu2+, Ca2+, Cd2+, Co2+, 

Pb2+, Pd2+,  Ni2+, Hg2+, Zn2+, Fe2+, Fe3+ and Cr3+). As stated previously, the introduction of a UV-

active and fluorescent heterocyclic unit at the side chain of the amino acid is expected to provide 

additional binding sites for a variety of ions. 
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A preliminary evaluation of the chemosensing ability was performed by addition of 100 equiv of 

each cation/anion to solutions of amino acids 2a-j in acetonitrile and the changes in the intensity of 

the UV-vis absorption and fluorescence spectra were recorded.  

In the UV-vis absorption spectra of the various amino acids in the presence of each tested ion, no 

changes were seen in the bands corresponding to the maximum wavelength of absorption, except for 

methoxybithienyl amino acid 2i in the presence of Cu2+. It was found that this amino acid is a very 

sensitive and selective colorimetric chemosensor for Cu2+ as it displayed a marked colour change 

from pale yellow to pink. Among all the other cations tested, only Cu+ induced a minor pink 

coloration (Figure 3, top) that was negligible compared to that of Cu2+. The spectrophotometric 

titration with Cu2+ revealed that, upon addition of increasing amounts of the cation, the band at 327 

nm decreased, accompanied by the appearance and increase of a new red-shifted band at 529 nm 

(Figure 3, bottom). 

 

The same preliminary test was carried out in order to assess the changes (band shift and/or intensity) 

in the fluorescence spectra of the various amino acids in the presence of each tested ion. The nitro 

derivative 2g was not tested since it was practically non-fluorescent. This test revealed the ability of 

compounds 2a-f,h-j to interact especially with the more basic anions F- and OH- and with Cu2+ and 

Fe3+, with different sensitivity (the amount of ion necessary to induce changes in the fluorescence 

spectra depending on the compound). The sensing ability for anions was lower (requiring more 

equivalents for a significant fluorescence quenching, ca. 80-90%) than for cations (which required 

less equivalents for a complete quenching).  
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Figure 3. (top) Colour changes of bithienyl amino acid 2i in acetonitrile (1.0 × 10-4 mol dm-3) in the 

presence of 10 equiv of the various metal cations; (bottom) Spectrophotometric titration with Cu2+ 

(up to 5 equiv) in acetonitrile. 

 

In the case of methoxybithienyl amino acid 2i, chosen as representative example, in the 

spectrofluorimetric titrations with F- and OH-, upon addition of the anion it was visible the 

appearance and increase of a new band at 484 nm suggesting the formation of the deprotonated form 

of the amino acid due to the basicity of the anions. In the spectrofluorimetric titrations with Cu2+ and 

Fe3+, a considerable decrease of the fluorescence intensity was observed for (bi)thienyl amino acids 

2a-f,h-j, with a small number of metal equivalents being necessary to completely quench 

fluorescence (Figure 4 for the titration of 2i with F-, OH-, Cu2+ and Fe3+). Also, for some amino acids 

the addition of much larger amounts (more than 100 equiv) of Hg2+ (2h) and Pd2+ (2b-f and 2h) 

induced considerable but incomplete quenching. 

 

!

2i Ag+ Cs+ K+ Cu+ Na+ Ca2+ Cd2+ Ni2+ Pb2+ Pd2+ Hg2+ Cu2+ Co2+ Zn2+ Fe2+ Fe3+ Cr3+ 
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Figure 4. Fluorimetric titrations of bithienyl amino acid 2i with F- (A), OH- (B), Cu2+ (C) and Fe3+ 

(D), in acetonitrile [λexc = 327 nm]. Inset: normalised emission at 402 nm and 484 nm, as a function 

of added ion equivalents. 

 

Association constants (Kass) between several amino acids and some selected ions were calculated 

from the spectrofluorimetric titration data with HypSpec program. The results suggested the 

formation of a ligand-metal(anion) complex with 2:1 stoichiometry (which was confirmed with Job’s 

plots) and it was found that the new amino acids bind preferentially to Fe3+ and Cu2+ (Table 3 for 

anions and table 4 for cations). Although it cannot be stated that the new amino acids are selective 

for any cation, they display higher sensitivity for iron and copper as seen by the larger association 

constants. Moreover, the Kass obtained for the bithienyl amino acids 2i and 2j are higher than the 

corresponding thienyl amino acids 2c (bearing a methoxy group) and 2f (bearing a cyano group), 

showing the effect of the additional sulphur donor atom on the coordination ability. Previous studies 

on other heterocyclic amino acids have shown that free carboxylic and amino terminals did not 

influence significantly the coordination process, which should preferably occur through the 

heteroatoms at the side chain of the amino acids (Esteves et al. 2010). 

 

A B 

C D 
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Table 3. Logarithm of association constants (log Kass) for the interaction of (bi)thienyl amino acids 

2c-f,h-j with several anions in acetonitrile (ligand:anion stoichiometry 2:1). 

 

      Anion 

 

Cpd 

CN- F- OH- 

2c --- 8.04 ± 0.03 10.39 ± 0.05 

2d --- 8.02 ± 0.04 10.28 ± 0.07 

2e --- 8.55 ± 0.04 --- 

2f 11.47 ± 0.07 11.05 ± 0.06 11.09 ± 0.06 

2h 8.64 ± 0.04 8.48 ± 0.02 10.27 ± 0.05 

2i 8.61 ± 0.03 8.78 ± 0.02 7.1 ± 0.2 

2j 12.06 ± 0.04 12.44 ± 0.05 12.04 ± 0.06 

 

 

Table 4. Logarithm of association constants (log Kass) for the interaction of (bi)thienyl amino acids 

2b-f,h-j with several cations in acetonitrile (ligand:metal stoichiometry 2:1). 

 

      Cation 

 

Cpd 

Cu2+ Fe3+ Hg2+ Pd2+ 

2b 7.232 ± 0.006 7.233 ± 0.007 --- 7.247 ± 0.005 

2c 12.29 ± 0.31 11.33 ± 0.29 --- 11.09 ± 0.07 

2d 11.24 ± 0.23 11.35 ± 0.24 --- 11.07 ± 0.08 

2e 12.54 ± 0.04 13.38 ± 0.05 --- 12.15 ± 0.06 

2f 12.80 ± 0.07 12.00 ± 0.06 --- --- 

2h 11.42 ± 0.20 11.40 ± 0.19 11.07 ± 0.08 11.11 ± 0.05 

2i 13.33 ± 0.10 13.80 ± 0.15 11.97 ± 0.07 12.20 ± 0.07 

2j 13.21 ± 0.05 13.32 ± 0.05 --- 12.79 ± 0.06 

 

 



 15 

Conclusions 

New heterocyclic amino acids 2 containing thiophene and bithiophene units as side chain were 

synthesised and evaluated as fluorescent chemosensors based on an amino acid core for a series of 

biomedically relevant ions. From the spectrofluorimetric titrations in acetonitrile, it was found that 

the (bi)thienyl amino acids were more sensitive towards Fe3+ and Cu2+, when compared to the other 

tested ions, as a very low number of metal equivalents was enough to obtain a complete fluorescence 

quenching. The results indicated that there is a strong interaction with Fe3+ and Cu2+ through the 

donor N, O and S atoms at the side chain of the various amino acids and they can act as fluorimetric 

chemosensors. Interestingly, the methoxybithienyl amino acid 2i was found to be a very sensitive 

and selective colorimetric chemosensor for Cu2+ as it displayed a marked colour change from pale 

yellow to pink.  

Due to their emissive properties and their recognition ability, these heterocyclic amino acids could 

find application as fluorescent building blocks for the preparation of peptides with chemosensory 

ability. Further studies will be undertaken in order to clarify aspects which are important for the 

pratical biomedical application of the synthesized compounds, such as the behaviour of these probes 

in the complex mixture of compounds in biological systems and their performance in the presence of 

ions and probes at physiological concentrations.   
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Supplementary material 
 
 
 
1. Synthetic details and characterization for compounds 2b-g,i-j  

 

N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-phenylthiophen-2-yl)acetamide 2b. 

Starting from 2-(4’-formylphenyl)thiophene 1b (0.132 g, 7.03 × 10-4 mol), 4-methoxybenzylamine 

(0.09 mL, 7.03 × 10-4 mol), acetic acid (0.04 mL, 7.03 × 10-4 mol) and cyclohexyl isocyanide (0.09 mL, 

7.03 × 10-4 mol), compound 2b was obtained as an orange oil (0.201 g, 4.22 × 10-4 mol, 60%). 1H 

NMR (400 MHz, CDCl3):  = 1.10-1.19 (m, 3H, 3 × H-cHex), 1.28-1.38 (m, 2H, 2 × H-cHex), 1.56-1.69 

(m, 3H, 3 × H-cHex), 1.83-1.92 (m, 2H, 2 × H-cHex), 2.11 (s, 3H, CH3CO), 3.75 (s, 4H, OCH3 and H1-

cHex), 4.63 (d, J 8.0Hz, 2H, NCH2), 5.89 (s, 1H, -H), 6.01 (d, J 7.6 Hz, 1H, NH), 6.79 (d, J 8.8 Hz, 2H, 

H3’’ and H5’’), 7.02 (d, J 3.6 Hz, 1H, H3), 7.08 (d, J 8.6 Hz, 2H, H2’’ and H6’’), 7.11 (d, J 3.6 Hz, 1H, 

H4), 7.29 (d, J 7.2 Hz, 1H, H4’), 7.36 (t, J 7.2 Hz, 2H, H3’ and H5’), 7.56 (d, J 7.2Hz, 2H, H2’ and H6’). 

13C NMR (100.6 MHz, CDCl3):  = 22.37 (CH3CO), 24.68 (C-cHex), 24.74 (C-cHex), 25.48 (C-cHex), 

32.69 (C-cHex), 32.73 (C-cHex), 48.68 (C1-cHex), 50.78 (NCH2), 55.26 (OCH3), 58.73 (-CH), 113.97 

(C3’’ and C5’’), 122.30 (C4), 125.79 (C2’ and C6’), 127.70 (C2’’,C4’ and C-6’’), 128.90 (C3’ and C5’), 

129.25 (C1’’), 130.42 (C3), 134.02 (C1’), 136.28 (C2), 146.36 (C5), 158.82 (C4’’), 167.65 (C=O amide), 

172.17 (CH3CO). IR (liquid film, cm-1):  = 3301, 3060, 2931, 2854, 1649, 1585, 1544, 1513, 1462, 

1450, 1407, 1364, 1350, 1303, 1289, 1247, 1209, 1176, 1110, 1093, 1074, 1033, 978, 956, 917, 892, 

813, 757, 701, 665, 543. UV/Vis (ethanol, nm): max (log ) = 286  (4.01). MS: m/z (ESI, %) 477 (M+, 

100). HMRS: m/z (ESI) calc. for C28H33N2O3S 477.22064, found 477.22014. 

 

N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-methoxyphenyl)thiophen-2-

yl)acetamide 2c. Starting from 2-formyl-5-(4’-methoxyphenyl)thiophene 1c (0.086 g, 3.95 × 10-4 

mol), 4-methoxybenzylamine (0.05 mL, 3.95 × 10-4 mol), acetic acid (0.02 mL, 3.95 × 10-4 mol) and 

cyclohexyl isocyanide (0.05 mL, 3.95 × 10-4 mol), compound 2c was obtained as an orange oil (0.050 

g, 9.87 × 10-5 mol, 25%). 1H NMR (400 MHz, CDCl3):  = 1.07-1.18 (m, 3H, 3 × H-cHex), 1.26-1.38 (m, 

2H, 2 × H-cHex), 1.55-1.70 (m, 3H, 3 × H-cHex), 1.82-1.94 (m, 2H, 2x × H-cHex), 2.10 (s, 3H, CH3CO), 

3.75 (s, 4H, 4’’-OCH3 and H1-cHex), 3.83 (s, 3H, 4’-OCH3), 4.57-4.68 (m, 2H, NCH2), 5.87 (s, 1H, -H), 

6.04 (d, J 8.0 Hz, 1H, NH), 6.78 (d, J 8.4 Hz, 2H, H3’’ and H5’’), 6.89 (d, J 8.8 Hz, 2H, H3’ and H5’), 

6.99 (s, 2H, H3 and H4), 7.08 (d, J 8.4 Hz, 2H, H2’’ and H6’’), 7.48 (d, J 8.8 Hz, 2H, H2’ and H6’). 13C 
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NMR (100.6 MHz, CDCl3):  = 22.31 (CH3CO), 24.63 (C-cHex), 24.69 (C-cHex), 25.42 (C-cHex), 32.62 

(C-cHex), 32.66 (C-cHex), 48.59 (C1-cHex), 50.67 (NCH2), 55.19 (4’’-OCH3), 55.29 (4’-OCH3), 58.69 (-

CH), 113.89 (C3’’ and C5’’), 114.22 (C3’ and C5’), 121.18 (C4), 126.81 (C1’), 127.00 (C2’ and C6’), 

127.70 (C2’’ and C6’’), 129.01 (C1’’), 130.32 (C3), 135.05 (C2), 146.24 (C5), 158.72 (C4’’), 159.35 

(C4’), 167.67 (C=O amide), 172.08 (CH3CO). IR (liquid film, cm-1):  = 3410, 3297, 3066, 3001, 2932, 

2854, 1650, 1632, 1612, 1586, 1544, 1513, 1463, 1409, 1364, 1351, 1287, 1249, 1177, 1111, 1090, 

1033, 979, 957, 917, 892, 830, 805. UV/Vis (ethanol, nm): max (log ) = 299 (4.21). MS: m/z (ESI, %) 

507 (M+, 100). HMRS: m/z (ESI) calc. for C29H35N2O4S 507.23120, found 507.23085. 

 

N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-ethoxyphenyl)thiophen-2-

yl)acetamide 2d. Starting from 2-formyl-5-(4’-ethoxyphenyl)thiophene 1d (0.187 g, 8.05 × 10-4 mol), 

4-methoxybenzylamine (0.11 mL, 8.05 × 10-4 mol), acetic acid (0.05 mL, 8.05 × 10-4 mol) and 

cyclohexyl isocyanide (0.10 mL, 8.05 × 10-4 mol), compound 2d was obtained as an orange oil (0.109 

g, 2.09 × 10-4 mol, 26%). 1H NMR (400 MHz, CDCl3):  = 1.08-1.17 (m, 3H, 3 × H-cHex), 1.26-1.37 (m, 

2H, 2 × H-cHex), 1.40 (t, J 6.8 Hz, 3H, OCH2CH3), 1.54-1.67 (m, 3H, 3 × H-cHex), 1.81-1.93 (m, 2H, 2 × 

H-cHex), 2.07 (s, 3H, CH3CO), 3.72 (s, 4H, OCH3 and H1-cHex), 4.02 (q, J 6.8 Hz, 2H, OCH2CH3), 4.56-

4.67 (m, 2H, NCH2), 5.90 (s, 1H, -H), 6.18 (d, J 2.4 Hz, 1H, NH), 6.79 (d, J 8.6 Hz, 2H, H3’’ and H5’’), 

6.86 (d, J 8.8 Hz, 2H, H3’ and H5’), 6.97 (s, 2H, H3 and H4), 7.06 (d, J 8.6 Hz, 2H, H2’’ and H6’’), 7.44 

(d, J 8.8Hz, 2H, H2’ and H6’). 13C NMR (100.6 MHz, CDCl3):  = 14.64 (OCH2CH3), 22.23 (CH3CO), 

24.55 (C-cHex), 24.61 (C-cHex), 25.50 (C-cHex), 32.50 (C-cHex), 32.53 (C-cHex), 48.50 (C1-cHex), 

50.52 (NCH2), 55.07 (OCH3), 58.48 (-CH), 63.39 (OCH2CH3), 113.78 (C3’’ and C5’’), 114.67 (C3’ and 

C5’), 121.03 (C4), 126.86 (C2’ and C6’), 127.59 (C2’’ and C6’’), 129.01 (C1’’), 130.19 (C3), 131.86 

(C1’), 135.05 (C2), 146.15 (C5), 158.60 (C4’ and C4’’), 167.62 (C=O amide), 172.02 (CH3CO). IR (liquid 

film, cm-1):  = 3410, 3297, 3062, 2979, 2930, 2855, 1652, 1611, 1586, 1572, 1544, 1513, 1463, 

1408, 1364, 1351, 1303, 1287, 1248, 1177, 1116, 1090, 1039, 979, 958, 921, 892, 825, 803. UV/Vis 

(ethanol, nm): max (log ) = 299 (4.21). MS: m/z (ESI, %) 342 (M+-178, 100), 521 (M+, 89). HMRS: 

m/z (ESI) calc. for C30H37N2O4S 521.24685, found 521.24652. 

 

N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-phenoxyphenyl)thiophen-2-

yl)acetamide 2e. Starting from 2-formyl-5-(4’-phenoxyphenyl)thiophene 1e (0.188 g, 6.70 × 10-4 

mol), 4-methoxybenzylamine (0.09 mL, 6.70 × 10-4 mol), acetic acid (0.04 mL, 6.70 × 10-4 mol) and 
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cyclohexyl isocyanide (0.08 mL, 6.70 × 10-4 mol), compound 2e was obtained as an orange oil (0.080 

g, 1.41 × 10-4 mmol, 21%). 1H NMR (300 MHz, CDCl3):  = 1.10-1.19 (m, 3H, 3 × H-cHex), 1.26-1.40 

(m, 2H, 2 × H-cHex), 1.55-1.70 (m, 3H, 3 × H-cHex), 1.83-1.95 (m, 2H, 2 × H-cHex), 2.11 (s, 3H, 

CH3CO),  3.75 (s, 4H, OCH3 and H1-cHex), 4.63 (d, J 4.8Hz, 2H, NCH2), 5.89 (br s, 1H, -H), 6.04 (d, J 

7.8 Hz, 1H, NH), 6.79 (d, J 8.7 Hz, 2H, H3’’’ and H5’’’), 7.08 (d, J 8.7 Hz, 2H, H2’’’ and H6’’’), 6.98-7.05 

(m, 6H, H3, H4, H2’’, H3’, H5’ and H6’’), 7.13 (dt, J 6.0 and 0.9 Hz, 1H, H4’’), 7.36 (dt, J 6.0 and 0.9 

Hz, 2H, H3’’ and H5’’), 7.51 (d, J 8.7 Hz, 2H, H2’ and H6’). 13C NMR (75.4 MHz, CDCl3):  = 22.33 

(CH3CO), 24.63 (C-cHex), 24.69 (C-cHex), 25.42 (C-cHex), 32.63 (C-cHex), 32.68 (C-cHex), 48.61 (C1-

cHex), 50.68 (NCH2), 55.20 (OCH3), 58.63 (-CH), 113.90 (C3’’’ and C5’’’), 118.98 (C2’’ and C6’’), 

119.02 (C3’ and C5’), 121.80 (C4), 123.52 (C4’’), 127.17 (C2’ and C6’), 127.71 (C2’’’ and C6’’’), 129.14 

(C1’’’), 129.78 (C3’’ and C5’’), 130.38 (C3), 135.79 (C2), 140.09 (C1’), 145.76 (C5), 156.79 (C1’’), 

157.08 (C4’), 158.75 (C4’’’), 167.61 (C=O amide), 172.11 (CH3CO). IR (liquid film, cm-1):  = 3301, 

3060, 2931, 2854, 1649, 1585, 1544, 1513, 1462, 1450, 1407, 1364, 1350, 1303, 1289, 1247, 1209, 

1176, 1110, 1093, 1074, 1033, 978, 956, 917, 892, 813, 757, 701, 665, 543. UV/Vis (ethanol, nm): 

max (log ) = 299 (4.15). MS: m/z (ESI, %) 390 (M+-178, 100), 569 (M+, 96). HMRS: m/z (ESI) calc. for 

C34H37N2O4S 569.24685, found 569.24654.  

 

2-(5-(4’-Cyanophenyl)thiophen-2-yl)-N-cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)acetamide 

2f. Starting from 2-formyl-5-(4’-cyanophenyl)thiophene 1f (0.148 g, 6.97 × 10-4 mol), 4-

methoxybenzylamine (0.09 mL, 6.97 × 10-4 mol), acetic acid (0.04 mL, 6.97 × 10-4 mol) and 

cyclohexyl isocyanide (0.09 mL, 6.97 × 10-4 mol), compound 2f was obtained as an orange oil (0.091 

g, 1.88 × 10-4 mol, 27%). 1H NMR (300 MHz, CDCl3):  = 1.09-1.16 (m, 3H, 3 × H-cHex), 1.24-1.37 (m, 

2H, 2 × H-cHex), 1.54-1.67 (m, 3H, 3 × H-cHex), 1.79-1.92 (m, 2H, 2 × H-cHex), 2.11 (s, 3H, CH3CO), 

3.72 (s, 4H, OCH3 and H1-cHex), 4.61 (d, J 3.0Hz, 2H, NCH2), 5.97 (s, 1H, -H), 6.22 (d, J 6.9 Hz, 1H, 

NH), 6.76 (d, J 7.2 Hz, 2H, H3’’ and H5’’), 7.03 (d, J 7.2 Hz, 2H, H2’’ and H6’’), 7.03 (d, J 3.9 Hz, 1H, 

H3), 7.19 (d, J 3.9 Hz, 1H, H4), 7.58-7.63 (m, 4H, H2’, H3’, H5’ and H6’). 13C NMR (75.4 MHz, CDCl3): 

 = 22.25 (CH3CO), 24.54 (C-cHex), 24.59 (C-cHex), 25.30 (C-cHex), 32.49 (C-cHex), 32.54 (C-cHex), 

48.61 (C1-cHex), 50.49 (NCH2), 55.13 (OCH3), 58.06 (-CH), 110.59 (C4’), 113.85 (C3’’ and C5’’), 

118.63 (CN), 124.13 (C4), 125.81 (C2’ and C6’), 127.60 (C2’’ and C6’’), 128.63 (C1’’), 130.51 (C3), 

132.58 (C3’ and C5’), 138.19 (C1’), 138.68 (C2), 143.62 (C5), 158.73 (C4’’), 167.23 (C=O amide), 

172.15 (CH3CO). IR (liquid film, cm-1):  = 3301, 3061, 2999, 2933, 2855, 2226, 1657, 1604 1586, 
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1538, 1513, 1463, 1451, 1409, 1364, 1350, 1303, 1289, 1248, 1208, 1177, 1111, 1092, 1034, 979, 

958, 941, 918, 892, 838, 814, 736, 701, 665, 543, 514. UV/Vis (ethanol, nm): max (log ) = 317 

(4.22). MS: m/z (ESI, %) 502 (M+, 100). HMRS: m/z (ESI) calc. for C29H32N3O3S 502.21589, found 

502.21535. 

 

N-Cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)-2-(5-(4’-nitrophenyl)thiophen-2-yl)acetamide 

2g. Starting from 2-formyl-5-(4’-nitrophenyl)thiophene 1g (0.186 g, 8.00 × 10-4 mol), 4-

methoxybenzylamine (0.10 mL, 8.00 × 10-4 mol), acetic acid (0.05 mL, 8.00 × 10-4 mol) and 

cyclohexyl isocyanide (0.10 mL, 8.00 × 10-4 mol), compound 2g was obtained as a yellow oil (0.137 

g, 2.72 × 10-4 mol, 34%). 1H NMR (400 MHz, CDCl3):  = 1.09-1.16 (m, 3H, 3 × H-cHex), 1.27-1.32 (m, 

2H, 2 × H-cHex), 1.61-1.66 (m, 3H, 3 × H-cHex), 1.82-1.93 (m, 2H, 2 × H-cHex), 2.10 (s, 3H, CH3CO), 

3.71 (s, 4H, OCH3 and H1-cHex), 4.62 (d, J 8.0Hz, 2H, NCH2), 6.03 (s, 1H, -H), 6.33 (d, J 7.6 Hz, 1H, 

NH), 6.75 (d, J 8.8 Hz, 2H, H3’’ and H5’’), 7.03 (d, J 3.6 Hz, 1H, H3), 7.06 (d, J 8.6 Hz, 2H, H2’’ and 

H6’’), 7.23 (d, J 3.6 Hz, 1H, H4), 7.63 (t, J 7.2 Hz, 2H, H2’ and H6’), 8.14 (d, J 7.2Hz, 2H, H3’ and H5’). 

13C NMR (100.6 MHz, CDCl3):  = 22.22 (CH3CO), 24.52 (C-cHex), 24.57 (C-cHex), 25.29 (C-cHex), 

32.45 (C-cHex), 32.52 (C-cHex), 48.59 (C1-cHex), 50.39 (NCH2), 55.09 (OCH3), 57.89 (-CH), 113.82 

(C3’’ and C5’’), 124.18 (C3’ and C5’), 124.68 (C4), 125.70 (C2’ and C6’), 127.57 (C2’’ and C6’’), 128.64 

(C1’’), 130.52 (C3), 139.43 (C2), 140.09 (C1’), 143.00 (C5), 146.51 (C4’), 158.71 (C4’’), 167.14 (C=O 

amide), 172.11 (CH3CO). IR (liquid film, cm-1):  = 3301, 3066, 2931, 2854, 1737, 1648, 1630, 1588, 

1543, 1512, 1489, 1463, 1408, 1364, 1350, 1303, 1288, 1243, 1202, 1171, 1108, 1071, 1035, 978, 

958, 916, 891, 869, 836, 803, 751, 736, 660, 512, 503.  UV/Vis (ethanol, nm): max (log ) = 349 

(4.21). MS: m/z (ESI, %) 522 (M+, 100). HMRS: m/z (ESI) calc. for C28H32N3O5S 522.20572, found 

522.20509. 

 

N-Cyclohexyl-2-(5'-methoxy-[2,2'-bithiophen]-5-yl)-2-(N-(4’’-

methoxybenzyl)acetamido)acetamide 2i. Starting from 5-formyl-5’-methoxy-2,2’-bithiophene 1i 

(0.142 g, 6.34 × 10-4 mol), 4-methoxybenzylamine (0.08 mL, 6.34 × 10-4 mol), acetic acid (0.04 mL, 

6.34 × 10-4 mol) and cyclohexyl isocyanide (0.08 mL, 6.34 × 10-4 mol), compound 2i was obtained as 

an orange oil (0.131 g, 2.60 × 10-4 mol, 41%). 1H NMR (400 MHz, CDCl3):  = 1.08-1.16 (m, 3H, 3 × H-

cHex), 1.26-1.32 (m, 2H, 2 × H-cHex), 1.53-1.66 (m, 3H, 3 × H-cHex), 1.79-1.90 (m, 2H, 2 × H-cHex), 

2.06 (s, 3H, CH3CO), 3.73 (s, 4H, 4’’-OCH3 and H1-cHex), 3.86 (s, 3H, 4’-OCH3), 4.54-4.65 (m, 2H, 
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NCH2), 5.86 (s, 1H, -H), 6.08 (d, J 3.8 Hz, 1H, H4’), 6.21 (br s, 1H, NH), 6.74 (d, J 4.0 Hz, 2H, H3 and 

H4), 6.77 (d, J 8.4 Hz, 2H, H3’’ and H5’’), 6.87 (d, J 3.8 Hz, 1H, H3’), 7.05 (d, J 8.4 Hz, 2H, H2’’ and 

H6’’). 13C NMR (100.6 MHz, CDCl3):  = 22.22 (CH3CO), 24.57 (C-cHex), 24.64 (C-cHex), 25.36 (C-

cHex), 32.53 (C-cHex), 32.57 (C-cHex), 48.53 (C1-cHex), 50.58 (NCH2), 55.12 (4’’-OCH3), 58.48 (-

CH), 60.14 (4’-OCH3), 104.32 (C4’), 113.84 (C3’’ and C5’’), 121.07 (C4), 121.52 (C3), 123.23 (C5’), 

127.65 (C2’’ and C6’’), 128.88 (C1’’), 129.88 (C3’), 134.47 (C2), 140.04 (C5), 158.68 (C4’’), 165.66 

(C2’), 167.49 (C=O amide), 172.00 (CH3CO). IR (liquid film, cm-1):  = 3411, 3302, 3068, 3007, 2933, 

2854, 1650, 1632, 1586, 1532, 1513, 1498, 1462, 1451, 1408, 1350, 1303, 1289, 1249, 1202, 1176, 

1111, 1092, 1052, 1036, 993, 911, 892, 873, 803, 770, 732, 646, 510. UV/Vis (ethanol, nm): max (log 

) = 329 (4.20). MS: m/z (ESI, %) 334 (M+-178, 100), 513 (M+, 49). HMRS: m/z (ESI) calc. for 

C27H33N2O4S2 513.18763, found 513.18750. 

 

2-(5'-Cyano-[2,2'-bithiophen]-5-yl)-N-cyclohexyl-2-(N-(4’’-methoxybenzyl)acetamido)acetamide 

2j. Starting from 5’-cyano-5-formyl-2,2’-bithiophene 1j (0.175 g, 8.00 × 10-4 mol), 4-

methoxybenzylamine (0.10 mL, 8.00 × 10-4 mol), acetic acid (0.05 mL, 8.00 × 10-4 mol) and 

cyclohexyl isocyanide (0.10 mL, 8.00 × 10-4 mol), compound 2j was obtained as an orange oil (0.052 

g, 1.20 × 10-4 mol, 15%). 1H NMR (400 MHz, CDCl3):  = 1.10-1.19 (m, 3H, 3 × H-cHex), 1.26-1.35 (m, 

2H, 2 × H-cHex), 1.57-1.70 (m, 3H, 3 × H-cHex), 1.83-1.93 (m, 2H, 2 × H-cHex), 2.14 (s, 3H, CH3CO), 

3.76 (s, 4H, OCH3 and H1-cHex), 4.60 (s, 2H, NCH2), 5.93 (s, 1H, -H), 6.11 (d, J 8.0 Hz, 1H, NH), 6.79 

(d, J 8.4 Hz, 2H, H3’’ and H5’’), 6.95 (d, J 3.8 Hz, 1H, H3), 7.04 (d, J 8.4 Hz, 2H, H2’’ and H6’’), 7.06 (d, 

J 3.8 Hz, 1H, H4), 7.09 (d, J 3.8 Hz, 1H, H3’), 7.51 (d, J 3.8 Hz, 1H, H4’). 13C NMR (100.6 MHz, CDCl3): 

 = 22.28 (CH3CO), 24.60 (C-cHex), 24.65 (C-cHex), 25.39 (C-cHex), 32.58 (C-cHex), 32.65 (C-cHex), 

48.72 (C1-cHex), 50.62 (NCH2), 55.25 (OCH3), 58.10 (-CH), 107.61 (C5’), 113.98 (C3’’ and C5’’), 

114.12 (CN), 123.50 (C3’), 124.85 (C4), 127.74 (C2’’ and C6’’), 128.47 (C1’’), 130.33 (C5’), 136.84 

(C2’), 138.23 (C4’), 138.48 (C2), 144.29 (C5), 158.92 (C4’’), 167.17 (C=O amide), 172.25 (CH3CO). IR 

(liquid film, cm-1):  = 3302, 3070, 2998, 2932, 2854, 2217, 1652, 1586, 1532, 1513, 1464, 1451, 

1436, 1407, 1363, 1351, 1303, 1292, 1248, 1207, 1177, 1112, 1093, 1035, 979, 963, 918, 805, 736, 

709, 512. UV/Vis (ethanol, nm): max (log ) = 337 (4.21). MS: m/z (ESI, %) 508 (M+, 100). HMRS: m/z 

(ESI) calc. for C27H30N3O3S2 508.17231, found 508.17183. 
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2. Spectrofluorimetric titrations of compound 2b with all the tested ions (in acetonitrile) 
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3. Spectrofluorimetric titrations of compound 2h with all the tested ions (in acetonitrile) 
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4. Spectrofluorimetric titrations of compounds 2a-j with Fe3+ (in acetonitrile) 
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5. Job’s plot for compound 2i with Cu2+ (in acetonitrile) 
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