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Abstract

A major challenge in modern robotics is the design of socially intelligent robots that can

cooperate with people in their daily tasks in a human-like way. Needless to say that non-

verbal communication is an essential component for every day social interaction. We humans

continuously monitor the actions and the facial expressions of our partners, interpret them

effortlessly regarding their intentions and emotional states, and use these predictions to select

adequate complementary behaviour. Thus, natural human-robot interaction or joint activity,

requires that assistant robots are endowed with these two (high level) social cognitive skills.

The goal of this work was the design of a cognitive control architecture for socially intelligent

robots, heavily inspired by recent experimental findings about the neurocognitive mechanisms

underlying action understanding and emotion understanding in humans. The design of cognitive

control architectures on these basis, will lead to more natural and eficient human-robot

interaction/collaboration, since the team mates will become more predictable for each other.

Central to this approach, neuro-dynamics is used as a theoretical language to model cognition,

emotional states, decision making and action. The robot control architecture is formalized

by a coupled system of Dynamic Neural Fields (DNFs) representing a distributed network of

local but connected neural populations with specific functionalities. Different pools of neurons

encode relevant information about hand actions, facial actions, action goals, emotional states,

task goals and context in the form of self-sustained activation patterns. These patterns are

triggered by input from connected populations and evolve continuously in time under the

influence of recurrent interactions. Ultimately, the DNF architecture implements a dynamic

context-dependent mapping from observed hand and facial actions of the human onto adequate
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complementary behaviours of the robot that take into account the inferred goal and inferred

emotional state of the co-actor.

The dynamic control architecture has been validated in multiple scenarios of a joint assembly

task in which an anthropomorphic robot - ARoS - and a human partner assemble a toy object

from its components. The scenarios focus on the robot’s capacity to understand the human’s

actions, and emotional states, detected errors and adapt its behaviour accordingly by adjusting

its decisions and movements during the execution of the task. It is possible to observe how in the

same conditions a different emotional state can trigger different a overt behaviour in the robot,

which may include different complementary actions and/or different movements kinematics.
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Resumo

Um dos desafios da robótica atual é o desenvolvimento de robôs socialmente inteligentes que

consigam interagir e cooperar com humanos nas suas tarefas diárias de uma forma semelhante a

estes. Na interação social diária, a comunicação não verbal desempenha um papel fundamental.

Os humanos monitorizam constantemente as ações e expressões faciais, interpretando-as facil-

mente no que toca à sua intenção e estado emocional, e usam essa informação na seleção de

comportamentos complementares adequados. Desta forma, uma interação humano-robô natural

ou uma atividade conjunta, requer que os robôs estejam dotados destas duas competências

sociais (de alto nível).

O objetivo deste trabalho passou pelo desenvolvimento de uma arquitetura de controlo

para tornar robôs socialmente inteligentes, com inspiração em estudos recentes acerca dos

mecanismos neuro-cognitivos subjacentes à interpretação de ações e emoções nos humanos.

O projeto de arquiteturas de controlo cognitivo assente nesta base permitiu potenciar uma

interação/colaboração humano-robô mais eficiente e natural, já que ambos os intervenientes se

tornam assim mutuamente mais previsíveis.

A arquitetura de controlo para o robô é formalizada usando a teoria de Campos Dinâmicos

Neuronais (CDNs), que representa uma rede distribuída de populações neuronais conectadas

cada uma com objetivos específicos. Um aspeto importante nesta abordagem é a linguagem

teórica usada para modelar cognição, estados emocionais, tomada de decisões e ações. Cada

população neuronal codifica informação relevante acerca de ações levadas a cabo com as

mãos, ações faciais, intenções subjacentes a ações, objetivos da tarefa e contexto na forma de

padrões de ativação auto-sustentados. Estes padrões são desencadeados ao receber entradas de
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populações conectadas e evoluem continuamente no tempo através da influência de interações

recorrentes. Sinteticamente, a arquitetura baseada em CDNs implementa um mapeamento

dinâmico, dependente do contexto, de ações observadas e expressões faciais na seleção de

comportamentos complementares do robô que tem em consideração o objetivo e o estado

emocional inferidos do parceiro.

A validação da arquitetura de controlo foi realizada em múltiplos cenários de uma tarefa

conjunta de construção, onde um robô antropomórfico - ARoS - e um parceiro humano

construíram um modelo de um brinquedo a partir dos seus componentes individuais. Os

cenários focaram-se na capacidade do robô interpretar ações realizadas pelo humano, estados

emocionais e erros detetados, adaptando o seu comportamento, e fazendo ajustes nas decisões

tomadas e nos movimentos realizados durante a execução da tarefa. Foi possível observar

que, nas mesmas condições, um estado emocional diferente pode desencadear no robô um

comportamento diferente, o qual pode, por sua vez, incluir uma ação diferente e/ou uma

cinemática de movimento diferente.
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Chapter 1

Introduction

Human-robot interaction aims to be in the future, as natural and fluent as human-human

interaction. Robots must then be endowed with the necessary set of abilities that support this

seamless interaction. One good example that can be used to explore human-robot interaction is

in scenarios of collaborative joint activity.

1.1 Natural human-robot interaction and collaboration:

the role of emotions

A major challenge in modern robotics is the design of socially intelligent robots that can

interact or cooperate with people in their daily tasks in a human-like way. Needless to say

that non-verbal communication is an essential component for every day social interactions. We

humans continuously monitor the actions and the facial expressions of our partners, interpret

them effortlessly regarding their intentions and emotional states, and use these predictions

to select adequate complementary behaviour. Thus, natural human-robot interaction or joint

activity, requires that assistant robots are endowed with these (high level) social cognitive skills.

There has been various kinds of interaction studies that have explored the role of emo-

tion/affect in Human-Robot Interaction (HRI) (e.g. Breazeal, 2003a,b; Cañamero and Fredslund,

2000; Hegel et al., 2006; Kirby et al., 2010; Leite et al., 2010; Novikova and Watts, 2015;
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Pereira et al., 2011). The results of such studies have clearly shown that endowing robots with

–the recognition and display of human-like - emotions/affects critically contributes to making

the HRI more natural and meaningful, from the perspective of the human interacting with the

robot (e.g. Breazeal, 2003a,b; Cañamero, 2005; Hegel et al., 2006; Kȩdzierski et al., 2013; Leite

et al., 2010; Pereira et al., 2011). Robots with infant-like abilities of interaction, such as Kismet

(Breazeal, 2003b), have been used to demonstrate the ability of people to interpret and react

appropriately to a robot’s displays of emotions. Experiments with the robot Vikia (Bruce et al.,

2002) demonstrated the effectiveness of an emotionally expressive graphical face for encouraging

interactions with a robot.

However, in all these interaction experiments the robot and the human were not a team,

in that the interactions did not involve joint action tasks. One exception goes to the work

reported in Scheutz et al. (2006), where the robot and the human were both needed for the

task and neither robot nor human could accomplish the task alone. Their results have shown

that expressing affect and responding to human affect with affect expressions can significantly

also improve team performance in a joint human-robot task. However, the human and the robot

interacted solely based on ’natural’ language, there was no physical interaction, and the robot

was not making autonomous decisions, i.e. the robot always carried out human orders (see also

Scheutz, 2011).

The work here reported aims to contribute to filling in this gap. Our approach is motivated

by recent research in cognitive psychology and cognitive neuroscience that posits that various

kinds of shared emotions can, not only motivate participants to engage and remain engaged in

joint actions, but also facilitate processes that are central to the coordination of participants’

individual actions within joint action, such as representing other participants’ tasks, predicting

their behaviour, detecting errors and correcting accordingly, monitoring their progress, adjusting

movements and signalling (Michael, 2011; Rizzolatti and Sinigaglia, 2008).

There are a number of reasons why the inclusion of emotions in cognitive architectures may

be necessary (Hudlicka, 2004), including: (a) research-motivated emulation of human decision-

making and appraisal processes, to better understand their mechanisms; (b) enhancing agent

and robot realism (e.g. for training and educational purposes, or assistive roles); (c) developing
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user and operator models for improved adaptive Human-Computer Interaction (HCI).

In order to combine emotions into the decision making and complementary behaviour of

an intelligent robot cooperating with a human partner our group relies on the development of

control architectures for human-robot interaction that are strongly inspired by the neurocognitive

mechanisms underlying joint action (Bekkering et al., 2009; Poljac et al., 2009; van Schie et al.,

2008) and shared emotions in humans (Carr et al., 2003; Iacoboni et al., 2005; Wicker et al.,

2003). Implementing a human-like interaction model in an autonomous assistive robot will

greatly increase the user’s acceptance to work with the artificial agent since the co-actors will

become more predictable for each other (see also e.g. Fong et al., 2003; Kirby et al., 2010).

Humans have a remarkable ability to perform fluent organization of joint action, achieved

by anticipating the motor intentions of others (Sebanz et al., 2006). An impressive range of

experimental findings, about the underlying neurocognitive mechanisms, support the notion that

a close perception-action linkage provides a basic mechanism for real-time social interactions

(Newman-Norlund et al., 2007a; Wilson and Knoblich, 2005). A key idea is that action

observation leads to an automatic activation of motor representations that are associated

with the execution of the observed action. It has been advanced that this motor resonance

system supports an action understanding capability (Blakemore and Decety (2001); Fogassi

et al. (2005)). By internally simulating action consequences using his own motor repertoire

the observer may predict the consequences of others’ actions. Direct physiological evidence for

such perception-action system came with the discovery of the so-called mirror neurons in the

pre-motor cortex of the macaque monkey (for a review see Rizzolatti and Craighero (2004)).

These neurons are a particular class of visuomotor neurons that are active during the observation

of goal-direct actions, such as reaching, grasping holding or placing an object and communicative

actions, and during execution of the same class of actions (Ferrari et al., 2003; Rizzolatti

et al., 2001). More recently, Bekkering et al. (2009) have assessed, through neuroimaging and

behavioural studies, the role of the human mirror neuron system while participants prepared to

execute imitative or complementary actions. They have shown that the human mirror neuron

system may be more active during the preparation of complementary than during imitative

actions (Newman-Norlund et al., 2007a), suggesting that the it may be essential in dynamically
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coupling action observation on to (complementary) action execution, and that this mapping is

much more flexible and than previously thought (Poljac et al., 2009; van Schie et al., 2008).

There is also good evidence in neuroscience studies that also exists a facial expressions

mirroring system. The work by Leslie et al. (2004) shows results that are consistent with the

existence of a face mirroring system located in the right hemisphere (RH) part of the brain,

which is also associated with emotional understanding (Ochsner and Gross, 2005). Specifically,

the right hemisphere premotor cortex may play a role in both the generation and the perception

of emotionally expressive faces, consistent with a motor theory of empathy (Leslie et al., 2004).

van der Gaag et al. (2007) present a more in-depth study on the role of mirror neurons in

the perception and production of emotional and neutral facial expressions. The understanding

of other people from facial expressions is a combined effort of simulation processes within

different systems, where the somatosensory, motor and limbic systems all play an important role.

This process might reflect the translation of the motor program, emotions and somatosensory

consequences of facial expressions, respectively (Keysers and Gazzola, 2006). The simulation

processes in these individual systems have been previously described in the literature (Gallese

et al., 1996; Keysers et al., 2004; Wicker et al., 2003). Specifically, and at a neuronal level,

premotor mirror neurons might resonate the facial movement and its implied intention (Carr

et al., 2003; Iacoboni et al., 2005), insula mirror neurons might process the emotional content

(Wicker et al., 2003), and somatosensory neurons might resonate proprioceptive information

contained in the observed facial movement (Keysers et al., 2004). This process is coherent

with current theories of facial expression understanding (Adolphs, 2006; Carr et al., 2003; Leslie

et al., 2004), pointing out that different brain systems collaborate during the reading of facial

expressions, where the amount and pattern of activation is different depending on the expression

being observed.

Current works that take a neuro/bio inspired approach for the integration of emotions into

architectures for artificial intelligence focus on more low level aspects of emotions. The work by

Talanov et al. (2015) explore how to produce basic emotions by simulating neuromodulators in

the human brain, and applying it to computational environments for decision making. Lowe

et al. (2007) explore how a dynamical systems perspective can be combined with an approach
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that views emotions as attentional dispositions.

In previous works from our group, a cognitive control architecture for human-robot joint

action was developed, that integrates action simulation, goal inference, error detection and

complementary action selection (Bicho et al., 2011b,a), based on the neurocognitive mechanisms

underlying human joint action (Bekkering et al., 2009). For the design and implementation, a

neurodynamics approach based on the theoretical framework of Dynamic Neural Fields (DNFs)

was used (Erlhagen and Bicho, 2006, 2014; Schöner, 2008). The robot is able to successfully

collaborate with a human partner in joint tasks, but pays attention only to hand actions and to

the task itself.

1.2 Socially interactive robots

Fong et al. (2003) describes socially interactive robots as being capable of peer-to-peer

human-robot interaction, where social interaction is a key component.

This section will present various types of such robots. Virtual agents, medical therapy,

entertainment, robot heads, humanoid robots and android robots

1.2.1 Entertainment

The robots in this category are commercially available products, used as toys, usually with a

pet appearance or miniaturized humanoid (See Figure 1.1).

One example is the robot Nao (Beck et al., 2010), which is able to express emotions by using

it’s body pose and movements (Miskam et al., 2014). It is able to recognize human emotions

through some non-verbal cues, such as postures, gestures and movements of the body.

Aibo (Fujita and Kitano, 1998) was developed as a robotic dog that should be able to live

with people like a real dog would. The robot presents an autonomous behaviour generated by

different “instincts” (e.g. love, search, movement, recharge and sleep). Each instinct drives a

different behaviour sequence (Fujita, 2004). Although the robot does not express emotions,

they are perceived as such in the form of changes in it’s behaviour. The dog can recognise
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(a) Nao (Image

taken from Miskam

et al., 2014).

(b) Aibo (Image

taken from www.

sony-aibo.com).

(c) Qrio (Image

adapted from

Tanaka et al.,

2004).

Figure 1.1: Examples of entertainment robots.

the emotional state of it’s owner from affective cues in the owner’s speech and respond with

appropriate actions (Jones and Deeming, 2008).

Qrio has an emotionally grounded control architecture (EGO-Architecture) composed by

five parts (perception, memory, behaviour control, internal model and motion control). The

most interesting part to analyse is the internal model part, where an internal state is defined

and composed by a set of variables that describe the robot’s needs. The goal of the robot is to

maintain its “needs” satisfied, and accomplishes this by selecting specific behaviours, based on

time and external stimuli. The satisfaction values are used to determine an emotional state that

will influence the behaviour selection (Tanaka et al., 2004).

1.2.2 Robotic heads

Robots which are composed only by a robotic head and neck.
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Kismet

Kismet (Breazeal, 2002). Its models of emotion interacted closely with its cognitive system

Figure 1.2: Kismet (Image taken from Breazeal, 2002).

to influence behaviour and goal arbitration (Breazeal, 2003b) using a process of behavioural

homoeostasis, which drive the robot’s affective state to a mildly aroused, and slightly positive

state.

One of its purposes was to use emotive communication signals to regulate and negotiate its

interactions with people (Breazeal, 1998a,b). It uses emotive displays to regulate the intensity

of playful interactions, socially negotiating its interaction with people via its emotive responses

to have humans help it achieve its goals, and satiate its drives, and maintain a suitable learning

environment.

In order to express its affective states, Kismet is able to generate several facial expressions

with corresponding body posture. Kismet’s facial expressions are generated using an interpolation-

based technique over a three-dimensional space (arousal, valence, stance). The basic facial

postures are designed according to the componential model of facial expressions (Smith and

Scott, 1997), whereby individual facial features move to convey affective information. In addition

to facial expressions, Kismet is able to use a vocalization system to generate a set of emotive

utterances corresponding to joy, sorrow, disgust, fear, anger, surprise, and interest (Breazeal,

2003c).

At the perception level, Kismet is able to determine the human affective state through audio

and image processing. Extracts low level features from speech such as pitch and energy, and

analyses motion and proximity from vision among others to determine a human affective state
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(e.g. Neutral, approval, attention).

MEXI

MEXI (Machine with Emotionally eXtended Intelligence) is able to recognize emotions of the

human interacting with it, and react in an emotional way by expressing its own emotions using its

facial expressions and speech. It has an internal architecture based on emotions and drives, and

integrates mechanisms of emotion regulation. MEXI is designed to be emotionally competent,

hence it not only recognizes others’ emotions, it represents its own emotions internally, reacts

to recognized emotions and regulates its own (Esau et al., 2008).

Figure 1.3: MEXI (Image taken from Esau et al., 2006).

The control architecture is comprised of four main blocks, namely: perception, reaction,

action control and emotion engine.

At the perception level, inputs from vision and speech are acquired and processed. The

vision system is responsible for the detection of objects and faces, and the robot is able to track

them using its eyes and head movements. It recognizes speech using a commercially available

software (ViaVoice). Emotion recognition is achieved by combining facial expressions detection

(Esau et al., 2007) and the prosody of human speech (Austermann et al., 2005).

The reaction level is responsible for direct responses to the sensory stimulus, by generating

appropriate head movements, facial expressions and speech. Within the reaction level, the
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behaviour system is responsible for generating the robot’s movements. The speech output is

generated by a chatbot (ALICE1), the contents of the answers are influenced by the emotion

engine.

The action control performs low level control of motors and speech production.

The internal state represents the strength of its emotions and drives, taking into account

the current perceptions, it determines its actions by following two main goals: (a) Feel positive

emotions and avoid negative ones; and (b) Maintain its drives at a comfortable level (Esau

et al., 2008).

The emotion engine represents four basic emotions: anger, happiness, sadness and fear.

Drives are what motivates behaviour (in humans e.g. thirst, hunger), MEXI has a drive to

communicate with the human or play with a toy. A dynamic model is used to control emotions

and drives, allowing adequate control of the robot’s behaviour (Esau and Kleinjohann, 2011).

This way and according to the drive that is active, and the emotion represented, an adequate

behaviour is selected in such a way that its two main goals are accomplished.

1.2.3 Humanoid robots

Similar to the Robot Heads, the difference is that the research in this area not only focuses

on the interaction but also on bipedal walking or motion control in general. Nevertheless, there is

also research in the area of socially interacting robots and in the development of emotion-based

control architectures.

FLASH

FLASH (Flexible LIREC Autonomous Social Helper) is a prototype social robot built in

the scope of the LIREC (Living with Robots and interactive Companions) project (European

Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement nº

215554).

It is a mobile-dexterous-social robot with two main purposes, (a) to serve as an integration

1http://www.alicebot.org
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platform of diverse technologies developed in LIREC; (b) enable experimental verification of

these technologies in social environments through HRI experiments.

Figure 1.4: FLASH (Image taken from Kȩdzierski et al., 2013).

FLASH is mounted on a balancing mobile platform, it is equipped with an expressive head

(known as EMYS) and two dexterous hands WANDA (Kȩdzierski and Janiak, 2012; Kȩdzierski

et al., 2013). It is able to communicate with people in verbal and non-verbal ways. Its head

serves to express emotions, by using facial expressions. Its hands are intended primarily to

perform simple gesticulation tasks, expressing emotions, but they may also be able to execute

basic object grasping.

The head EMYS (EMotive headY System) - is a “turtle” type head which can express 7 basic

facial expressions representing basic emotions like anger, disgust, fear, joy, sadness and surprise

(Kȩdzierski et al., 2013), by using the Facial Action Coding System (FACS). It is mounted on a

movable neck for purposes of objects searching, turning toward a user, and gazing.

Kobian

Kobian is a whole-body humanoid robot with interaction and bipedal walking abilities (See

Figure 1.5), this robot is a combination of the bipedal robot Wabian and the upper body

humanoid robot WE-4RII (Zecca et al., 2008).
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Figure 1.5: Kobian (Image taken from Endo and Takanishi, 2011).

Kobian has a mental model that allows the dynamical change of the emotional state based

on external stimuli. The robot’s behaviour is affected by it’s emotional state, which is displayed

with both facial expressions and whole-body patterns.

The robot is able to express six basic emotions (happiness, anger, disgust, fear, sadness

and surprise) and a neutral state using facial expressions Trovato et al. (2012), it’s whole body

(Zecca et al., 2008) and even differentiate two emotions (happy and sad) by it’s gait (Destephe

et al., 2013).

Although very advanced in it’s emotion expression capabilities, Kobian lacks perception

abilities, it is unable to detect and recognize human emotions. It’s vision system features only

an object tracker for interaction.

Barthoc

Barthoc (see Figure 1.6) was created to explore communication with humans.

It is able to recognize objects and grasp them, as well as execute instructions by communi-

cating with a human.

At the perception level, the robot is able to detect human faces by using vision and track them.

Additionally it can use voice detection to localize a person. The detection of human emotions

is performed by analysing speech from the person interacting with it. During communication
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Figure 1.6: Barthoc robot with no skin (Image taken from Spexard et al., 2007).

it is able to display emotions through speech by using its dialogue system and perform facial

expressions (Spexard et al., 2007).

1.2.4 Discussion

Today’s robots are still far from being social, i.e. from being able to interact with humans

in a natural and human-like way (Breazeal, 2003a; Fong et al., 2003). Needless to say that

non-verbal communication is an essential component for every day social interaction. For

example, we humans continuously monitor the actions and the facial expressions of our partners,

interpret them effortlessly in terms of their intention and emotional/mental state and use these

predictions to select adequate complementary behaviour (Blair, 2003; Frith and Wolpert, 2004).

Thus, two important (high level) cognitive skills which are missing and which would greatly

increase the acceptance by human users are the capacity of understanding human actions and

the capacity of understanding/interpreting facial expressions.

The work here presented aims to advance towards more fluent and natural human-robot

joint action. First one must understand what is joint action, and what it involves, in order for

this knowledge to be applied in a human-robot scenario.

Most of the presented robots, built to be social companions that have the ability to recognize

and express human-like emotions, are more focused on natural interaction and communication.

Both Kismet and MEXI have control architectures based in emotions and drives where the

goal is to interact with the human, in a communicative basis to satiate their drives, by reading

and expressing emotions. Even though Kismet has some object manipulation capabilities with
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small objects, MEXI has only a head which uses to communicate with the human. Kobian

implements also a similar behaviour with a need model, much similar to drives that influence its

behaviour towards a goal.

Affective social robots are beginning to emerge in the home consumer market. One proof of

this is the recent robot Pepper by Aldebaran Robotics2, a mobile humanoid robot that has voice

recognition technology for human-robot communication, as well as touch sensing and emotion

recognition capabilities using facial expressions and body language. Although its behaviour is

controlled using proprietary algorithms and not much information is available.

Additionally, other types of social robots exist, such as androids or medical therapy oriented

robots.

The main focus of the development of android robots is on the human-like appearance (e.g.

Geminoid (Sakamoto et al., 2007), Saya (Hashimoto et al., 2009) and Repliee (Minato et al.,

2004)). It is however, an aspect that may prove to be useful in the future of socially interactive

robots.

Robots developed for medical therapy are designed to be commercially available products for

hospital environments, and the development of a complex and stable architecture that creates a

truly socially interactive robot is expensive and dificult to achieve.

Our robot aims to read emotional cues from humans and apply them in a joint cooperation

task, adapting its behaviour to the perceived emotion in order to make the interaction during

the task execution more fluid. It has the advantage of being an anthropomorphic human sized

robot, with the ability to, in the context of the presented joint task, manipulate the same objects

that the human does and physically collaborate towards a common goal.

1.3 Automatic analysis of emotions and social signals

The human face is one of the most prominent mean of communicating and understanding

somebody’s affective state and intentions on the basis of the shown facial expression (Keltner

and Ekman, 2000). Given the significant role of the face in our emotional and social lives,

2http://www.aldebaran.com

13



Chapter 1. Introduction

it is not surprising that the potential benefits from efforts to automate the analysis of facial

signals are varied and numerous (Pantic and Bartlett, 2007; Zeng et al., 2009). As far as natural

interfaces between humans and machines are concerned, facial expressions provide a way to

communicate basic information about level of engagement, interest, puzzlement, and other

emotions and social signals to the machine (Pantic et al., 2008). Where the user is looking (i.e.,

gaze tracking) can be effectively used to inform the machine about the user’s current focus of

attention. Also, combining facial expression detection with facial expression interpretation in

terms of labels like “joyful”, “curious” and “bored” could inform the machine on the type of the

feedback/ change needed and it could be employed as a tool for monitoring human reactions

during web-based lectures, automated tutoring sessions, or robot-based sessions.

Because of its practical importance and the theoretical interest of cognitive and medical

scientists (Cohn, 2006; Ekman and Friesen, 1978), machine analysis of facial expressions, facial

affect and social signals, attracted the interest of many researchers. For exhaustive surveys

of the related work, refer to: Pantic and Rothkrantz (2000); Samal and Iyengar (1992) for

overviews of early works, Pantic and Bartlett (2007) for a survey of techniques for detecting

facial muscle actions, Gunes and Pantic (2010a); Zeng et al. (2009) for surveys of audiovisual

(facial and vocal) methods for affect recognition in terms of either discrete emotion categories

like happiness, anger, fatigue, etc., or affect dimensions like valence, arousal, expectation, etc.,

and Vinciarelli et al. (2012) for a survey on social signals processing.

Most facial expressions analysers developed so far, target human facial affect analysis and

attempt to recognize a small set of prototypic emotional facial expressions like happiness and

anger. Automatic detection of the six basic emotions (happiness, sadness, anger, disgust, fear

and surprise) in posed, controlled displays can be done with reasonably high accuracy. Also

detecting these facial expressions in the less constrained environments of human-computer

interaction has been recently explored (Gunes and Pantic, 2010b; Koelstra et al., 2010; Nicolaou

et al., 2011). Whilst the state of the art machine analysis of facial expressions is fairly advanced,

it does suffer from a number of limitations that need to be addressed if it is to be used with

freely moving subjects in a real-world environment. In particular, published techniques are still

unable to handle natural scenarios typified by incomplete information due to occlusions, large
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and sudden changes in head pose, and other temporal dynamics occurring in natural facial

behaviour (Zeng et al., 2009).

Body movement and posture are also predictors of affective states but they have been largely

neglected because of a lack of a commonly-accepted set of emotional descriptors. Yet, they

are accurate predictors of human affect (Ambady and Rosenthal, 1992). In fact, perception of

emotion has been shown to be often biased toward the emotion expressed by the body when

facial and body expressions are incongruent (Meeren et al., 2005), and this perception has been

shown to be robust even when cartoon-like characters or point-light displays are used (Pollick

et al., 2001). Yet, as in facial studies, most studies have focused on acted basic emotions and

stereotypical body movement (e.g. dance, for an overview of the state of the art, see Gunes and

Pantic (2010a)). Natural expressions are more subtle than basic and stereotypical expressions,

and approaches that rely on acted and often exaggerated behaviours typically fail to generalise

to the complexity of expressive behaviour found in real-world settings.

Finally, agreement between humans rating affective behaviour is greater when multiple

modalities are combined (Ambady and Rosenthal, 1992), and the dynamics of human behaviour

is crucial to their rating (Ekman and Rosenberg, 2005). When it comes to fusion of multi-

sensorial signals, past research has shown that this problem needs to be approached as the

general classifier fusion problem, where correlations between input data streams (visual, audio,

biophysical, etc.) are modelled while the requirement of synchronisation of these streams is

relaxed (Zeng et al., 2009). Past research has also indicated that the prediction of the input in

one data stream based on the input in other data streams may be a more robust and effective

approach to multi-sensorial signal interpretation than is the case with standard multimodal

data fusion (Petridis et al., 2010). However, in most of the published studies on multimodal

analysis of human affective behaviour, the input from each modality is modelled independently

and combined only at the final stage, which implements classifier fusion (i.e. decision-level data

fusion). Although some attempts to make use of correlation between multiple data streams

have been made, it remains unclear how to model the observed multimodal data on multiple

time scales and how to model temporal correlations within and between different modalities.
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1.4 User states

In order for human-robot interaction to be as natural and fluent as human-human interaction,

it is essential for the robot to perceive and understand the human’s current interaction and

affective state, as well as the human social signals, which are composed of multiple behavioural

cues (Vinciarelli et al., 2009).

A large part of research that aims to recognize the human state, is focused in recognizing

emotions (Cowie et al., 2001), usually, the six basic emotions defined by Ekman (1992). The

defined emotions, happiness/joy, anger, disgust, surprise, sadness and fear are described as being

universal across cultures (Ekman, 1971), which made these emotional states to be the most widely

used reference across studies in multiple fields of study such as psychology, human-computer

interaction or neuroscience.

Affective computing aims to develop computer interfaces that automatically detect and

react to a user expressed emotion. While traditional theory on emotion is often oriented for the

discrete basic emotions, these do not occur as often in interaction with a machine (Russell and

Barrett, 1999). Scherer et al. (2012) suggest the use of a set of labels defined by performing

human perception tests of realistic interactions, and having uninformed participants to report

what they perceive. The labels concern the user’s attitude towards the interaction or define the

current interaction state: (a) interested; (b) uninterested; (c) surprised; (d) embarrassment;

(e) impatient; (f) stressed; (g) negative; (h) positive; (i) disagreement.

D’Mello and Calvo (2013) question the use of basic emotions in affective computing, and

analysis on five studies is performed. The studies tracked basic and non-basic emotions, after

generalizing across tasks, interfaces, and methodologies what the results show is that engagement,

boredom, confusion, and frustration occur at five times the rate of basic emotions.

Steininger et al. (2002) define as user states the following labels: (a) joy/gratification

(being successful); (b) anger/irritation; (c) helplessness; (d) pondering/reflecting; (e) surprise;

(f) neutral. These are applied to the classification of user states in video analysis by trained

observers in the SmartKom project, which aims to develop an intelligent computer-user interface

that allows almost natural communication with an adaptive and self-explanatory machine, by
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using natural speech, gestures and facial expressions.

Adelhardt et al. (2003) presented a method based on neural networks for combining facial

expressions, gestures and voice into a user state recognition system. It uses three independent

networks to classify each of the inputs, face, sound and gestures and associates a label with each

one. The fusion of modalities is then performed by training a new network with all inputs to

produce a classification, instead of using the networks already created. However, in this process

the facial expressions module is discarded because of inconsistencies introduced in the classifier.

For instance, the production of sound “Ah!” by a confused user can be classified incorrectly as

joy.

More examples include the study by Shi et al. (2003) where three user states were defined to

classify the gestures made by a human: (a) determined; (b) negative; (c) hesitant; Or Asteriadis

et al. (2008) that defines user states based in eye gaze and head pose: (a) Frustrated/struggling

to read; (b) distracted; (c) tired/sleepy; (d) not paying attention; (e) attentive; (f) full of

interest.

Although the basic emotions are argued not to be an ideal set of user states for human-

machine interaction, they are less susceptible to subjective interpretation, and because they are

investigated across different fields (Ortony and Turner, 1990; Russell, 1994) offer a solid support

in literature, including neuroscience (Hamann, 2012; Vytal and Hamann, 2010). Hence, the

set of emotions comprised by the basic emotions (happyness, surprise, anger, sadness, fear and

disgust) offer solid reasons to choose them over other emotional states to be used in this work.

The focus is on – free floating – basic emotions that function as rapid appraisals of situations

in relation to goals, actions and their consequences (Oatley and Johnson-Laird (1987), for a

recent review see Oatley and Johnson-Laird (2014)).

1.5 Objectives and contributions of this thesis

This thesis extends the previous developed cognitive architecture for human-robot joint

action (Bicho et al., 2011a) by endowing the robot with the ability to detect and interpret

facial expressions, in order to infer the human emotional state. From the integration of reading
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motor intentions and reading facial expressions into the robot’s control architecture, the robot is

endowed with the required high level cognitive skills to be a more intelligent and socially aware

partner.

The information acquisition method used to provide the robot with the necessary information

is a vision system comprised of several modules, each responsible with the processing of different

types of information. A module was created to extract information about objects (type, position,

orientation), task state and gesture recognition. Another part of the system is responsible for

the analysis and extraction of information from a human face and classify it in accordance with

FACS. The developed vision system is also capable of classifying human movement (hands,

body and head).

The acquired information was integrated into the existing cognitive control architecture for

joint action by using the theoretical framework of DNFs. The architecture capabilities were

extended with the ability of understanding emotional facial expressions and human movement.

The results illustrate how the human emotional state influences various aspects of the robot

behaviour. It is shown how it influences the decisions that the robot makes, e.g. the same goal

directed hand action in the same context but with a different emotional state bias the robot

decisions. How the emotional state can have a role in the robot’s error handling capabilities,

specifically, how the same error is treated in different ways. Also, how the robot can use its

emotional expressive capabilities to deal with a human partner persisting in error. And finally,

how the human’s emotional state can influence the time it takes for the team to complete the

joint construction task.

The work developed during this thesis provided numerous contributions to the Human-Robot

Interaction field. The main contributions include:

• A humanoid robotic platform for HRI, that was used in studies on Human-Robot Joint

action (Bicho et al., 2011a);

• The participation on the European project JAST, considered one of the ICT “success

stories” (Bicho et al., 2012), was possible with the vision system developed for this work;

• An approach towards creating socially intelligent robots by endowing them with the ability
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to classify emotional states in a human-robot joint construction task (Silva et al., 2016).

1.6 Structure of the thesis

The remainder of the thesis is organized as follows: Chapter 2 will introduce the core

biological background used to support this work. How in the scope of joint cooperation, our

brain handles action understanding and intention detection, using the mirror neuron system,

and also how the same neural mechanism of mirror neurons exist for emotion recognition using

facial expressions.

In Chapter 3, the used theoretical framework is presented, this chapter will focus on how

Dynamic Neural Fields are used for behaviour representation and decision making, and how this

approach can be applied to cognitive robotics.

Chapter 4 contains a description of the developed cognitive architecture that controls the

robot ARoS. An overview of the previous work in this robot is presented and in further detail,

how the existing cognitive architecture was extended to cope with human emotion recognition

and its integration in human-robot joint action.

Chapter 5 describes the robotic setup used in this work, namely the task used for human-robot

joint action and a brief description of the robot.

Chapter 6 offers details on how the implementation of several features of the robot’s vision

system was accomplished. The robot’s vision system is able to extract information of the objects

it can manipulate, identify hand gestures and recognize emotional facial expressions.

Chapter 7 presents the experimental results accomplished with the robot in a joint construction

task, where the influence of the partners emotions in the robot’s behaviour is explored.

The thesis concludes in Chapter 8 with a discussion of the presented work and also some

developments for future work.
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Chapter 2

Background

Human-Robot Interaction (HRI) and joint action can greatly benefit from the recognition of

human face expressions, since robots are becoming more part of our daily lives, the ability of

understanding natural non-verbal human language will be an inevitable step in robotics research.

One of the most expressive means of communication is our face. Even unconsciously we

make and interpret facial expressions seamlessly, and engage in social interaction using this

information to better understand and make decisions during the interaction itself.

2.1 The role of emotions as a coordinating smoother in

joint action

Humans have a remarkable ability to perform fluent organization of joint action, achieved by

anticipating the motor intentions of others (Sebanz et al., 2006). In everyday social interactions,

humans continuously monitor the actions of their partners and interpret them effortlessly in terms

of their outcomes. These predictions are used to select adequate complementary behaviours,

and this can happen without the need for explicit verbal communication.

To achieve a useful and eficient human-robot collaboration, both partners are required to

coordinate their actions and decisions in a shared task. The robot must then be endowed with

some cognitive capacities such as action understanding, error detection and complementary
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action selection.

Classical accounts of joint action involve the notion of shared intentions, which require that

the participants have common knowledge of a complex, interconnected structure of intentions

and other mental states (see Bratman, 1992, 1993, 1997, 2009; Gilbert, 1990; Tuomela, 2005).

Individual participants’ actions within a joint action make sense in light of each other and in

light of a shared intention to which they are committed. An example of this is a group playing

music, each individual must be aware of the intentions of others so that its own actions make

sense.

The classical accounts of joint action are able to explain complex actions involving rational

deliberation and planning, and thus presupposes that participants in a joint action are capable of

rational deliberation and planning. These accounts are suitable to explain complex interactions

but fail to explain more simple cooperative tasks, presenting therefore a limitation. They can’t

explain joint action performed by non-human animals or young children, since these lack the

previously mentioned cognitive skills required (Michael, 2011).

In recent years there have been proposals of minimalist accounts of joint action that either

assume no shared intention is necessary or the participants do not require common knowledge of

each other’s intentions or other mental states, or the relations among the various participants’

mental states.

Tollefsen (2005) suggests a minimalist account for joint action where joint attention is

suficient as a substitute for common knowledge of an interconnected structure of intentions.

Joint attention involves two individuals attending to the same object or event, and being mutually

aware that the other is also attending to the same object or event.

Another model of a minimalist joint action states that the participants do not even require

to represent each other as intentional agents. The proposed model by (Vesper et al., 2010)

relies in three aspects that play a role in joint action:

• Representations: An agent represents its own task and the goal state, but not necessarily

any other agents’ task;

• Processes: Prediction (sensory consequences of himself or other agent) and monitoring

(identify errors);
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• Coordination smoothers: exaggeration of one’s movements to make them easier for the

other participant to interpret; giving signals, such as nods; and synchronization, which

makes partners in a joint action more similar and thus more easily predictable for each

other.

Even though there are multiple accounts that attempt to explain human-human joint action,

none of the above described accounts addresses the potential role of emotions as coordinating

factors in joint actions. Michael (2011) aims to fill this gap by showing how emotions, more

specifically shared emotions, can facilitate coordination in joint actions.

Before discussing how shared emotions can be used to facilitate coordination in joint action,

it is important to define the necessary conditions for a shared emotion. Supposing we have an

interaction between two agents A and B, two necessary conditions must be met in order for a

shared emotion to be considered as such:

• A expresses his affective state verbally or otherwise (facial expressions, posture, . . . );

• B perceives this affective state.

When these two conditions are satisfied we are in the presence of a shared emotion. Michael

(2011) discusses in more detail different varieties of shared emotions: (a) emotion detection;

(b) emotion/mood contagion; (c) empathy; (d) rapport.

From the various forms of shared emotions, the one that is most helpful in a human-robot

joint action scenario is the emotion detection, it occurs as a result of agent B perceiving agent

A’s emotional expression, as a consequence, B detects A’s emotional state. Emotion detection

can be used to facilitate coordination in joint action in three aspects:

• Facilitate prediction;

• Facilitate monitoring;

• Serve as signalling function.

Emotion detection can facilitate prediction in a joint action, lets imagine agent A expresses

an emotion in response to a certain action performed by agent B, if agent B detects this emotion

and agent A is aware of this detection, then, agent A can predict that the decisions made by

agent B will take into account its emotional state.

Regarding monitoring, a person’s emotional expressions can transmit information about how
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she appraises her progress toward the goal of her own task, or the group’s progress toward the

global goal of a joint action.

Emotion detection can also serve as signalling function, a positive emotional expression

such as a smile may signal approval of another participant’s action or proposed action, or the

continued presence of rapport within the group.

Emotional mechanisms can contribute to fast adaptation (allowing to have faster or slower

reactions), to resolve the choice among multiple conflicting goals, and through their external

manifestations, to signal relevant events to others (Cañamero, 2001).

In a context of human-robot joint action, the use of emotions can be beneficial for the team,

since the robot can harness more information about its partner (ex.: facial expressions, gesture

velocity and body movement), it is expected that the decisions that the robot makes take into

account not only the performed actions, but also the state of the partner, resulting in better

decisions. From the human perspective, collaborating with a robot that has emotion recognition

abilities could contribute to a less rigid interaction, making it more human-like and fluent.

Autonomous agents can benefit from the inclusion of emotions in their architectures as far

as adaptation is concerned (Cañamero, 2001). If the robot is able to interpret the user facial

expression in terms of its meaning, in the context of a joint task, it can select more appropriate

behaviours and actions to improve the interaction with the human.

In the context of this work the facial expressions displayed by the human, might not be

actual manifestations of an emotion, if the robot interprets a facial expression as sadness, it

does not mean that the human is actually feeling sad, this cannot be measured accurately by

the robot’s sensing capabilities, the human can be only displaying a communicational signal to

work with the robot. However, the interpretation that the robot makes of this expression, in the

context of the task, will have consequences in its behaviour and decisions.

In order to integrate emotion recognition into the robot architecture, in a way that is

biologically plausible, one must first investigate how humans understand emotions.
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2.2 Neuro-cognitive mechanisms underlying the understand-

ing of actions and emotions

Experimental evidence from behavioural and neurophysiological studies that investigate

action and perception in social contexts have shown that when we observe others’ actions, the

corresponding motor representations in our motor system become activated (Rizzolatti and

Craighero, 2004; Wilson and Knoblich, 2005).

Although the capacity that humans possess to understand an action could merely involve

visual analysis of that action, it has been argued that we actually map this visual information

onto our own motor representation in our nervous system (Rizzolatti et al., 2001). There are

two hypotheses that attempt to explain how action understanding works:

• The “visual hypothesis” - is based on a visual analysis of the different elements involved

in an action, and the motor system is not involved;

• The “direct matching hypothesis” - there is a mapping of the observed goal-directed

action onto our own motor representation of the same action.

Rizzolatti et al. (2001) and Ferrari et al. (2003) present experimental evidence that an action

observation/execution matching system does exist in primates, supported by the discovery of

mirror neurons.

Mirror neurons are a particular class of visuo-motor neurons originally discovered in area F5,

a sector of the ventral premotor cortex of monkeys (Gallese et al., 1996; Rizzolatti et al., 1996).

Area F5 is characterized by the presence of neurons that code goal-related motor acts such as

hand and mouth grasping (Murata et al., 1997; Rizzolatti et al., 1988, 2000).

Some of the cells present in area F5 are motor neurons, others also respond to visual stimuli,

some of them are activated by the presentation of three-dimensional objects, while others -

mirror neurons - require action observation for their activation (Rizzolatti et al., 2001). The

main functional characteristic of mirror neurons is that they become active both when the

monkey makes a particular action (for example, when grasping an object or holding it), and

when it observes another individual (monkey or human) making a similar action.
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A detailed review and discussion regarding the anatomical and functional organization of

the pre-motor and parietal areas of monkeys and humans, and also, how the mirror neuron

mechanism is involved in understanding the action and intention of others in imitative behavior

can be found in Rizzolatti et al. (2014).

Mirror neurons link action observation and execution, this neural mechanism allows for a

direct matching between the visual description of an action and its execution. Experiments have

shown that action observation is related to activation of cortical areas that are involved in motor

control in humans (Ferrari et al., 2003; Rizzolatti et al., 2001).

A goal-directed action is understood when its observation causes the motor system of the

observer to “resonate”. For instance, when we observe a hand grasping an object to place it

somewhere else, the same population of neurons that control the execution of “grasping to

place” movements becomes active in the observer’s motor areas (Rizzolatti et al., 2001).

It has been suggested that the functional role of the automatic action resonance mechanism

contributes to understanding the actions of other individuals during social interactions (Rizzolatti

and Craighero, 2004; Wilson and Knoblich, 2005). The observer performs an internal motor

simulation to predict the consequences of perceived actions using knowledge of his/her own

actions and motor intentions.

The control architecture for human-robot joint action implemented in the robot ARoS

(Anthropomorphic Robotic System), presented in Chapter 4, relies on neurocognitive principles

to endow the robot with some capacities present in biological nervous systems (Silva et al., 2016).

These capacities include memory, decision making, prediction and action understanding, which

are essential when a robot is interacting with another agent in the execution of collaborative

tasks (Erlhagen and Bicho, 2006).

One of the basis for this architecture is the existence in the human brain of so-called mirror

neurons in the pre-motor cortex (Ferrari et al., 2003; Rizzolatti et al., 2001). These authors

have reported how these neurons in a monkey brain responded in the same way to performing

an action and seeing another individual perform the same action (in this case, grasp an object).

Mirror neurons act as a link between action observation and action execution, which may explain

our ability to understand the motor behaviour of others.
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The robot’s architecture allows it to understand the actions of its partner by internally

simulating those actions, and because the robot knows how to execute them in a motor level, it

has the ability to understand those actions (Fogassi et al., 2005; Gallese et al., 2004; Rizzolatti

et al., 2001). This is plausible with the mirror neurons theory that correlates action execution

and action observation.

In the same way mirror neurons allow humans to use motor primitives not only to execute

actions in a task, but also understand those actions when they are performed by another

individual, exhibiting motor resonance (Newman-Norlund et al., 2007b; Rizzolatti et al., 1996),

there is also evidence the same happens with facial expressions associated with emotional states.

Imaging studies have shown that some areas in the brain that exhibit activity while observing

facial expressions associated to emotions, are also active during imitation of the same facial

expressions. This shows that there are common areas that are active during the observation and

execution of facial expressions associated to emotions. In particular, results suggest that the

right hemisphere premotor cortex may play a role in both the generation and the perception of

emotionally expressive faces, consistent with a motor theory of empathy (Leslie et al., 2004).

There is evidence that patients with Möbius Syndrome, who are congenitally incapable of

moving their facial muscles, seem to have dificulties in appreciating emotions conveyed by the

faces of others (Cole, 1999, 2001). This points to the existence of an emotional resonance

system in the brain associated with facial expressions (Ochsner and Gross, 2005), which in these

patients is impaired.

Ekman (1971) identified seven emotions that are recognized universally across cultures.

Studies that investigate the brain responses to emotional facial expressions use as stimulus,

images of emotions or other stimulus that lead to the emotions considered universal. It was

shown that each of the universal emotions is associated with a different brain activation pattern

(see Calder and Young, 2005; Carr et al., 2003; Kesler/West et al., 2001; Leslie et al., 2004;

Neta and Whalen, 2011; Sato et al., 2004; Schulte-Rüther et al., 2007; van der Gaag et al.,

2007).

However, the representation of emotions is not consensual, there are different approaches

that attempt to understand the nature of the basic units of emotion and whether these units
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are essentially dimensional or discrete (Russell, 2009).

Discrete emotion theories defend that there exists a limited number of distinct emotions each

with specific characteristic properties, as opposed to a continuum of emotional states (Barrett

et al., 2007). One view of discrete emotion theory, proposes a limited set of basic emotions

(happiness, sadness, anger, fear, disgust, and surprise (Ekman, 1971)) that are universal (across

cultures) and have unique physiological and neural profiles that distinguish them from one

another (Ekman, 1992; Ekman and Cordaro, 2011; Panksepp, 2007).

The dimensional theory, conceptualizes emotions as arising from combinations of more

fundamental dimensions, such as emotional arousal (strength or intensity of emotion) and

emotional valence (degree of pleasantness or unpleasantness), in combination with cognitive

processes, such as appraisal and attribution of meaning (Barrett, 1998; Gable and Harmon-Jones,

2010).

Dimensional theories of emotion rely in the mapping of emotions in two dimensions: valence

and arousal, the measure of these two dimensions is carried out measuring physiological signals

using more or less invasive methods. For example, facial electromyography can be used to evaluate

valence (Hazlett, 2006). Moreover, research in psychophysiology provides evidence that affective

arousal has a range of somatic and physiological correlates such as heart rate, skin moistness,

temperature, pupil diameter or respiration velocity (Cacioppo et al., 2000). Facial analysis using

vision was used and correlated with facial activity measured using Electromyography (EMG)

sensors to assess the user dificulty in completing a task (Branco et al., 2005, 2006).

It is however possible to represent the basic emotions in a valence-arousal space used by

dimensional models.

As depicted in Figure 2.1, instances of basic emotions can be represented in a dimensional

framework, for example, happiness induced by a beautiful sunset, in terms of variation along

affective dimensions (arousal and valence).

Although less intrusive sensors and wearable computers offer possibilities for less invasive

physiological sensing (Mann, 1997), the approach followed in this work was a completely

non intrusive approach (by using vision), and the discrete approach to emotions favours this

possibility.
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Figure 2.1: Representation of basic emotions within a dimensional framework (Image adapted

from Hamann (2012)).

Typically, in neuroscience related works that study emotions, the discrete universal emotions

suggested by Ekman (1971) are used, although, not all the emotions are used in a study, only

a part of them, to control complexity. Usually, brain responses to emotional face expressions

are compared to the brain responses of neutral facial expressions. Kesler/West et al. (2001)

presented a comparison of brain activations between images of anger, fear, sadness, happiness,

neutral and scrambled images and shows that there is a brain activation pattern associated with

neutral faces and faces associated to emotions.

Figure 2.2 shows the brain areas responsible for each of the tested emotional states. Each

coloured area in the image depicts the comparison between the emotional state tested and the

neutral response, except the neutral areas, where these are the comparison between the brain

response to a neutral face and the brain response to a scrambled image. The areas marked in

green are associated with face processing.

Kesler/West et al. (2001) have shown that the activation of the amygdala during neutral

face processing suggests that it might be responsible for the presence of faces per se. This is
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Figure 2.2: Brain areas associated with different emotional facial expressions. Green - neutral

versus scrambled; red - angry versus neutral; purple - fear versus neutral; yellow - happy versus

neutral; blue - sadness versus neutral (Kesler/West et al., 2001).
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consistent with single cell recording studies in monkeys that have shown face-selective neurons

in the amygdala (Leonard et al., 1985; Rolls, 1984).

van der Gaag et al. (2007) presents a more in-depth study on the role of mirror neurons in

the perception and production of emotional and neutral facial expressions. There is a differential

processing of neutral and emotional facial expressions in the brain, and shows that the brain

discriminates between neutral and emotional facial movements within specific brain regions in a

congruent manner. The understanding of other people from facial expressions is a combined

effort of simulation processes within different systems, where the somatosensory, motor and

limbic systems all play an important role (van der Gaag et al., 2007).

The simulation processes in these individual systems have been previously described in

literature (Gallese et al., 1996; Keysers et al., 2004; Wicker et al., 2003). Specifically, and

at a neuronal level, premotor mirror neurons might resonate the facial movement and its

implied emotion (Carr et al., 2003; Iacoboni et al., 2005), insula mirror neurons might process

the emotional content (Wicker et al., 2003), and somatosensory neurons might resonate

proprioceptive information contained in the observed facial movement (Keysers et al., 2004).

This process is coherent with current theories of facial expression understanding (Adolphs, 2006;

Carr et al., 2003; Leslie et al., 2004), pointing out that different brain systems collaborate

during the reading of facial expressions, where the amount and pattern of activation is different

depending on the expression being observed (more details in van der Gaag et al., 2007).

Studies in social psychology show that the perception of another person’s behaviour increases

the likelihood of engaging in that behaviour (Bargh et al., 1996). People have an unconscious

tendency to mimic the postures, behaviours, and facial expressions of the person with whom

they are interacting. There is good evidence, provided by neuroscience through measures of

electromyographic (EMG) activity, supporting that people imitate facial expressions of others

seamlessly and unconsciously (Dimberg and Thunberg, 1998; Dimberg et al., 2000).

The work by Leslie et al. (2004) shows results that are consistent with the existence of a face

mirroring system located in the right hemisphere (RH) part of the brain, which is also associated

with emotional understanding (Ochsner and Gross, 2005). Specifically, the right hemisphere

premotor cortex may play a role in both the generation and the perception of emotionally
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expressive faces, consistent with a motor theory of empathy (Leslie et al., 2004).

van der Gaag et al. (2007) presents a more in-depth study on the role of mirror neurons in

the perception and production of emotional and neutral facial expressions. There is a differential

processing of neutral and emotional facial expressions in the brain, and shows that the brain

discriminates between neutral and emotional facial movements within specific brain regions in a

congruent manner. The understanding of other people from facial expressions is a combined

effort of simulation processes within different systems, where the somatosensory, motor and

limbic systems all play an important role (van der Gaag et al., 2007).

The simulation processes in these individual systems have been previously described in

literature (Gallese et al., 1996; Keysers et al., 2004; Wicker et al., 2003). Specifically, and

at a neuronal level, premotor mirror neurons might resonate the facial movement and its

implied intention (Carr et al., 2003; Iacoboni et al., 2005), insula mirror neurons might process

the emotional content (Wicker et al., 2003), and somatosensory neurons might resonate

proprioceptive information contained in the observed facial movement (Keysers et al., 2004).

This process is coherent with current theories of facial expression understanding (Adolphs, 2006;

Carr et al., 2003; Leslie et al., 2004), pointing out that different brain systems collaborate

during the reading of facial expressions, where the amount and pattern of activation is different

depending on the expression being observed (more details in van der Gaag et al. (2007)).

Since the current robot’s architecture is biologically inspired, having in its foundations the

mirror system, the face categorization system implemented in the robot is also based in mirror

neurons, implemented using as a design tool the dynamical neural field theory, making it a

coherent choice with the existence of a face mirroring system, in the context of the developed

previous work.
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Theoretical framework of Dynamic

Neural Fields

Dynamic Neural Fields (DNFs) provide a theoretical framework to endow artificial agents

with cognitive capacities like memory, decision making or prediction (Erlhagen and Bicho,

2006; Schöner, 2008). DNFs are based on dynamic representations that are consistent with

fundamental principles of cortical information processing, implementing the idea that task-

relevant information about action goals, action primitives or context is encoded by means of

activation patterns of local populations of neurons.

DNFs can be used to build multi-layered models where each layer is formalized by one or

more DNFs. The basic units present in these models are local neural populations with strong

recurrent interactions that cause non-trivial dynamic behaviour of the population activity. One

important property that can be observed, is that population activity initiated by time-dependent

external signals may become self-sustained in the absence of any external input. This property

of the population dynamics behaves like an attractor state and is thought to be essential for

organizing goal-directed behaviour in complex dynamic situations, they allow the nervous system

to compensate for temporally missing sensory information or to anticipate future environmental

inputs.

In Chapter 4, a DNF based architecture for joint action will be presented, which is built as
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a complex dynamic system in which activation patterns of neural populations in the various

layers can appear and disappear continuously in time as a consequence of input from connected

populations and external sources to the network (e.g., vision, speech) and as defined by a field

dynamics.

3.1 Behaviour representation

The problem of knowledge representation in robotic systems can be addressed using two

distinct approaches. One approach follows a purely behaviouristic method, where the need for

knowledge representations can be discarded (Brooks, 1991). This approach can be applied to

a mobile robot by creating a simple set of rules that map input from sensory information to

output as motor actuation. Bicho et al. (2000) demonstrated how this approach can be used,

to endow with complex behaviours a robot with low computational power.

The other approach requires the use of some kind of knowledge representations to implement

processes that are part of more complex behaviours Bicho et al. (2010, 2011a), for example

memory or decision making. Memory is important for a system to be able to cope with the

absence of sensory information, while decision making becomes important in cases where the

sensory input provides ambiguous information.

Although, the simplicity and robustness inherent to the behaviour-based approach, makes it

appealing to robotics applications. In order to merge the advantages of the two approaches,

Engels and Schöner (1995) proposed a theoretical framework for creating control architectures

that takes advantage of memory and representations, grounded on principles underlying the

behaviour-based approach. The proposed framework uses artificial neuronal representations

where the behaviour of each of the neurons is controlled using a dynamical system.

3.2 The dynamic approach to cognitive robotics

The DNF approach is based in the work of Amari (1977), which presented an equation to

model cortical activations in neuronal tissue with lateral inhibition. Later, several works used
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this approach to model characteristics from human cognitive behaviour (Erlhagen and Schöner,

2002; Erlhagen et al., 1999; Spencer and Schöner, 2003).

Schöner et al. (1995), proposed an approach to plan and control the movement of an

autonomous mobile robot, by representing the navigational space around the robot with a

dynamic neural field. This proposal provided a base for a large number of applications in the field

of mobile robotics (Bicho, 2000; Bicho and Schöner, 1997; Bicho et al., 1998, 2000; Machado

et al., 2013; Monteiro and Bicho, 2002, 2008; Monteiro et al., 2004; Soares et al., 2007; Sousa

et al., 2012).

A dynamical neural field approach was used to synthesize higher level cognitive behaviours,

such as, action understanding and imitation (Erlhagen and Bicho, 2006; Erlhagen et al., 2006a,b).

Also, Erlhagen and Bicho (2006) used a dynamical neural field approach to synthesize higher

level cognitive behaviours, such as, action understanding and imitation.

Based on evidence on the anatomical fact that the largest contribution to cortical cells comes

from neighbouring excitatory cells, it has been suggested that the basic mechanism for cortical

information processing is in the form of recurrent interactions in populations of neurons (Douglas

et al., 1995). The recurrent interactions allow the system to amplify input values, while at the

same time exhibits some immunity to noise. It is also possible that internal self-stabilized states

can emerge, allowing the compensation of temporary absence of external stimuli.

The equation presented by Amari (1977) offers a way to model neuronal activation, and

presents characteristics like memory, where a self-stabilized peak is able to be maintained without

the need for external input.

Amari (1977) proposed that when a suficiently large number of neurons interact with each

other, an approximately homogeneous network along the cortical surface is formed, and can be

approximated to a continuous field of neuronal activation.

τ
δ u(x , t)

δ t
= −u(x , t) + S(x , t) + h +

�

w(x − x ′)f [u(x ′, t)] dx ′ (3.1)

Equation 3.1 describes the activity u(x , t) of a neuron at location x and time instant t (for

mathematical details see Erlhagen and Bicho, 2014).
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For simplicity, Equation 3.1 will be broken into parts, the first part is defined by:

τ
δ u(x , t)

δ t
= −u(x , t) + S(x , t) (3.2)

Equation 3.2 represents a dynamic linear system that relaxes at the input level, and acts as a

low-pass filter, u(x , t) = S(x , t). The parameter τ > 0 defines the time scale.

τ
δ u(x , t)

δ t
= −u(x , t) + S(x , t) + h (3.3)

In Equation 3.2 the term h is added, which is the resting level of the field dynamics, shown in

Equation 3.3. The resting level determines the global rate of inhibition and excitation. If h < 0

the system becomes immune to inputs with lower amplitudes, for example, noise induced in the

system, and requires that S(x , t) > h, in order for an input to be reflected in the field output.

This way, the system relaxes towards u(x , t) = S(x , t) + h.

Equation 3.3 is however, unable to generate interactions between neurons.
�

w(x − x ′)f [u(x ′, t)] dx ′ (3.4)

These interactions are what makes possible to select one activation peak when several inputs are

present (decision making), or to maintain an activation peak when the input removed (memory).

The integral term shown in Equation 3.4 achieves this, allowing to describe the process of

interaction as a weighted sum of the neighbouring neurons activations in the same layer.

Each neuron within a layer can either inhibit or excite other neurons, depending on their

distance (x − x ′). Typically, a neuron excites its closest neighbours and inhibits those that are

further away.

The intra-field interactions are implemented by using a kernel of lateral inhibition type

described by Equation 3.5:

w(Δ x) = A exp

�

−Δ x2

2σ2

�

− winhib (3.5)

where A > 0 describes the amplitude and σ > 0 the standard deviation of the Gaussian. The

inhibition (winhib > 0) is assumed to be constant, only suficiently activated neurons contribute

to interaction.
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w(Δx)

Δx

−winib

x0 xS

A

Figure 3.1: Symmetric synaptic weight function w(Δ x), Δ x = x − x ′, of center-surround type.

The synaptic weights are positive (‘excitatory’) for two cells x and x ′ that are closer to each

other than the distance x0 and are negative (‘inhibitory’) for larger distances. For Δ x > xS ,

inhibition strength is constant (−winhib).

The threshold f (u) is a sigmoidal function with slope parameter β and threshold u0, described

in Equation 3.6:

f (u) =
1

1 + exp[−β(u − u0)]
(3.6)

Function f (u) gives the firing rate of a neuron with activation value of u and it is responsible

for preventing neurons with activation bellow threshold u0 interfere in the field, by limiting

activation and preventing field destabilization.

The model parameters are adjusted to ensure that the field dynamics is bi-stable (Amari,

1977), allowing the attractor state of a self-stabilized activation pattern to coexist with a stable

homogeneous activation distribution, that represents the absence of specific information (resting

level - h). When the input (S(x , t)), to a local population is suficiently strong, the homogeneous

state loses stability and a localized pattern in the dynamic field evolves, however, weaker external

signals lead to a sub-threshold, input-driven activation pattern in which the contribution of the

interactions is negligible.

To represent and memorize simultaneously the location of several objects, and multiple

common subgoals, the spatial ranges of the lateral interactions in the field are adapted to avoid

a direct competition between different populations, enabling this field to support a multi-peak

solution. The updating of the memorized information is performed by defining a proper dynamics
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for the inhibition parameter, h, of the population dynamics (Bicho et al., 2000).

The summed input from connected fields ul is given as Si(x , t) = k
�

l Sl(x , t). The

parameter k scales the total input to a certain population relative to the threshold for triggering

a self-sustained pattern. This guarantees that the inter-field couplings are weak compared to

the recurrent interactions that dominate the field dynamics (for details see Erlhagen and Bicho

(2006)). The scaling also ensures that missing or delayed input from one or more connected

populations will lead to a subthreshold activity distribution only. The input from each connected

field ul is modelled by a Gaussian function described in Equation 3.7:

Sl(x , t) =
�

m

�

j

amjcl(t)exp

�

−(x − xm)2

2σ2

�

(3.7)

where cl(t) is a function that signals the presence or absence of a self-stabilized activation

peak in ul , and amj is the inter-field synaptic connection between subpopulation j in ul to

subpopulation m in ui . Inputs from external sources (e.g. vision) are also modelled as Gaussians.

ul(y)

ui(x)

y

x

yj

xm

amj

Figure 3.2: Schematic view of the input from a population j in layer ul that appears to be

activated beyond threshold level to a target population m in ui . The solid line in each graphic

represents the field activation and in the bottom graphic in a dashed line the input from

connected field ul .

As an example, Figure 3.2 shows the input from a connected population uj in layer l

connected to a target population m in layer ui , modelled by a gaussian function. This input

is applied whenever the activation in population j is above the threshold for a self-stabilized

activation peak.
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The Amari neural field model has a set of properties that allows to implement several

behaviours useful in intelligent agents, such as memory, forgetting and decision making (Bicho,

2000; Bicho et al., 2000).

Detection

This property makes it possible for the output field to produce only one decision (stable

peak), when the input is strong enough, presenting this way an immunity to noise at the

entrance. The noise immunity is achieved by using the resting level parameter tuned to h < 0,

this way, the interaction will produce results, only when the input is greater than the resting

level (S(x , t) > h) and is present during a suficient amount of time. When these conditions are

met, the activated neurons will excite the neighbours producing a sustained peak and inhibit the

rest of the field.

x

u(x , t)

(a) No detection.

x

u(x , t)

(b) Detection.

Figure 3.3: Example of an input to a field with and without detection. In 3.3a the input (dashed

line) is not strong enough to form an activation, while in 3.3b the input caused an activation

peak.

Figure 3.3 shows two examples of inputs and their consequence on the field. Figure 3.3a

shows an input S(x , t) (dashed line) that is not strong enough to form an activation peak,

hence, the field (solid line) converges to u(x , t) = h + S(x , t). In Figure 3.3b the presented

input S(x , t) is suficiently strong for the field activity u(x , t) (solid line) to go above the zero

threshold and form a self-sustained activation peak.
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Memory

Another important cognitive capacity is memory. Transposing this to dynamic neural fields,

memory would be equivalent to a field to maintain an activation peak even after the input that

originated is removed. This capacity is achieved by tuning the kernel parameters (w) and the

resting level (See Erlhagen and Bicho, 2006, for a more in depth analysis).

The critical value for the resting level is given by:

− h < Wmax = max
x

�

w(Δ x)dx (3.8)

x

u(x , t)

(a) Input present.

x

u(x , t)

(b) Input absent.

Figure 3.4: Example of a self-sustained activation peak that persists even when the input is

removed.

The implementation of a working memory function is achieved through the existence of

self-stabilized activation patterns. Figure 3.4 depicts an example of memory implemented in

dynamic neural fields. Figure 3.4a shows an input (dashed line) triggering a self-sustained

peak in the field activity (solid line), next Figure 3.4b shows the activation (solid line) being

maintained active even when the input was removed.

Forgetting

Forgetting is as important as memory. In case of occlusion of objects, its important to

retain a representation of it even if the input is not there. However, this representation should

not remain indefinitely, since the locations of objects in the world is dynamic, its important to
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have the ability to forget, after some time, in order not to take the risk of relying in incorrect

information. If an object is occluded and after the occlusion the object is no longer in the same

location, the robot must forget its former representation, and be ready to create an updated

representation of objects present in the environment.

The critical value for the resting level is given by:

h < −Wmax = −max
x

�

w(Δ x)dx (3.9)

x

u(x , t)

−Wmax

(a)

x

u(x , t)

−Wmax

(b)

Figure 3.5: Example of a self-sustained activation peak that persists in the absence of input but

tends to disappear after a certain time.

Figure 3.5 depicts an example of forgetting. Figure 3.5a shows a self-sustained peak in the

field activity (solid line), but as time goes by, the activation ceases to exist (Figure 3.5b).

Decision making

The process of decision making is important to handle multiple activation peaks at the

field input, when at the output only one peak is expected. The Amari field model implements

this process in the equation kernel. The gaussian kernel enables activated neurons to excite

neighbours and inhibit the rest of the field, which produces a competition process between the

multiple inputs where the strongest prevail over the weakest (see Figure 3.6).

However, if there are pre-activations at the input, these will also affect the decision making

process. Additionally, inputs at locations with pre-existing activations will have greater chances

of winning the competition process even if they are weaker than others (see Figure 3.7).
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x

u(x , t)

(a) Initial condition.

x

u(x , t)

A B

(b) Decision.

Figure 3.6: Decision making with two inputs of different strengths without any preshape in the

initial conditions.

x

u(x , t)

A B

(a) Initial condition.

x

u(x , t)

A B

(b) Decision.

Figure 3.7: Decision making with two inputs of different strengths with a preshape in the initial

conditions that favour position A.
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The existence of a single, self-stabilized pattern of activation in a dynamic field is closely

linked to decision making.
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Chapter 4

Emotion aware robot control

architecture for human-robot joint

action

The developed architecture, at its core, is heavily inspired by experimental and theoretical

findings about the neurocognitive mechanisms underlying joint action in humans (Bekkering et al.,

2009; Sebanz et al., 2006). It endows the robot with some cognitive and social capacities present

in biological nervous systems like memory, decision making, prediction, action understanding and

goal inference (Erlhagen and Bicho, 2006). Previous work, on the cognitive control architecture

for human-robot joint action (Bicho et al., 2011b,a), served as a basis for this work.

4.1 Cognitive architecture for human-robot joint action

The architecture implements a flexible action planning and decision formation in cooperative

human-robot interactions, that take into account the inferred goal of the partner and other task

constraints. This is supported by experimental evidence on the notion that a close perception-

action linkage provides a basic mechanism for real-time social interactions (Newman-Norlund

et al., 2007b; Wilson and Knoblich, 2005). Action observation leads to an automatic activation
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of motor representations that are associated with the execution of the observed action, this

resonance of motor structures supports an action understanding capacity (Blakemore and Decety,

2001; Fogassi et al., 2005; Rizzolatti et al., 2001). However, neuroimaging and behavioural

studies provide evidence that goal and context representations may link an observed action to

a different but functionally related motor response (Newman-Norlund et al., 2007a; van Schie

et al., 2008), demonstrating that the mapping between action observation and action execution

is much more flexible than previously thought.

A neurodynamics approach based on the theoretical framework of Dynamic Neural Fields

(DNFs) (Erlhagen and Bicho, 2006, 2014; Schöner, 2008) was used for design and implementa-

tion.

Bicho et al. (2010, 2011a) provides more details about the functional role of the different

layers and discusses the flow of information between layers with respect to experimental findings

that have inspired this work. Each layer of the architecture is composed of one or more than

one dynamical neural field with multiple neural populations that represent relevant information.

The architecture implements a context dependent mapping between an observed action

and an executed action (Erlhagen et al., 2006a; Poljac et al., 2009; van Schie et al., 2008).

The mapping occurs at the level of abstract motor primitives defined as whole object-directed

motor acts like reaching, grasping, placing, attaching or plugging, which encode the motor act

in terms of an observable end state or goal rather than in terms of a detailed description of the

movement kinematics (Rizzolatti and Craighero, 2004; Schaal, 1999).

Experimental results in several human-robot scenarios (Bicho et al., 2011b,a, 2012) have

demonstrated that the robot is able to participate in cooperation tasks with a human. However

the interaction was done only through the detected hand goal directed actions. The robot only

takes into account the human’s hands regarding the motor intentions, this poses a limitation to

the interaction.

To achieve a more natural and fluent interaction, the robot must be able to harness more

information about his partner. The natural evolution for the architecture developed for action

understanding in joint tasks is to take into account the human’s emotional state. Because it

may convey important information about the underlying intention, and because it must also
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Error Monitoring Layer
(EML)

Action Observation Layer (AOL)

R1 R2 G1 G2 P1 P2H

Intention Layer (IL)

I1 I2 I3 I4

Object Memory 
Layer (OML)

n1 n2 n3

n1 n2 n3

Motor control

Current
state

Common Sub-Goals 
Layer (CSGL)

Reaching Grip Type PointingHold nut Past
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Action Simulation Layer (ASL)
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Action Execution Layer (AEL)
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Figure 4.1: Schematic view of the cognitive architecture for joint action. It implements a flexible

mapping from observed hand and facial actions (AOL) onto complementary actions taking into

account the inferred goal (IL), detected errors (EML), contextual cues (OML) and shared task

knowledge (CSGL). The goal inference capacity is based on motor simulation (ASL).
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interfere in the selection of a more appropriate complementary action.

Figure 4.1 presents a sketch of the multi-layered robot control architecture, it reflects

neurocognitive mechanisms that are believed to support human joint action (Bekkering et al.,

2009) and emotional facial expressions (Carr et al., 2003; Iacoboni et al., 2005; Wicker et al.,

2003). Each layer contains several neural populations encoding information relevant for the

joint assembly task presented in Chapter 5. Every population can receive input from multiple

connected populations that may be located in different layers.

Ultimately, the architecture implements a context-dependent mapping between observed

action and executed action (Erlhagen et al., 2006a; Poljac et al., 2009; van Schie et al., 2008).

The fundamental idea is that the mapping takes place on the level of abstract motor

primitives defined as whole object-directed motor acts like reaching, grasping, placing, attaching

or plugging. These primitives encode the motor act in terms of an observable end state or

goal rather than in terms of a detailed description of the movement kinematics (Rizzolatti and

Craighero, 2004; Schaal, 1999). Also, there is evidence of premotor mirror neurons that might

resonate the facial movement and its implied intention (Carr et al., 2003; Iacoboni et al., 2005).

4.2 Combining intention and emotional state inference in

a control architecture for human-robot joint action

Figure 4.2 presents a sketch of the multi-layered robot control architecture, modified to cope

with the extra information extracted from the human that will be incorporated into the robot’s

decision making mechanisms.

The cognitive architecture used in this work has its core in the work presented by Bicho et al.

(2011b,a), where only hand actions have been considered. In the work here reported, additional

layers have been added to reflect the extra information - e.g. observed facial actions - used by

the robot in its distributed decision making process. That is, the inferred partner’s emotional

state, inferred goal and selection of an adequate complementary behaviour. The latter includes

selection of an appropriate goal-directed hand-action and facial action sets to be performed and

48



Chapter 4. Emotion aware robot control architecture for human-robot joint action

Action Execution Layer (AEL)

Action Simulation Layer (ASL)

Error Monitoring Layer
(EML)

Action Observation Layer (AOL)

R1 R2 G1 G2

P1 P2H

Intention Layer (IL)

I1 I2 I3 I4

Object Memory 
Layer (OML)

n1 n2 n3

n1 n2 n3

Motor control

Current
state

Common Sub-Goals 
Layer (CSGL)

Reaching Grip Type

PointingHold nut

Past

Present

C1 C2 C3

C1 C2 C3

Robot workspace

Human workspace

Emotional State Layer (ESL)

E1 E2 E3

Face Detect

Eyebrows

Eyes

Mouth

5 7

12 15

F

1 2 4

ASHA - Action simulation of 
(goal-directed) hand actions

ASFA - Action simulation of
(emotion-directed) facial actions

A1 A2 A3

E1 E2

E1 E2

E1 E2

Execution

Means

Intention

F1 F2 F3

F1 F2 F3

AEHA – Action execution of
(goal-directed) hand actions

AEFA – Action execution of
(emotion directed) facial actions

Speech synthesis

QoM Hand QoM Body

QoM Head

L M L M

L M

A4 A5 A6 A7 A8 A9 F4 F5A10 A11

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 F4 F5

Vision system

Hand
localization

Gesture
recognition

nbject
localization

nbject
recognition

H

H

H

I5

Facial 
actions

Head 
movement

Hand 
movement

Body 
movement

Figure 4.2: Schematic view of the emotion aware cognitive architecture for joint action. It

implements a flexible mapping from observed hand and facial actions (AOL) onto complementary

actions and emotional expressive faces (AEL) taking into account the inferred goal (IL), the

inferred emotional state of the partner (ESL), detected errors (EML), contextual cues (OML)

and shared task knowledge (CSGL). The goal and emotional state inference capacity is based

on motor simulation (ASL).
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displayed by the robot.

Bicho et al. (2010) provides details on the schema of the hand-coded connections for the

concrete assembly task, offers an overview about the functional role of the different layers and

discusses the flow of information between layers with respect to experimental findings that have

inspired this work.

An observed hand movement that is recognized by the vision system as a particular primitive

(e.g., top grip or side grip) is represented in the Action Observation Layer (AOL). This layer

incorporates also neural populations that code facial actions identified by the vision system (eyes,

eyebrows and mouth), as well as a qualitative quantification of the movement of the hand, head

and body.

Additionally, there is a DNF with a single neuronal population that represents the presence

of a face in the vision system, this population exhibits activation whenever a human face is

detected. The presence of a face is encoded in this manner and represents face-selective neurons

that exist in the human brain that were shown to exhibit activation when a face is present

(Kesler/West et al., 2001; Leonard et al., 1985; Rolls, 1984), even in a neutral emotional state,

exhibiting no emotion at all. Moreover, this encoding will prove useful to subsequent layers of

the architecture to handle vision errors, since, if Action Units (AUs) are being detected without

the presence of a face, this information will be discarded, and allows us to be aware that a

human is present even when not expressing any emotion at all.

The Action Simulation Layer (ASL) implements the idea that by automatically matching the

co-actor’s hand and facial actions onto its own sensorimotor representations without executing

them, the robot may simulate the ongoing action and facial expression and their consequences.

ASL consists of two DNFs layers. One DNF with neural populations representing entire chains

of hand action primitives that are in the motor repertoire of the robot (e.g., reaching-grasping-

placing or reaching-grasping-holding out) - named Action Simulation of Hand Actions (ASHA)

layer. The other DNF with neural populations representing facial action sets (e.g., lift eyebrows

- open mouth - express surprise) - named the Action Simulation of Facial Actions sets (ASFA)

layer.

In case of goal-directed hand actions, the chains are linked to neural representations of specific
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goals or end states (e.g., attach wheel to base) which are represented by neural populations in

the Intention Layer (IL). Facial action sets are linked to specific emotional states represented in

the Emotional State Layer (ESL). This layer has influence in the IL, since an emotional state

can play a role in identifying an intention.

If a chain (in ASL) is activated by observation of its first motor act, the observer may be able

to predict future motor behaviour and the consequences of the whole action sequence before its

complete execution, effectively inferring the partner’s motor intention ahead of time. However,

in some situations the observation of the first motor act per see, might not be enough if the

motor act being observed is part of multiple chains. Likewise, a single facial action unit may

by part of several different facial expressions. In order to disambiguate, additional contextual

information is required to be integrated into the inference process (Erlhagen et al., 2007).

The Object Memory Layer (OML) that represents the robot’s memorized knowledge about

the location of the different objects in the two working areas, plays a key role.

Another important source of information, vital to the success of the task is the shared task

knowledge about the possible sequences of sub-tasks (e.g. assembly steps in a joint assembly

task). This information is provided by the Common Sub-Goals Layer (CSGL), which contains

neural populations representing the subgoals of the task (e.g. individual assembly steps) that are

currently available for the team. The connections between these populations encode subsequent

assembly steps (for an example of how these connections could have established through learning

by demonstration and tutor’s feedback see (Sousa et al., 2015)).

In case of an assembly task, the sugoals are continuously updated in accordance with the

assembly plan based on visual feedback about the state of the construction and the inferred goal

of the co-actor (represented in the IL). Neurophysiological evidence suggests that in sequential

tasks distinct populations in Pre-Frontal Cortex (PFC) represent already achieved subgoals and

subgoals that have still to be accomplished (Genovesio et al., 2006). In line with this finding,

CSGL contains two connected DNF layers with population representations of past and future

events. The connections linking the neural populations in one DNF to the other DNF encode

the different serial order of sub-goals of the task (see Sousa et al. (2015) for how these can be

learned by tutors demonstration and feedback).
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The Action Execution Layer (AEL) contains populations representing the same goal-directed

action sequences and facial actions sets that are present in the ASL. Each population in AEL

integrates inputs from the IL, ESL, OML and CSGL to select among all possible actions the

most appropriate complementary behaviour. Specifically, the ESL (representing the inferred

co-actor’s emotional state) contributes to the selected emotional state to be expressed by the

robot. The mapping from ESL to AEL implements some aspects of shared emotions in joint

action (Michael, 2011). For example, if the human is in a positive state (Happy) the robot

expresses also a Happy expression. This effect is known as emotion contagion and occurs when

one person’s perception of another person’s emotional expression can have effects that are

relevant to an interaction, if the perceiver thereby enters into an affective state of the same

type (Michael, 2011).

In fact, one important way in which emotion contagion can function as a coordination

smoother within joint action is by means of alignment. A key benefit of alignment is manifested

by the likelihood of the increase in the participants’ motivation to act jointly, since people tend

to find other people with similar moods to be warmer and more cooperative, and prefer to

interact with them (Locke and Horowitz, 1990).

The implemented context-sensitive mapping from observed actions on to-be executed

complementary actions guarantees a fluent team performance if no errors occur (Bekkering

et al., 2009). However, if an unexpected or erroneous behaviour of the partner occurs, neural

populations in the Error Monitoring Layer (EML) are sensitive to a mismatch on the goal level,

on the level of action means to achieve a valid sub-goal, and on the level of motor execution.

This allows the robot to detect errors in human’s intention and/or action means to achieve a

sub-goal, and execution errors (e.g. a piece the robots was moving falls down), and thus allows

the robot to eficiently cope with such situations.

The ESL is implemented as a dynamical neural field with different neural populations, where

each of the populations represent an emotional state (Anger, Disgust, Fear, Happiness, Neutral,

Sadness and Surprise).

Figure 4.3 depicts the implementation of the ESL, with the distribution of the different neural

populations and an example of an emotional state being active. Here the ’State’ axis attempts
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Figure 4.3: Emotional State Layer (ESL).

to represent the emotional valence associated with each emotion as being positive or negative

according with the literature (for a review see: Hamann, 2012). This representation allows to

define an order in which to place neural populations that represent each of the emotional states.

The ESL also plays a role in influencing the EML, implementing some aspects of shared

emotions in joint action. Michael (2011) talks about the various types of shared emotions

present in joint action tasks. One of the types of shared emotions used in our work is the

emotion detection, which can facilitate prediction and monitoring of the partner’s actions, and

can also act as a signalling function.

For example, a positive emotional expression, such as a smile, may signal approval of another

participant’s action or proposed action (Michael, 2011). This way in our joint task, if the human

partner is in a positive (e.g. Happy) emotional state, this might mean she/he is committed

and engaged in the task, and thus it is not the probable that partner will make errors. In this

situation, the processing of the DNFs detecting errors in action means and intention are disabled,

since this allows to decrease the computational efforts of the robot’s decision making processes,

and hence the time it takes to select a complementary action is accelerated. In addition, if the

human is in a positive emotional state, it means that she/he is comfortable with the robot and

therefore one can increase the robot’s movement velocity. Altogether this allows for the joint
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task to be completed in less time.

Reversely, if the robot infers the human is in a negative emotional state (e.g. Sad), then

it might be that the human is (also) not fully committed in the task and hence can be more

prone to errors. The detection of a negative emotional state is used as a signal to activate

the full processing of the EML. This is consistent with the modelling study by Grecucci et al.

(2007), who proposed a computation model of action resonance and its modulation by emotional

stimulation, based on the assumption that aversive emotional states enhances the processing of

events. This way, the robot is fully alert to all types of errors that can occur during the execution

of the task, being able to anticipate them, and act before they occur. This is fundamental for

eficient team behaviour.

Through direct connections to the AEL, population activity in the EML may bias the robot’s

planning and decision process by inhibiting the representations of complementary actions normally

linked to the inferred goal and exciting the representations of a corrective response. In order to

eficiently communicate detected errors to the human partner a corrective response may consist

of a manual gesture like pointing or a verbal comment to attract the partners’ attention (Bicho

et al., 2010).

Finally, it is important to highlight the connections from the ESL to both the AEL and

Motor control. These connections implement the idea that perceived emotions play an important

role not only in an early stage, during decision making and action preparation (AEL) of a

complementary action, but also latter may affect the execution at the kinematics level (Motor

control). This is motivated by recent studies in neuroscience by Ferri et al. (2010b,a), who

have investigated the link between emotion perception and action planning & execution within

a social context. In summary, they have demonstrated that assisting an actor with a fearful

expression requires more smooth/slow movements, compared to assisting an actor with a positive

emotional (e.g. happy) state.

In the different layers of the architecture subpopulations – encoding different hand action

chains (ASHA), facial action sets (ASFA), goals (IL), complementary goal directed hand

actions (Action Execution of Hand Actions (AEHA)), complementary facial actions (Action

Execution of Facial Actions sets (AEFA)) and detected errors (EML) – interact through lateral
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inhibition. These inhibitory interactions lead to the suppression of activity below resting level in

competing neural pools whenever a certain subpopulation becomes activated above threshold.

The population for which the summed input from connected populations is highest wins the

competition process.

55



Chapter 4. Emotion aware robot control architecture for human-robot joint action

This page was intentionally left blank.

56



Chapter 5

The robotic setup

To test the dynamic neural field architecture for human-robot collaboration a joint assembly

paradigm was chosen in which, the team has to construct a ’toy vehicle’ from parts that are

initially distributed on a table (see Figure 5.1).

The robotic setup used in this work was composed of an anthropomorphic robot performing

a the joint construction of the toy vehicle with a human.

5.1 Joint construction task

The toy vehicle is a mockup of a mobile robot, composed of three sections. The lower

section consists of a round platform with an axle on which two wheels have to be attached and

then fixed with a nut (see Figure 5.2).

In the middle section, four columns that differ in their colour have to be plugged into specific

holes in the platform (see Figure 5.3).

Finally, at the top section, the placing of another round object on top of the columns finishes

the task (see Figure 5.4).

The parts have been designed to facilitate the workload of the vision and the motor system

of the robot.

The working areas of the human and the robot do not overlap, the spatial distribution of the

parts on the table obliges the team to coordinate handing-over sequences. It is assumed that
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Figure 5.1: Anthropomorphic robot ARoS and the scenario for the joint construction task.
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(a) Base.

(b) Wheel.
(c) Nut.

Figure 5.2: Objects that are part of the lower section of the toy vehicle.

(a) Column 1. (b) Column 2. (c) Column 3. (d) Column 4.

Figure 5.3: Objects that are part of the middle section of the toy vehicle.

Figure 5.4: Object part of the top section of the toy vehicle: Top Floor.
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each team mate is responsible to assemble one side of the toy, although, some assembly steps

may require that one actor helps the other by holding still a part in a certain position. Both the

human and the robot perform the same assembly actions.

Left Nut

Left Nut

Left Nut

Right Nut

Right Nut

Right Nut

Right Wheel

Right Wheel

Right Wheel

Left Wheel

Left Wheel

Left Wheel

Column 1 Column 2

Column 3

Column 4

Top Floor

Figure 5.5: Construction plan for the Toy Vehicle.

It is assumed that both partners know the construction plan (see Figure 5.5) and keep track

of the subtasks which have been already completed by the team. Since the desired end state

does not uniquely define the logical order of the construction, at each stage of the construction

the execution of several subtasks may be simultaneously possible.

The main challenge for the team is thus to eficiently coordinate in space and time the

decision about actions to be performed by each of the team mates. The task is complex enough

to show the impact of goal inference, emotional state inference, action understanding and error
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monitoring on complementary action selection.

5.2 Anthropomorphic robot: ARoS

The robot ARoS (Anthropomorphic Robotic System) used in the experiments has been built

in our lab (Silva et al., 2008). The robot consists of a stationary torus, on which a 7 Degrees

Of Freedom (DOFs) AMTEC arm (Schunk GmbH) with a 3-fingers dexterous gripper (Barrett

Technology Inc.), a stereo camera rig mounted on a pan-tilt unit, a PS3Eye camera with an

adapted lens, are mounted.

The robot’s body was designed from scratch to hold all components and to give the robot

its anthropomorphic form. An anthropometric study (Drillis and Contini, 1966) was used to

determine the measures of the body relatively to the arm, in order to have correct anthropometric

proportions.

In addition, the robot has a monitor located on the chest, which is used to produce expressive

faces in order to improve interaction with the human. The expressive faces the robot is able

to produce, are performed using the same facial action primitives (Action Units) that can be

recognized by the vision system. A speech synthesizer (Microsoft Speech SDK 5.1) allows the

robot to communicate the result of its reasoning to the human user.

5.2.1 Manipulation: Arm & Hand

The execution of a complimentary hand action resulting from a robot’s decision is translated

into a fluent, smooth and collision-free arm trajectory. The robot has a motor repertoire of

goal-directed movements that can consist of a simple pointing towards an object or more complex

movements such as grasping an object with a certain grip.

For the control of the arm-hand system a global planning method in posture space was

applied that allows us to integrate optimization principles derived from experiments with humans

(Costa e Silva et al., 2015).

The generation of complete temporal motor behaviours of the robotic arm and hand was
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achieved using an approach that draws inspiration from the posture model by Meulenbroek et al.

(2001); Rosenbaum et al. (2001). It enables the generation of different types of human-like

movements such as reaching, grasping and manipulation of objects, and also incorporates an

obstacle avoidance mechanism. It was first proposed to be used in 2D movements and was later

expanded to 3D workspaces (Vaughan et al., 2006).

The planning of movements for the arm is performed in joint space, instead of cartesian

space, where the overall problem is divided into two sub-problems: end posture selection and

trajectory selection. The planning system first selects a goal posture for the arm that satisfies

two conditions: (a) The object is grasped without any collision with the robot’s body or other

object; (b) The displacement costs from the beginning to the end are minimized. This selection

process is formalized as a non-linear constraint optimization problem (Costa e Silva et al., 2011),

and numerically solved taking into account the information about the object: type, position and

orientation (provided by the vision system) and how the object will be grasped (grip type and

hand orientation relative to the object). Afterwards, the trajectory is generated by computing

a sequence of position, velocity and acceleration in time from the initial posture to the final

posture of the movement, for each of the 10 joints that compose the system arm and hand.

The trajectory selection applies the minimum jerk principle (Flash and Hogan, 1985),

generating joint movements that follow a bell-shaped velocity profile. This trajectory defines the

direct movement required to perform the action specified, without checking for possible collisions

with intermediate obstacles or the object to be grasped. The collision detection is performed by

internally simulating the movement execution (from start to end) with direct kinematics. When

no collisions are anticipated, the movement is executed, otherwise an alternative trajectory must

be found. To plan a trajectory that enables the movement to be executed with no collisions,

the system selects a suitable bounce posture for this purpose.

The bounce posture is a back-and-forth movement superimposed on the previously selected

direct movement. It is determined by solving a constrained optimization problem, similar to the

one applied for the end posture. Acting as a subgoal for the movement, the bounce posture

modifies the resulting path, but preserves the desired initial and end postures, enabling a collision

free movement.
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The generated movement is composed of a sequence of joint positions and time interval,

these are sent to the low level controllers present in the arm and hand, which guarantee the

execution of the multiple iterations to perform the movement.

The planning system generates collision free robot motion that is perceived by the human

user as smooth and goal-directed.

5.2.2 Vision: Neck & Eyes

The vision system is composed of two independent systems, that provide distinct information.

The first system (see Figure 5.6) is a stereo camera rig mounted on a pan-tilt unit and

provides information about objects (type, position and orientation), hands (position, velocity,

and classification of static hand gestures such as grasping, and communicative gestures like

pointing) and the state of the construction task.

(a) Pan-Tilt unit.
(b) Stereo camera rig.

Figure 5.6: Stereo vision system (not to scale).

The second system is composed of a single camera (Figure 5.7a) with an adapted lens

(Figure 5.7b). This camera, even though its not an industrial camera, offers a high performance

acquisition (60 fps), unlike the majority of webcams on the market at the time. The used lens,

replaces the camera’s stock lens and enables us to adjust the camera field of view and create an

image focused on the human face that maximizes the information that can be extracted from

the face.

The second system provides information about the facial expressions and head movements
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(a) PSEye camera.

(b) Vari-focal m12

lens, 2.8-12mm.

Figure 5.7: PSEye camera and lens (not to scale).

of the human interacting with the robot.

5.2.3 Expression of emotional states

Equipped on the chest is a VGA LCD monitor. This monitor is used by the robot to

display an emotive (cartoon like) face to help in the interaction with the human. The displayed

face is selected by the robot during the interaction, being the high level cognitive architecture

responsible for the selection of the adequate face to display (see Figure 5.8).

The images were designed to display expressions of the emotions recognized by the robot

using a prototypical set of Action Units (AUs) associated with each emotion.
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(a) Sadness

(AUs 1+15).

(b) Anger

(AUs 4+7).

(c) Fear

(AUs 2+5+26).

(d) Neutral

(None).

(e) Surprise

(AUs 1+2+26).

(f) Happiness

(AU 12).

Figure 5.8: Images displayed by the chest monitor. Each image displays an emotion and the

corresponding AUs used.
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Chapter 6

Implementation details

This chapter presents details of implementation on several aspects of the robotic system.

The scope of this work encompassed the design and implementation of a vision system capable

of acquiring all the required information for the success of the joint cooperation task. The robot

is equipped with two independent vision systems that provide information on different parts of

the task.

The first vision system is a stereo system composed of two cameras fixed on an aluminium

frame, which is mounted on a controlled pan-tilt unit. This system provides information about

the objects that are part of the task, such as, 3D spatial position and orientation, task status,

gesture recognition and movement quantification of the human hands and body.

The second system is composed of a small camera with a custom lens and is responsible for

detecting and analysing the human’s face, providing a description of the facial movements in

the form of Action Units (AUs). Also, the system is able to quantify the head movement.

All the information generated by these systems is incorporated into the high level cognitive

architecture, that processes it and generates the robot behaviour.

6.1 Object information

The object information is provided by the stereo system, which combines a image processing

algorithm with stereo data to determine all the information required. The processing applied to
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images from the stereo cameras identifies the objects that are part of the construction task (see

Chapter 5, Figures 5.2, 5.3 and 5.4). The objects were designed with well defined colours so

they could be more easily detected by a colour based search algorithm.

The image captured by the cameras is in Red Green Blue (RGB) colour space. However,

because the search algorithm will be colour based, the use of the Hue Saturation Value (HSV)

colour space or Hue Lightness Saturation (HLS) is more appropriated, the fact that they use

a colour codification that is more intuitive and similar to the how the human vision processes

colour, makes them are more appropriated to a colour processing application (Li et al., 2002).

These colour spaces offer the advantage of coding the luminosity and chromatic information of

colour separately, making the colour definition insensitive to illumination.

RGB

HSV

Colour conversion

Colour segmentation

Spot analysis

Obcect identification

Figure 6.1: Illustration of the steps involved in the image processing algorithm.

Figure 6.1 illustrates the order of steps involved in the image processing algorithm responsible
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for identifying the objects. First, the image is converted from the RGB colour space to HSV,

next a colour segmentation is applied in order to create six binary images that contain spots of

the colours that the algorithm is looking for (red, green, blue, magenta, yellow and cyan). Each

of the image associated with a search colour is processed to remove noise and create regions

associated with every spot detected. After the spots are identified, the object identification

step will combine the information of spots and attempt to match the spots or sets of spots to

objects.

(a) Original. (b) Processed.

Figure 6.2: Images taken from the robot camera with the processing applied.

The match of spots to objects is performed by following a set of properties that define each

object. A large red spot with holes is identified as a Base, the combination of each hole position

with spots of another colour, identifies the hole in the base. Similar to the Base, a large blue

spot is identified as the Top Floor. A yellow spot which has another spot of a different colour

contiguous in the image is identified as the correspondent column. All green and magenta spots

are treated as wheels and nuts, respectively.

After the identification of objects, the information of each one will be filled in various steps.

The spots that originated the objects are used as a mask that is combined with the stereo

information, to extract the coordinates of each object in the camera reference frame.

All the pixels (n) in the region of the object are used to calculate the object coordinates,
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(a) Red. (b) Green. (c) Blue.

(d) Magenta. (e) Yellow.

Figure 6.3: Binary images resulting from the colour segmentation.

Figure 6.4: Result of the stereo computation.
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The x , y and z coordinates of the object are given by:

x =

n
�

i=0

mi vi xi

n
�

i=0

mi vi

y =

n
�

i=0

mi vi yi

n
�

i=0

mi vi

z =

n
�

i=0

mi vi zi

n
�

i=0

mi vi

(6.1)

where, n is the number of pixels in the region of the image that contains the object. m defines

the mask of the object, if the pixel i is part of the mask mi = 1, otherwise mi = 0. v is created

by the stereo computation, if the stereo process was able to calculate valid coordinates to the

pixel i , vi = 1 otherwise vi = 0. xi , yi and zi are the coordinates in the camera reference frame

for pixel i .

The coordinates are transformed from the camera reference frame to the robot’s reference

frame using transformation matrices defined by the robot’s dimensions and the pan-tilt position

(see Silva et al., 2008, for more details).

Each object, depending on its type can have sub-objects associated to it. For example, the

base has sub-objects that identify the holes, and the columns have sub-objects that identify

the primary and secondary colours. Using the coordinates calculated for these sub-objects, it is

possible to calculate the orientation of these objects, since it is a vital information for the robot

to be able to manipulate columns and figure out how the base is positioned in the table.

φ

P(x , y)

S(x , y) Δ y

Δ x

Figure 6.5: Orientation of a column, on the Z axis.

Figure 6.5 shows how the orientation is calculated from the x and y coordinates associated
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to the primary and secondary colours present in the column.

φ = arctan

�

Δ y

Δ x

�

(6.2)

The method for calculating the orientation of the base is similar, but because the base has

several holes, each one different, any combination of two holes that are detected can be used

for calculating the orientation, even if all the features of the base cannot be detected by the

vision system.

6.2 Gesture recognition

The first step in gesture recognition is to detect and segment the hands, separating in the

image the environment from the hand that needs to be processed. Several approaches are used

to address this issue, colour detection, shape, 3D models and movement based (Rautaray and

Agrawal, 2015). The colour based methods, rely in the definition of a model of skin colour to

detect the hands, this however poses some problems due to the variations of skin tones. Some

methods try to mitigate these issues by applying compensations (Sigal et al., 2004), but fail

under some circumstances, such as rapid variations in lighting.

During the interaction, as a means to ease the detection of the human hands, the humans

interacting with the robot wear a coloured bracelet on the wrists. Making it easier to detect and

dodging the problems that skin colour based models present. Applying a colour based search, a

region of the hand is extracted. For the gesture recognition, only the region of the image that

contains the hands is processed, in order to make the process faster and more eficient.

The used method for classifying the gesture was implemented by Cunhal (2014). It creates a

database for desired gestures, where each gesture is defined using vectors of moment invariants

(Hu, 1962), through image examples. In runtime, the image of the hand is processed to determine

the vectors of moment invariants and then compared with the gestures in the database.

Currently, four gestures are supported: above grip, side grip, pointing and hand out1.

Figure 6.6 shows an example of the gesture recognition.

1!!! Get and image of hand-out gesture !!!
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(a) Above grip. (b) Side grip.

(c) Pointing. (d) Hand out.

Figure 6.6: Recognized gestures.
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The detection of the ’hand out’ gesture is performed based on a spatial location. If the

human’s hand is detected in a pre-defined location close to the robot and the gesture classification

does not match any of the other three detected gestures, then this is classified as a ’hand out’

gesture.

However, classifying the gestures is not enough, the vision system is also able to detect

which object is the gesture being applied to, when possible. If the gesture is being recognized

but the vision system detects no object, this information alone can still be relevant for the high

level cognitive architecture.

When the vision system detects a gesture and an object, in the cases of above grip and

side grip the system determines which object is being grasped, by searching for objects in the

region of the hand. In the case of pointing, the system makes an estimation of where the

human is pointing, by creating a line using the points in the bracelet and the fingertip, and

then calculating the distance from this line to all objects around it. It then selects the closest

object as the target being pointed to. The line is created by two points, the coordinates of the

wrist P1(x , y) and the coordinates of the fingertip P2(x , y). If the coordinates of an object are

defined by point P0(x , y), the distance from the line to the object is given by:

distance(P1, P2, PO) =
|(y2 − y1)x0 − (x2 − x1)y0 + x2y1 − y2x1|

�

(y2 − y1)2 + (x2 − x1)2
(6.3)

6.3 Quantification of human movement

The movement of the human quantified by the vision system comprises the movement of

the hand, the movement of the body and the movement of the head.

6.3.1 Hand

The hand movement is measured by tracking each of the detected hands position. The

tracking is achieved by combining a labelling algorithm (Chang et al., 2004) with an occlusion

handling method (Senior et al., 2006). This combination ensures a stable tracking over time,

while dealing with occasional occlusions that might occur in real-time.

74



Chapter 6. Implementation details

For each processed frame, the position of each hand is taken and used to calculate the speed

relatively to the previous frame.

vi =

�

�

�

→

posi −
→

posi−1

�

�

�

dt
(6.4)

where pos is the cartesian position at a given time.

Additionally, and to prevent large variations in speed, the determined value is filtered using

an infinite impulse response low-pass filter of the form:

vfi lt,i = vfi lt,i−1 +
dt

smooth
· (vi − vfi lt,i−1) (6.5)

where vfi lt,i is the current value filtered, vi is the current speed measured, vfi lt,i−1 is the previous

value of speed filtered, dt is the time elapsed since the previous sample and smooth is a

smoothing factor to attenuate fast variations in the speed.

6.3.2 Body

One of the most widely used methods to measure movement in vision is by background

subtraction (see Piccardi, 2004, for a review). By taking a reference image of the background

and subtract it from the image being analysed, it is possible to create a segmented image of the

subject in study.

The Quantity of Movement (QoM) is measured from the amount of detected motion,

computed with a technique based on Silhouette Motion Images (SMIs), as reported by Castellano

et al. (2007), which uses a structured environment with a uniform dark background to achieve

silhouette extraction. Our system implements the movement measurement by making use of

the stereo vision to remove the background and foreground of the image.

Taking advantage of the spatial cloud of points created by the stereo computation, a mask

is created with only the pixels that are within a pre-defined spatial range, that can be thought

as a cube containing the space where the human is located.

SMI(t) =
n

�

i=1

(S(i) − S(i − 1)) (6.6)
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where S(t) is the silhouette image at each instance computed by removing the background and

foreground, n controls the amount of images that will be used as history, and SMI is the sum

of all detected movement from instant ’t − n’ to instant ’t’.

The QoM is computed as a ratio between the area (number of pixels) of the SMI and the

area of the silhouette, as given by:

QoM =
Area (SMI(t))

Area (S(i))
(6.7)

6.3.3 Head

Using the information available of the head position and orientation, these two measures

are accumulated over time and an estimation is created of the current speed of the head. The

instant linear (
→

v ) and rotational
→

ω speeds at instant t = i are given by:

→

vi(x , y , z) =
→

pi(x , y , z) −
→

pi−1(x , y , z)
dt

→

ωi(θ,ψ,φ) =
→

αi(θ,ψ,φ) −
→

αi−1(θ,ψ,φ)
dt

(6.8)

where
→

p is the cartesian position at a given instant and
→

α is the angular position at a given

instant. The instant values are then smoothed by a low-pass filter implemented using the method

presented by Equation 6.5.

6.4 Face detection

In order to use information extracted from faces, an automated analysis system would have

to detect a human face in an image. This would be the first step in autonomously extracting

usable information from a human face. Only when this problem is addressed and solved, resulting

in a sub-image or a region where the face is located, the face analysis can leap to the next step

in the process.

Even though there is an extensive research effort in creating facial analysis algorithms (Pantic

and Rothkrantz, 2000), there is no system that can be deployed in an unconstrained environment

and is able to tackle with the inherent variability in imaging parameters such as sensor noise,

viewing distance, and light conditions. The only known system that seems to work well, dealing
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with all these challenges is the human visual system. There is some research that attempts to

understand the strategies employed by the human visual system, and try to use them to create

machine-based algorithms that address this issue (Sinha et al., 2006).

The detection and tracking of the human face is accomplished by using an available

commercial product faceAPI by Seeing Machines. This Application Programming Interface (API)

enables the creation of a tracking engine that continuously detects and tracks a human face in

a video in real-time. The available data returned by this engine comprises the position of some

facial characteristics and the position and orientation of the head in the camera reference frame.

6.5 Face analysis

The analysis performed on the face can be decomposed into two steps, the acquisition of

data (position of facial points) and the data processing to implement the face coding (this last

step will be further discussed in the next section).

The followed approach to analyse the face was to segment it into several parts in an attempt

to create a coding system for each expression. Ekman (1971) studied the common and different

aspects of face expressions in different cultures, when expressing a small set of basic emotions.

Ekman et al. (2002) developed a coding system for faces named Facial Action Coding

System (FACS). This system emerged from the need to create methodologies to measure facial

behaviour validly and reliably, to document the research being done when investigating the

universality of emotions. It defines, based on facial muscles, measures for all types of visible

facial behaviour, identifying the possible independent movements of the facial musculature,

referenced as AUs. To each AU is assigned a simple numeric code, this way each face expression

can be described by the different presence of AUs.

In order to accomplish a reliable and valid coding system for face expressions, the coding

system created by Ekman et al. (2002) was used. In this system it is also defined, for each

Action Unit, a scale of intensity ranging from A (faint presence) to E (strong presence). Since

most of AUs happen in a very small time-scale, and some are very subtle, this introduces a

limitation in the used hardware and software, and for this reason, the intensity scale of AUs will
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be ignored during this work, while focusing on the presence or not of each Action Unit.

FACS defines all the possible visible movements in the human face, the number of Action

Units and possible combinations is very large. This motivated the appearance of a number

of derivatives of FACS. For instance, to account for the differences in some aspects in the

face of children, Oster (2004) developed Baby FACS, a specialized version of FACS for infants

and young children. Friesen and Ekman (1982) developed Emotional Facial Action Coding

System (EMFACS), an abbreviated version of FACS, also following the work by Darwin (1872),

which identifies only those AU that are theoretically or empirically related to emotion, the

implemented coding process focuses only on the identification of a smaller set of AUs or AU

combinations, greatly reducing the number of AUs to search for.

Emotion AUs

Anger 4, 5 and/or 7, 22, 23, 24

Contempt Unilateral 12, Unilateral 14

Disgust 9 and/or 10, 25 or 26

Fear 1, 2, 4, 5, 7, 20, 25 or 26

Happiness/Joy 6, 12

Sadness 1, 4, 15, 17

Surprise 1, 2, 5, 25 or 26

Table 6.1: Description of AU combinations associated with emotions according to EMFACS.

These AU combinations, although they are not rigidly defined and valid for every person,

they help us to narrow the relevant information to extract from the face and the most important

AUs to focus on.

Table 6.2: Description of Action Units and appearance changes caused by each AU in the face,

according to Ekman et al. (2002).

Code Name Description

1 Inner Brow Raiser Pulls the inner portion of the eyebrows upwards.
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Table 6.2: (continued).

Code Name Description

2 Outer Brow Raiser Pulls the lateral (outer) portion of the eyebrows

upwards.

4 Brow Lowerer Lowers the entire eyebrow.

5 Upper Lid Raiser Widens the eye aperture.

6 Cheek Raiser Lift the cheeks and compresses the eye socket.

7 Lid Tightener Tightens eyelids, narrows eye aperture.

9 Nose Wrinkler Pulls the skin along the sides of the nose upwards,

causing wrinkles to appear along the sides of the

nose.

10 Upper Lip Raiser Raises the upper lip. Centre of upper lip is drawn

straight up, the outer portions of upper lip are

drawn up but not as high as the center.

12 Lip Corner Puller Pulls the corners of the lips back and upward

(obliquely).

14 Dimpler Tightens the corners of the mouth, pulling the

corners somewhat inwards, and narrowing the

lip corners.

15 Lip Corner Depressor Pulls the corners of the lips down.

17 Chin Raiser Pushes the chin boss upward.

20 Lip Stretcher Pulls the lips back laterally, the main movement

is horizontal.

22 Lip Funneler Lips funnel outwards taking on the shape of a

funnel.

23 Lip Tightener Tightens the lips, making the red parts of the

lips appear more narrow.
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Table 6.2: (continued).

Code Name Description

24 Lip Presser Presses the lips together, without pushing up

the chin boss.

25 Lips Part The lips part, which may expose the inner mu-

cosal area of the lips.

26 Jaw Drop The mandible is lowered by relaxation.

51 / 52 Head Turn Left/Right Codes the orientation of the head left to right

on a vertical axis.

53 / 54 Head Up/Down Codes the orientation of the head when oriented

up or down.

55 / 56 Head Tilt Left/Right Codes the orientation of the head when leaned

to the left or right.

Table 6.2 shows a description of each AU referred in Table 6.1, it describes the most relevant

changes that occur in the face when each AU is present. Having this set of AUs, and taking into

account that their detection must be performed by an automated system, the focus of attention

turned to the AUs that are feasible for being detected, eliminating others that may be either

too subtle or too similar to others to be effectively detected in a proper time frame.

After the analysis of these AUs a smaller subset from those referred in Table 6.2 was created,

with the AUs considered to offer a better confidence for automated detection: AU 1, 2, 4, 5, 12,

15, 20, 23, 26, 51, 52, 53, 54, 55, 56.

6.5.1 Action Unit detection

The detection of AUs is an automated coding system that uses data gathered from the face

and applies FACS to generate the description of a facial expression.

It requires first that in the face which is being analysed to have a good tracking of stable

facial landmarks. These landmarks are points in the face that are identifiable even if they move
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within the face, as in the case of facial expressions. Zhao et al. (2011) defines the stable facial

landmarks to generally include the nose tip, the inner eye corners, the outer eye corners, and the

mouth corners, which are not only characterized by their own properties (texture and shape),

but are also characterized by their global structure resulting from the morphology of the face.

Branco (2006) employs a modular method for analysing the face, after the face is detected

by a face detection module, a combination of Active Appearance Model (AAM) and Principal

Component Analysis (PCA) is used to extract features from the face and classify its expression.

The work here presented relies on the faceAPI to detect and track facial features which are then

processed by a set of pre-defined rules.

The result of the continuous detection and tracking of faceAPI engine, generates a set of

points in the face and the coordinates for each point in several coordinate frames. To each

point in the face, there are associated coordinates in these four different coordinate frames:

• Image;

• Camera;

• Head;

• Face texture.

Camera

Image Head

x y

z

x y

z

xy

Pixel

Landmark

Figure 6.7: Different coordinate frames in faceAPI (Image adapted from documentation on

faceAPI).

Figure 6.7 shows how all of the coordinate frames are integrated into the detection engine.

The ’Image’ coordinate frame is associated with the acquired image from the camera, each
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point is defined by one pair of coordinates (x , y) that identify where its located in the image,

the units are in pixels. The ’Camera’ coordinate frame is a 3D axis where the origin is fixed in

the used camera, each point is defined by three coordinates (x , y , z), measured in meters. The

’Head’ frame is similar to the Camera frame but the origin of the axis is fixed in the head, the

coordinates are also measured in meters. The ’Face texture’ frame is a normalized plane placed

in the face and each point is defined by a pair of coordinates (x , y) that range from -0,5 to 0,5

(not shown in Figure 6.7).

After running some comparison tests using the engine, two coordinate frames were candidates

to be chosen to work with the data, the ’Head’ frame and the ’Face Texture’ frame. Although

their accuracy is identical, the head coordinate frame was chosen because it maps directly the

dimensions of the detected face in real-world units, rather than an abstract coordinate frame

used by the ’Face Texture’ frame.

Figure 6.8: Detected points by faceAPI engine.

Figure 6.8 depicts all the tracked points in a face by the faceAPI engine. These points

focus in three different aspects of the face, the eyes, the eyebrows and the mouth. From these

areas, the ones that offer more accuracy and robustness in detection are the eyes and eyebrows.

Although the mouth area has many points to track the lips, their response to movement is not

as reliable as the eyebrows. Each point tracked in the face, designated as Face Landmark within

faceAPI is marked as a blue dot, while the face mask that aggregates all these points is marked
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with yellow lines. Additionally, the engine also determines the head position and orientation,

making it possible to analyse the head movements.

Schyns et al. (2009) reports in a study with volunteers, where each expression was shown on

10 different faces, five male, five female, while brain-imaging equipment monitored how quickly

different parts of the brain interpreted them, that all of the universal expressions have distinctive

characteristics that the brain can easily distinguish between. Where “happy” requires the smiling

mouth and the eyes, “surprised” the open mouth, “anger” the frowned eyes and the corners of

the nose, “disgust” the wrinkles around the nose and the mouth, “sadness” the eyebrows and

the corners of the mouth and “fearful” the wide-opened eyes (Schyns et al., 2009).

With the faceAPI data acquisition system, and taking into consideration some studies (e.g.

EMFACS(Friesen and Ekman, 1982) and Schyns et al. (2009)), the focus was to implement

only a small subset of AUs into the analysis system, rather than all the discussed AUs.

The determination if an AU is present or not, requires to overlap the definition of each AU

with the points obtained by the faceAPI engine. Using the face mask generated by faceAPI,

shown in Figure 6.8, and based on the description provided by Ekman et al. (2002) for each AU,

a set of rules was created to map the data acquired into AUs. The movement associated with

each AU is mapped on top of the face mask.

(a) AU 1. (b) AU 2.

Figure 6.9: Facial movement produced by AU 1 and AU 2.

Figure 6.9a defines the rule to detect AU 1. This AU codes the upward movement of the

inner part of the eyebrow. Whenever the points associated with the inner part of the eyebrow
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are above a certain threshold, the AU 1 is considered to be present.

In Figure 6.9b one can see the movement associated with AU 2. The detection rule is

identical to AU 1, but the movement is associated with the outer part of the eyebrow. Usually

AU 1 and AU 2 are present simultaneously, since it is generally dificult to perform these two

movements separately.

Figure 6.10: Movement produced by AU 4.

When the eyebrows are pushed down, this movement is coded by AU 4, shown in Figure 6.10.

Although the upward movement of the eyebrow is coded by two separate AUs for the inner and

outer parts, the downward movement is coded by a single AU. When the eyebrows are closer to

the eyes than in the relaxed position, AU 4 is considered to be present.

(a) AU 12. (b) AU 15.

Figure 6.11: Facial movement produced by AU 12 and AU 15.

AU 12 codes an oblique movement upwards from the lip corners, producing a smile, shown

in Figure 6.11a. This AU is detected comparing the position of the lip corners with the upper
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point of the lips, if the lip corners are above, AU 12 is considered present.

AU 15 codes the opposite movement of AU 12. This AU presents an oblique movement

downwards from the lip corners, as shown in Figure 6.11b. The detection is similar to AU 23,

but in this case is considered when the lip corners are below the lower point of the lips.

(a) AU 20. (b) AU 23.

Figure 6.12: Facial movement produced by AU 20 and AU 23.

The horizontal movement of the lips is coded by two AUs. AU 20, shown in Figure 6.12a,

codes an horizontal movement from the corner lips as they move further apart opposite direction,

stretching the lips. While AU 23, shown in Figure 6.12b, codes the opposite movement of the

corner lips, as these move to compress the lips. For the detection of AU 20 and 23, the distance

between lip corners is calculated, and two limits are defined. When the upper limit is passed,

AU 20 is present, if the lower limit is passed, AU 23 is present.

Figure 6.13: Movement produced by AU 26.

AU 26, shown in Figure 6.13, is produced by relaxing the jaw. This causes the mouth to
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open, the detection is carried out by computing the distance between the lower point of the

lower lip to the middle point of the upper lip.

6.5.2 Implementation

The implementation of AU coding relies in the comparison of the current data on the face

being analysed with a reference face of the person interacting with the robot. The comparison

with a reference face, attempts to solve the problem of the variability present in faces and the

initial tracking of the faceAPI engine. Each AU has a rule for detection, where the parameters

for them were tuned from the tests performed on the Cohn-Kanade database (Kanade et al.,

2000; Lucey et al., 2010). The parameters code the ratio of change from the current expression

to the reference neutral expression.

The initial conditions for the tracking engine vary in the sense that the mask fitting to the

face is not always the same. Sometimes, the face mask generated is slightly larger or smaller

than the tracked face, and even the mask orientation varies. This variation associated with

the natural variability present in faces makes it impossible to adjust coding parameters robust

enough for general use.

When a human starts interacting with the vision system, it is asked to present a neutral

face. The neutral face is used by the system to establish the reference data required to code

the AUs present in the face. According to the rules presented before, the position of each

point is compared with the position in the reference frame. Each AU has detection parameters

associated that determine a ratio of variability accepted to code each one.

Figure 6.14 shows an example of coding for AU 1 and 2. The reference data is shown

in dashed line, while the solid line is the current face being analysed. For AU 1 the rate of

variation of outer points of the eyebrows between the reference face and current is measured, if

this variation exceeds the detection parameter, the AU is coded as present, otherwise coded as

absent. In the same manner, for AU 2 the rate of variation is measured using the inner points

of the eyebrow.
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Figure 6.14: Example of AU coding (Dashed - reference; Solid - current).
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Chapter 7

Results

To validate the dynamic neural field architecture for human-robot collaboration, real-time

human-robot experiments in scenarios of the joint construction task described in Chapter 5,

were designed and conducted.

For better understanding the construction task was divided in three logic stages, lower section

(wheels and nuts), middle section (columns) and top section (Top Floor).

The focus is on showing and explaining how decision making and error detection are affected

by the human partner’s emotional state. In all cases, the initial spatial distribution of parts

forces both actors to demand and hand-over parts. There is no verbal communication from the

human to the robot. This obliges the robot to continuously monitor and interpret the actions of

its co-worker. Both the human and the robot can manipulate the parts (e.g. plug a wheel on

the axle).

The robot uses speech to communicate to the human partner the outcome of the goal

inference and decision making processes implemented in the dynamic neural field model. As our

studies with naive users show, this basic form of verbal communication facilitates natural and

fluent interaction with the robot (Bicho et al., 2010).

To validate the high level cognitive control architecture, five different experiments were

designed. Each experiment will address a specific feature with different scenarios, in order

to better understand how the partner’s emotional state can affect the robot’s behaviour.
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Experiment 1 explores how the robot’s decisions can be influenced by the partner’s emotional

state. Experiment 2 shows how the inferred user’s emotional state can influence how the

robot detects and handles errors during task execution. Experiment 3 shows how the robot, by

expressing emotional facial expressions, deals with a human persisting in an error. Experiment 4

presents a comparison of the influence of the user’s emotional state in the time the task takes

to be performed. Finally, experiment 5 shows the dynamic nature of the architecture in a longer

interaction, where the robot adjusts its behaviour in real time, in response to the change of the

human emotional state.

The graphics presented for each scenario, show the time evolution of fields activity in some

layers of the control architecture. To show the evolution in all layers of the architecture would

be impractical, hence, only key layers for each scenario will be presented.

The main contribution of this work is the integration of emotions into the robot’s cognitive

architecture. Hence, before presenting the interaction results, details on how the information

acquired by the vision system regarding the human face is handled, will be presented. Figure 7.1

presents snapshots of the analysis performed by the system developed for this robot. A dedicated

camera placed on the robot acquires an image of the face, which is then processed by combining

the library faceAPI from Seeing Machines with some post-processing algorithms implemented

using the Open Source Computer Vision (OpenCV) library. The system is continuously processing

(at 60fps) and coding the face according to the Facial Action Coding System (FACS) (Ekman

et al., 2002), resulting in a real-time description of the face with Action Units (AUs).

The entry point in the architecture for the information provided by the vision system is

the Action Observation Layer (AOL). Three Dynamic Neural Fields (DNFs) in this layer are

responsible for representing information about detected facial muscle movements that are

associated to the eyes, eyebrows and mouth.

Figure 7.2 shows the time evolution of the DNFs involved in the processing of this visual

information and the simulation and inference of the user’s emotional state (layers AOL, Action

Simulation of Facial Actions sets (ASFA) and Emotional State Layer (ESL) respectively). On

top, and regarding AOL, one can see a DNF, uAOL_FaceDetect(x , t), that codes the presence or not

of a human face and the three DNFs responsible for representing AUs related to the eyebrows
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(a) Neutral. (b) Surprise (AU 1+AU 2).

(c) Surprise (AU 1+AU 2+AU 26). (d) Happy (AU 1+AU 2+AU 12).

Figure 7.1: Face analysis by the vision system.
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(uAOL_Eyebrows(x , t)), mouth (uAOL_Mouth(x , t)) and eyes (uAOL_Eyes(x , t)). These fields provide

input SASFA(x , t) to the DNF uASFA(x , t) that contains neural populations that respond or not

to the presence of the several AUs detected. The field activity uASFA(x , t) provides the input

to the DNF in ESL, uESL(x , t), which depending on the initial active populations and other

dynamic factors, such as time, produces an activation at the correspondent inferred emotional

state.

The example presented in Figure 7.1, starts with a facial expression where no AUs are present.

Hence from times T1 to T2, the activity in (uAOL_Eyebrows(x , t)), mouth (uAOL_Mouth(x , t)) and

eyes (uAOL_Eyes(x , t)) code absence of AUs, while the bump of activity in field (uAOL_Face(x , t))

represents the presence of the human face. During this time interval only this input arrives to

uASFA(x , t) which produces a pattern of activation that represents solely ’face detected’ and

thus activity in uESL(x , t) produces a bump of activity centred at the emotional state ’Neutral’.

Next, from times T2 to T3, the human raises its eyebrows (see Figure 7.1b) producing an

activation in uAOL_Eyebrows(x , t) representing the detection of AUs 1 and 2. As a consequence

of the spread of field activation from AOL to ASFA, a bump of activity in uASFA(x , t) emerges

centred in the population ’Raise eyebrows’, which in turn leads to a bump of activity in uESL(x , t)

representing an inferred emotional state of ’Surprise’.

Afterward, from times T3 to T4, the human then opens the mouth by dropping its jaw, getting

coded by the vision system as AUs 1+2+26 (Figure 7.1c). This gives rises to several inputs,

SASFA(x , t), competing for a decision in uASFA(x , t). The population representing “raise eyebrows

& mouth open” wins the competition. However, the inferred emotional state, represented in

uESL(x , t), remains as ’Surprise’. This demonstrates the ability to detect the same emotional

state in more than one way.

At last, in the time interval T4-T5, the human smiles maintaining the eyebrows raised, the

resulting expression is coded with AUs 1+2+12 (Figure 7.1d). The disappearance of AU 26

and presence of AU 12 changes the competition in uASFA(x , t), and ultimately, the winning

population in this field then triggers in uESL(x , t) a different inferred emotional, i.e. ’Happy’.

Next, the scenarios addressing several aspects of human-robot joint action, will be presented.
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Figure 7.2: Field activities in layers AOL, ASFA and ESL, in response to the information provided

by the vision system regarding the user’s facial expressions depicted in Figure 7.1.
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7.1 Experiment 1: Influence of the human’s emotional

state in the robot’s decisions

Experiment 1 is composed of two scenarios, 1-1 and 1-2, and explores how the same action

being performed by the human in the same context of the task, but carried out with a different

emotional state, can trigger in the robot different decisions for the complementary action. Only

the construction of the lower section of the task, attach the wheels and fixed them with nuts,

was used.

The objects disposition for the current experiment is the following:

• Robot’s workspace: 2x Nut;

• Human’s workspace: 2x Wheel, Column 1, Column 2, Column 3, Column 4, Top Floor.

For Scenario 1-2, a Nut was added in the human’s workspace but hidden from the robot’s

view. Video snapshots of the human-robot join action in Scenario 1-1 and Scenario 1-2 are

shown in Figures 7.3 and 7.4 respectively.

In both scenarios the human starts with grasping a wheel (Figures 7.3a and 7.4a) and

inserting it (Figures 7.3c and 7.4c). When the human grasps the wheel, the robot infers that he

will insert it and decides to handover a nut to the human partner because it is the part he will

need next.

The difference in the two scenarios happens here. While in Scenario 1-1 the human continues

to display a neutral face (Figure 7.3f), the robot hands over the nut (Figure 7.3e), the human

accepts and inserts it (Figure 7.3g). In Scenario 1-2, when the robot verbalizes its decision to

handover a nut the human expresses anger (Figure 7.4f). This makes the robot understand that

the human does not want the nut (Figure 7.4e), and as a consequence the robot changes its

decision and asks the human to hand over a wheel (Figure 7.4g) to it, so that it can insert a

wheel on its side of the construction.

In Scenario 1-1, the human working with the robot exhibits a neutral emotional state during

all the interaction, and so, all the decisions made by the robot incorporate no positive nor

negative emotions from its human partner. The field activity in the ESL codes the inferred
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Video snapshots for scenario 1-1.

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp1-Scen1_1.html
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(g) (h)

Figure 7.3: Video snapshots for scenario 1-1 (continued).

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp1-Scen1_1.html

human’s emotional state. Figure 7.5a shows the field activation uESL(x , t) in this layer, which

always has a bump of activity centred in in the same position (’Neutral’) throughout the duration

of the task. The change in the inferred emotional state of the human during interaction Scenario

1-2 is presented in Figure 7.5b. As can be seen, in the time interval T2-T3, a shift in the bump

of activation from ’Neutral’ to ’Anger’ occurs.

The influence of the human emotional state in the robot’s decisions regarding its comple-

mentary behaviour is clearly demonstrated by analyzing the DNF uAEHA(x , t) in the Action

Execution Layer (AEL) (Figure 7.6). This fields selects an adequate complementary goal-direct

hand action. In Scenario 1-1, after the human grasped the wheel, the robot selected the action

of handing over a nut (Figure 7.6a: see bump of activation coding ’Give nut’). In Scenario 1-2,

the robot makes initially the same decision (Figure 7.6b: Field activation, times T1 to T2), but

in response to the anger expressed by the human, the robot changes its decision to ’Request a

wheel’ (Figure 7.6b: Field activation, times T2 to T3). The preshaping present in Figures 7.6a

and 7.6b, of the populations coding the actions ’Point to wheel’ and ’Request wheel’, means

alternative actions the robot could in principle select.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.4: Video snapshots for scenario 1-2.

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp1-Scen1_2.html
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(g) (h)

Figure 7.4: Video snapshots for scenario 1-2 (continued).

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp1-Scen1_2.html

(a) Scenario 1-1: ESL.

(b) Scenario 1-2: ESL.

Figure 7.5: Experiment 1: Emotional State Layer
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(a) Scenario 1-1: AEHA.

(b) Scenario 1-2: AEHA.

Figure 7.6: Experiment 1: Action Execution Layer - Goal-directed hand actions.
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7.2 Experiment 2: Influence of the human’s emotional

state in the robot’s error detection and handling ca-

pabilities

Experiment 2 contains two scenarios, 2-1 and 2-2, and explores how the robot deals with

errors in reaction to different inferred emotional states. While in Scenario 2-1 the human is

displaying a happy expression (Figure 7.7b), in Scenario 2-2 the human has a fearful expression

(Figure 7.8b). It is shown how the same error being committed during the construction task is

detected in different ways, influenced by the human emotional state.

The two scenarios start with the lower section of the toy robot assembled, i.e. the Wheels

and Nuts are already inserted in the Base. Thus, the next assembly steps consist of mounting

the four columns. A specific serial order for plugging the columns was imposed: Column 1

−→ Column 2 −→ Column 3 −→ Column 4. The different columns are identified by their

color patterns. Given the reachable workspace of the two agents, it happens that Column 1

and Column 4 can only be mounted by the robot, while Column 2 and Column 3 can only be

mounted by the human partner.

The objects disposition is:

• Robot’s workspace: Wheel (inserted), Nut (inserted), Column 4;

• Human’s workspace: Wheel (inserted), Nut (inserted), Column 1, Column 2, Column 3,

Top Floor.

Both scenarios start in the same way, with the robot requesting the human to handover

Column 1(See Figures 7.7a and 7.8a). However, the human ignores the robot’s request and

instead grasps Column 3 with the intention to insert it (Figures 7.7c and 7.8c). This is an error

because Column 3 cannot yet be mounted.

When the human operator is in a positive emotional state the (expected) probability that he

will commit errors is low because this signals that he is engaged in the joint task. In Scenario

2-1, the fact that the human is displaying since the beginning a happy facial expression, has

made the robot to disable the processing of the DNFs in the Error Monitoring Layer (EML)

100



Chapter 7. Results

(a) (b)

(c) (d)

(e) (f)

Figure 7.7: Video snapshots for scenario 2-1.

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp2-Scen2_1.html
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(g) (h)

Figure 7.7: Video snapshots for scenario 2-1 (continued).

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp2-Scen2_1.html

responsible for detecting user’s errors in intention and errors in the means. Thus, although

the robot is able to infer, at the moment of grasping, that the intention of the human is to

insert Column 1, it is not able to predict that the user’s intention/goal is wrong. The human

advances and inserts Column 3 (Figure 7.7e). The robot detects that this was error only after

the column was plugged (error in execution) and orders the human to correct the error he has

made (Figure 7.7g).

In scenario 2-2, the human is in a negative emotional state, this causes the robot to enable

the processing of all the error detection components in EML enabled. As a consequence, as

soon as the human grasps Column 3 to insert, the robot interprets this as an error in intention

and prevents the error from occurring (Figure 7.8e).

The main difference in Scenarios 2-1 and 2-2 is due to the expressed emotional state by

the human, whose inferred state by the robot is coded in activation of the DNF uESL(x , t) in

ESL. Figure 7.9a shows a bump of activation representing ’Happy’ throughout the duration of

Scenario 2-1, while Figure 7.9b shows a bump of activation in a different location representing

’Fear’ during scenario 2-2.

The influence of the emotional state in the robot’s error detection capabilities can be

observed through in Error Monitoring Layer (EML) (Figure 7.10). While in Scenario 2-1 the
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Video snapshots for scenario 2-2.

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp2-Scen2_2.html
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(g) (h)

Figure 7.8: Video snapshots for scenario 2-2 (continued).

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp2-Scen2_2.html

(a) Scenario 2-1: ESL.

(b) Scenario 2-2: ESL.

Figure 7.9: Experiment 2: Emotional State Layer.
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(a) Scenario 2-1: EML - Error in Execution.

(b) Scenario 2-2: EML - Error in Intention.

Figure 7.10: Experiment 2: Error Monitoring Layer.

robot detected the error “Insert Column 3” as an Execution Error (Figure 7.10a, in Scenario

2-2, the same error was anticipated and detected as an Error in Intention (Figure 7.10b).

The fact that the human was in a happy emotional state prevented the robot to anticipate

the error. When the human displays a happy emotional state the robot assumes the construction

is going well and disables the detection of errors in intention and errors in means, this way it

can accelerate the processing and make decisions faster, with the downside of the robot being

unable to anticipate errors the human can commit. However if an error is actually performed,

the robot will be able to detect it and issue a warning or corrective order to this fact.
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7.3 Experiment 3: Reaction of the robot to the human’s

persistence in error

In the interaction Scenarios 2-1 and 2-2 described in the previous section, the human partner

has accepted the warnings and corrective orders issued by the robot. The robot has never

displayed a negative emotional state toward the human partner.

Experiment 3 will explore how the robot, by producing expressive faces when required, can

react to a stubborn human, and thus induce a change of his behaviour/attitude (see video

snapshots in Figure 7.11).

The situation is the same as the previous Scenario 2-2, but this time the negative emotional

state displayed by the human operator is ’Anger’. All DNFs in EML are therefore activated (their

activation can be seen in Figure 7.12).

The robot starts of by requesting Column 1 to the human (Figure 7.11a). However, the

human grasps Column 3 (Figure 7.11c) and the robot infers that the he will insert that column

(see activation in uASHA(x , t) in times T2-T3, Figure 7.13). As before, the robot detects that the

human’s goal to plug Column 4 is wrong (see activation in uEML_Intention(x , t) in times T2-T3,

Figure 7.12a), and warns that he will commit an error (Figure 7.11e).

Despite the warning, the human proceeds to insert Column 3 (Figure 7.11g), and as a

consequence the robot now detects it as an execution error and issues a corrective action (see

activation in uEML_Exec(x , t) in times T3-T4, Figure 7.12b). Ignoring the robot, the human

persist in the error. In response to this persistence and because the user is in an Angry state

(see action in uESL(x , t) times T1-T5, Figure 7.15), the robot takes a stand by expressing (also)

an anger face (see activation uAEFA in times T5-T6, Figure 7.14) and explaining again that an

error was committed (Figures 7.11i and 7.11k).

Thus far, the robot had never displayed a negative emotion toward the human partner. Thus

he gets surprised (Figure 7.11n) by the robot’s anger. See activation in uESL(x , t) at time T6

(Figure 7.15). The human finally accepts the robot’s correction and removes the inserted column

from the Base (Figure 7.11m). The robot then takes a neutral expression (Figure 7.14, times
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(a) (b)

(c) (d)

(e) (f)

Figure 7.11: Video snapshots for experiment 3.

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp3.html
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(g) (h)

(i) (j)

(k) (l)

Figure 7.11: Video snapshots for experiment 3 (continued).

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp3.html
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(m) (n)

(o) (p)

(q) (r)

Figure 7.11: Video snapshots for experiment 3 (continued).

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp3.html
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(s) (t)

Figure 7.11: Video snapshots for experiment 3 (continued).

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp3.html

T7) and request again Column 1 to insert on its side (Figure 7.11o). But because the human

expresses surprise in response to the robot’s request, the decision of the robot changes from

preparing to receive Column 1 to pointing toward to it (Figure7.11q). This gesture drives the

attention of the human operator to the requested column. The human finally grasps and hands

over Column 1 to the robot (Figure 7.11s), and the decision of the robot is to receive it. The

temporal evolution of these changes in the selected goal-directed hand gestures of the robot can

be seen in the activation of uAEHA(x , t), times T6-T8, Figure 7.16.

7.4 Experiment 4: Influence of the human’s emotional

state in task time

Experiment 4 explores how the human’s emotional state might influence the time that it

takes to complete the task. The construction of the lower section of the toy vehicle, was used

as a test scenario.

Three scenarios were designed, in each scenario the human kept the expression of the same

emotional state throughout the duration of the task. In the first scenario the human expressed

a negative emotional state (Fear), in the second the human was in a neutral state, and in the
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(a) Experiment 3: EML - Error in Intention.

(b) Experiment 3: EML - Error in Execution.

Figure 7.12: Experiment 3: Error Monitoring Layer.

Figure 7.13: Experiment 3: Action Simulation Layer - Simulation of goal-directed hand actions.
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Figure 7.14: Experiment 3: Action Execution Layer - Facial actions sets execution.

Figure 7.15: Experiment 3: Emotional State Layer.

Figure 7.16: Experiment 3: Action Execution Layer - Goal-directed hand actions.
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third the human displayed a positive emotional state (Happy). In all scenarios, the distribution

of the objects in the robot’s and human’s workspace was the same.

Scenario Emotional state Time

4-1 Fear 2 min. 55 sec.

4-2 Neutral 2 min. 30 sec.

4-3 Happy 1 min. 50 sec.

Table 7.1: Experiment 4: Time to complete the task as a function of the human emotional

state.

Videos online at:

4-1: http://marl.dei.uminho.pt/public/videos/adb/Exp4-Scen4_1.html

4-2: http://marl.dei.uminho.pt/public/videos/adb/Exp4-Scen4_2.html

4-3: http://marl.dei.uminho.pt/public/videos/adb/Exp4-Scen4_3.html

Table 7.1 shows the results of the three interaction scenarios. When the human is in a

fearful state, the robot adjusts the arm movements to be slower and takes more time explaining

its actions in order not to startle the human. In a neutral state, the robot uses a medium

velocity for the arm movements. When the human displays a happy emotional state, the robot

assumes the task is running smoothly, increases the velocity for the arm movements, disables

the processing of DNFs responsible for the detection of some types of errors, decreasing the

time it takes to make decisions.

What the results show in this particular experiment is, the negative expressions impact in

the task time by increasing it when comparing to a neutral emotional state, 16% in this case.

And when in a positive emotional state, the task time is reduced in 27% when comparing to

neutral, but due to disabling the detection of some types of errors, its more prone for errors to

occur, since the robot cannot anticipate them.
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7.5 Experiment 5: A longer interaction scenario - dynam-

ically adjusting behaviour to the expressed human

emotional state.

As a final interaction scenario, the entire construction task, was performed, where the human

cooperating with the robot shifts the expressed emotional state from negative (Fear) to neutral

and then positive (Happy).

The task starts with the human presenting a fearful expression (see Figure 7.17b). The

robot adjusts its arm movement velocity to be slower in order not to startle the human, also it

takes more time explaining its actions (see Figure 7.17a).

After the wheels are inserted the human presents a neutral expression during the insertion of

the nuts (see Figure 7.17d). The robot adjusts the movement velocity to medium and verbalizes

less information.

When the middle section is assembled, the human is expressing happiness (see Figure 7.17f),

so the robot also smiles and increases the movement velocity for the arm. Here one can see

how the robot dynamically and in real time adjusts its behaviour – information verbalization and

movement velocity – during the execution of the task.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.17: Video snapshots for experiment 5.

Online at: http://marl.dei.uminho.pt/public/videos/adb/Exp5.html
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Chapter 8

Discussion, conclusion and future work

Decision making refers to the process of selecting a particular action from a set of alternatives.

When acting alone, an individual may choose a motor behaviour that best serves a certain task

based on the integration of sensory evidence and prior task knowledge. In a social context, this

process is more complex since the outcome of one’s decisions and emotions can be influenced by

the decisions and emotions of others. A fundamental building block of social interaction is thus

the capacity to predict and understand actions and emotional states of others. This allows an

individual to select and prepare an appropriate motor behaviour in joint action tasks (Michael,

2011; Sebanz et al., 2006).

Here, a Dynamic Neural Field (DNF) architecture that combines the role of emotions in the

decision making and movement execution of an autonomous and socially aware robot cooperating

with human partners in real-world joint tasks, was presented. The proposed architecture is

strongly inspired by converging evidence from cognitive and neurophysiological studies suggesting

that mirror neurons encoding different levels of abstraction coexist and that there is an automatic

but highly context-sensitive mapping from observed on to-be-executed actions as an underlying

mechanism (Bekkering et al., 2009; Rizzolatti and Sinigaglia, 2008).

Dynamic neural fields model the emergence of persistent neural activation patterns that

allow a cognitive agent to initiate and organize behaviour informed by past sensory experience,

anticipated future environmental inputs and distal behavioural goals. The DNF-architecture
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for joint action reflects the notion that cognitive representations, i.e. all items of memory and

knowledge, consist of distributed, interactive, and overlapping networks of cortical populations

(“cognit” from Fuster, 2006). Network neurons showing suprathreshold activity are participating

in the selection of actions, emotional states and their associated consequences. Since the

decision-making normally involves multiple, distributed representations of potential actions that

compete for expression in overt performance, the robot’s goal-directed behaviour is continuously

updated for the current environmental and social context. Important for decision making in a

collaborative setting, inferring others’ goals and emotional states from their behaviour is realized

by internal motor simulation based on the activation of the same joint representations of (hand

and facial) actions and their environmental effects (“mirror mechanism” Rizzolatti and Sinigaglia,

2008); (for a recent review see Rizzolatti et al., 2014). Through this automatic motor resonance

process, the observer becomes aligned with the co-actor in terms of actions, emotional states

and goals. This alignment allows the robot to adapt dynamically its behaviour to that of the

human co-actor, without explicit communication (for an integration of verbal communication in

the DNF-architecture see Bicho et al., 2010).

The implementation of aspects of real-time social cognition in a robot based on continuously

changing patterns of neuronal activity in a distributed, interactive network strongly contrasts

with traditional views of human-like (social) intelligence. These realize the underlying cognitive

processes as a manipulation (based on formal logic and formal linguistic systems) of discrete

symbols that are qualitatively distinct and entirely separated from sensory and motor information.

These approaches have provided many impressive examples of intelligent behaviour in artificial

agents (for review see Vernon et al., 2007), in fact, the sequence of decisions shown in the

presented robotics experiments could be also be implemented by symbolic planning. However, it

is now widely recognized by the robotics and cognitive science communities that the symbolic

framework based on has notorious problems to cope with real-time interactions in dynamic

environments (Haazebroek et al., 2011; Kozma, 2008; Levesque and Lakemeyer, 2008). In

human-robot joint tasks, the robot has to reason about a world that may change at any instance

of time due to actions taken by the user. Even if the processing in the perceptual and decision

modules would allow to continuously update the robot’s plan in accordance with the user’s
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intention and emotional state, is considered, the extra processing step needed to embody the

abstract action plan in the autonomous robot would challenge the fluent and seemingly effortless

coordination of decisions and actions that characterizes human joint action in familiar tasks.

Bayesian models represent a quite popular alternative approach for modelling decision and

integration processes in the face of uncertainty (Körding and Wolpert, 2006). It is important to

note that the dynamic field framework is compatible with central aspects of probabilistic models.

For instance, the pre-activation below threshold of several populations in the action execution

layer due to prior task knowledge and contextual information may be interpreted in the sense of

a probability density function for different complementary actions. This prior information has

to be combined with evidence about the inferred goal and emotional state of the co-actor. In

fact, it can be shown that in the input-driven regime the field dynamics may implement Bayes’

rules (Cuijpers and Erlhagen, 2008). There are two major advantages of the dynamic neural

field approach. First, stabilizing decision against noise, fluctuations and temporary absence of

information in the input stream, is of particular importance. Second, as an example of the

dynamical approach to cognition (Schöner, 2008), a DNF-based model allows us to address

the important temporal dimension of coordination in joint action (Sebanz et al., 2006). The

decision process linked to complementary actions unfolds over time under multiple influences

which are themselves modelled as dynamic representations with proper time scales.

The DNF-architecture was tested in real-time human-robot joint action experiments in the

context of a construction task.

In Experiment 1, it was demonstrated how the emotional state of the human partner can

affect the decisions made by the robot. Specifically, it was shown that in the same context, a

different emotional state displayed by the human can trigger a different complementary behaviour

on the robot.

In Experiment 2, it was explored how the perceived emotions may play a role in the way the

robot detects and handles different types of errors. When the human co-worker is in a positive

emotional state, this is taken as a signal that the human is engaged in the task, and thus, it

is not probably that he/she will commit errors. The load of the Error Monitoring processes

can be decreased by deactivating the anticipation of errors in intention and errors in the action
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means. The result is that the robot can make decisions faster. In case, the human co-worker

makes an error this is detected a posteriori as an execution error. Reversely, when the human is

in a negative emotional state (e.g. Anger) this is used as a signal that the human user is not

committed to the task, and thus it is probably that he/she is more prone to make errors. All

error monitoring processes are activated and this enables the robot to prevent the occurrence of

errors by anticipating errors at the goal/intention level.

In Experiment 3 it was demonstrated how the robot can deal with a human operator persisting

in making an error. It was shown that by expressing emotional states and verbalization of more

information, the robot can induce the (stubborn) human to change his attitude and accept the

robot’s corrective suggestions.

The above summarized experiments have shown that perceived emotions play an important

role in an early stage, during decision making and action preparation of a complementary action

(Action Execution Layer (AEL)). In Experiment 4 it was shown that perceived emotions also

play a role latter because they may affect the execution at the kinematics level (Motor control).

In this experiment, three persons expressing different emotional states (Neutral, Fear, Happy)

worked with the robot. When the human co-worker seemed to be in a fearful state, the robot

adjusted the arm-hand movements to be slower and took more time verbalizing its reasoning in

order not to startle the human. Reversely, when the human displayed a positive emotional state,

the robot adjusted the arm-hand movements, and verbalization, to be faster. In a neutral state,

the robot used a medium velocity for the arm-hand movements and verbalization. The over all

result was that the time to complete the task decreases when the human partner is in a positive

emotional state. However, to perform a more in depth study on this matter, a bigger study with

more participants is required to make it possible to present statistically relevant results.

Finally, Experiment 5 has shown a longer interaction scenario – the complete construction of

the toy vehicle – with the human shifting his emotional state and the way the robot adapted in

real time its behaviour to these changes.

As it was shown, the adopted dynamic perspective offers in general a high degree of flexibility

in joint task execution. However, in the present implementation of the DNF-architecture the

neural representations and their connectivity were tailored by the designer. It is highly desirable

120



Chapter 8. Discussion, conclusion and future work

to endow the robot with a developmental program that would allow it to autonomously learn

and represent new representations (Asada et al., 2009; Weng, 2004). Using correlation-based

learning rules (Gerstner and Kistler, 2002) with a gating that signals the success of behaviour,

it was shown for instance how goal-directed mappings between action observation and action

execution that support an action understanding capacity may develop during learning and

practice (Erlhagen et al., 2006a,b). Importantly, the developmental process, through Hebbian

learning rules, may explain the emergence of new task-specific populations which have not been

introduced to the architecture by the human designer (Erlhagen et al., 2007). Recently, it was

demonstrated how the robot may autonomously develop – through tutor demonstration and

feedback during joint performance – the connections between the populations in the two layers

of the CSGL that code the possible serial orders and the longer term dependencies between

subgoals. The work on learning and development in the DNF-architecture for joint action is

consistent with the work of Keysers and Gazzola (2014) who have analysed how mirror neurons

could develop and become a dynamic system that performs active inferences about the actions,

sensations and emotions of others and allows joint actions despite sensory motor delays.

Various works have explored automatic facial expression recognition in human-computer

interaction (see Pantic and Bartlett, 2007; Tian et al., 2005). However, a human-robot scenario

presents additional challenges: lack of control over lighting conditions, relative poses, the

inherent mobility of the robot and separation between robot and human. These are limitations

imposed to the used robot that are also present in other works (e.g. Wimmer et al., 2008). The

vision system limitations prevented us from performing experiments with a larger numbers of

human subjects. Since it relies on the acquisition of a neutral face of the subject to perform

the Action Units (AUs) coding, which might not be possible at all times. Also, the features

extraction is not robust enough to detect subtle and micro expressions, which in more naturalistic

scenarios would be the most common expressions. Tests conducted to the system by using the

Cohn-Kanade face database (Kanade et al., 2000) reveal detection rates for some AUs above

70% (4, 12 15), others have detection rates just above 50% (1, 2, 5, 26) (Cunhal, 2014). This

lead us to instruct the participants in our studies to perform posed expressions to improve the

system detection rate.
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Regardless of the sensory limitations, the DNF-architecture proved to be ready to cope with

the demands of truly real world human-robot joint action scenarios. When dealing with multiple

information sources, which in the real world might not be reliable or consistent, the DNF based

cognitive architecture is able to cope with these situations, even when the information is not

all available at the same time. Being able to synthesize in an embodied artificial agent the

cognitive demands of real-time interactions with a human co-actor whose displayed emotional

states modulate the robot’s behaviour shows that the dynamic neural field theory provides

a promising research program for bridging the gap that still exists in natural and (socially)

intelligent human-robot joint action.

In the future, further user studies need to be conducted to assess how the robot can be

more expressive, and also how the subject of face recognition can be explored to allow the robot

to customize the interaction based on the person that is interacting with it.
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Timings of results

Label Time (s)

T1 5

T2 43

T3 46

Table 1: Timings for scenario 1.1.

Label Time (s)

T1 5

T2 14

T3 21

T4 30

Table 2: Timings for scenario 1.2.

Label Time (s)

T1 2

T2 8

T3 15

T4 23

Table 3: Timings for scenario 2.1.
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Appendix . Timings of results

Label Time (s)

T1 3

T2 17

T3 20

T4 29

Table 4: Timings for scenario 2.2.

Label Time (s)

T1 3

T2 13

T3 17

T4 23

T5 38

T6 42

T7 58

T8 64

Table 5: Timings for experiment 3.

154



Facial movements and emotions

Emotion AUs and human movements

Disgust 4+12+25 / 4+25 / 9+15 / 9 / 4+9 / 4+5+9

Anger 4+5 / 4+7 / 4+Head Movement High

Fear
1+2+5+20+26 / 4+20 / 1+20

5 + Hand Movement Low

Sadness

1+4+15 / 1+4 / 1+15 / 4+15

1 + Hand Movement Low

15 + Hand Movement Low

Neutral Face detected

Surprise 1+2 / 1+2+5 / 1+2+26 / 1+2+5+26

Happiness 12 / 1+2+12 / 12+26

Table 6: Combinations of AUs and human movements capable of activating an emotional state

detection (The detection of an Action Unit implies that the face is detected).
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Appendix . Facial movements and emotions

Emotion Movement velocity Error detection

Disgust Medium All

Anger Medium All

Fear Low All

Sadness Medium All

Neutral Medium All

Surprise Medium All

Happiness High Execution

Emotion Decisions Verbalization

Disgust

Anger Abort current action

Fear Provide more information

Sadness

Neutral

Surprise

Happiness Faster decisions

Table 7: Influence of emotions in various aspects of the robot behavior.
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Dynamic field neural populations

Four DNFs representing hand gestures Sub-population ’label’ Meaning

Reaching/pointing towards an object:

R1 Wheel

R2 Nut

R3 Column 1

R4 Column 2

R5 Column 3

R6 Column 4

R7 Top Floor

R8 Other

Reaching not towards an object:

Hold Out gesture H Hold out empty hand

Grip type:

G1 Above grip

G2 Side grip

G3 Bottom grip

Table 8: Action Observation Layer: Hand gestures.
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Appendix . Dynamic field neural populations

Three DNFs quantifying movements Sub-population ’label’ Meaning

Body part: A1 Idle (no movement)

Head A2 Low (little movement)

Hand A3 Medium

Body A4 High (intense movement)

Table 9: Action Observation Layer: Quantity of Movement.

Four DNFs representing facial movements Sub-population ’label’ Meaning

Face detection

F Face is detected

Eyebrows

1 Action Unit 1

2 Action Unit 2

4 Action Unit 4

Eyes

5 Action Unit 5

7 Action Unit 7

Mouth

12 Action Unit 12

15 Action Unit 15

18 Action Unit 18

20 Action Unit 20

25 Action Unit 25

26 Action Unit 26

Table 10: Action Observation Layer: Facial movements.
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Appendix . Dynamic field neural populations

Two DNF representing the distri-

bution of relevant pieces in the

two workspaces

Sub-population ’label’
Meaning: in the workspace

there exists a...

Robot’s workspace O1 Wheel

Human’s workspace O2 Nut

O3 Column 1

O4 Column 2

O5 Column 3

O6 Column 4

O7 Top Floor

Table 11: Object Memory Layer.

DNF representing Sub-population ’label’ Meaning

Emotional state

E1 Disgust

E2 Anger

E3 Fear

E4 Sadness

E5 Neutral

E6 Surprise

E7 Happy

Table 12: Emotional State Layer.
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Appendix . Dynamic field neural populations

DNF representing Sub-population ’label’ Meaning: human wants to...

Intention

I1 Insert Wheel

I2 Insert Nut

I3 Insert Column 1

I4 Insert Column 2

I5 Insert Column 3

I6 Insert Column 4

I7 Insert Top Floor

I8 Insert Other object

I9 Hand over Wheel

I10 Hand over Nut

I11 Hand over Column 1

I12 Hand over Column 2

I13 Hand over Column 3

I14 Hand over Column 4

I15 Hand over Top Floor

I16 Hand over Other object

I17 Hold Base

Table 13: Intention Layer.
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Appendix . Dynamic field neural populations

Two DNFs representing common sub goals Sub-population ’label’ Meaning

Past C1 Inserted Wheel 1

Present C2 Inserted Wheel 2

C3 Inserted Nut 1

C4 Inserted Nut 2

C5 Inserted Column 1

C6 Inserted Column 2

C7 Inserted Column 3

C8 Inserted Column 4

C9 Inserted Top Floor

Table 14: Common Sub Goals Layer

Table 15: Error Monitoring Layer: Intention.

One DNF representing errors

in intention

Sub-population ’label’ Meaning

Human already

inserted it

E1 Insert Wheel

E2 Insert Nut

E3 Insert Column 1

E4 Insert Column 2

E5 Insert Column 3

E6 Insert Column 4

E7 Insert Top Floor

Robot already

inserted it

E8 Hand over Wheel

E9 Hand over Nut

E10 Hand over Column 1

E11 Hand over Column 2

E12 Hand over Column 3
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Table 15: (continued).

One DNF representing errors

in intention

Sub-population ’label’ Meaning

E13 Hand over Column 4

E14 Hand over Top Floor

Human cannot

insert it yet

E15 Insert Wheel

E16 Insert Nut

E17 Insert Column 1

E18 Insert Column 2

E19 Insert Column 3

E20 Insert Column 4

E21 Insert Top Floor

Robot cannot

insert it yet

E22 Hand over Wheel

E23 Hand over Nut

E24 Hand over Column 1

E25 Hand over Column 2

E26 Hand over Column 3

E27 Hand over Column 4

E28 Hand over Top Floor

Related with

other objects

E29 Insert other object

E30 Hand over other object

E31 Hold Base
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One DNF representing errors in execution Sub-population ’label’ Meaning

Object inserted

in the wrong order

E1 Inserted Wheel

E2 Inserted Nut

E3 Inserted Column 1

E4 Inserted Column 2

E5 Inserted Column 3

E6 Inserted Column 4

E7 Inserted Top Floor

Object dropped

E8 Dropped Wheel

E9 Dropped Nut

E10 Dropped Column 1

E11 Dropped Column 2

E12 Dropped Column 3

E13 Dropped Column 4

E14 Dropped Top Floor

Table 16: Error Monitoring Layer: Execution.
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Table 17: Error Monitoring Layer: Means.

One DNF representing errors in

means

Sub-population ’label’ Meaning

Errors in

object insertion

E1 Wheel

E2 Nut

E3 Column 1

E4 Column 2

E5 Column 3

E6 Column 4

E7 Top Floor

Human grasping

an object from the

robot’s hand

E8 Wheel

E9 Nut

E10 Column 1

E11 Column 2

E12 Column 3

E13 Column 4

E14 Top Floor

Hand over

object

E15 Wheel

E16 Nut

E17 Column 1

E18 Column 2

E19 Column 3

E20 Column 4

E21 Top Floor

Point to an object

that cannot be used

E22 Wheel

E23 Nut

E24 Column 1

E25 Column 2
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Table 17: (continued).

One DNF representing errors in

means

Sub-population ’label’ Meaning

E26 Column 3

E27 Column 4

E28 Top Floor

Other errors
E29 Hand over

E30 Reach Base
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Table 18: ASFA/AEFA: Action simulation/execution emotion directed facial actions.

One DNF representing

chains of emotion di-

rected facial actions

Sub-population

’label’

Meaning

Disgust

F1 Lower eyebrows, smile, open mouth

slightly.

F2 Lower eyebrows, open mouth slightly.

F3 Nose wrinkles, pull lip corners down.

F4 Nose wrinkles.

F5 Lower eyebrows, nose wrinkles.

F6 Lower eyebrows, eyes wide open, nose

wrinkles.

Anger

F7 Lower eyebrows, eyes wide open.

F8 Lower eyebrows, eyes half closed.

F9 Lower eyebrows.

Fear

F10 Raise eyebrows + eyes wide open,

stretch lips, mouth open.

F11 Lower eyebrows, stretch lips.

F12 Raise inner part of eyebrows, stretch

lips.

F13 Eyes wide open.

Sadness
F14 Raise inner part of eyebrows, lower eye-

brows, lip corners down.

F15 Raise inner part of eyebrows, Lower

eyebrows.

F16 Raise inner part of eyebrows, lip corners

down.

F17 Lower eyebrows, lip corners down.
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Table 18: (continued).

One DNF representing

chains of emotion di-

rected facial actions

Sub-population

’label’

Meaning

F18 Raise inner part of eyebrows.

F19 Lip corners down.

Neutral F20 Face detected with no AUs.

Surprise

F21 Raise eyebrows.

F22 Raise eyebrows, eyes wide open.

F23 Raise eyebrows, mouth open.

F24 Raise eyebrows, eyes wide open, mouth

open.

Happiness

F25 Smile.

F26 Raise eyebrows, smile.

F27 Smile, mouth open.
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Table 19: ASHA/AEHA: Action simulation/execution of goal directed hand actions and commu-

nicative gestures.

One DNF representing chains

of goal directed hand actions

Sub-population

’label’

Meaning

Reach to grasp

object from the table

and insert it

A1 Wheel

A2 Nut

A3 Column 1

A4 Column 2

A5 Column 3

A6 Column 4

A7 Top Floor

A8 Other object

Reach to grasp

object from the partner’s hand

and insert it

A9 Wheel

A10 Nut

A11 Column 1

A12 Column 2

A13 Column 3

A14 Column 4

A15 Top Floor

A16 Other object

Reach to grasp

object and hand over

A17 Wheel

A18 Nut

A19 Column 1

A20 Column 2

A21 Column 3

A22 Column 4

A23 Top Floor

A24 Other object
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Table 19: (continued).

One DNF representing chains

of goal directed hand actions

Sub-population

’label’

Meaning

Pointing to object

A25 Wheel

A26 Nut

A27 Column 1

A28 Column 2

A29 Column 3

A30 Column 4

A31 Top Floor

A32 Other object

Other

A33 Hold Out empty hand

A34 Reach Base

A35 Communicate error (AEHA

only)
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Numerical values for the dynamic field

parameters

Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 8

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 20: Layer AOL: Reaching & Pointing.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 1

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 21: Layer AOL: Hold Out & Face Detect.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 3

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 22: Layer AOL: Grip Type.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 3

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 23: Layer AOL: Eyebrows.

174



Appendix . Numerical values for the dynamic field parameters

Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 2

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 24: Layer AOL: Eyes.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 6

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 25: Layer AOL: Mouth.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 4

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 26: Layer AOL: QoMHand & QoMBody & QoMHead.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 7

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 27: Layer OML.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 9

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.1 × max W

Intrafield interaction: w(x) = wexc(x) − wini(x), where wexc

and wini are given by Eq. 3.5

wexc:

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 1.5

winhib,i (Eq. 3.5) 0

wini:

Ai (Eq. 3.5) 8

σi (Eq. 3.5) 2

winhib,i (Eq. 3.5) 0

Table 28: Layer CSGL.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 34

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.7 × max W

Ai (Eq. 3.5) 12.5

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 9.5

Table 29: Layer ASL: ASHA.

Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 27

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −0.7 × max W

Ai (Eq. 3.5) 12.5

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 9.5

Table 30: Layer ASL: ASFA.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 17

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −1.1 × max W

Ai (Eq. 3.5) 6.0

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 4.5

Table 31: Layer IL.

Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 7

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −1.1 × max W

Ai (Eq. 3.5) 6.0

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 4.5

Table 32: Layer ESL.

181



Appendix . Numerical values for the dynamic field parameters

Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 35

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
10.0 × dt (Where dt is the compu-

tation cycle)

hi (Eq. 3.1) −0.5 × max W

Ai (Eq. 3.5) 12.5

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 9.5

Table 33: Layer AEL: AEHA.

Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 27

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
10.0 × dt (Where dt is the compu-

tation cycle)

hi (Eq. 3.1) −0.5 × max W

Ai (Eq. 3.5) 10

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 8.5

Table 34: Layer AEL: AEFA.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 31

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −2.0 × max W

Ai (Eq. 3.5) 6.0

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 4.5

Table 35: Layer EML: Error in Intention.

Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 30

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −2.0 × max W

Ai (Eq. 3.5) 6.0

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 4.5

Table 36: Layer EML: Error in Means.
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Parameters Values

Number of pools of neurons, i.e. subpopulations: Npools 14

Centers of the subpopulations: xm (in Eq. 3.7) xm = (m−1)×10 , m = 1, ..., Npools

Sampling distance along x : dx
′ (Eq. 3.1) 1

τi (Eq. 3.1)
5.0× dt (Where dt is the computa-

tion cycle)

hi (Eq. 3.1) −2.0 × max W

Ai (Eq. 3.5) 6.0

σi (Eq. 3.5) 2.0

winhib,i (Eq. 3.5) 4.5

Table 37: Layer EML: Error in Execution.

184



Numerical values for the inter-field

synaptic weights

Table 38: Synaptic weights from OML to ASL.

DNFs in OML→ASL Synaptic link aASL,OML Weight

OML Robot→ASHA aA17,O1 -1.2

aA25,O1 0.8

aA18,O2 -1.2

aA26,O2 0.8

aA19,O3 -1.2

aA27,O3 0.8

aA20,O4 -1.2

aA28,O4 0.8

aA21,O5 -1.2

aA29,O5 0.8

aA22,O6 -1.2

aA30,O6 0.8

OML Human→ASHA aA1,O1 0.5

aA9,O1 0.5

aA17,O1 -1.2

aA25,O1 -1.2
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Table 38: (continued).

DNFs in OML→ASL Synaptic link aASL,OML Weight

aA2,O2 0.5

aA10,O2 0.5

aA18,O2 -1.2

aA26,O2 -1.2

aA3,O3 0.5

aA11,O3 0.5

aA19,O3 -1.2

aA27,O3 -1.2

aA4,O4 0.5

aA12,O4 0.5

aA20,O4 -1.2

aA28,O4 -1.2

aA5,O5 0.5

aA13,O5 0.5

aA21,O5 -1.2

aA29,O5 -1.2

aA6,O6 0.5

aA14,O6 0.5

aA22,O6 -1.2

aA30,O6 -1.2

aA7,O7 0.5

aA23,O7 -1.2

aA31,O7 -1.2
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Table 39: Synaptic weights from AOL to ASL.

DNFs in AOL→ASL Synaptic link aASL,AOL Weight

Reaching→ASHA aA1,R1 1.5

aA17,R1 1.5

aA2,R2 1.5

aA18,R2 1.5

aA3,R3 1.5

aA19,R3 1.5

aA4,R4 1.5

aA20,R4 1.5

aA5,R5 1.5

aA21,R5 1.5

aA6,R6 1.5

aA22,R6 1.5

aA7,R7 1.5

aA8,R8 2.0

Hold Out→ASHA aA33,H 2.5

Grip Type→ASHA aA1,G1 0.5

aA17,G1 -1.2

aA2,G1 -1.2

aA18,G1 0.5

aA3,G1 0.5

aA19,G1 -1.2

aA4,G1 0.5

aA20,G1 -1.2

aA5,G1 0.5

aA21,G1 -1.2

aA6,G1 0.5
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Table 39: (continued).

DNFs in AOL→ASL Synaptic link aASL,AOL Weight

aA22,G1 -1.2

aA7,G1 -1.2

aA23,G1 -1.2

aA1,G2 -1.2

aA17,G2 0.5

aA2,G2 0.5

aA18,G2 -1.2

aA3,G2 -1.2

aA19,G2 -1.2

aA4,G2 -1.2

aA20,G2 -1.2

aA5,G2 -1.2

aA21,G2 -1.2

aA6,G2 -1.2

aA22,G2 -1.2

aA7,G2 0.5

aA1,G3 -1.2

aA17,G3 -1.2

aA2,G3 -1.2

aA18,G3 -1.2

aA3,G3 -1.2

aA19,G3 0.5

aA4,G3 -1.2

aA20,G3 0.5

aA5,G3 -1.2

aA21,G3 0.5
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Table 39: (continued).

DNFs in AOL→ASL Synaptic link aASL,AOL Weight

aA6,G3 -1.2

aA22,G3 0.5

aA7,G3 -1.2

Pointing→ASHA aA25,P1 2.0

aA26,P2 2.0

aA27,P3 2.0

aA28,P4 2.0

aA29,P5 2.0

aA30,P6 2.0

aA31,P7 2.0

aA32,P8 2.0

Table 41: Synaptic weights from AOL to ASL.

DNFs in AOL→ASL Synaptic link aASL,AOL Weight

Face Detect→ASFA aF20,F 1.1

Eyebrows→ASFA aF10,1 0.3

aF12,1 0.55

aF14,1 0.4

aF15,1 0.55

aF16,1 0.55

aF18,1 0.95

aF20,1 -0.2

aF21,1 0.55

aF22,1 0.4

aF23,1 0.4

aF24,1 0.35
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Table 41: (continued).

DNFs in AOL→ASL Synaptic link aASL,AOL Weight

aF26,1 0.4

aF10,2 0.3

aF20,2 -0.2

aF21,2 0.55

aF22,2 0.4

aF23,2 0.4

aF24,2 0.35

aF26,2 0.4

aF1,4 0.4

aF2,4 0.55

aF5,4 0.55

aF6,4 0.4

aF7,4 0.65

aF8,4 0.55

aF9,4 0.95

aF11,4 0.55

aF13,4 0.35

aF14,4 0.4

aF15,4 0.55

aF17,4 0.55

aF20,4 -0.2

Eyes→ASFA aF6,5 0.4

aF7,5 0.75

aF10,5 0.35

aF13,5 0.95

aF20,5 -0.2
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Table 41: (continued).

DNFs in AOL→ASL Synaptic link aASL,AOL Weight

aF22,5 0.4

aF24,5 0.35

aF8,7 0.55

aF20,7 -0.2

Mouth→ASFA aF1,12 0.4

aF20,12 -0.2

aF25,12 0.95

aF26,12 0.4

aF27,12 0.55

aF14,15 0.4

aF16,15 0.55

aF17,15 0.55

aF19,15 0.95

aF20,15 -0.2

aF10,20 0.3

aF11,20 0.55

aF12,20 0.55

aF20,20 -0.2

aF1,25 0.4

aF2,25 0.55

aF20,25 -0.2

aF10,26 0.3

aF20,26 -0.2

aF23,26 0.4

aF24,26 0.35

aF27,26 0.55
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DNFs in CSGL→ASL Synaptic link aASL,CSGL Weight

CSGL Present→ASHA

aA17,C1 0.8

aA1,C2 0.85

aA9,C2 0.8

aA25,C2 0.8

aA18,C3 0.8

aA2,C4 0.85

aA10,C4 0.8

aA26,C4 0.8

aA19,C5 0.8

aA4,C6 0.85

aA12,C6 0.8

aA28,C6 0.8

aA5,C7 0.85

aA13,C7 0.8

aA29,C7 0.8

aA6,C8 0.85

aA14,C8 0.8

aA29,C8 0.8

aA7,C9 0.85

Table 40: Synaptic weights from CSGL to ASL.
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Table 42: Synaptic weights from ASL to IL.

DNFs in ASL→IL Synaptic link aIL,ASL Weight

ASHA→IL aI1,A1 1.0

aI2,A2 1.0

aI3,A3 1.0

aI4,A4 1.0

aI5,A5 1.0

aI6,A6 1.0

aI7,A7 1.0

aI8,A8 1.0

aI1,A9 1.0

aI2,A10 1.0

aI3,A11 1.0

aI4,A12 1.0

aI5,A13 1.0

aI6,A14 1.0

aI7,A15 1.0

aI8,A16 1.0

aI9,A17 1.0

aI10,A18 1.0

aI11,A19 1.0

aI12,A20 1.0

aI13,A21 1.0

aI14,A22 1.0

aI15,A23 1.0

aI16,A24 1.0

aI1,A25 1.0

aI2,A26 1.0
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Table 42: (continued).

DNFs in ASL→IL Synaptic link aIL,ASL Weight

aI3,A27 1.0

aI4,A28 1.0

aI5,A29 1.0

aI6,A30 1.0

aI7,A31 1.0

aI8,A32 1.0

aI1,A33 0.5

aI2,A33 0.5

aI3,A33 0.5

aI4,A33 0.5

aI5,A33 0.5

aI6,A33 0.5

aI7,A33 0.5

DNFs in CSGL→IL Synaptic link aIL,CSGL Weight

CSGL Present→IL

aI1,C2 0.25

aI2,C4 0.25

aI4,C6 0.25

aI5,C7 0.25

aI6,C8 0.25

aI7,C9 0.25

Table 43: Synaptic weights from CSGL to IL.
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Table 44: Synaptic weights from ASL to ESL.

DNFs in ASL→ESL Synaptic link aESL,ASL Weight

ASFA→ESL aE1,F1 1.0

aE1,F2 1.0

aE1,F3 1.0

aE1,F4 1.0

aE1,F5 1.0

aE1,F6 1.0

aE2,F7 1.0

aE2,F8 1.0

aE2,F9 0.5

aE5,F9 0.5

aE3,F10 1.0

aE3,F11 1.0

aE3,F12 1.0

aE3,F13 1.0

aE4,F14 1.0

aE4,F15 1.0

aE4,F16 1.0

aE4,F17 1.0

aE4,F18 0.5

aE5,F18 0.6

aE4,F19 0.5

aE5,F19 0.6

aE5,F20 1.0

aE6,F21 1.0

aE6,F22 1.0

aE6,F23 1.0
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Table 44: (continued).

DNFs in ASL→ESL Synaptic link aESL,ASL Weight

aE6,F24 1.0

aE7,F25 1.0

aE7,F26 1.0

aE7,F27 1.0

DNFs in AOL→ESL Synaptic link aESL,AOL Weight

QoM_Hand→ESL

aE3,L 1.0

aE4,L 1.0

aE2,H 1.0

QoM_Body→ESL aE2,H 1.0

QoM_Head→ESL aE2,H 1.0

Table 45: Synaptic weights from AOL to ESL.

Table 46: Synaptic weights from OML to AEL.

DNFs in OML→AEL Synaptic link aAEL,OML Weight

OML Robot→AEHA aA1,O1 1.2

aA9,O1 -2.5

aA17,O1 1.3

aA25,O1 -1.0

aA2,O2 1.2

aA10,O2 -2.5

aA18,O2 1.3

aA26,O2 -1.0

aA3,O3 1.2

aA11,O3 -2.5
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Table 46: (continued).

DNFs in OML→AEL Synaptic link aAEL,OML Weight

aA19,O3 1.3

aA27,O3 -1.0

aA4,O4 1.2

aA12,O4 -2.5

aA20,O4 1.3

aA28,O4 -1.0

aA5,O5 1.2

aA13,O5 -2.5

aA21,O5 1.3

aA29,O5 -1.0

aA6,O6 1.2

aA14,O6 -2.5

aA22,O6 1.3

aA30,O6 -1.0

OML Human→AEHA aA9,O1 0.25

aA17,O1 -2.5

aA25,O1 1.0

aA10,O2 0.25

aA18,O2 -2.5

aA26,O2 1.0

aA11,O3 0.25

aA19,O3 -2.5

aA27,O3 1.0

aA12,O4 0.25

aA20,O4 -2.5

aA28,O4 1.0
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Table 46: (continued).

DNFs in OML→AEL Synaptic link aAEL,OML Weight

aA13,O5 0.25

aA21,O5 -2.5

aA29,O5 1.0

aA14,O6 0.25

aA22,O6 -2.5

aA30,O6 1.0

Table 48: Synaptic weights from IL to AEL.

DNFs in IL→AEL Synaptic link aAEL,IL Weight

IL→AEHA aA9,I1 -1.0

aA17,I1 1.0

aA10,I2 -1.0

aA18,I2 1.0

aA11,I3 -1.0

aA19,I3 1.0

aA12,I4 -1.0

aA20,I4 1.0

aA13,I5 -1.0

aA21,I5 1.0

aA14,I6 -1.0

aA22,I6 1.0

aA9,I9 2.0

aA17,I9 -1.0

aA25,I9 -1.5

aA33,I9 -1.5

aA10,I10 2.0
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Table 48: (continued).

DNFs in IL→AEL Synaptic link aAEL,IL Weight

aA18,I10 -1.0

aA26,I10 -1.5

aA33,I10 -1.5

aA11,I11 2.0

aA19,I11 -1.0

aA27,I11 -1.5

aA33,I11 -1.5

aA12,I12 2.0

aA20,I12 -1.0

aA28,I12 -1.5

aA33,I12 -1.5

aA13,I13 2.0

aA21,I13 -1.0

aA29,I13 -1.5

aA33,I13 -1.5

aA14,I14 2.0

aA22,I14 -1.0

aA30,I14 -1.5

aA33,I14 -1.5

Table 53: Synaptic weights from IL to EML.

DNFs in IL→EML Synaptic link aEML,IL Weight

IL→Error in Intention aE1,I1 1.0

aE15,I1 1.0

aE2,I2 1.0

aE16,I2 1.0
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Table 53: (continued).

DNFs in IL→EML Synaptic link aEML,IL Weight

aE3,I3 1.0

aE17,I3 1.0

aE4,I4 1.0

aE18,I4 1.0

aE5,I5 1.0

aE19,I5 1.0

aE6,I6 1.0

aE20,I6 1.0

aE7,I7 1.0

aE21,I7 1.0

aE29,I8 2.0

aE8,I9 1.0

aE22,I9 1.0

aE9,I10 1.0

aE23,I10 1.0

aE10,I11 1.0

aE24,I11 1.0

aE11,I12 1.0

aE25,I12 1.0

aE12,I13 1.0

aE26,I13 1.0

aE13,I14 1.0

aE27,I14 1.0

aE14,I15 1.0

aE28,I15 1.0

aE30,I16 2.0
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DNFs in CSGL→AEL
Synaptic link

aAEL,CSGL

Weight

CSGL Present→AEHA

aA1,C1 0.9

aA9,C1 0.25

aA25,C1 0.75

aA33,C1 1.85

aA17,C2 0.9

aA2,C3 0.9

aA10,C3 0.25

aA26,C3 0.75

aA33,C3 1.85

aA18,C4 0.9

aA3,C5 0.9

aA11,C5 0.25

aA27,C5 0.75

aA33,C5 1.85

aA20,C6 0.9

aA21,C7 0.9

aA22,C8 0.9

Table 47: Synaptic weights from CSGL to AEL.
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DNFs in ESL→AEL Synaptic link aAEL,ESL Weight

ESL→AEHA

aA25,E6 0.5

aA26,E6 0.5

aA27,E6 0.5

aA28,E6 0.5

aA29,E6 0.5

aA30,E6 0.5

Table 49: Synaptic weights from ESL to AEL

DNFs in EML→AEL Synaptic link aAEL,EML Weight

Error in Execution→AEHA

aA17,E8 1.0

aA18,E9 1.0

aA19,E10 1.0

aA20,E11 1.0

aA21,E12 1.0

aA22,E13 1.0

Table 50: Synaptic weights from EML to AEL.

DNFs in ESL→AEL Synaptic link aAEL,ESL Weight

ESL→AEFA

aF20,E1 0.5

aF7,E2 0.4

aF20,E2 0.45

aF20,E3 0.5

aF20,E4 0.5

aF20,E5 0.5

aF20,E6 0.5

aF25,E7 0.65

Table 51: Synaptic weights from ESL to AEL.
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DNFs in EML→AEL Synaptic link aAEL,EML Weight

Error in Execution→AEFA

aF7,E1 0.5

aF7,E2 0.5

aF7,E3 0.5

aF7,E4 0.5

aF7,E5 0.5

aF7,E6 0.5

aF7,E7 0.5

Table 52: Synaptic weights from EML to AEL.

Table 54: Synaptic weights from CSGL to EML.

DNFs in CSGL→EML Synaptic link aEML,CSGL Weight

CSGL Past→Error in Intention aE1,C2 1.0

aE2,C4 1.0

aE4,C6 1.0

aE5,C7 1.0

aE6,C8 1.0

aE7,C9 1.0

aE8,C1 1.0

aE9,C3 1.0

aE10,C5 1.0

CSGL Present→Error in Intention aE23,C1 1.0

aE24,C1 0.5

aE18,C1 0.5

aE19,C1 0.5

aE20,C1 0.5

aE21,C1 0.5
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Table 54: (continued).

DNFs in CSGL→EML Synaptic link aEML,CSGL Weight

aE15,C2 1.0

aE24,C2 0.5

aE18,C2 0.5

aE19,C2 0.5

aE20,C2 0.5

aE21,C2 0.5

aE24,C3 0.5

aE18,C3 0.5

aE19,C3 0.5

aE20,C3 0.5

aE21,C3 0.5

aE24,C4 0.5

aE18,C4 0.5

aE19,C4 0.5

aE20,C4 0.5

aE21,C4 0.5

aE21,C5 0.5

aE19,C6 0.5

aE20,C6 0.5

aE21,C6 0.5

aE20,C7 0.5

aE21,C7 0.5

aE21,C8 0.5
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DNFs in ASL→EML Synaptic link aEML,ASL Weight

ASHA→Error in Means

aE15,A17 1.0

aE16,A18 1.0

aE17,A19 1.0

aE18,A20 1.0

aE19,A21 1.0

aE20,A22 1.0

aE21,A23 1.0

aE22,A25 1.0

aE23,A26 1.0

aE24,A27 1.0

aE25,A28 1.0

aE26,A29 1.0

aE27,A30 1.0

aE28,A31 1.0

Table 55: Synaptic weights from ASL to EML.
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DNFs in OML→EML Synaptic link aEML,OML Weight

OML Robot→Error in Means

aE15,O1 1.0

aE16,O2 1.0

aE17,O3 1.0

aE18,O4 1.0

aE19,O5 1.0

aE20,O6 1.0

aE21,O7 1.0

OML Human→Error in Means

aE22,O1 1.0

aE23,O2 1.0

aE24,O3 1.0

aE25,O4 1.0

aE26,O5 1.0

aE27,O6 1.0

aE28,O7 1.0

Table 56: Synaptic weights from OML to EML.
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Table 57: Synaptic weights from CSGL to EML.

DNFs in CSGL→EML Synaptic link aEML,CSGL Weight

CSGL Past→Error in Execution

aE2,C4 1.25

aE4,C6 1.25

aE5,C7 1.25

aE6,C8 1.25

aE7,C9 1.25

CSGL Present→Error in Execution

aE4,C1 0.5

aE5,C1 0.5

aE6,C1 0.5

aE7,C1 0.5

aE2,C2 0.5

aE4,C2 0.5

aE5,C2 0.5

aE6,C2 0.5

aE7,C2 0.5

aE4,C3 0.5

aE5,C3 0.5

aE6,C3 0.5

aE7,C3 0.5

aE4,C4 0.5

aE5,C4 0.5

aE6,C4 0.5

aE7,C4 0.5

aE7,C5 0.5

aE5,C6 0.5

aE6,C6 0.5

aE7,C6 0.5
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Table 57: (continued).

DNFs in CSGL→EML Synaptic link aEML,CSGL Weight

aE6,C7 0.5

aE7,C7 0.5

aE7,C8 0.5
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DNFs in ASL→EML Synaptic link aEML,ASL Weight

ASHA→Error in Execution

aE8,A1 0.2

aE8,A9 0.2

aE8,A17 0.2

aE9,A2 0.2

aE9,A10 0.2

aE9,A18 0.2

aE10,A3 0.2

aE10,A11 0.2

aE10,A19 0.2

aE11,A4 0.2

aE11,A12 0.2

aE11,A20 0.2

aE12,A5 0.2

aE12,A13 0.2

aE12,A21 0.2

aE13,A6 0.2

aE13,A14 0.2

aE13,A22 0.2

aE14,A7 0.2

aE14,A15 0.2

aE14,A23 0.2

Table 58: Synaptic weights from ASL to EML.
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