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Dental implant market is continuously growing due to the constant increase in life 

expectancy and higher concerns on oral hygiene and aesthetics.  Titanium-based materials are 

the most widely used in dental implants due to their superior biocompatibility, mechanical 

properties, and excellent corrosion resistance. However, despite the high overall success rate of 

dental implants, a significant number of failures still occur. 

Implant failures in dentistry may be ascribed essentially to three main causes, namely the 

lack of an adequate implant-bone integration, microbial infection, and corrosion/tribocorrosion 

processes. The modification of Ti surface features has been a strategy currently adopted in the 

attempt to overcome these complications. Ideally, the implant should be able to display 

concomitantly two contradictory properties: the enhancement of human cell adhesion and the 

inhibition of the adhesion of undesirable microorganisms. Additionally, the implant surface 

should be also tailored with the ability to withstand the combined actions of corrosion and wear 

(tribocorrosion), at which they are exposed to in the human body. Nanotechnology is an 

emerging area in the field of dentistry, and in particular, nanotubular TiO2 surfaces have been 

widely recognized as promising candidates to improve the performance of dental implants. 

However, the construction of effective nanotubular systems based on an integrated approach 

addressing, simultaneously, the three main causes of failure, is still missing. 

This thesis aims the synthesis of multifunctional TiO2 nanotubes (NTs) in Ti surfaces, 

tailored to exhibit simultaneously tribo-electrochemical resistance, antibacterial activity, and an 

adequate osseointegration ability. To achieve the main aim, TiO2 NTs were synthesized by 

anodization, and functionalized with bone-constituting elements such as calcium, phosphorous, 

and zinc, through a novel methodology based on reverse polarization anodization processes. 

After bio-functionalization, Ti surfaces decorated with TiO2 NTs displayed an outstanding tribo-

electrochemical behavior, the capacity to impair bacterial viability, and the ability to improve 

human cell responses. These multiple functions were ascribed to the morphological, 

topographical, and physicochemical features of bio-functionalized TiO2 NTs, as well as to their 

mechanical properties and adhesion strength to Ti. 

The outcomes of this work remarkably show that significant improvements have been 

achieved. By means of a simple approach, key functionalities of conventional TiO2 NTs were 

improved, which are expected to have a major clinical impact in dental implant therapies. 
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O mercado de implantes dentários tem vindo a crescer, devido ao aumento constante da 

esperança de vida e maiores preocupações no que respeita higiene oral e estética. Materiais à 

base de titânio (Ti) são os mais usados em implantes dentários devido à sua elevada 

biocompatibilidade, propriedades mecânicas e excelente resistência à corrosão. No entanto, 

apesar da alta taxa de sucesso, um número significativo de falhas ainda ocorrem. 

As falhas de implantes em odontologia podem ser atribuídas essencialmente a três 

causas, nomeadamente, a falta de uma adequada integração implante-osso, infeção microbiana 

e processos de corrosão/tribocorrosão. A modificação das características de superfície do Ti tem 

sido uma estratégia atualmente adotada, na tentativa de superar essas complicações. 

Idealmente, o implante deveria ser capaz de exibir concomitantemente duas propriedades 

contraditórias: o aumento da adesão de células humanas e a inibição da adesão de 

microrganismos indesejáveis. Além disso, a superfície do implante deveria também ser adaptada 

com a capacidade de resistir às ações combinadas de corrosão e desgaste (tribocorrosão), às 

quais estão expostas no corpo humano. A nanotecnologia é uma área emergente na área da 

odontologia e, em particular, as superfícies de TiO2 nanotubulares têm sido amplamente 

reconhecidas como potencial candidatas para melhorar o desempenho dos implantes dentários. 

No entanto, ainda está em falta a construção de sistemas nanotubulares eficazes, assentes numa 

abordagem integrada que considere, simultaneamente, as três principais causas de falha. 

Esta tese objetiva a síntese de nanotubos (NTs) de TiO2 multifuncionais em superfícies de 

Ti, adaptados para exibir simultaneamente resistência tribo-eletroquímica, atividade 

antibacteriana e adequada capacidade de osteointegração. Neste sentido, NTs de TiO2 foram 

sintetizados via anodização e funcionalizados com elementos constituintes do osso, como cálcio, 

fósforo e zinco, através de uma nova metodologia baseada em processos de anodização via 

polarização inversa. Após bio-funcionalização, as superfícies de Ti decoradas com NTs de TiO2 

apresentaram um excelente comportamento tribo-eletroquímico, a capacidade de prejudicar a 

viabilidade bacteriana e a aptidão de melhorar a resposta de células humanas. Estas múltiplas 

funções foram atribuídas às características morfológicas, topográficas e físico-químicas dos NTs 

de TiO2 bio-funcionalizados e às suas propriedades mecânicas e força de adesão ao Ti. 

Os resultados deste trabalho mostram notavelmente que melhorias significativas foram 

alcançadas. Por intermédio de uma abordagem simples, as funcionalidades chave dos NTs de 

TiO2 convencionais foram melhoradas, as quais são esperadas ter um impacto clínico relevante 

nas terapias de implantes dentários. 
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Tooth loss due to decay, trauma or periodontal diseases is a common problem generally 

followed by several complications such as the reduction of masticatory function, fracture of the 

mandible due to loss of underlying bone, and also compromise the aesthetics of the person [1]. 

Dental implants have become an effective and long-term treatment option for replacing missing 

teeth by restoring the patient to normal function, speech, health and physical appearance [2]. 

More than 35 million people in the United States (U.S.) are missing all their teeth in one 

or both jaws. Statistics show that 69 % of adults aged between 35 – 44 have lost at least one 

permanent tooth, while 26 % of adults by age 74 have lost all of their permanent teeth [3, 4]. It 

is estimated that about 3 million Americans have dental implants, and another 500,000 implants 

are placed annually, according to American Academy of Implant Dentistry [3]. The growing 

concern over oral hygiene, an increasing life expectancy and the availability of advanced 

solutions with increased procedure efficiency are some of the key factors leading to the global 

boom in dental implant therapies [5]. It is expected that the total population in the U.S. will grow 

by almost 50 % between 2000 and 2050, and furthermore, by 2050 it is estimated that the 

elderly will make up 20.6 % of the total population [1]. Nowadays, there are numerous dental 

implant companies worldwide producing several hundreds of different implant systems [6]. The 

worldwide dental implant market has been rising with expectancy to be continuously growing 

over the next years with an annual growth rate of 10 %, from US$3.4 billion in 2011 to US$6.6 

billion by 2018 [5].  

Titanium (Ti) materials are known as the most biocompatible and have been successfully 

used for dental implants [2]. Notwithstanding the high success rates that Ti-based dental implant 

therapies have reached, a significant number of failures are still being reported. In accordance 

with different clinical studies covering follow up periods of 2 – 16 years, the overall survival rates 

of dental implants ranged between 76 % and 98.7 %, with clinically relevant implant failure rates 

found comprised 1 – 25 % [7-11]. As above mentioned, the number of dental implant procedures 

have been on the rise. Life expectancy is increasing and age alone should not be considered a 

limiting factor for dental implant therapy [9]. Therefore, if the current complications are not 

surpassed, a massive increase in dental implant failures is expected within the upcoming years. 

Hence, it is urgent the demand for strategies to overcome them. 

Despite the good biocompatibility of Ti, its poor osteogenic ability and the lack of 

antimicrobial properties are the main factors leading to delayed osseointegration and 

complicated bacterial infections, which are known as two main causes of failures in implant 

dentistry [11, 12]. Functionalization of implant surfaces through the modification of features 

such as morphology, topography, chemistry, structure, and energy has been widely recognized 
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as a promising strategy to mitigate these issues [13, 14]. In accordance with the literature review 

reported by Ballo et al. [15], the currently available implant systems in the market mainly offer 

three different kinds of surfaces: 1) machined surfaces, 2) sandblasted and/or acid-etched 

surfaces, and 3) advanced functionalized surfaces with specific features such as morphology, 

topography and chemistry. In general, the main aim on surface modification has been to provide 

a faster, stronger and safer osseointegration. Dental implant companies have been focused on 

the development of bone-integrating surfaces, however, less attention has been devoted to 

microbial colonization issues. 

Besides poor osseointegration and infection, there is a third main issue that has been 

gathering the attention of the scientific community, which is related to the degradation of dental 

implant materials through the simultaneous action of wear and corrosion (tribocorrosion). 

Dental implants may be exposed to tribocorrosive actions, either at the time of implantation or 

in a later stage after osseointegration. Generally, degradation of Ti implant material through 

wear-corrosion processes, is accompanied by the release of wear debris/corrosion products to 

the implant surroundings, which may induce to several biological complications that may end 

up in implant failure [16, 17]. Despite a wide range of surface modification strategies have been 

applied to improve Ti surface features, in general, the effect of those treatments on the 

tribocorrosion behavior of the material, is unknown.    

More recently, nanostructured surfaces have demonstrated to play a crucial role in 

osseointegration by modulating cell functions. Wennernerg et al. [18] showed that different 

dental implant companies have already launched novel implant surfaces with modifications 

implemented at a nano-scale level to improve biofunctionality, emphasizing the promising 

prospects of nanotechnology in dentistry field. In particular, research studies have effectively 

shown that the decoration of Ti-based materials with TiO2 NTs (NTs), is a simple way to promote 

cellular functions due to their unique morphological and physicochemical properties [19, 20]. 

Beyond the promising potential to induce osseointegration and reduce infection, nanotubular 

surfaces can behave as efficient drug delivery systems, and be tailored to incorporate multiple 

functionalities [21-23]. However, the construction of effective nanotubular systems based on an 

integrated and multidisciplinary approach that addresses, simultaneously, the three main 

problems related to dental implant failure, is still missing. To further emphasize this need, it has 

been reported that TiO2 NTs display poor adhesion strength to the Ti substrate what might 

compromise their widespread applications [24], and lead researchers to query about the clinical 

application of several scientific works published in this field up to date. For all these reasons, the 

understanding of the degradation behavior of TiO2 NTs by wear and corrosion processes is 

required. In fact, as a step forward, it is urgent the demand for new and innovative strategies to 
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develop new tribocorrosion resistant implant surfaces with potential to avoid infection, and 

simultaneously, promote osseointegration, towards a new generation of dental implants. 

 

 

The central hypothesis of this thesis was stated as “Titanium surfaces decorated with 

TiO2 nanotubes display multiple bio-functionalities: tribo-electrochemical resistance, 

antibacterial activity and osseointegration ability”. 

To validate this hypothesis, the main aim of this project was to synthesize bio-

multifunctional TiO2 NTs in Ti surfaces, tailored to simultaneously exhibit enhanced tribo-

electrochemical resistance, antibacterial activity, and an adequate osseointegration ability. The 

main steps followed to achieve the main aim of this thesis, were set as objectives, which 

intended to address the validation process of the main hypothesis, through a systematic and 

multidisciplinary approach. Hereafter follows the specific objectives of the thesis: 

1) Synthesize and characterize bone-inspired TiO2 NTs in Ti surfaces, and further bio-

functionalize them with calcium, phosphorous and zinc. 

2) Study the bio-functionalization mechanisms of TiO2 NTs and their influence on the 

characteristics of TiO2 NTs/Ti interface. 

3) Examine the potential of bio-functionalized nanotubular surfaces to induce 

osseointegration and avoid bacterial infection. 

4) Investigate the electrochemical and tribo-electrochemical behaviors of 

conventional and bio-functionalized TiO2 NTs, under single and multiple reciprocating sliding 

conditions in artificial saliva. 

 

 

This thesis is composed by a total of 9 chapters. For a better comprehension of its 

structure, henceforward is a brief overview explaining the main topics addressed in each section. 

The main goal of the present chapter, chapter 1, is to introduce the key motivating factors 

that stimulated the execution of this project. The main hypothesis of this thesis is stated, as well 

as the description of the main aim and specific objectives.    

The chapter 2 is intended to review the state of the art of the main topics addressed along 

the main body of the thesis. Relevant information on Ti dental implants is provided, and 

important topics related to the three main causes of osseointegrated implant failures are 

reported, for a better understanding of the failure mechanisms. Basic definitions of some key 

concepts related to osseointegration, microbial infection, corrosion, and tribocorrosion are 
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described. Furthermore, a literature review on the surface modification strategies currently 

adopted for enhancing Ti implants performance is provided, with special focus on 

nanotechnological approaches. Finally, the state of the art regarding the synthesis of TiO2 NTs 

by anodization is reviewed, focusing on their use for osseointegrated implant applications.   

The main findings of this work are compiled in the form of five scientific papers, already 

published or submitted for publication in international journals, and these are reported from 

chapter 3 to chapter 7. 

The chapter 3 initiates the core of the thesis, and reports the first publication of this work. 

It concerns to the synthesis and characterization of bio-functionalized TiO2 NTs with calcium (Ca) 

and phosphorous (P), by reverse polarization anodization. The first biocompatibility studies were 

described, and the novel methodology adopted for NTs functionalization shows up as a very 

promising way to improve cell functions, and minimize bio-degradation of Ca/P-based TiO2 NTs 

by corrosion. 

The study described in chapter 4 was determinant for the understanding of the upcoming 

work. This paper focused on the bio-functionalization of TiO2 NTs with zinc (Zn), together with 

Ca and P, through the previously reported methodology in chapter 3. For the first time, the 

thorough characterization of the interface between Ti substrate and TiO2 NTs was carried out, 

aiming a better understanding of the mechanisms governing bio-functionalization. 

In chapter 5, the potential of bio-functionalized TiO2 NTs to induce osseointegration and 

avoid infection was investigated. To achieve this objective, the influence of nanotubular surface 

features on osteoblast-like and human mesenchymal stem cells (hMSCs) was investigated, as 

concerns metabolic activity and adhesion ability. Furthermore, the osteoblastic differentiation 

of hMSCs was examined as well as their angiogenesis capability. Finally, the adhesion and 

viability of Staphylococcus aureus on bio-functionalized NTs was also studied. 

Based on the scientific knowledge acquired from chapter 4, the chapter 6 aimed to 

investigate the tribo-electrochemical degradation behavior of TiO2 NTs, before and after bio-

functionalization, when submitted to reciprocating sliding tests in artificial saliva (AS). A first 

insight on the degradation mechanisms of NTs exposed to tribocorrosive actions was proposed 

for the first time. 

The chapter 7 is related to the last scientific work performed in this thesis and was 

undertaken based on the outcomes obtained in the preceding chapter. This paper aimed to 

investigate, for the first time, the tribo-electrochemical performance of bio-functionalized NTs 

submitted to multiple reciprocating sliding actions in AS, to better simulate the in vivo 

conditions. In this study, the adhesion strength and mechanical properties of the nanotubular 

films are studied, before and after bio-functionalization, and correlated with their tribo-
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electrochemical responses. 

In chapter 8, the main outcomes reported in the five previous chapters are summarized, 

and the interrelation existing between them is established along with a general discussion.  

To finalize, in chapter 9 some important questions that have arisen during the different 

stages of development of the thesis, and could not be answered based on the existing literature, 

are described. Furthermore, a few future studies are proposed for further improvement of this 

work, or either to provide new insights for exploring other topics.  
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A dental implant is an artificial tooth root surgically placed into the jaw bone beneath the 

gum to support a dental prosthesis like an artificial crown, where natural tooth is missing (Fig. 

2.1) [1]. The abutment is an additional component placed between the dental implant and the 

crown, and is responsible for both structures connection [2]. Dental implants have become an 

effective and long-term treatment option for replacing tooth loss due to decay, trauma or 

periodontal diseases, by restoring the patient to normal function, speech, health, and aesthetics 

[1, 3]. The number of dental implant procedures have been on the rise and is expected to boost 

in the upcoming years due to increased life expectancy and the high success rates of dental 

implant therapies [2, 4]. 

 

 
Fig. 2.1. Schematic representation of a natural tooth (at left) and an endosseous dental implant attached to bone (at 

right). Adapted from [5, 6]. 

 

Nowadays, endosseous dental implants shaped with a screw design are the most 

commonly used in dentistry, and are placed within a drilled space inside bone. The screw design 

is the one generally used due to the additional immediate fixation that a threaded implant may 

provide [4, 7, 8]. These implant systems became a revolutionary advancement in dentistry after 

the discovery of Per-Ingvar Brånemark (1929 - 2014), who is recognized as the father of modern 

implantology. He and his colleagues found that titanium (Ti) screws inserted into bone promoted 

the in-growth of bone tissue into the threads and crevices of Ti surfaces, without any sign of 

fibrous tissue formation [9], a process that they have finally named as “osseointegration” [10]. 

In the mid 1960´s, these implants were successfully implanted in humans by Brånemark [11], 

and the ones placed in his first 34-year-old patient, have lasted for more than 40 years [4]. The 

use of Ti for dental implants was approved by US Food and Drug Administration (FDA) in 1982 

[4], and since then implant therapies have undergone a remarkable evolution.   

In fact, commercially pure Ti and its alloys are the metallic materials most widely used for 

dental implants [2]. These are characterized by high strength and excellent ductility ensuring 
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high resistance to fracture, and therefore favoring long-term load bearing compared to ceramics 

and polymers [12]. In addition to low density (4.5 g/cm3) and high mechanical resistance, Ti 

display superior biocompatibility and excellent corrosion resistance [2, 13, 14]. These properties 

are associated with the ability of Ti to spontaneously form a stable and adherent TiO2 thin film 

in its surface, typically with less than 10 nm, named as passive film, when exposed to oxidizing 

conditions [2].  

 

 

2.2.1. Poor osseointegration and bone resorption 

Brånemark originally described the concept of osseointegration as “a direct structural and 

functional connection between ordered living bone and the surface of a load-carrying implant” 

[15]. This is a process dependent on the establishment of a mechanically solid interface with 

complete fusion between dental implant surface and the surrounding bone tissue [16-20]. The 

clinical success of a dental implant is dependent on its early happening [20], however, poor 

osseointegration is one of the most frequent causes of failure in implant dentistry [21].  

The human skeleton has a hierarchical structure including macroscale, microscale, sub-

microscale, nanoscale, and sub-nanoscale, as illustrated in Fig. 2.2. This is mainly composed of 

two types of bone tissue, namely cortical or compact bone (3 – 12 % porosity), and trabecular 

or cancellous bone (50 – 90 % porosity) [22-24]. In general, bone tissue is constituted by 

osteoblasts, osteoclasts, and osteocytes. Moreover, mesenchymal stem cells (MSCs) are also 

found in bone and adjacent tissues and play a fundamental role in bone healing and remodeling 

[19, 25]. The extracellular matrix (ECM) of bone is composed by a hard matrix consisting of 

organic matter, mainly type-I collagen, and inorganic components composed mostly of calcium 

and phosphate that laid down in the form of hydroxyapatite (HA) crystals [26]. 

At the time of dental implant insertion into bone, it becomes fractured and a milieu of 

biologically active proteins chemoattractive towards MSCs trigger their migration to the site of 

injury [27]. Once at the area of damage, MSC adhesion is one of the initial critical stages to 

subsequent proliferation and differentiation into osteoblasts, which are the producers of bony 

tissue, and therefore this process plays a fundamental role in the establishment of a strong 

bone-implant contact [28-30]. The regenerative capacity of bone is also secured by the presence 

of osteoclasts, since these are bone resorbing cells that function in conjunction with osteoblasts. 

Osteocytes play also a key role by detecting strain/microfractures in bone, and transducing this 

information to osteoblasts and osteoclasts, to induce bone healing and remodeling [23].  
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Fig. 2.2. Hierarchical structural organization of bone [31]. 

 

The series of events taking place on implant surface at the time of insertion are complex. 

Following the immediate binding of water molecules, proteins are adsorbed to implant surface 

within a few seconds to hours after implantation. These proteins come first from blood and 

tissue fluids and later from the cellular activity. The exact mixture of the initial adsorbed proteins 

and their conformation, orientation, and composition, are strongly controlled by implant surface 

features (e.g. topography, morphology and chemistry), and these proteins modulate the 

subsequent cellular adhesion process [17, 25, 32]. The initial cell adhesion is mediated through 

integrin receptors present in the cell membrane surface [33]. The bonding between integrins 

and surface protein functional groups controls the activation of intracellular signaling cascades 

controlling cell adhesion, cell shape, proliferation, migration, differentiation, and survival [34, 

35]. Hence, the success of osseointegration is dependent on protein adsorption and the 

subsequent steps of cell adhesion, proliferation, differentiation, as well as on the production of 

ECM by osteoblasts and its mineralization. 

Stress shielding is one of the main problems resulting from the mismatch of mechanical 

properties between bone and Ti-based implants [36]. This effect takes place because, when in 

vivo stress is applied, it is preferentially transferred to the material with high elastic modulus 

(i.e. Ti implant), thereby inhibiting normal stress transfer to the surrounding bone tissue. 

Therefore, bone becomes insufficiently loaded resulting in periprosthetic loss, which may induce 

to implant failure, as already reported in clinical practice [37, 38]. Implants made out of Ti are 

usually much stiffer than natural bones what may lead to stress shielding effect and 

subsequently to bone resorption, and ultimately end up in failure. Cortical bone has an elastic 

modulus ranging from 3 to 30 GPa, while trabecular bone has significantly lower modulus of 0.02 
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– 2 GPa. The most current implant materials have much higher modulus than those of bones, 

e.g. pure Ti and Ti-6Al-4V alloy have an elastic modulus of around 102 – 166 GPa [2, 31, 39]. 

Periprosthetic osteolysis (bone resorption) may be also induced by chronic inflammation of peri-

implant tissues, thereby compromising osseointegration process. Inflammatory reactions are 

generally activated in response to fragments released from the implanted material, and these 

are mediated via activation of immune system cells, provoking peri-implant bone loss [2, 40].  

To sum up, the clinical success of implantation procedure is largely dependent on the 

initial primary stability provided by the amount, quality, and distribution of bone tissue around 

the implant site. Some of the key factors compromising the success of bone-implant integration 

may be summarized as follows [2, 17, 41-47]: 1) implant material; 2) design characteristics; 3) 

state of the host bed (i.e. status of the bone concerned with its quantity and quality); 4) implant 

loading conditions; 5) implant surface features; 6) surgical technique; 7) microbial 

adhesion/colonization; 8) release of wear particles/metal ions from the metallic implant; and 9) 

mismatch of mechanical properties between bone and implant material. 

 

2.2.2. Infection 

The occurrence of infection after dental implant insertion is a response to microbial (e.g. 

bacterial or fungal) contamination and is generally accompanied by an inflammatory response 

[48, 49]. Bacterial colonization may take place at the time of the surgery, or even afterwards, 

from remote sources where bacteria are seeded at the vicinities of the implants [50, 51]. Micro-

gaps and retentive areas at dental implant interfaces are known as the most susceptible for 

bacterial colonization [2]. In average, biomaterials-associated infections occur in approximately 

0.5 – 6 % [47], and this is also one of the main causes of dental implants failure [17, 50, 52].  

Immediately after implantation, the implant surface coated with ECM proteins like 

fibronectin, fibrinogen, albumin, vitronectin and collagen, function as a substrate for bacteria 

adhesion, subsequent colonization, and biofilm formation [2, 53]. Bacterial adhesion is the first 

and the most critical step leading to infection [2]. It is believed that the adhesion process is 

mediated by molecules present on bacteria membrane called as “adhesins”. However, far less 

is known about the ability and mechanisms of surface sensing by bacteria than eukaryotic cells 

[54]. After adhesion, bacterial colonization and biofilm formation on implant surface may induce 

to peri-implantitis [48], which is considered an inflammatory process that affects the function 

of surrounding tissues of an endosseous implant. Infected tissues with bacteria or their 

products, may trigger an immune response that can subsequently lead to periprosthetic 

resorption of bone, and ultimately to implant loosening [40, 55]. As a consequence of 

colonization and inflammation, bacterial cells and leucocytes may release lactic acid provoking 
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corrosion of Ti surfaces, which may further enhance the inflammatory response and the risk of 

failure [56, 57]. Dental implant-related infections are generally caused by Staphylococcus aureus 

(S. aureus), which is present in oral cavity [53].   Furthermore, according to previous studies, 

infected and failing implants show greater proportions of periodontal pathogens such as 

Peptostreptococcus micros (P. micros) and Prevotella intermedia (P. intermedia) [7, 58].  

In addition to all the above mentioned complications, bacterial adhesion and colonization 

on implant surface may also compromise the process of bone-implant integration. When an 

implant is simultaneously in contact with bacteria and bone cells it is expected that a 

competition takes place between them in adhesion to surface, a process known as “race of the 

surface” [17, 47]. Thus, it is believed that the poor osseointegration after implantation, can be 

also related to the presence of bacterial species at implant/bone interface. 

 

2.2.3. Corrosion and tribocorrosion 

Corrosion stands for the material degradation when placed in a hostile electrolytic 

environment, as a result of electrochemical (oxidation/reduction) processes taking place at its 

surface [59, 60]. This phenomenon is of high relevance for metallic implants inserted in the 

human body, since the electrolytic environment that they face might be highly corrosive [14].  

Despite the high corrosion resistance of Ti-based materials, the protective passive film on 

their surface might not withstand the electrochemical attack when under particular aggressive 

in vivo conditions and be degraded, resulting in the liberation of metallic ions. The chemical 

environment of blood plasma is highly aggressive, essentially due to the presence of chloride 

ions (Cl-) and their ability to induce localized corrosion [14, 61]. In particular, the presence of Cl-

, F-, and H+ in saliva, are the main responsible for dental implants corrosion [62]. Variations in 

the pH values are known to significantly influence the corrosion behavior of Ti. After surgery, 

the pH near the implant varies typically from 5.3 to 5.6, and afterwards, it is normally kept at 7. 

However, this value may varies from 3 – 9 due to several factors [14]. Beyond the environmental 

conditions, the corrosion behavior of an implanted material is also influenced by factors such as 

the material itself and its chemical composition, microstructure, and surface features [61, 63]. 

 The negative effect of fluoride and acidic-fluoride salivary solutions on the corrosion 

behavior of Ti and its alloys was reported by Schiff et al. [64]. Accordingly, Souza et al. [62] also 

described the enhanced corrosion degradation of Ti-based materials in fluoridated medium as 

found in the oral cavity. Additionally, Barão et al. [13] observed that the pH level of artificial 

saliva (AS) influences the corrosion behavior of Ti and Ti-6Al-4V alloy, so that a lower pH 

accelerates the corrosion rate and kinetics. The electrochemical performance of Ti has been also 
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investigated in the presence of proteins once these constitute body fluids, and in particular 

saliva, at a concentration of around 200 – 500 mg/dl [65]. Takemoto et al. [65] reported that the 

corrosion of Ti was suppressed in a medium containing both fluoride and albumin, most likely 

due to the formation of a protective albumin film on Ti surface. The presence of bacterial 

colonies of Streptococcus mutans (S. mutans) on Ti surfaces was also found to negatively 

influence the corrosion resistance of Ti, as demonstrated by Souza et al. [57]. Beyond bacteria, 

the negative influence of human cells on the corrosion behavior of Ti was reported by Cadoshch 

et al. [66]. As a consequence of corrosion of Ti alloys, Khan et al. [63] observed that the hardness 

of the surface oxides was reduced. Therefore, one must be aware that the degradation of Ti-

based materials takes place accompanied by the liberation, and possibly accumulation, of 

corrosion products in peri-implant tissues, which may consequently induce to detrimental 

biological complications and mitigate the survival of dental implants [13, 59]. Beyond loss of 

peri-implant tissue functionality, the degradation of a metallic implant by corrosion may result 

in its mass loss and mechanical integrity [2].  

 Dental implant surface interfaces with bone tissue during the moment of insertion, and 

during its whole lifetime through the formation of a mechanically solid interface between both 

(osseointegration). Thus, a tribological pair is established at implant surface/bone tissue 

interface. Tribology is the science and technology of contacting surfaces in relative motion, and 

deals with relevant aspects related to friction, wear, and lubrication [60]. Biological fluids are 

expected to be always part of dental implant surface/bone tissue interface, therefore 

degradation of dental implant material is expected to occur simultaneously by corrosion and 

wear mechanisms. Tribocorrosion is an emergent field that studies the influence of chemical, 

electrochemical and/or biological factors on the friction and wear behavior of materials surfaces 

in a tribological contact, and undergoing a relative movement [60].  

Material degradation due to the simultaneous action of mechanical wear and 

electrochemical corrosion is a result of a complex synergism between both, as described in 

equation (1). This explains that the total material degradation by tribocorrosion (W) differs from 

the sum of material removed separately by corrosion (Wcorr) or mechanical wear (Wmechan) [60, 

67]. 

 

 𝑊 = 𝑊𝑐𝑜𝑟𝑟 +  𝑊𝑚𝑒𝑐ℎ𝑎𝑛 +  𝑊𝑠𝑦𝑛𝑒𝑟𝑔       (1) 

 

Wsynerg is the extra material degradation resulting from the synergism between wear and 

corrosion, and this is highly dependent on the characteristics of the contacting materials, the 

composition of the liquid environment, as well as on the properties of wear and corrosion 
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products. In fact, the presence of a corrosive environment may amplify the material degradation 

by wear, while wear may induce to an augmented corrosion rate [2].  

Although in general the synergism results in an amplified material degradation, 

sometimes it also brings benefits to the system through the formation of self-lubricating and 

self-healing films [2, 68]. As a result of tribo-electrochemical interactions, thick and compact 

oxide layers can be formed in the contact area decreasing the overall degradation [2]. 

Furthermore, other mechanisms have been highlighted to explain the synergistic phenomenon 

in corrosion-wear processes: the release of wear debris that can speed up or reduce wear; the 

establishment of a galvanic coupling between worn/unworn areas, and also between both 

contacting materials; the accumulation of dissolved species in the environmental medium that 

may turn it more aggressive; the work-hardening of the materials in the contact area as a result 

of mechanical loading, which can alter the kinetics of electrochemical reactions [68]. 

Two body and three body wear mechanisms are common in tribocorrosion systems 

involving two surfaces under sliding contact. The first is related to an environment where debris 

do not exist, while the latter concerns to the presence of debris between both contacting 

surfaces [69, 70]. In the case of a passive metal such as Ti, the rubbing action may degrade the 

passive film (depassivation), and induce the formation of debris mainly consisting of hard oxides, 

which can act as third body particles in the tribocontact and induce abrasion on the bare 

material [71-73]. Alternatively, these particles may be ejected from the contact, be spread on 

the metallic material surface (first body), or form a transfer film on the inert counter material 

(second body) [70].  

The degradation mechanisms of a material in a tribocorrosion system are complex and 

dependent on four main types of parameters: 

 Materials: The properties of the materials involved in the tribological contact are of main 

importance, including the ones of the wear debris released from the contacting surfaces. The 

reactivity of the wear debris with the corrosive environment can modify the mechanical 

conditions prevailing in the contact. The hardness and ductility are known to influence 

significantly the wear resistance of a material, as well as the topography and chemical 

composition. For example, rougher topographies may induce to a concentration of load in the 

higher surface asperities and result in high contact pressures, which may subsequently induce 

the formation of third body particles and enhance material degradation. Furthermore, the 

mechanical properties of the oxide films formed during tribo-electrochemical interactions may 

also be determining in materials degradation. Naturally formed passive films also play a strong 

influence on the tribocorrosion performance of metallic materials [2, 69, 70, 74]. 

 Mechanical/operational: The rate of the tribo-electrochemical reactions is dependent on 
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mechanical aspects such as the applied contact pressure and the frequency of load application. 

Furthermore, the contact geometry and type of contact like sliding, fretting, rolling or impact, 

are also of main relevance for a given metal-environment pair. Sliding and fretting contacts are 

the most common configurations taking place in osseointegrated implants [69, 75].  

 Electrochemical: The electrochemical properties also determine the tribocorrosion 

performance of metallic materials. The applied potential, ohmic resistance, active dissolution 

rate, passive film growth, and repassivation kinetics of the material, play a fundamental role 

[69]. The kinetics of repassivation gives important information on the electrochemical 

characteristics of the contact area, e.g. the formation of oxide films during mechanical 

solicitations, and provides information for a better understanding on the tribocorrosion 

mechanisms governing material degradation. 

 Solution/Environmental: the properties of the electrolyte in contact with the material 

surface such as the viscosity, conductivity, pH, composition, and temperature, are also of 

paramount importance. Acidic solutions and electrolytes containing fluoride ions are known to 

significantly influence the tribocorrosion behavior of Ti-based materials, as demonstrated in 

previous works [13, 45, 56, 62, 76]. Studies have also shown that the existence of proteins, bone 

cells, and bacterial biofilms, in the environnement in contact with Ti-based surfaces, also play a 

major role on their tribocorrosion performances [45, 71, 77-81]. 

Endosseous Ti dental implants can be subjected to tribocorrosive conditions at the 

moment of implantation, through sliding wear between the implant surface and the surrounding 

bone tissue, in the presence of corrosive biological fluids. On the other hand, once 

osseointegration have successfully been achieved, small amplitude oscillatory movements of the 

order of micrometers (fretting) may take place at implant/bone interface, through transmission 

of mastication loads [45, 69, 75]. This become an issue of high clinical relevance once Ti-based 

materials display poor fretting and sliding wear resistance, ascribed to the poor mechanical 

integrity of the TiO2 surface passive film, or to the plastic deformation of Ti surface and 

subsurface layers [45, 71, 82]. Therefore, metallic ions and solid wear debris may be released as 

a consequence of material degradation by tribocorrosion, inducing to peri-implant inflammatory 

reactions and aseptic osteolysis [82-84]. Olmedo et al. [85] reported 2 clinical cases of reactive 

lesions of tissues surrounding dental implants, where metal-like particles were histologically 

observed and attributed to a corrosion process. As reviewed by Cobelli et al. [84], the 

inflammatory response generated by wear particles is mediated by the resident or infiltrating 

osteoclasts, macrophages, and dendritic cells in the peri-implant tissue, as illustrated in Fig. 2.3. 

While small wear particles (< 10 μm) are phagocytosed, larger debris (> 20 μm) provoke fusion 
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of macrophages and giant cell formation. Activated cells release inflammatory cytokines and 

chemokines to recruit other cells, which contribute to further inflammation and increased 

periprosthetic osteolysis. The release of wear debris may also compromise bone-forming cell 

functions. For example, Ribeiro et al. [86] observed modification on human osteoblast behavior 

after internalization of TiO2 nanoparticles. Furthermore, Wang et al. [87] reported that the 

exposure of wear debris to hMSCs reduced their viability and differentiation into functional 

osteoblasts. 

 

 

Fig. 2.3. Schematic illustration of periprosthetic inflammation and aseptic osteolysis [84]. 

 

Degradation of dental implant materials by corrosion and tribocorrosion processes is 

feasible, and this is an issue of high clinical significance. One must be expected that 

tribocorrosion processes taking place at the moment of implantation, may seriously 

compromise the osseointegration process. Degradation and inflammatory processes may also 

contribute to the loss of mechanical integrity, influencing the magnitude of micromovements at 

implant/bone interface, therefore compromising the long-term health of peri-implant tissues as 

well as the biomechanical stability of the implant [2, 88, 89]. Wear debris resulting from 

tribocorrosion, besides trigger locally aggressive biological reactions at peri-implant tissues, can 

go into bloodstream and subsequently be disseminated for human organs, leading to adverse 

effects at a systemic level, and therefore presenting serious risks for human health [90]. 

 

 

From the first implants placed by Per-Ingvar Brånemark, dental implant surfaces have 

undergone an enormous evolution. The demand for new and innovative strategies aiming the 
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synthesis of efficient implant surfaces has attracted the attention of worldwide researchers, 

both from academia and industry, as a strategy to mitigate failure of dental implant systems. 

 

2.3.1. Improvement of biological responses 

The modification of Ti surface features through the creation of micron- to nano-textured 

surfaces with physicochemical features more compatible with human cells has been adopted as 

a strategy to improve biological responses. Several surfaces modification techniques have been 

applied to modify the morphological and topographical surface features, namely sandblasting, 

acid etching, plasma spraying, and anodization [20, 91, 92].  

Implant surface topography is known to influence cell adhesion, migration, cytoskeleton 

organization, proliferation, differentiation, and ECM protein expression [92-94]. Anselme and 

Bigerelle [91] demonstrated that the adhesion strength of osteoblasts was enhanced on rough 

surfaces obtained by electro-erosion, sandblasting, or acid etching, as compared to smooth Ti 

surfaces after polishing and machining. The authors emphasized that human osteoblasts are 

more sensitive to the organization and morphology of the roughness than to its amplitude. On 

the other hand, Jayaraman et al. [92] observed an improved adhesion of osteoblast-like cells on 

Ti-grooved in relation to sandblasted and acid-etched Ti surfaces. An experimental study with Ti 

microimplants in humans demonstrated the improved bone-implant contact of TiO2 blasted Ti 

implants, when compared to machined [95]. TiOblast and SLA implants are good examples of 

commercially available rough implant surfaces [20, 96]. 

Various attempts have been made for the development of surfaces mimicking the 

hierarchical structure of bone, which varies from micro- to nano-scale structures [54]. Zhao et 

al. [97, 98] observed that the conjunction of micro and nano-topographies on Ti surfaces had a 

synergistic role on multiple cell functions, through the enhancement of multiple osteoblast 

functionalities, as compared to micro-textured surfaces. Furthermore, micro/nano-textured 

surfaces showed enhanced ability to induce MSC osteogenic differentiation. The benefit of a 

hierarchical micro/nano-topography on promoting MSC adhesion was also demonstrated by 

Zhang et al [99]. This approach has been already implemented in clinical available implants  

since, as reported by Wennernerg et al. [96], different companies have already introduced 

remarkable nano-topographical cues in well-known implants such as TiOblast, SLA, and Nanotite 

implants, aiming to induce enhanced osseointegration. 

At the micron- and nano-scales hierarchical structures of bone, aggregated type-I collagen 

molecules and HA crystals form the reinforced collagen fibrils, the universal building elements 

of both cortical and trabecular bones, providing them flexibility, strength, and toughness. Type-

I collagen is a triple helix molecule with ~ 1.5 nm diameter and ~ 300 nm length, and plate-
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shaped HA crystals have 50 x 25 nm in size and 1.5 – 4 nm thick (Fig. 2.2) [31]. Therefore, bone 

is considered a nanostructured material and efforts have been made to synthesize bone-inspired 

nano-topographies to achieve enhanced cell responses [100].  

As referred above, proteins from bio-fluids firstly adsorbed on implant surfaces, mediates 

the subsequent cell adhesion via integrin receptors present in cell membrane surface [33]. 

During cell adhesion process, integrin receptors cluster together when their spacing is smaller 

than 70 nm, and recruit specific cytoplasmic proteins to form a complex known as a focal contact 

[54, 101]. Focal adhesion complexes are mobile nanometer scale building blocks (size of integrin: 

8 – 12 nm) and their formation and function can be influenced by surface topography and 

chemistry on that scale [54, 101]. Cell adhesion is mediated via focal contact complexes by 

activation of several intracellular signaling cascades controlling cell adhesion, cytoskeleton 

organization, proliferation, migration, differentiation, survival signaling, and energy metabolism 

[34]. Cell filopodia are actin-rich plasma-membrane protrusions that play a fundamental role in 

cell migration, and can sense nano-topographical features as high as 8 nm [101, 102]. 

Based on the above information, a strong correlation exists between the sizes of ECM 

bone components and cellular sensing organelles, which interplay with each other to modulate 

cell functions. In the last decades, great efforts have been devoted for the development of new 

nanostructured Ti-based surfaces, and on the study of their effect on cellular responses. It has 

been widely reported that nanostructured Ti surfaces positively modulate cell responses in vitro 

and in vivo, highlighting their enormous potential to improve osseointegration [103-110]. 

Besides topography, the modification of the chemical properties of implant surfaces has 

demonstrated potential to further improve implant anchorage in bone by rendering the implant 

surface bioactivity [20]. The coating of Ti-based implant surfaces with HA or calcium phosphates 

is a common method to achieve enhanced bone tissue ingrowth and vascularization by 

mimicking the mineral composition of natural bone [100, 111]. Nanostructured calcium-

phosphorous nanomaterials have also recently emerged as promising biomimetic and bioactive 

biomaterials capable of directing cell behavior and cell fate, and enhancing tissue formation in 

vivo [112]. The incorporation of other inorganic elements such as strontium (Sr), silicon (Si), zinc 

(Zn), and silver (Ag), have been also widely adopted to modulate cell functionalities [111]. In 

particular, the inclusion of Zn on Ti surfaces, separately or together with calcium phosphate, has 

been reported to improve MSCs and osteoblast functions [113-115], and simultaneously, display 

antibacterial activity [116, 117].  

 

2.3.2. Impairment of microbial functions 

The modification of Ti surface features have been implemented by several approaches to 
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acquire antimicrobial properties and minimize implant-related infections. As observed for 

eukaryotic cells, the modification of the morphological, topographical and physicochemical 

features of Ti surfaces also influences bacterial functions [118]. Compared to smooth surfaces, 

micron-roughened substrates have shown potential to enhance the adhesion and growth of 

infectious bacteria [119, 120]. Furthermore, the inclusion of antimicrobial peptides on Ti 

surfaces, as well as the incorporation of inorganic bioactive elements such as Ag and Zn, have 

evinced excellent antibacterial activity against several pathogens involved in dental and 

orthopedic implants failure [121-124].  

Nanotechnology has offered an opportunity for the discovery of antimicrobial compounds 

as well the use of nano-functionalization surface techniques to create new antimicrobial implant 

surfaces [48, 50, 125-129]. Surface functionalization of biomaterials with antibacterial 

properties has been achieved by coating, impregnation, or embedding nanomaterials [125, 130, 

131]. Lellouche et al. [125] demonstrated the antibiofilm activity of surfaces coated with 

magnesium fluoride nanoparticles. Furthermore, Cao et al. [50] concluded that silver 

nanoparticles embedded in Ti were highly effective in inhibiting the growth of both S. aureus 

and Escherichia coli, while enhancing the proliferation of osteoblast-like cells. In addition, 

Puckett et al. [132] showed that nanorough Ti surfaces produced by electron beam evaporation, 

decreased the adherence of different species of bacteria, namely S. aureus, S. epidermidis, and 

Pseudomonas aeruginosa (P. aeruginosa), when compared to conventional smooth Ti. 

Nanostructured surfaces that display opposing behaviors for human cells and bacteria are of 

particular interest [133, 134], as they demonstrate that the material could be designed to 

enhance osteoblast functions while decrease bacteria adhesion.  

 

2.3.3. Enhancement of tribocorrosion resistance 

As previously described, the tribocorrosion behavior of metallic biomaterials is dependent 

on several parameters. The formation of Ti oxides by anodization in electrolytes composed of 

bioactive elements, has been reported as a very promising method either to enhance cell 

functionalities or to improve the tribocorrosion performance of Ti surfaces [135-140]. Alves et 

al. [136] fabricated porous anodic oxide surfaces by anodization of Ti in an electrolyte composed 

of calcium acetate (CA) and β-glycerophosphate (β-GP), and concluded that the concentration 

of CA influenced the crystallographic structure of the resulting oxide. The authors found that the 

oxides with higher Ca/P and rutile/anatase ratios displayed an improved tribocorrosion 

behavior, and hypothesized that the increased hardness of these films was the main factor that 

influenced the degradation behavior of the materials. Following, Oliveira et al. [135] also 

synthesized porous oxide films by anodization of Ti surfaces in an electrolyte containing CA, β-
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GP and magnesium acetate (MA) for further incorporation of magnesium (Mg) in the structure 

of the films, along with Ca and P. The authors found out that the addition of Mg supported the 

formation of rutile which improved the tribocorrosion properties of the surfaces. The outcomes 

of the studies performed by Marques et al. [140] are in good agreement with the previously 

reported results, as concerns the relation established between CA concentration and the 

formation of harder oxides, due to the higher rutile/anatase ratio achieved after anodization. 

Interestingly, the authors also observed an improvement on the tribocorrosion resistance of the 

harder anodic oxide films enriched with Ca and P, and additionally, they observed that the 

inclusion of silver (Ag) nanoparticles in the anodizing electrolyte induced to further 

improvements. The anodic oxide films containing Ca and P and enriched with Ag nanoparticles, 

beyond have displayed an improved tribocorrosion behavior, also enhanced human MSCs 

functions. 

As concerns the tribocorrosion behavior of functionalized Ti surfaces at a nano-scale level, 

the studies are still very limited in literature. In 2010, Faghihi et al. [141] studied the 

tribocorrosion behavior of nanostructured Ti surfaces processed by high-pressure torsion and 

discovered that nanostructured samples showed superior performance under the action of both 

wear and corrosion, when compared to coarse-grained samples.  

Based on the above mentioned studies, the wear-corrosion behavior of Ti was found 

dependent on the surface characteristics of Ti, which were influenced by the processing 

conditions. Anodization appears as a very promising approach for the development of 

tribocorrosion resistant oxide films with variable chemical features, which may be tailored to 

achieve improved biological performances. However, despite the wide range of surface 

modification strategies already implemented to improve the performance of Ti implants, the 

research on the effect of those treatments on their simultaneous degradation by corrosion and 

wear, is still lacking. 

 

 

2.4.1. Synthesis of TiO2 nanotubes by anodization 

Among various nanostructured materials, the decoration of Ti-based surfaces with well-

aligned TiO2 nanotubes (NTs) has received special attention. The unique morphological and 

physicochemical properties of TiO2 nanotubular structures, make them potential candidates for 

several applications such as photocatalysis, sensors, solar cells, self-cleaning materials, 
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biomedical implants, and even cancer thermotherapy [142-144]. However, the present work is 

focused on TiO2 NTs for biomedical applications, as respects dental and orthopedic implants. 

Several methods exist for TiO2 NTs synthesis [142, 145], however, anodization has 

emerged as one of the most effective due to its versatility, easy operation, and commercial 

feasibility [142, 146]. This technique is already widely used in industry to fabricate large-scale 

low-cost protective oxide coatings [146]. Briefly, anodization is an electrochemical process that 

relies on the application of a predetermined current or voltage between Ti material (anode) and 

an unreactive/inert material (cathode, e.g. platinum and graphite), previously immersed in a 

conductive solution. When polarized, a flux of electrons is generated between both materials, 

and the oxide film is grown in Ti surface through oxidation reactions, along with field-driven ion 

diffusion [100, 143, 146]. The anodization setup for synthesis of TiO2 NTs is illustrated in Fig. 

2.4a. This process is commonly carried out by applying a constant voltage of 1 – 30 V in aqueous 

electrolytes, or 5 – 150 V in non-aqueous electrolytes, containing 0.1 – 1 wt.% fluoride ions (F-) 

[143].  The mechanisms of TiO2 NTs growth by anodization in a fluoride containing electrolyte, 

have been conventionally accepted as a result of a field assisted dissolution process consisting 

of three main stages: 1) the oxidation of Ti metal involving Ti4+ ions formation; 2) the growth of 

an oxide film in Ti surface, through recombination of Ti4+ and O2- ions (provided by deprotonation 

of H2O or OH-) moving under the action of the electric field; 3) the local chemical dissolution of 

the growing oxide by fluoride ions and subsequently pore nucleation, with formation of water-

soluble [TiF6]2- species [100, 142, 143, 146-148]. This process assumes that nanotube growth 

takes place through the balance established between the formation of the oxide film and its 

enhanced dissolution at the base of the pores/tubes, where the electric field is stronger, as 

schematically depicted in Fig. 2.4b [147]. 

 

 

Fig. 2.4. (a) Anodization setup for synthesis of TiO2 NTs in a fluoride containing electrolyte. In (b) the mechanisms 

underlying nanotube growth evolution by anodization are shown. Adapted from [143, 148, 149]. 

 

The synthesis of the first organized porous anodic oxides in Ti were reported by Zwilling 

and co-workers in 1999. The outcomes of their work showed that nano-porosity was formed by 
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anodization of Ti and Ti-6Al-4V in chromic acid solution with hydrofluoric acid, whose 

distribution was dependent on processing conditions [150, 151]. Two-year after, in 2001, Gong 

et al. [152] fabricated well aligned and organized oxide NTs by anodization of Ti in an aqueous 

solution containing hydrofluoric acid. Since then, several approaches using fluorinated acidic 

electrolytes corroborated these findings [153, 154], and significant improvements have been 

achieved in this field. 

The resulting features of TiO2 NTs, namely morphology, chemistry, and length, may vary 

over a wide range according to the processing anodization parameters, such as the applied 

voltage, duration, and electrolyte composition. As reviewed by Roy et al. [143], anodization time 

and etching rate define tube length, while nanotube diameter is controlled linearly by the 

applied voltage. In general, thinner films are produced in acidic electrolytes as compared to 

neutral, mostly ascribed to the faster dissolution rate of the oxide in a lower pH solution [142]. 

Accordingly, Macak et al. [155] reported that by using a neutral NaF-based electrolyte, 

significantly thicker porous layers were obtained than in acidic solution. Notwithstanding, 

Beranek et al. [154] observed that the self-ordering level of nanotubular structures produced in 

H2SO4/HF electrolyte, was favored by longer anodization duration. Furthermore, Shankar et al. 

[156] showed that by using non-aqueous organic electrolytes containing fluoride ions, such as 

ethylene glycol, highly ordered TiO2 nanotube arrays up to 220 µm in length were grown, and 

depending on the anodization voltage, the inner pore diameters ranged from 20 to 150 nm. A 

remarkable advance has been reported by Han et al. [157], who fabricated TiO2 nanotube arrays 

with enhanced self-ordering level by multistep anodic oxidation of Ti in an organic electrolyte 

containing fluoride ions, and this methodology has been widely adopted for self-templating 

anodization processes [158-160]. 

 

2.4.2. TiO2 nanotubes: influence on cellular and microbial functions 

Nanotubular structures made out of TiO2 have demonstrated unique morphological and 

physicochemical features with potential to stimulate implant-bone integration, either in vitro or 

in vivo, by modulating osteoblasts and hMSCs functions such as adhesion, proliferation, and 

differentiation [161-163], when compared to conventional Ti surfaces. TiO2 is a well-known 

biocompatible material, and when organized in highly-ordered nanotubular structures present 

high hydrophilicity, which is known to benefit initial protein adsorption and subsequent cell-

material interactions [164, 165]. The high negative surface charge density at the sharp walls of 

TiO2 NTs are believed to promote adsorption of ECM proteins and integrin-mediated adsorption 

of cells to these regions [33]. Beyond improved cell functionalities have been reported for the 

first generation of NTs fabricated in fluorinated aqueous electrolytes [105, 166], the most recent 
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studies have adopted to fabricate NTs in organic systems. In particular, anodization in ethylene 

glycol electrolytes containing ammonium fluoride have been widely reported, due to the 

production of longer nanotubes with improved self-ordering level, when compared to aqueous 

solutions [143, 167]. Generally, the structure of TiO2 NTs grown by conventional anodization is 

amorphous, however, it can become crystalline (e.g. anatase or a mixture of anatase and rutile) 

by thermal treatments at 280 – 800 °C, for 2 – 3 h. Although this method is currently used to 

achieve enhanced surface bio-functionality, it is not standardized yet [143, 168].  

The influence of nanotube diameter on cellular responses has been demonstrated by 

several studies, however, controversial results are found in literature in regards the optimal size 

range to improve cell functions. In this context, Park et al. [35] observed that TiO2 nanotube 

diameters ranging from 15 – 100 nm, significantly influenced MSCs adhesion, growth, and 

differentiation. Diameters of 15 – 30 nm were found the most effective for accelerated integrin 

clustering/focal adhesion complex formation, which is known to control cell functions. On the 

other hand, diameters larger than 50 nm impaired cell functions and induced cell apoptosis, 

while NTs of 100 nm diameter almost completely prevented integrin clustering. As proposed by 

the authors, the mechanisms governing nanotube diameter-dependent cellular responses are 

illustrated in Fig. 2.5. Similar results were reported by Bauer et al. [169] for MSCs adhered on 

ZrO2 and TiO2 NTs, emphasizing that focal adhesion complex formation is being modulated by 

nanotube morphology, regardless of the material. Therefore, nanotube diameters modulate the 

formation of focal adhesion complexes, and subsequently cell functions [149]. It is believed that 

this phenomenon is related with the higher number of protein aggregates formed in NTs of 15 

– 30 nm diameter, when compared to NTs of 70 – 100 nm [170].  

 

Fig. 2.5. Hypothetical mechanisms for integrin assembly into focal contacts in nanotubes with 100 nm (left side) and 

15 nm diameter (right side) [35]. 

 

Controversially to Park’s and Bauer’s findings, Oh et al. [170] observed a noticeable 

change in hMSCs differentiation in larger nanotubes. According to Oh’s findings, NTs of 70 – 100 

nm diameter elicited a dramatic stem cell elongation, which induced cytoskeleton stress and 

selective differentiation towards osteoblast phenotype. Similar results were described by 

Brammer et al. [171] for osteoblasts, with NTs of 30 nm diameter promoting the highest degree 
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of adhesion, while 70 – 100 nm diameters inducing extremely elongated cell morphology and 

significantly higher alkaline phosphatase (ALP) synthesis. In a separate study, Zhao et al. [98] 

reported that TiO2 NTs of 80 nm diameter displayed the best performance, by promoting 

simultaneously MSC proliferation and osteogenic differentiation. The authors explained that this 

behavior was related with the increased cytoskeletal stress of MSCs. The high cytoskeleton 

stress of cells adhered on larger NTs may modulate mechanotransduction events, triggering 

intracellular signaling pathways, and subsequently controlling differentiation process [98, 149, 

172]. Furthermore, Wang et al. [162] reported a significant increase in bone-implant contact and 

gene expression levels in bone attached to TiO2 NTs, especially those with 70 nm diameter.  

TiO2 NTs have demonstrated ability, not only to control bone-forming cell functions, but 

also other types of cells that might have a major role in osseointegration process such as, 

osteoclasts, endothelial cells, and immune system cells (e.g. macrophages) [173, 174]. 

Rajyalakshmi et al. [175] observed a significantly reduced density of macrophages adhered on 

TiO2 NTs of 60 – 70 nm diameter, when compared to conventional Ti surfaces, emphasizing their 

potential for osseointegrated implants applications. 

An additional exciting feature of TiO2 NTs is their ability to prevent microbial adhesion and 

colonization, and therefore to avoid implant-related infections, which may end up in failure 

[176-178]. As demonstrated by Ercan et al. [178], nanotube diameter is also a crucial factor for 

determining the antibacterial efficacy of nanotubular systems. The authors studied the 

antibacterial ability of TiO2 NTs with controlled diameters of 20, 40, 60, and 80 nm, followed by 

heat treatment or not, against S. epidermidis and S. aureus. As the main outcome of this study, 

heat treated TiO2 NTs of 80 nm diameter produced the most robust antimicrobial effect. As 

concluded, Ti surface features including chemistry, crystallinity, nanotube size, and 

hydrophilicity, significantly influenced the responses of both pathogens. The higher antibacterial 

activity of crystalline NTs was also demonstrated by Li et al. [177], who also concluded that the 

antibacterial activity of the NTs was independent on their lengths. The effective antibacterial 

activity of anatase/rutile TiO2 NTs exposed to ultraviolet light irradiation was also observed by 

Shi et al. [176], and the mechanism behind was ascribed to oxidative stress induced by TiO2 NTs. 

Interestingly, Beltrán-Partida et al. [179] described that cross sectioning of fungal cells adhered 

on TiO2 NTs revealed less nano-contacts with inferior spread, when compared to control metallic 

surface, suggesting a down-regulation of microbial adhesion ability on nanostructured 

morphology. 

 

2.4.3. Electrochemical stability of TiO2 nanotubes 

The electrochemical degradation of TiO2 NTs in electrolytes mimicking the existing body 
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fluids have been widely reported. In general, TiO2 NTs display an improved corrosion resistance 

as compared to Ti-based surfaces [180, 181]. Demestrescu et al. [182] studied the 

electrochemical behavior of TiO2 NTs in Fusayama's artificial saliva. The authors concluded that 

very low corrosion current densities were recorded for TiO2 NTs due to a strong passive oxide 

film formation. Electrochemical impedance spectroscopy (EIS) results indicated that TiO2 NTs 

consisted of a bi-layered oxide made up of an inner barrier layer associated to high impedance 

and responsible for corrosion protection, and a porous outer layer (NTs) of lower impedance. 

Similar results were reported by Yu et al. [183], who studied the in vitro corrosion behavior of 

TiO2 NTs immersed in phosphate buffered saline (PBS) and Dulbecco’s minimum essential 

medium supplemented with 10 % of fetal calf serum (D-FCS). The results showed that the NTs 

displayed a lower active electrochemical state, higher corrosion resistance of the inner barrier 

layer, and lower passive current in both test solutions, when compared to smooth Ti. 

Additionally, the corrosion resistance of TiO2 NTs in D-FCS was higher than in PBS due to surface 

protein adsorption, which formed aggregates in NTs of 30 nm diameter. 

 

2.4.4. Functionalization of TiO2 nanotubes 

Beyond the good biocompatibility, improved cell functions, and antibacterial activity 

provided by conventional TiO2 NTs, there is still room for improvements. These structures have 

increasingly captured the attention of researchers, and recent advances have been achieved as 

regards their multi-functionalization. A special attention is being devoted to the construction of 

systems tailored for enhancing osteogenesis at the implant-bone interface, to minimize the risk 

of infection, or even both simultaneously. 

Bio-functionalization of TiO2 NTs may be easily achieved by conventional techniques 

already used for surface modification of biomaterials. An additional particularity of TiO2 NTs is 

their potential to behave as a platform for drug-eluting and local delivery, due to their excellent 

controllable dimensions, surfaces chemistry and large surface-to-volume ratio. Easily by 

changing the nanotube diameter, wall thickness, and length, the kinetics of specific drugs can 

be adjustable to achieve stable and controlled release [184-186]. An interesting approach for 

the construction of a sustained drug delivery system was reported by Hu et al. [187]. After 

synthesis of TiO2 NTs of 110 nm diameter and their loading with bone morphogenetic protein 2 

(BMP-2), the authors covered the system with multilayered coatings of gelatin/chitosan, which 

effectively controlled BMP-2 delivery and induced MSC differentiation into osteoblasts, as 

schematically illustrated in Fig. 2.6. Recently, a similar approach was reported by Lai et al. [188], 

who fabricated TiO2 NTs filled with simvastatin and coated with gelatin/chitosan multilayers. 

The bio-functionalized NTs displayed controlled drug release and also a great potential for 
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improving osteoblast differentiation, while at the same time inhibiting the activation of 

osteoclasts. 

 

Fig. 2.6. Schematic illustration of the fabrication of TiO2 NTs loaded with BMP-2 and cellular responses [187].  

 

The modification of TiO2 nanotube features by coating them with hydroxyapatite (HA) has 

been employed to upregulate cell functions and further achieve enhanced osseointegration, due 

to its biocompatibility and similarity to the chemical composition of the bone tissue [168]. Chen 

et al. [189] introduced nanoscale calcium phosphate (CaP) into well-ordered TiO2 NTs by 

ultrasonification-assisted electrochemical deposition. The CaP-NTs induced to the adsorption of 

a greater amount of protein, and when immersed in PBS, displayed enhanced bioactivity as 

observed by the increased hydroxyapatite formation. Additionally, CaP-NTs enhanced cell 

adhesion, proliferation, and differentiation, owing the combined effects of nanoscale 

topography, morphology, chemical composition, and hydrophilicity. A step forward, aiming to 

address, simultaneously, the lack of tissue integration and infection problems, Huo et al. [190] 

incorporated Zn in TiO2 NTs by hydrothermal treatment in Zn containing solutions. The authors 

observed good intrinsic antibacterial activity against S. aureus, and simultaneously, an excellent 

osteogenesis inducing ability through activation of specific intracellular signaling pathways 

involved in cell differentiation. Furthermore,  Cheng et al. [191] loaded TiO2 NTs with Sr and Ag 

by hydrothermal treatment  to provide them combined  osteoconductive and antimicrobial 

properties. The release of Ag provided antibacterial activity without citotoxicity, while the 

inclusion of Sr enhanced the initial cell adhesion, migration, and proliferation of pre-osteoblast 

MC3T3-E1 cells. Additionally, the release of Sr also induced to up-regulation of osteogenesis-

related genes expression and mineralization. 

In fact, TiO2 NTs may behave as effective bio-selective surfaces by incorporation of 

different elements in its structure, hence inhibiting bacterial functions and concomitantly 

promoting osteoblast responses. In accordance with the available literature, the approaches for 

tailoring TiO2 NTs with multiple functionalities are plentiful: NTs loading with growth factors like 

BMP-2 [192, 193]; functional peptide coatings as RGD peptide [121, 194, 195]; vitamins like 

vitamin D [196];  antibiotics such as gentamicin and vancomycin [129, 197, 198]; anti-
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inflammatory drugs like sodium naproxen, quercetin and indomethacin [52, 199, 200]; 

incorporation of nanoparticles as gold and silver [201-204]; implantation of bioactive inorganic 

elements such as calcium, phosphorous, zinc, silver, palladium, strontium and silicon [12, 189, 

205-212]. 

 

2.4.5. Mechanical properties, degradation mechanisms and adhesion strength of TiO2 nanotubes 

The growth of TiO2 NTs in Ti surfaces has demonstrated potential to reduce stress 

shielding effect, in accordance with their mechanical properties determined by 

nanoindentation. An elastic modulus of 4 – 43 GPa has been determined for TiO2 nanotubular 

structures [213-215], which is much closer to that of natural bone (i.e. 0.02 – 30 GPa) [22, 31, 

216], when compared to Ti (i.e. 102 – 166 GPa) [2, 39].  

The mechanical behavior of TiO2 NTs was studied by Xu et al. [215] by nanoindentation. 

In summary, the authors observed that TiO2 NTs break as long as the indentation depth 

increases, inducing bending and fracture of the surrounding NTs and formation of smaller 

fragments which become compacted. Furthermore, Crawford et al. [213] observed that TiO2 NTs 

inelastically deform by tube crushing in the immediate neighborhood of the indenter tip, 

accompanied by local densification. Also, Patel et al. [217] studied the mechanical stability of 

TiO2 NTs grown in Ti-6Al-4V surfaces by pullout test into a simulant bone, and observed that the 

film maintained their structural integrity during the insertion and pullout test. However, these 

studies still provide very limited information to predict the in vivo degradation mechanisms that 

TiO2 NTs might undergo, when submitted to tribocorrosive actions.  

Recently, it has been reported that TiO2 NTs are prone to peeling off from the Ti substrate 

due to poor adhesion strength between them [218-220], and some efforts have been made to 

understand this phenomenon. In general, poor adhesion strength is believed to be assisted by 

two main mechanisms: 1) dissolution of a nano-thick fluoride rich layer formed beneath the NTs 

after anodization [218, 221], and 2) hydrogen-assisted cracking mechanism at Ti/NTs interface 

[220]. To improve the adhesion strength of the NTs to Ti substrate, a few efforts have been 

made. For example, Xiong et al. [222] annealed NTs and found that the adhesion strength was 

improved with the annealing time. Furthermore, Yu et al. [218] reported, for the first time, the 

employment of an extra anodization step in a fluoride-free electrolyte. The additional 

anodization in an organic electrolyte composed of 5 wt. % H2PO4, resulted in the formation of a 

200 nm thick compact layer near the nanotube bottoms, which induced to a significant 

improvement in the adhesion strength. Nevertheless, the study of the tribo-electrochemical 

performance of TiO2 NTs was not undertaken, neither before nor after adhesion strengthening 
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treatments. Furthermore, in all the above mentioned studies, no information is provided on the 

characteristics of the interface between TiO2 NTs and the Ti substrate, which would provide a 

better insight on the mechanisms governing TiO2 NTs adhesion. Both the understanding of the 

stripping mechanisms and the seeking for novel methodologies to overcome this issue are of 

supreme importance, otherwise their widespread applications may be entirely compromised. 

As shown in the previous section, a great effort has been devoted in the last years for the 

construction of effective TiO2 nanotubular systems aimed to improve osseointegration, and 

concomitantly, to reduce infection-related failures of dental implants. Beyond the promising 

features of the recently developed systems, their applicability in practice is determined by the 

adhesion of the TiO2 nanotubular film to the Ti substrate. Based on the aforementioned 

implications of an endossoeus implant degradation by tribocorrosion, the adhesion failure of 

TiO2 NTs at the moment of implantation, or even afterwards, will lead most probably to severe 

and painful peri-implant inflammatory reactions, which may ultimately lead to implant 

loosening. Up to now, no information is found in literature as regards the performance of TiO2 

NTs when submitted simultaneously to wear and corrosion solicitations, which are known to 

happen in real conditions. These studies are of fundamental importance, not only because of 

the high probability of adhesion failure of those nanotubular systems developed up to now, but 

also because of their high clinical relevance, since implant degradation in vivo can seriously 

compromise osseointegration or even its long-term stability. Therefore, the creation of 

fundamental knowledge in this area is required for the development of tribocorrosion resistant 

nanotubular platforms through integrated approaches which aim simultaneously minimize the 

risk of infection and enhance bone-implant integration. 
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The modification of surface features such as nano-morphology/topography and chemistry 

have been employed in the attempt to design titanium oxide surfaces able to overcome the 

current dental implants failures. The main goal of this study is the synthesis of bone-like 

structured titanium dioxide (TiO2) nanotubes enriched with Calcium and Phosphorous able to 

enhance osteoblastic cell functions and, simultaneously, display an improved corrosion 

behavior. To achieve the main goal, TiO2 nanotubes were synthetized and doped with Calcium 

and Phosphorous by means of a novel methodology which relied, firstly, on the synthesis of TiO2 

nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization 

and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like 

structured TiO2 nanotubes were successfully synthesized presenting a highly ordered nano-

morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes 

confirmed the presence of CaCO3, Ca3(PO4)2, CaHPO4 and CaO compounds. The nanotube 

surfaces submitted to reverse polarization, presented an improved cell adhesion and 

proliferation compared to smooth titanium. Furthermore, these surfaces displayed a 

significantly lower passive current in artificial saliva, and so, potential to minimize their bio-

degradation through corrosion processes. This study addresses a very simple and promising 

multidisciplinary approach bringing new insights for the development of novel methodologies 

to improve the outcome of osseointegrated implants. 
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Dental implants are widely used to replace tooth loss due to decay, trauma or periodontal 

diseases [1]. Additionally, market demand has been increasing within the past years, both due 

to the aging of the population and to the success that dental implant therapies have reached [2], 

improving the life quality of people. However, a significant number of dental implant failures (1 

– 20%) have still been described [3], which is the subject of main concern since revision surgeries 

are painful to patients and very expensive to companies. The growing demand along with the 

high failure rates further increase the interest on the improvement of quality, efficiency and 

lifetime of dental implants. 

Commercially pure titanium (cp-Ti) and its alloys are the metallic materials most 

commonly used in dental implants due to their superior biocompatibility, mechanical properties 

and high corrosion resistance [4-8]. However, despite the outstanding properties, implant 

failures are often caused by the lack of a stable implant anchorage provided by direct bone-to-

implant contact (i.e. osseointegration) [9]. Also, the release of metallic wear debris and 

corrosion products to implant surroundings, is a main problem. 

Aiming to overcome the current difficulties, researchers have been working worldwide on 

the improvement of implant surface features through multidisciplinary approaches. Over the 

past years, it has been widely reported that implant surface topography, morphology, chemical 

composition and surface energy have a critical influence on cell adhesion, proliferation, 

differentiation and osteoblastic extracellular matrix expression [10-13], which are cellular 

functions dictating the success rate of osseointegration [14-17]. Therefore, surface modification 

treatments have been carried out in a concentrated effort to construct suitable biomimetic 

interfacial microenvironments able to improve cell-materials interactions generating bone in a 

faster and improved osseointegration process [2, 18-21]. In particular, special attention is being 

devoted to the modification of Ti features at a nanoscale level by mimicking the 

micro/nanostructures of natural bone [3, 18-20, 22]. Among the various surface modification 

techniques, electrochemical anodization of Ti has usually been used to synthesize biologically-

inspired nanostructures [23, 24]. In particular, vertically aligned TiO2 nanotubes created on Ti, 

have become increasingly popular to enhance adhesion, growth and accelerate the osteo-

differentiation of mesenchymal stem cells [18]. Oh et al. [25] indicated that the presence of 

nanotube structures on Ti produced an interlocked cell structure created due to the improved 

adhesion of osteoblasts to nanotubular Ti oxide film, with the filopodia of the growing cells going 
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into the nanotube pores. Furthermore, such nanotubular Ti structure led to a significant 

acceleration in the growth rate of osteoblasts cells by up to 400 %. Beyond the excellent 

osteoblast adhesion and proliferation promoted by TiO2 nanotubes, these structures have been 

suggested as a way to avoid the formation of fibrous tissue [20]. The occurrence of metallic 

implant corrosion is also an issue of main importance. Despite the high corrosion resistance of 

Ti materials, they are not inert to corrosive attack in presence of the aggressive biological 

environment [26, 27]. Corrosion ions/products may be released from the metallic implant to 

surroundings tissues, causing inflammation and local toxicity, resulting in tissue damage, implant 

loosening and need of a new surgery [18, 28-30]. Thus, the design of implant surfaces able to 

resist to corrosion attack is also an issue of main significance and, electrochemical anodization 

appears as a very promising way to address it. It is known that implant surface features 

significantly influence the electrochemical stability of the metallic implant when in contact with 

simulated body fluids. Very interestingly, in particular, TiO2 nanotubes have also shown potential 

to prevent long term implant failure due to bio-corrosion [30, 31]. This behavior is related to the 

anodization of Ti which is characterized by the growth of a compact oxide film on its surface 

formed through a natural and intrinsic chemical bond between the oxide and Ti substrate [20, 

32]. 

In an attempt to develop new strategies for the construction of biomimetic systems, 

various modifications have already been employed to TiO2 nanotubes through thermal oxidation, 

coating deposition, hydrothermal treatments in saturated solutions for nanotube doping and 

drug-loading  [10, 33]. Beyond the wide number of treatments already employed, no one has 

explored anodization as a possible way to modify the nanotube features and provide them 

multiple functionalities. Electrochemical anodization is a very versatile technique which allows 

the handling of the chemistry of the native TiO2 layer by the incorporation of species such as 

calcium (Ca) and phosphorus (P), natively present in bone [34]. The benefits of Ca- and P-

enriched Ti surfaces by anodization have already been demonstrated both in vitro by improving 

cell attachment, adhesion, and proliferation and in vivo, by accelerating the primary osteogenic 

response [13, 35, 36]. Additionally, Ca- and P-based Ti surfaces synthesized by anodization, have 

shown improved corrosion and wear resistant properties than untreated Ti [37-40]. 

In the present study, reverse polarization and electrochemical anodization of TiO2 

nanotubes were explored as a new strategy for the synthesis of multifunctional implant surfaces 

that can enhance osteoblastic cell functions and simultaneously, minimize their degradation by 

corrosion. To achieve this goal, bone-like structured TiO2 nanotubes were synthetized and 

doped with Ca and P (Ca/P-doped TiO2 nanotubes) by reverse polarization and/or anodization 

processes in an aqueous electrolyte containing Ca and P (Ca/P-electrolyte). Ca/P-doped 
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nanotubes were deeply characterized regarding their surface features as well as their biological 

and electrochemical properties. 

 

 

3.2.1. Surface pre-treatment 

Discs of commercially pure titanium (cp-Ti) grade 2 (American Society for Testing of 

Materials – Grade 2) (MacMaster-carr, IL, USA) of 15 mm diameter and 2 mm thickness were 

used as substrates used in this study. Firstly, the samples were ground with a series of silicon 

carbide (SiC) sandpapers #240, #320, #400, #600 and #800 (Carbimet 2, Buehler, Lake Bluff, IL, 

USA). Afterwards, the TexMet polishing cloth (TexMet Polishing Cloth, Beuhler, Lake Bluff, IL, 

USA) with diamond paste (MetaDi 9-micron, Beuhler, Lake Bluff, IL, USA) and lubricant fluid 

(MetaDi Fluid, Beuhler, Lake Bluff, IL, USA), followed by the Chemomet polishing cloth 

(Chemomet, Buheler, Lake Bluff, IL, USA) with colloidal silica polishing suspension (MasterMed, 

Buehler, Lake Bluff, IL, USA), were used to polish cp-Ti surfaces until mirror finishing. Lastly, all 

the samples were ultrasonically cleaned in ethanol (10 min), distilled (DI) water (5 min) and 

finally, they were dried at room temperature. These smooth cp-Ti samples were used as a 

control group in the present study and they were named as Ti. 

 

3.2.2. Synthesis of well-ordered TiO2 nanotubes 

The nanotubes were obtained by anodization using a two-electrode set-up with Ti 

samples and a graphite rod as the working and counter electrodes, respectively. Both electrodes 

were connected to a power supply (Keithley 2400 SourceMeter, Cleveland, OH, USA) and 

immersed in an electrolyte constituted by Ethylene Glycol (EG) (Ethylene Glycol, Fisher Scientific, 

Pittsburgh, PA, USA), 0.3 wt. % ammonium fluoride (NH4F) (Ammonium Fluoride, Sigma-Aldrich, 

St. Louis, MO, USA)) and 3 vol. % DI water. The distance between the working and the counter 

electrode was approximately 2 cm, and the electrolyte was continuously stirred at room 

temperature (22 to 24 oC). The nanotubes were produced by a two-step anodizing process. The 

first anodization was carried out upon Ti surfaces at a constant voltage of 60 V for 1 h. The 

resulting nanotubes were then removed by ultrasonication in isopropanol for 15 min and 

afterwards these substrates were rinsed in DI water and dried in air. The second anodizing step 

was then performed on these surfaces for 30 min under the same conditions, leading to the 

growth of well-ordered nanotubes named as NT. After this final step, NT surfaces were 

immediately gently rinsed with DI water and dried at room temperature. 
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3.2.3. Bio-functionalization of well-ordered TiO2 nanotubes with Ca and P 

TiO2 nanotubes were submitted to functionalization treatments by reverse polarization 

and/or anodization, aiming at the incorporation of Ca and P species in its structure. In a first 

approach, the NT surfaces were used as the working electrode, and a graphite rod was the 

counter electrode. A constant voltage of 100 V was applied for 30 min between both electrodes 

immersed in an electrolyte composed of 0.35 M calcium acetate (CaA) (Calcium acetate 

monohydrate, Sigma-Aldrich, St. Louis, MO, USA) and 0.04 M β-glycerolphosphate (β-GP) (β-

glycerolphosphate disodium salt pentahydrate, Sigma-Aldrich, St. Louis, MO, USA), named as 

Ca/P-electrolyte. These specimens were named as NT-Ca/P. As a second approach, aiming to 

improve the bioactivity of TiO2 nanotubes, a reverse polarization step was also carried out. For 

that, right before the anodization in the Ca/P-electrolyte, the polarity of the electrodes was 

inverted. By this way, NT samples became the cathode and graphite rod became the anode. 

Reverse polarization was applied during 10 s at 20 V.  After this time, the polarity of the 

electrodes was inverted again, and a constant voltage of 100 V was applied for 30 min with the 

samples immersed in the same electrolyte. These samples were named as NT-RP-Ca/P. The 

nanotubular samples subjected to functionalization treatments in Ca/P-electrolyte were named 

as Ca/P-doped nanotubes. 

 

3.2.4. Surface characterization 

The morphology of Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces was analyzed by Field 

Emission Scanning Electron Microscopy (FESEM) (JSM-6320F, JEOL, Musashino 3-chome 

Akishima Tokyo, Japan). For imaging, the different groups of samples were mounted on an 

aluminum stub with double sided conductive carbon tape. FESEM images from the top of the 

surfaces were obtained with 10,000 X and 40,000 X magnifications. The morphology of the cross-

sections of the different groups of samples was also characterized by FESEM. Before FESEM 

observations, the cross-sections were polished using the standard metallographic preparation 

protocol described in section 2.1. The FESEM images were obtained with magnification of 5,000 

X. From FESEM pictures, nanotube features such as diameter, wall thickness, and the length 

were measured using ImageJ software. 

The surface topography of the samples was assessed via White-light Interferometry 

(NewView 6300, Zygo Corporation, Middlefield, Connecticut, USA). The average roughness (Ra) 

was measured, and a 3D profile of each surface was generated using an imaging analysis tool 

(Metropro 8.1.5), which is associated with the interferometer. The Ra values were calculated 

from a minimum of three independent measurements. 
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The elemental composition of the different groups of surfaces was determined by Energy-

dispersive X-ray spectroscopy (EDS) using a JEOL JSM-6320F detector incorporated into the 

FESEM system. Furthermore, the binding states of the elements detected on nanotubular 

surfaces were investigated by X-ray Photoelectron Spectroscopy (XPS) by using Kratos AXIS-165 

surface analysis system. To find out the functional groups present on Ti surfaces after 

functionalization treatments, Fourier Transform Infrared Spectroscopy (FTIR, Nicolet, Madison, 

WI, USA) was carried out. The range of FTIR spectra was of 4000 cm-1 to 400 cm-1 with 1 cm-1 

resolution and 512 scans. Ti samples were used as a control.  

Finally, water contact angle (WCA) measurements of the different groups of surfaces were 

performed by the sessile drop method using a contact angle measurement apparatus (CA 

Goniometer, Rame’-Hart NRL, Succasunna, NJ, USA) equipped with a camera imaging system. 

Prior to WCA measurements, the samples were cleaned with DI water followed by N2 gas drying, 

at room temperature. For WCA, a 5 μl droplet of DI water was suspended on the surface using 

a micro-syringe (Hamilton, Reno, NV, USA). Pictures were collected from the camera, and the 

contact angle between the droplet and the substrate surface was calculated by ImageJ software. 

The WCA measurements were performed in triplicate, within a maximum period of 48 hours 

after nanotubular surfaces fabrication. 

 

3.2.5. Electrochemical studies  

Potentiodynamic studies were carried out in artificial saliva (AS) at 37 oC. The composition 

of AS is described elsewhere [41]. The samples were fixed in an electrochemical cell with the 

desired surface facing upwards. For these experiments, a three-electrode setup was used where 

the Ti samples were the working electrode, graphite was the counter electrode, and a saturated 

calomel electrode (SCE, 0.244 V vs. SHE) the reference electrode. Firstly, the samples were 

immersed AS (volume = 10 mL) for 3600 s for open circuit potential (OCP) stabilization. 

Afterwards, potentiodynamic polarization tests were carried out from -0.8 V until 1.8 V vs. SCE. 

The scan rate used for potentiodynamic polarization was 2 mVs-1. The corrosion parameter 

evaluated from potentiodynamic polarization scan was the passive current (Ipass), which was 

determined from current measurements within the passivation region of the potentiodynamic 

scan. The experiments were carried out in triplicate for each group. 

The electrochemical measurements were carried out with a potentiostat (Gamry 

Instrument, Reference 600) coupled to the framework software (Gamry Instrument) for 

monitoring the electrochemical data. 
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3.2.6. Biological characterization of Ca/P-doped TiO2 nanotubes 

3.2.6.1. Cell culture 

MG-63 human osteosarcoma cells (ATCC number CRL-1427™) were used for cell-material 

interactions studies. MG-63 cells were cultured in standard plates (Treated cell culture dish, 

Falcon, Corning, NY, USA) in Dulbecco's High Glucose Modified Eagles Medium (DMEM High 

Glucose, HyClone, GE Healthcare Life Sciences, UT, USA). The culture medium was 

supplemented with 10 % (V/V) of Fetal Bovine Serum (FBS, Gibco, Life Technologies, NY, USA) 

and 1 % (V/V) of antibiotic (Anti-Anti, Gibco, Life Technologies, NY, USA) in a humidified 

atmosphere with 5 % carbon dioxide (CO2), at 37 °C. The culture medium was changed every 

three days. At 80 % confluence, the adherent cells were enzymatically detached from the 

bottom of the culture dishes using 0.05 % (1X) trypsin (HyClone, GE Healthcare Life Sciences, UT, 

USA) and counted in a hemocytometer (Bright-Line, Hausser Scientific, PA, USA). 

Before cell culture, all the materials were sterilized by immersion in ethanol 70 % (V/V) 

for 30 min and placed into standard 24-well culture plates (Falcon, Corning, NY, USA). 

Furthermore, it is important to highlight that in vitro studies were conducted in samples with 

the maximum of one week of aging, to avoid its effect on surface wettability.   

 

3.2.6.2. Cell morphology 

The morphology of adhered MG-63 cells on materials surface was observed by FESEM. 

For this, one mL of MG-63 cell suspension (2 x 104 cell/mL) was seeded on Ti, NT, NT-Ca/P and 

NT-RP-Ca/P samples, which were placed into 24-well culture plates. After one and six days of 

incubation at 37 °C in a 5 % CO2 humidified atmosphere, the morphology of MG-63 cells was 

observed by FESEM. During incubation period, the culture medium was changed every three 

days. For FESEM observation, firstly, the cells were washed in phosphate-buffered saline (PBS, 

HyClone, GE Healthcare Life Sciences, UT, USA) and fixed with 2 % glutaraldehyde in sodium 

cacodylate buffer, pH 7.4 (Electron Microscopy Sciences, Pennsylvania, USA). Then, the cells 

were dehydrated using graded ethanol solutions from 35 % (V/V) to 100 % (V/V) followed by 

immersion in 100 % (V/V) hexamethyldisilazane (HMDS). The samples lasted 10 min in each 

ethanol and HMDS solution. Finally, the samples were placed onto an aluminum stub and 

sputter coated with gold. Then, the samples were observed by FESEM (JSM-6320F, JEOL, 

Musashino 3-chome Akishima Tokyo) with the acceleration voltage of 10 kV. 

The cell morphology was also investigated by fluorescence microscopy. For this purpose, 

Ti, NT, NT-Ca/P and NT-RP-Ca/P samples were placed in 24-well culture plates and 1 mL of MG-

63 cell suspension (2 x 104 cell/mL) was cultured on each surface. After one and six days of 

culture, MG-63 cells were labeled for actin filaments of cytoskeleton and nucleus, for 
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subsequent observation in the fluorescence microscope. For this, the cells were washed in PBS 

and fixed with a solution of 3.7 % (V/V) formaldehyde (Ricca Chemical Company, TX, USA) in PBS 

for 20 minutes. Afterwards, cells were washed in PBS and permeabilized with 0.1 % triton-X 

(Triton X-100, Fisher Scientific, Pittsburgh, PA, USA) in PBS, for 15 minutes. Then, 1 mL of PBS 

was added to each well and, ActinRedTM 555 ReadyProbesTM reagent (Molecular Probes, Life 

Technologies, NY, USA) was added to each well according to manufacturer instructions, for actin 

filaments labeling. After cytoskeleton staining, cells were washed in PBS and NucBlue Fixed Cell 

Stain ReadyProbesTM reagent (Molecular Probes, Life Technologies, NY, USA) was added to each 

well, according to manufacturer instructions. Finally, cells were washed with PBS solution and 

maintained in this solution for fluorescence microscopy observation.  

 

3.2.6.3. Metabolic activity  

 Firstly, Ti, NT, NT-Ca/P and NT-RP-Ca/P samples were placed in 24-well culture plates 

(triplicates were used per condition). Afterwards, 1 mL of MG-63 cell suspension (4 x 104 cell/mL) 

was seeded on the surface of each sample and additionally, the cells were also cultured on the 

wells of the culture plates, for cell viability control. Then, the culture plates were placed in a 5 

% CO2 atmosphere at 37 °C for one and six days. The culture medium was changed every three 

days. 

After each incubation period, the cellular metabolic activity was evaluated by measuring 

the mitochondrial dehydrogenase activity through MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide) reduction assay. The MTT assay allows the assessment of 

living and metabolically active cells by their reduction activity of the yellow MTT into soluble 

purple formazan product by mitochondrial dehydrogenase [11, 15, 42]. After one and six days 

of culture, the cells were incubated with MTT (0.5 mg/mL, Sigma-Aldrich, MO, USA) for 4 hours 

at 37 °C. The formazan crystals were solubilized in Dimethyl Sulfoxide (DMSO, Fisher Scientific, 

PA, USA) and the absorbance (Abs) was measured at λ = 570 nm and λ = 690 nm (background) 

on a microplate reader spectrometer (SpectraMax Plus 384 Microplate reader, Molecular 

Devices, CA, USA).  

 

3.2.7. Statistical analysis 

The results were expressed as means ±  standard deviations (SD). The assays were 

performed in triplicate and, the minimum of three points was assessed on each sample. The 

statistical tool SigmaStat 3.5 (Systat Software, San Jose, CA, USA) was used for statistical analysis 

with p < 0.05 considered as being statistically significant and p < 0.01 considered highly 

significant. One-Way ANOVA was used to determine the differences between the different 
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groups of surfaces. Tukey HSD post hoc analysis was used for pair-wise comparisons between 

groups.  

 

 

3.3.1. Characterization of Ca/P-doped TiO2 nanotubes  

3.3.1.1. Morphology of TiO2 nanotubular films 

The substrates for nanotube growth were obtained by mechanical polishing of cp-Ti 

surfaces until mirror finishing (Fig. 3.1a). The synthesis of nanotubular films comprised of two-

step anodization process. Upon first anodization step and ultrasonication, a nano-patterned 

surface with a concave morphology was formed as shown in Fig. 3.1b. Afterwards, these nano-

imprints were used as the template for the second anodization step, resulting in the formation 

of NT surfaces characterized by well-defined and well-organized nanotube arrays, as depicted in 

Fig. 3.1c. Lower and higher magnification FESEM pictures show the presence of uniformly 

distributed nanotubes with non-uniform diameters along the surface area. It is also observed 

that NT surfaces are characterized by the absence of cracks. The morphology of the bottom of 

the nanotubes is depicted in Fig. 3.1d. The hexagonal packing density of nanotube arrays shows 

their high self-ordering level. As described in section 2.3, NT surfaces were subjected to 

anodization and reverse polarization treatments in a Ca/P-electrolyte, aiming the incorporation 

of the bioactive elements into nanotube structure. After these treatments, NT-Ca/P and NT-RP-

Ca/P samples were synthesized, and their surface morphology is depicted in Figs. 3.2a and b, 

respectively. No differences in morphology were observed. From observation of Fig. 3.1c, Fig. 

3.2a and Fig. 3.2b, it is clear that the morphological features on NT, NT-Ca/P and NT-RP-Ca/P 

surfaces, are similar. From these figures, diameter and wall-thickness were measured, and the 

results are depicted in Table 3.1. NT samples are characterized by nanotubes with an inner 

diameter of 74.1 ± 13.7 nm and a wall-thickness of 19 ± 4.6 nm. Similar values were found for 

nanotubes in NT-Ca/P (67.2 ± 13.4 nm diameter, 17.9 ± 3.7 nm wall-thickness) and NT-RP-Ca/P 

(59.8 ± 12.3 nm diameter, 18.5 ± 3.2 nm wall-thickness) samples. 

Nanotubes vertically oriented from Ti substrate were produced, as shown in Fig. 3.3a. The 

inset arrow in the figure shows the growing direction of the nanotubes and delimits their length. 

The FESEM cross sectional images representative of the length of the nanotubular films present 

on NT, NT-Ca/P and NT-RP-Ca/P samples are depicted in Figs. 3.3b, c and d, respectively. The 

average values of the film thickness measured from FESEM images are shown in Table 3.1. 

Similar values of thickness were found for nanotubes on NT (12 ± 0.4 µm length) and NT-Ca/P 

(13 ± 1.6 µm length) samples. On the other hand, as observed in Fig. 3.3d, the length of the 
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nanotubular film on NT-RP-Ca/P samples was significantly lower, reaching 5.5 ± 0.1 µm (Table 

3.1).  

 
Fig. 3.1. FESEM micrographs of (a) Ti smooth and (b) nanopatterned Ti surfaces as a consequence of nanotube 

detachment after the first anodizing step. In (c) the FESEM image of well ordered TiO2 nanotubes synthesised after 

the second anodizing step (NT surface) is shown, and finally, (d) the bottom morphology of the highly ordered 

nanotube arrays present on NT surfaces is observed. Higher magnification pictures are shown in the right upper 

corner of individual pictures. 

 

 
Fig. 3.2. FESEM micrographs showing the morphology of the highly ordered TiO2 nanotubes present on (a) NT-Ca/P 

and (b) NT-RP-Ca/P surfaces. Higher magnification pictures are shown in the right upper corner of individual pictures. 

  

Table 3.1. Diameter, wall-thickness and length of TiO2 nanotube arrays on NT, NT-Ca/P and NT-RP-Ca/P samples. 

Group NT diameter (nm ± SD) NT wall-thickness (nm ± SD) NT length (µm ± SD) 

NT 74.1 ± 13.7 19 ± 4.6 12 ± 0.4 

NT-Ca/P 67.2 ± 13.4 17.9 ± 3.7 13 ± 1.6 

NT-RP-Ca/P 59.8 ± 12.3  18.5 ± 3.2 5.5 ± 0.1* 

(*) significantly different from NT and NT-Ca/P; p < 0.001. 
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Fig. 3.3. Cross sectional FESEM image representative of TiO2 nanotubes grown vertically oriented from Ti substrate. 

The inset indicates the growing direction of the nanotubes and and delimits their length. The length of the nanotubes 

is observed by FESEM images for (b) NT, (c) NT-Ca/P and (d) NT-RP-Ca/P samples.  

 

3.3.1.2. Roughness 

Average roughness (Ra) measurements of nanotubular films were extracted from three-

dimensional (3D) surface topographies obtained from WLI. The 3D images of Ti, NT, NT-Ca/P and 

NT-RP-Ca/P samples are shown in Fig. 3.4 and the correspondent Ra values depicted in Table 3.2. 

It is clear from 3D images depicted in Figs. 3.4a and b that the surface topography of Ti is 

significantly different from NT surface as a result of the growth of a micron-length nanotubular 

film on Ti. These differences are reflected in the significant increase of the Ra values from 0.05 ± 

0.01 µm to 7.40 ± 0.13 µm (Table 3.2). The 3D image of NT-Ca/P (Fig. 3.4c) as well its Ra value of 

7.33 ± 0.47 µm (Table 3.2), show that they present similar topographical features to NT surfaces. 

On the other hand, the 3D image representative of NT-RP-Ca/P surfaces (Fig. 3.4d) shows that 

the reverse polarization step induced to a different film topography characterized by a 

significant lower Ra value (5.67 ± 0.10 µm). In general, a high surface uniformity of the nano-

arrays grown from Ti was noticed.  

 
Table 3.2. Average roughness (Ra) of Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces measured by WLI. 

Group 
Average roughness (Ra) 
 (µm ± SD) 

Ti 
NT 

0.05 ± 0.01 
7.40 ± 0.13* 

NT-Ca/P 7.33 ± 0.47* 
NT-RP-Ca/P 5.67 ± 0.10*# 

(*) significantly different from Ti; (#) significantly different from NT and NT-Ca/P; p < 0.001. 
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Fig. 3.4. Tridimensional topographies of (a) Ti, (b) NT, (d) NT-Ca/P and (e) NT-RP-Ca/P samples obtained from WLI 

measurements. 

 

3.3.1.3. Chemical composition 

The EDS spectra acquired from Ti and NT surfaces are shown in Fig. 3.5a and b, 

respectively. It is observed that after two-step anodization process, Oxygen (O) and Fluorine (F) 

were present on NT surfaces, beyond Ti and Carbon (C), elements that were also detected on Ti 

substrate. From EDS spectra of NT-Ca/P and NT-RP-Ca/P shown respectively in Figs. 3.5c and d, 

Ca and P elements were also detected in addition to the previously detected elements.  

 

 
Fig. 3.5. EDS spectra of (a) Ti, (b) NT, (d) NT-Ca/P and (e) NT-RP-Ca/P samples. 

 

The binding states of the chemical elements detected on nanotubular surfaces were 

studied by XPS. Chemical elements such as C 1s, Ti 2p, O 1s and F 1s were detected on NT 
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surfaces and the presence of Ca 2p and P 2p was confirmed on NT-Ca/P and NT-RP-Ca/P 

surfaces. Aiming to study the binding states of the detected elements, their individual spectra 

were deconvoluted into their components. C 1s peak at 284.6 eV was used as a reference binding 

energy for calibration [43] and a nonlinear (Shirley) background correction method was used for 

electron backgroung correction, which is the most commonly accepted and widely used [44]. 

The XPS individual spectra of the detected elements on NT, NT-Ca/P and NT-RP-Ca/P surfaces 

are shown in Fig. 3.6, 3.7 and 3.8, respectively. The deconvoluted peaks are shown in the 

individual spectra of the detected elements as well as the information obtained from 

deconvolution with reference to the subpeak binding energy and the possible chemical 

compound assigned to it, atomic percentage (at. %) and also to the chi square values (χ2) 

associated to the deconvolution of each spectrum.  

 

 
Fig. 3.6. High resolution XPS spectra of deconvoluted (a) C 1s, (b) Ti 2p, (c) O 1s and (d) F 1s elements detected on 

NT surface. The information obtained from deconvolution is shown in each individual spectrum with reference to 

the subpeak binding energy and the possible chemical compound assigned to it, atomic percentage (at. %) and also 

to the chi square values (χ2) associated to the deconvolution of the spectrum. 

 

The presence of C-C and C-O groups and also organic C 1s was detected on all the 

nanotubular surfaces at similar binding energies, as shown in Figs. 3.6, 3.7 and 3.8. TiO2 and 

Ti2O3 were present on all the surfaces, with a significantly higher at. % detected for TiO2. Besides, 
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the presence of F ions adsorbed to TiO2 nanotubes was found on all the groups. After 

functionalization processes through anodization of NT surfaces in the Ca/P-electrolyte, these 

were characterized also by the presence of CaF2 and CaCO3 compounds. Furthermore, Ca3(PO4)2 

and/or CaHPO4 compounds were also found on NT-Ca/P and NT-RP-Ca/P surfaces. Interestingly, 

CaO appeared only on NT-RP-Ca/P surfaces, which means, when NT surfaces were submitted to 

reverse polarization process for 10 s, immediately before anodization in the Ca/P-electrolyte.  

 

 
Fig. 3.7. High resolution XPS spectra of deconvoluted (a) C 1s, (b) Ti 2p, (c) O 1s, (d) F 1s, (e) Ca 2p and (f) P 2p  elements 

detected on NT-Ca/P surface. The information obtained from deconvolution is shown in each individual spectrum 

with reference to the subpeak binding energy and the possible chemical compound assigned to it, atomic percentage 

(at. %) and also to the chi square values (χ2) associated to the deconvolution of the spectrum. 

 



 Chapter 3 

 

 
 

57 

 
Fig. 3.8. High resolution XPS spectra of deconvoluted (a) C 1s, (b) Ti 2p, (c) O 1s, (d) F 1s, (e) Ca 2p and (f) P 2p  elements 

detected on NT-RP-Ca/P surface. The information obtained from deconvolution is shown in each individual spectrum 

with reference to the subpeak binding energy and the possible chemical compound assigned to it, atomic percentage 

(at. %) and also to the chi square values (χ2) associated to the deconvolution of the spectrum. 

 

The FTIR spectra of NT, NT-Ca/P and NT-RP-Ca/P surfaces are shown in Fig. 3.9. In all FTIR 

spectra H2O (~ 3600-3800 cm-1) and gas phase carbon dioxide (CO2) absorption bands (~ 2200-

2400 cm-1) were detected, which resulted due to the residual air in the FTIR purging chamber 

[45-47]. Furthermore, the absorption band from ~ 3000-3500 cm-1, is possibly attributed to 

fundamental stretching vibration of H2O and OH groups [48-54]. The presence of CH2 stretching 

modes was noticed at 2937.2 cm-1 and 2870.5 cm-1 for NT, NT-Ca/P and NT-RP-Ca/P surfaces. 

The region comprised between 1200-1900 cm-1 consists of the superposition of various 
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absorption bands. The absorption peaks at this region can be assigned to the bond stretch of 

NH4
+ and adsorbed NH3 on TiO2 from the electrolyte [45]. Moreover, IR bands in the spectral 

range of 1300-1700 cm-1 may be an indicator of the presence of molecularly adsorbed O2, CO2, 

and CO molecules on TiO2 [48]. The region between ~ 600-1200 cm-1 is also characterized by the 

superimposition of different absorption bands. According to different studies, this region is 

generally assigned to the presence of Ti-O, Ti-OH and TiO2 [44, 45, 47]. Absorption peaks at 

1018.5 cm-1 and 1086.4 cm-1 can be assigned to the presence of PO4
3- groups on NT-Ca/P  and 

NT-RP-Ca/P surfaces [55]. The absorption band at 1030.9 cm-1 may be related either to the 

presence of Ti-OH vibrations and PO4
3- groups [45, 56, 57]. Finally, the presence of PO4

3- groups 

can also be assigned to the absorption peak that appears at 972.2 cm-1 [56]. 

 
Fig. 3.9. FTIR spectra of NT, NT-Ca/P, and NT-RP-Ca/P surfaces. The different groups of surfaces are properly identified 

in the figure. 

 

3.3.1.4. Wettability 

The wettability of Ti and nanotubular surfaces was investigated by WCA measurements, 

and the results are depicted in Table 3.3. The WCA measured for polished Ti was of 45 ± 3.1 o, 

indicating that this surface is hydrophilic (WCA < 90 o) [58]. After anodization of Ti, the 

hydrophilicity of the surface was enhanced as shown by the significant decrease in the WCA 

measured for NT surfaces to 14.3 ± 2.2 o (p < 0.001). The WCA measured for NT-Ca/P and NT-RP-

Ca/P surfaces were 11.8 ± 2.8 o and 10.5 ± 3.0 o, respectively. These values are similar to the 

ones measured on NT surfaces and significantly lower than WCA of Ti (p < 0.001). 

 

Table 3.3. WCA measured on Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces. 

Group WCA  (o ± SD) 

Ti 
NT 

45.4 ± 3.1 
14.3 ± 2.2 * 

NT-Ca/P 11.8 ± 2.8 * 
NT-RP-Ca/P 10.5 ± 3.0 * 

(*) significantly different from Ti; p < 0.001. 
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3.3.2. Electrochemical studies 

The potentiodynamic polarization curves of Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces are 

depicted in Fig. 3.10 and the current values extracted from the passivation region of these curves 

(Ipass), are listed in Table 3.4. The nanotubular surfaces exhibit a passive region extended over a 

wide potential range and display a fast and effective passivation behavior as compared to Ti, 

which is probably related to the effective blockage of the current provided by nanotubular films 

properties. The Ipass was similar for Ti and NT surfaces, however, NT-Ca/P and NT-RP-Ca/P 

surfaces revealed significantly lower Ipass values (Table 3.4), suggesting a higher corrosion 

resistance property [59]. 

 

 
Fig. 3.10. Potentiodynamic polarization curves of Ti, NT, NT-Ca/P and NT-RP-Ca/P samples immersed in AS at 37 °C. 

Surface area exposed to AS: 0.4 cm2; potential scan rate: 2 mVs−1; potential scan from −0.8 to +1.8 V vs. SCE. The 

different groups of samples are properly identified in the figure. 

 

Table 3.4. Passive current (Ipass) values measured from potentiodynamic polarization curves of Ti, NT, NT-Ca/P and 

NT-RP-Ca/P samples immersed in AS at 37 °C. 

Group Ipass (A) 

Ti 5.47 x 10-6 ± 1.79 x 10-7 
NT 6.86 x 10-6 ± 1.59 x 10-6 
NT-Ca/P 
NT-RP-Ca/P 

2.88 x 10-10 ± 3.59 x 10-11* 
1.10 x 10-9 ± 4.40 x 10-7* 

(*) significantly different from Ti and NT; p < 0.001. 

 

3.3.3.  Biological characterization of Ca/P-doped TiO2 nanotubes 

3.3.3.1. Morphology of MG-63 cells 

MG-63 cells adhered on Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces were imaged by FESEM 

aiming to access their morphology as well as their interaction with materials surface. In Fig. 3.11 

the correspondent FESEM micrographs are shown, after one and six days of incubation. As 

observed in Fig. 3.11 (a1, b1, c1 and d1) cells adhere on the materials surface after one day of 

incubation, presenting different morphologies. Cells adhered on Ti surfaces (Fig. 3.11 a1) seem 
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less spread than the ones adhered on nanotubular surfaces (Figs. 3.11 b1, c1 and d1). The cells 

on nanotubular surfaces present a spreader morphology, and they are interconnected. It should 

be noticed that at this time point, the osteoblastic cells adhered on materials surface present 

filopodia forming adhesion points at the surface and establishing cell-cell contact as 

demonstrated by the inserts included in higher magnification FESEM micrographs. After six days 

of incubation, there is an increased number of adhered cells as observed on each different group 

in Fig. 3.11 (a2, b2, c2 and d2). At day six the materials surface is covered by an abundant cell 

layer, and all the cells seem well spread and interconnected. 

 

Fig. 3.11. FESEM micrographs of MG-63 cells cultured on Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces after one and six 

days of incubation: MG-63 cells on (a1) Ti, (b1) NT, (c1) NT-Ca/P and (d1) NT-RP-Ca/P surfaces – day one ; MG-63 

cells on (a2) Ti, (b2) NT, (c2) NT-Ca/P and (d2) NT-RP-Ca/P surfaces – day six. 
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Fluorescence microscopy images of MG-63 cells adhered on Ti, NT, NT-Ca/P and NT-RP-

Ca/P surfaces, after one and six days of incubation, are depicted in Fig. 3.12. After one day of 

culture (Figs. 3.12 a1, b1, c1 and d1), the cells already adhered on materials surface, and a similar 

number of cells seems to be present on all the groups. At this time point, adhered cells present 

spherical, spread and elongated morphologies. In general, cell-to-cell contact is observed to a 

large extent. After six days of culture, there is an increase in the number of the adhered cells 

except for NT-Ca/P surfaces as shown in Fig. 3.12 (a2, b2, c2 and d2). In Fig. 3.12 c2 it is observed 

that MG-63 cells are more scarcely distributed presenting a less spread morphology along NT-

Ca/P surfaces as compared to the other groups.  

 

Fig. 3.12. Fluorescence microscopy images of MG-63 cells cultured on Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces after 

one and  six days of incubation: MG-63 cells on (a1) Ti, (b1) NT, (c1) NT-Ca/P and (d1) NT-RP-Ca/P surfaces – day one 

; MG-63 cells on (a2) Ti, (b2) NT, (c2) NT-Ca/P and (d2) NT-RP-Ca/P surfaces – day six. 
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3.3.3.2. Metabolic activity of MG-63 cells 

The metabolic activity of MG-63 cells seeded on Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces 

was investigated by MTT reduction assay after one and six days of incubation and the 

correspondent absorbance values are shown in Fig. 3.13. Once MTT reduction is attributed to 

mitochondrial succinate dehydrogenase redox activity, the absorbance values are proportional 

to cell metabolism, and therefore, cell viability. Additionally, an increase in cell viability is an 

indicator of cell proliferation [11, 60]. 

At day one of culture, MG-63 cells present a similar metabolic activity level as shown by 

the similar absorbance values depicted for all the groups (Fig. 3.13). At day six, the absorbance 

values significantly increased for all the materials, suggesting that the metabolic activity 

increased and that cells proliferated with time. However, remarkable differences are observed 

between the different groups. At this time point, the cells cultured on NT-RP-Ca/P present 

significantly higher metabolic activity than NT-Ca/P and Ti, and similar to NT surfaces.  

 

  
Fig. 3.13.  Metabolic activity of MG-63 cells cultured on Ti, NT, NT-Ca/P and NT-RP-Ca/P surfaces after one and six 

days of incubation. At day six: (*), significantly different from Ti and NT-Ca/P; p < 0.05.  

 

 

3.4.1. Morphological and topographical features of Ca/P-doped TiO2 nanotubes 

It is commonly accepted that the mechanism for nanotube formation by anodization in a 

fluoride-containing electrolyte is based on a field-assisted dissolution process consisting of two 

main stages: 1) the anodic oxidation of Ti metal to form a passive Ti oxide film on its surface by 

the recombination of Ti4+, O2- and OH- ions, moving under the action of an electric field and, 2) 

the local chemical dissolution of the growing oxide by fluoride ions (F-) and pore formation [24, 

61-63]. This process assumes that the growth of nanotubes is ensured by the balance between 

the formation of a oxide barrier film at the metal-oxide interface and, the field-enhanced 

dissolution at the base of the pores/tubes, where the electric field is stronger [63].  
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It is already documented in literature that the self-ordering of TiO2 nanotubes is improved 

after multi-step anodic oxidation processes [64]. As stated by Serikov et al. [65] the repeated 

anodization of titanium, is one way of structuring the surface, removing contaminants and 

increasing the adhesion of the synthesized nanotubes. Based on this knowledge, in this study, 

nanotubular structures were synthesized using a two-step anodization process. Firstly, the 

nanotubes were produced by anodization of Ti polished surfaces (Fig. 3.1a).  After this step, the 

nanotube layer grown from Ti was intentionally ultrasonically peeled off aiming at the formation 

of a nano-patterned surface presenting concave dimples (Fig. 3.1b), the common shape of the 

nanotube bottom [64]. These hemispheric nano-imprints were used as the template for the 

second anodizing step, once they acted as nucleation sites for the initial pore formation [66, 67] 

required for the growth of highly ordered nanotube arrays. The surface produced after the 

second anodizing step was named as NT and it is characterized by well-defined and well-

organized nanotubes as shown in lower and higher magnification FESEM pictures in Fig. 3.1c. On 

the NT surface the absence of cracks and the presence of uniformly distributed nanotubes with 

non-uniform diameters along the surface area are noticed. 

From nanotube bottom morphology depicted in Fig. 3.1d the hexagonal packing density 

of nanotube arrays is clearly appearing, which allows the evaluation of the self-ordering of the 

nanotubular film produced. Han et al. [64] synthesized well-ordered TiO2 nanotubes by a multi-

step anodic oxidation process carried out at 50 V for 5 hrs, in EG electrolyte containing 0.25 wt.% 

NH4F. The authors concluded that the hexagonal packing density of the TiO2 nanotubes was 

significantly improved after the multi-step anodic oxidation. These authors also reported that 

the area densities of the hexagonal TiO2 arrays increased approximately three times from the 

first to the second anodic oxidation step. According to Sulka et al. [68] in an ideally arranged 

triangular lattice, each pore should be surrounded by six neighboring pores. When looking at 

Fig. 3.1d, it is observed that nanotube arrays with hexagonally packed arrangement are present 

over a large surface area. From the above discussed results, the morphological features of the 

nanotubes are highly dependent on the morphology of the nano-patterned substrates from 

where they were grown. 

The morphological and surface topographical features of osseointegrated implants play a 

significant role on the mechanical stability of the implant once allocated into bone as well as on 

the healing and osseointegration processes. In the natural bone tissue, a non-uniform porosity 

due to the existence of cortical (3-12 % porosity, pore sizes: 10-500 µm) and trabecular bones 

(50-90 % porosity, pore sizes: 0.2-1 mm) is noticed. Interestingly, NT surfaces are also 

characterized by non-uniform pore diameters, varying at a nano-scale level and presenting a 

very similar morphology when compared to the structure of natural bone. Considering that 
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natural bone is a nanostructured material [69] and bone tissue response is mainly dictated by 

processes controlled at the nanoscale level [32], it is hypothesized that mimicking the 

microstructure of bone at a nano-scale level is an interesting approach for the development of 

a novel surface able to improve the performance of osseointegrated implants. Furthermore, in 

the attempt to develop a new strategy for obtaining biomimetic systems mimicking the natural 

extracellular microenvironments, the functionalization of TiO2 nanotubes with elements natively 

present in natural bone, namely, Ca and P, was carried out using anodization of NT surfaces in 

an electrolyte composed of CaA and β-GP (Ca/P-electrolyte). Using this process, the 

incorporation of bioactive elements present in the anodizing solution into nanotube structure 

was aimed. As described in section 2.3, a cathodic polarization step was also applied to NT 

samples, right before the anodizing process in the Ca/P-electrolyte. With this the cathodic 

polarization step, it was intended to direct Ca2+ ions to NT surface for further incorporation of 

these elements into nanotube structure. After the anodizing processes carried out in both 

conditions, NT-Ca/P and NT-RP-Ca/P samples were synthesized, and their surface morphologies 

are depicted in Figs. 3.2a and b, respectively. Well-ordered and opened nanotubes, cleared of 

any aggregations are observed in both cases. From observation of Fig. 3.1c and Fig. 3.2, it is clear 

that NT, NT-Ca/P and NT-RP-Ca/P samples display similar morphological features, as confirmed 

by diameter and wall thickness measurements reported in Table 3.1. The novelty of this method 

and what distinguishes it from other bio-functionalization processes commonly reported in 

literature [10, 33], lies on the usage of NT samples as the cathode and, immediately after, as the 

anode, in the electrochemical cell. 

It has been reported that cell fate is determined by the TiO2 nanotube sizes in vitro, but 

optimum scale is still controversial. Wang et al. [6] reported that a significant increase in bone 

implant contact and gene expression levels was found in the bone attached to TiO2 nanotubes, 

especially with 70 nm diameter. On the other hand, Park et al. [4] demonstrated that adhesion, 

proliferation, migration and differentiation of MSCs was maximally induced on 15 nm nanotubes, 

but prevented on 100 nm. In our study, non-uniform pore diameter ranging at a nano-scale level 

between 45 and 90 nm were formed, with potential to improve cell-materials interactions. 

The representative picture of the nanotubes grown vertically oriented from the Ti 

substrate is shown in Fig. 3.3a. As observed from cross sectional images representative of the 

length of NT and NT-Ca/P nanotubular films (Fig. 3.3b and 3.3c, respectively), and from the 

correspondent values in Table 3.1, nanotubes with similar thickness were formed. These results 

indicate that the second anodizing process did not influence the length of the nanotubular film 

present on NT surfaces. On the other hand, the length of NT-RP-Ca/P nanotubes was significantly 

lower (Fig. 3.3d) what might be attributed to the reverse polarization step applied on the NT 
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samples during 10 s in the Ca/P-electrolyte. For reverse polarization step, the polarity of the 

electrodes was inverted. By this way, NT samples became the cathode and the graphite rod, the 

anode. According to Abellán et al. [70], the passive titanium oxide film might undergo different 

processes when submitted to cathodic polarization: various stages of oxide reduction up to 

oxide dissolution, the adsorption and absorption of hydrogen, hydrogen evolution, and oxygen 

reduction.  It has been reported that when a titanium electrode covered with TiO2 film is 

polarized in the potential range where hydrogen evolution reaction takes place, a decrease in 

film thickness occurs. This phenomenon is produced by the partial reduction of the Ti4+ present 

in TiO2 film to Ti3+ in oxy-hydroxi species [71]. The cathodic potential of -0.6 V vs. SCE is 

considered as the potential that can render the protective oxide ineffective as a barrier by 

reducing it from TiO2 to TiOOH. In the present work the cathodic cell potential of 20 V was 

applied to NT samples for 10 s. After this process, there was a significant decrease in the 

thickness of the nanotubular film. It is believed that the reactions which cause the thinning 

phenomenon of the film involved a high level of chemical dissolution of the TiO2 nanotubular 

film due to the high cathodic potential applied during the process. Most probably, the 

dissolution occurred due to the reduction of TiO2 nanotubes into oxy-hydroxi species [71, 72], 

which may be dissolved in the electrolyte or precipitate at the top of the film [71].  

The average roughness (Ra) of nanotubular films was extracted from three-dimensional 

(3D) surface topographies obtained from WLI. A high level of uniformity of the nano-arrays 

growth from Ti is noticed from the 3D images (Fig. 3.4). These images reflect the phenomenon 

of film thinning by reverse polarization step. The significantly lower thickness of nanotubes is 

reflected on 3D image of NT-RP-Ca/P sample (Fig. 3.4d) and also on the correspondent Ra value 

(Table 3.2), which is significantly lower than the ones measured for NT and NT-Ca/P surfaces. 

 

3.4.2. Chemical and physico-chemical features 

After the two step anodization process, Ti, O, and F were detected on NT surfaces by EDS 

(Fig. 3.5b) and XPS (Fig. 3.6). The existence of these elements on NT surfaces is related to growth 

of an oxide film via anodization of Ti in a F-containing electrolyte. During anodization of Ti, its 

oxidation takes place with release of Ti4+ ions and electrons. The anodic potential applied during 

the process controls the rate of ion migration within the metal/electrolyte interface. The Ti4+ 

ions can be consumed for the film development by their recombination with OH- and O2- species 

provided by the field-assisted water dissociation, and/or field-assisted driven from the Ti 

substrate towards the electrolyte  [63, 73]. This can result in the formation of oxide (i.e. TiO2) or 

hydrated oxide (i.e. Ti(OH)4). The fluorine ions present in the electrolyte can chemically dissolve 

both the hydrated and oxide layers, or react with Ti4+ ions [63, 73]. For NT-Ca/P and NT-RP-Ca/P 
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surfaces, Ca and P elements were also detected by EDS (Figs. 3.5c and d) and XPS (Figs. 3.7 and 

3.8). This shows that after anodization processes carried out in the Ca/P-electrolyte, bioactive 

elements were successfully incorporated in nanotubular surfaces. 

To investigate the chemical compounds possibly assigned to the detected elements, the 

individual XPS spectrum of each element was resolved into their components by curve fitting.  

Fig. 3.6a shows the deconvolution of C 1s main peak on NT surface into three subpeaks 

characterizing the chemical states of carbon. The sub-peak at 284.57 eV is generally assigned to 

the presence of adventitious carbon [74-76] inevitable adsorbed from the atmosphere while the 

C 1s subpeaks at 285.97 eV and 288.37 eV may be related to C-O bonds and organic C 1s, 

respectively [76-78]. Carbon was also detected on TiO2 nanotube arrays synthesized by Han et 

al. [64] at similar anodizing conditions of the present study. The authors explained that carbon 

was associated to species such as hydrocarbon (C-H), hydroxyl (C-OH) and carboxyl (O=C-OH) 

groups. This is in good agreement with FTIR results with IR bands in the spectral range of 1300-

1700 cm-1 as an indicator of the presence of molecularly adsorbed CO groups on TiO2 (Fig. 3.9). 

The deconvolution of the high resolution spectra of Ti 2p3/2 and O 1s confirms the presence of 

TiO2 by the contributions found at 458.38 eV (Fig. 3.6b) and 529.72 eV (Fig. 3.6c), respectively. 

These peaks are characteristic of Ti 2p3/2 and O 1s in TiO2 as already reported in previous studies 

[44, 74, 75, 79-83]. A characteristic band for TiO2 was also found in FTIR spectrum in the region 

between ~ 600-1200 cm-1 (Fig. 3.9). As shown in Fig. 3.6b the subpeak energy found for Ti 2p3/2 

at 457.10 eV [54, 74] is possibly related to Ti2O3 what is in accordance with the subpeak found 

for O 1s at 530.87 eV (Fig. 3.6d). Notwithstanding that, from curve fitting analysis of Ti 2p3/2 and 

O 1s main peaks, it is observed that the main contribution is coming from TiO2. From Fig. 3.6d it 

is possible to identify a peak for F 1s at 683.98 eV, which is assigned to adsorbed fluoride ions 

on TiO2 [44, 84].  

In Fig. 3.7a it is observed that C 1s was detected in NT-Ca/P samples at four different 

binding states namely at 284.42 eV (C-C groups), 285.85 eV (C-O groups), 287.74 (Organic C 1s), 

and finally, at 288.34 eV, which is possibly assigned to the presence of CaCO3 [85]. Ti 2p3/2 

components were found at 458.17 eV (TiO2) and 457.16 eV (Ti2O3) as observed in Fig. 3.7b, and 

the O 1s binding energies for TiO2 and Ti2O3 were detected at 529.55 eV and 530.30 eV, 

respectively (Fig. 3.7c). The O 1s and Ca 2p3/2 core levels for CaCO3 were found at 531.41 eV (Fig. 

3.7c) and 346.3 eV (Fig. 3.7e), respectively [52]. Adsorbed fluoride ions on TiO2 were detected 

at 683.78 eV (Fig. 3.7d). The anodization of TiO2 nanotubes in Ca/P-electrolyte allowed the 

nanotubular surface enrichment with Ca and P elements. The Ca 2p3/2 peak detected at 346.89 

eV (Fig. 3.7e), in agreement with P 1s peak at 132.9 eV (Fig. 3.7f), are most probably related to 

the presence of Ca3(PO4)2  compounds on TiO2 nanotubes [52, 86]. Moreover, the energy found 
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at 346. 30 eV may be also related with the presence of CaHPO4 species, which were confirmed 

by the existence of a contribution for P 2p at 133.80 eV [52]. Furthermore, the O 1s binding 

energy at 531.3 eV (Fig. 3.7c) is corroborating the presence of Ca3(PO4)2/CaHPO4 species [52]. 

The presence of PO4
3- groups can also be proved by the absorption peaks found in FTIR spectrum 

at 972.2 cm-1, 1018.5 cm-1 and 1086.4 cm-1 (Fig. 3.9). Most likely, during anodization in Ca/P-

electrolyte, Ca2+ ions reacted with negatively charged PO4
3- and CO3

2- to form the Ca-based 

compounds above mentioned. Finally, it is believed that anodization of nanotubes leads to the 

formation of CaF2 species as found by energies detected for Ca 2p3/2 and F 1s at 347.68 eV (Fig. 

3.7e) and 684.35 eV (Fig. 3.7d), respectively [87]. C 1s species similar to those detected on NT-

Ca/P were found also on NT-RP-Ca/P surfaces at similar binding energies (Fig. 3.8a). Once again, 

a high percentage of TiO2 was detected in Ti 2p3/2 and O 1s spectra at 458.18 eV (Fig. 3.8b) and 

529.55 eV (Fig. 3.8c), respectively. Ti2O3 was found in a lower at. % in Ti 2p3/2 spectrum at 457.13 

eV (Fig. 3.8b) and at 530.7 eV in O1s spectrum (Fig. 3.8c). NT-RP-Ca/P surfaces were submitted 

to a reverse polarization step during 10 s in the Ca/P-electrolyte, in which, afterwards, they were 

immediately anodized at 100 V for 30 min. As observed in Fig. 3.7 and 3.8, similar compounds 

were detected on NT-RP-Ca/P comparing to NT-Ca/P surfaces, such as CaCO3, Ca3(PO4)2/CaHPO4 

and CaF2. However, it should be noticed that an additional peak was found in Ca 2p3/2 spectrum 

at 346.20 eV (Fig. 3.8e) and it is most likely assigned to the presence of an additional chemical 

compound formed, namely, CaO. The O 1s core level for CaO was observed at 532.4 eV (Fig. 

3.8c). These results indicate that reverse polarization is a promising treatment to be applied 

before anodization process leading possibly to the formation of additional compounds on 

materials surface, in this case, CaO on NT-RP-Ca/P surface. 

The surface wettability is influenced by the surface characteristics such as surface 

roughness, chemistry and surface free energy [45, 88-91]. Different elements are characterized 

by different surface energies, and so, the surface wettability depends on the surface energy of 

the elements. The higher the surface energy is, the higher the wetting [45, 91]. In the present 

study, the hydrophilicity was enhanced after anodization of Ti as shown by the significant 

decrease in the WCA measured on Ti compared to NT surfaces (Table 3.3). This means that once 

a water droplet gets in contact with NT surfaces it completely expands on the entire surface. 

The hydrophilic character of these nanotubular structures is most probably related to the 

presence of OH groups adsorbed on its surface [92]. It is believed that the O 1s binding energy 

found for NT surfaces at around 531 eV (Fig. 3.6c) may be also assigned to OH groups adsorbed 

on TiO2. Regonini et al. [75] after XPS analysis of TiO2 nanotubular films synthesized by 

anodization, reported a certain degree of hydration in the oxide due to a signal typical of OH 

groups at 531.4 eV. TiO2 nanotube arrays with OH groups adsorbed on its surface were also 
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formed by Han et al. [64]. In agreement, absorption band from ~ 3000-3500 cm-1 found in FTIR 

spectrum (Fig. 3.9), is possibly attributed to fundamental stretching vibration of H2O and OH 

groups. Earlier studies have focused on understanding the wettability behavior of titanium oxide 

nanotube surfaces. It has been reported that nanotubular films produced on Ti and Ti-alloys in 

EG-based electrolytes display superhydrophilic behavior [45, 93]. Yoriya et al. [93] fabricated 

titania nanotubular films characterized by WCA of 13.8 ± 2.2 o and stated that this was a clear 

indication of the superhydrophilic behaviour of the nanotube layer. In the present work, the 

WCA measured for NT-Ca/P and NT-RP-Ca/P surfaces were 11.8 ± 2.8 o and 10.5 ± 3.0 o, 

respectively (Table 3.3). These values are similar to the ones measured for NT surfaces and keep 

significantly lower than WCA of Ti. These results indicate that, beyond functionalization 

treatments of NT surfaces have influenced surface chemistry, their hydrophilic behavior 

remained unchanged. This feature may be of upmost importance once surface wettability plays 

a crucial role in cell adhesion, since this phase involves physicochemical linkages between cells 

and surfaces [16, 29]. Besides, changes on surface wettability can lead to alterations in the 

adsorption of conditioning molecules influencing the cell attachment [29]. According to several 

studies, cells attach more efficiently to hydrophilic surfaces when compared to hydrophobic 

ones [16, 29, 94]. 

 

3.4.3. Corrosion behavior 

The high corrosion resistance of Ti results from the growth of a protective TiO2 film on its 

surface (2-6 nm thickness) [95]. However, this nano-thick passive layer is not inert to corrosive 

attack when subjected to aggressive biological conditions [23] (e.g. pH variation, presence of 

fluorides and surface wear). As a consequence of corrosion, metal ions may be released from a 

metallic implant to its vicinity impairing bone cell functions and triggering an immune response 

that can ultimately lead to periprosthetic resorption of bone and loosening of the implant [18, 

25, 34]. Beyond metal ions accumulation in bone adjacent to implants, they have also been 

found to be localized in blood or serum, urine and other organs [96]. Thus, the study of how 

Ca/P-doped TiO2 nanotubes behave when submitted to corrosive conditions is of upmost 

importance. 

The electrochemical behavior of Ti, NT, NT-Ca/P and NT-RP-Ca/P samples was investigated 

in artificial saliva (AS) at 37 °C by potentiodynamic polarization. The electrochemical stability was 

assessed by the current values measured in the passive region (Ipass) of potentiodynamic 

polarization curves, whose values are shown in Table 3.4. The potentiodynamic polarization 

curves observed in Fig. 3.10 show that NT, NT-Ca/P and NT-RP-Ca/P samples exhibit a passive 

region extending over a wide potential range when compared to Ti surfaces. In general, all the 
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nanotubular surfaces display a fast and effective passivation behavior, which may be related to 

the properties of the barrier layer formed at titanium/nanotubes interface during anodization 

process. The same trend was observed by Grotberg et al. [30] for nanotubes grown from Ti6Al4V 

substrates. Yu et al. [31] also studied the corrosion behavior of TiO2 nanotube layers in Hank’s 

solution and they concluded that the Ipass density was significantly influenced by Ti oxide 

nanotubes grown by anodization. Electrochemical Impedance Spectroscopy (EIS) results 

confirmed the better corrosion resistance of Ti nanotubes because of a thicker barrier layer 

present on nanotubular films than on smooth Ti. The passive layer grown during anodization 

process plays the main role in corrosion restricting the movement of metal ions from the metallic 

surface to the surrounding solution [97]. Likewise, Demestrescu et al. [98] studied the effect of 

nano-topographical features of Ti/TiO2 electrode surface on its electrochemical stability in 

Fusayama's AS. From EIS and potentiodynamic studies, the authors concluded that very low 

corrosion current densities were recorded on TiO2 nanotubes due to a strong passive oxide film 

formation. The EIS results indicated that TiO2 nanotube surface consisted of a bi-layered oxide 

made up of an inner barrier layer associated to high impedance and responsible for corrosion 

protection, and a porous outer layer (nanotubes) of lower impedance. 

Beyond the faster passivation behavior of NT samples, similar Ipass values were found for 

smooth Ti, as observed in Fig. 3.10 and confirmed by the Ipass values reported in Table 3.4. 

However, after Ca- and P-enrichment of NT surfaces by anodization and reverse polarization 

processes, significantly lower Ipass values were found for NT-Ca/P and NT-RP-Ca/P samples (Fig. 

3.10, Table 3.4) suggesting that they display superior corrosion resistance ability. From NT-Ca/P 

and NT-RP-Ca/P polarization curves, it is believed that this abrupt decrease in the Ipass values is 

related to the barrier layer at titanium/nanotubes interface, whose properties might have been 

changed during the anodization of NT surfaces in the Ca/P-electrolyte. During the second 

anodization process it is hypothesized that the diffusion of anionic oxygen species occurs 

through the nanotubes and the already existing passive layer, and reacts with Ti ions liberated 

from the titanium substrate to form a compact oxide film providing superior corrosion resistance. 

Recently, Yu et al. [99] reported on a method to enhance the adhesion of TiO2 arrays to Ti 

substrate by employing an additional anodization of nanotubes in a fluoride-free organic 

electrolyte constituted of H3PO4 and EG. The additional anodization resulted in about 200 nm 

thick compact layer near the nanotube bottoms and scratch test demonstrated that this layer 

leads to a more than threefold increase of the adhesion strength between the nanotubes and 

the substrate. It is important to highlight that the morphological features of all the nanotubular 

surfaces remained unaltered after corrosion assays, as confirmed by FESEM observation of the 

surface area exposed to AS (results not shown). 
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From the results obtained it appears that the lowering on the Ipass values is not affected 

by the reverse polarization step, which led to the significant reduction of the nanotube length 

as discussed in section 3.4.1, and so, it is also independent of nanotube length. Furthermore, all 

the nanotubular surfaces are superhydrophilic and characterized by similar values of WCA, and 

so, it seems that Ipass values are also independent on this feature. This indicates that the barrier 

layer formed at titanium/nanotube interface is the main cause for the significant Ipass lowering. 

The characterization of the newly formed titanium/nanotubes interface after anodization of 

nanotubes in Ca/P-electrolyte regarding compact layer morphology, thickness and elemental 

composition is of upmost importance. This knowledge will allow to predict the mechanisms 

behind the barrier layer formation and to understand the properties responsible for the 

improved corrosion resistance of Ca/P-doped TiO2 nanotubes. 

 

3.4.4. Adhesion and proliferation of MG-63 cells 

Ideally, the biological fixation between an implant surface and the surrounding bone 

should occur ensuring the establishment of a mechanically solid interface without fibrous tissue 

formation [33, 35, 100], however, this is still one of the main challenges that researchers aim to 

overcome [32]. This present study uses a novel surface functionalization strategy to provide a 

biomimetic surface. The new adopted methodology aims to tailor more effective bone-

integrating surfaces by mimicking the morphology of natural bone at a nano-scale level, as well 

as its composition through the enrichment of the TiO2 nanotubes with Ca and P species.  

From the results described in section 3.3.6.1, all the nanotubular surfaces influenced the 

cell responses regarding cell adhesion and proliferation. In accordance with FESEM observation 

of MG-63 cells after one day of incubation (Figs. 3.11 a1, b1, c1 and d1), the cells adhered on 

TiO2 nanotube surfaces presented a spreader morphology with filopodia forming adhesion 

points and promoting cell-cell contact through cytoplasmic extensions, compared to smooth Ti. 

Moreover, the metabolic activity of cells measured by MTT assay after six days of culture (Fig. 

13), suggests that NT surfaces induced to a significantly higher proliferation of MG-63 cells than 

smooth Ti [101, 102]. These outcomes may be related to the more rapid adhesion and spreading 

of osteoblastic cells on NT surfaces as also observed by Oh et al. [102]. Cell adhesion is one of 

the critical initial stages to subsequent proliferation of osteoblastic cells producers of bony 

tissue, playing a crucial role in the establishment of a high bone-implant contact [9, 11, 103]. 

Cell-substrate adhesion is based on membrane integrins (8-12 nm), which are essential 

for the formation of focal adhesion points with the implant surface [104]. Integrins can translate 

the attachment of external ligands (e.g. fibronectin and vitronectin) to internal information that 

induces adhesion, spreading, cell migration, growth and differentiation [105]. It has been 
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already shown that TiO2 nanotubes influence cell proliferation, migration and differentiation 

resulting from integrin clustering and focal contact formation [104], and these responses 

depend on nanotube features such as diameter and wall thickness. However, the cell response 

to different TiO2 nanotube diameters is still controversial in literature. Nanotubes with 15 – 30 

nm promote cell adhesion and proliferation and, on the other hand, nanotubes with 70 – 100 

nm are believed to induce a greater bone forming ability [105].  Brammer et al. [101] prepared 

various sizes (30 – 100 nm diameter) of TiO2 nanotubes on Ti substrates by anodization, and 

investigated the osteoblast cellular behavior in response to these different nanotube sizes. The 

experimental data indicated that a substantially increased elongation of the cells when cultured 

on 100 nm diameter nanotubes was achieved with cell differentiation ability, when compared 

to flat Ti. In the present work, TiO2 nanotubes with diameter ranging from 45 – 90 nm and a wall 

thickness from 14 – 24 nm were produced. The improved cell adhesion and proliferation of MG-

63 cells adhered on NT surfaces is probably related with these nanofeatures of the tubes that 

influence cell adhesion process through integrin receptors, as mentioned previously. 

Furthermore, it has been reported that cells adhere better on hydrophilic surfaces and with 

functional groups such as OH- [106], which are characteristics of NT surfaces when compared to 

Ti. Additionally, F ions adsorbed on NT surfaces, may be stimulating initial cell attachment [104]. 

Thus, it is believed that the surface features of NT surfaces as morphology and chemistry are 

beneficial for the initial protein adsorption and subsequent cell adhesion process when 

compared to smooth Ti. 

Different behaviors regarding cell adhesion quality and proliferation were observed for 

osteoblastic cells seeded on NT-Ca/P and NT-RP-Ca/P surfaces. After six days of culture, 

osteoblastic cells seeded on NT-RP-Ca/P surfaces presented a spreader and more stretched 

morphology compared to the ones on NT-Ca/P surfaces (Fig. 3.12 d2 vs Fig. 3.12 c2) as well as 

an enhanced metabolic activity (Fig. 3.13). In Figs. 3.12 d1 and d2 it is observed that there is an 

increased number of adhered cells on NT-RP-Ca/P surfaces through the culture time. However, 

the same behavior is not observed on NT-Ca/P surfaces (Figs. 12 c1 and c2), where there is not 

an increase on the amount of MG-63 cells, which in turns are more scarcely distributed 

presenting a rounder morphology. The MTT results are in good agreement with these 

observations, showing a significantly lower metabolic activity of the adhered cells on NT-Ca/P 

compared to NT-RP-Ca/P surfaces, suggesting a lower proliferation. Cell to cell contacts are quite 

observed on NT-RP-Ca/P surfaces through filopodia, which are also observed traveling along the 

nanotubes. The differences on cellular responses found between NT-Ca/P and NT-RP-Ca/P 

surfaces are most probably related to their chemical features, which were changed after reverse 

polarization step. As known from literature, surface chemistry plays an important role in cell 



Chapter 3 

 

 
72 

adhesion because it influences short-term adhesion, which is a step that involves adsorption and 

rearrangement of proteins [106]. From chemical analysis of NT-RP-Ca/P surfaces it was found 

the presence of Ca3(PO4)2/CaHPO4, CaF2, CaCO3 and CaO species. These compounds were also 

found on NT-Ca/P surfaces with the exception of CaO. According to the findings by Dorner-Reisel 

et al. [107], an alteration of the biological acceptance of Diamond-Like Carbon (DLC) films was 

induced by CaO incorporation. In accordance with the authors, the DLC doping with CaO led to 

an improvement on cell morphology and viability. In the present study, the formation of CaO 

may be acting as a determining factor, influencing the initial adherence of proteins on the 

surface, and consequently, the cell adhesion and proliferation. However, further studies must 

be carried out to confirm this hypothesis. 

From the results above discussed, it appears that the anodization of nanotubes in Ca/P-

electrolyte is modulating cell responses and that reverse polarization is a very promising strategy 

for the design of new osseointegrative surfaces. The reverse polarization step before 

anodization in the Ca/P-electrolyte helps to recover the biological functions of cells adhered on 

NT surfaces regarding metabolic cell activity and cell adhesion. This suggests that beyond 

morphological/topographical features, cells seem to respond to chemical properties of TiO2 

nanotubes. Further studies still need to be carried out aiming to understand better the 

mechanisms governing cell adhesion and proliferation on these surfaces. Furthermore, cell 

differentiation studies would be also of fundamental importance to perform, aiming to 

understand if Ca/P-doped TiO2 nanotubes have potential to modulate osteogenesis. 

 

 

The synthesis of biocompatible Ca/P-doped TiO2 nanotubes was successfully achieved 

with improved electrochemical behavior in AS. The main conclusions of this investigation are as 

follows:  

- Highly ordered TiO2 nanotubes were synthesized by two-step anodizing treatments. 

The nanotubes are characterized by non-uniform diameters varying at a nano-scale level from 

50-90 nm, presenting a very similar morphology when compared to the micron structure of 

natural bone. 

- Reverse polarization of highly ordered TiO2 nanotubes in a Ca/P-electrolyte, followed 

by anodization in the same electrolyte, leads to a nanotubular film enriched with bioactive 

elements namely, Ca and P. The functionalization treatment by reverse polarization before 

anodization does not affect the morphology of the nanotubes, however, it influences their 

chemical properties. 

- Reverse polarization in Ca/P-electrolyte improves the biocompatibility of Ca/P-doped 
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TiO2. By this novel approach, the chemistry of TiO2 nanotubes may be modified without 

compromising the desired surface morphological features. 

- Ca/P-doped TiO2 nanotubes display a significantly lower passive current than NT and 

smooth Ti samples in AS at 37 °C. The anodization of TiO2 nanotubes in Ca/P-electrolyte seems 

to be a promising and simple approach to improve the electrochemical stability of metallic 

implants and avoid their degradation by corrosion. 

The present study brings up a novel methodology that relies on the bio-functionalization 

of TiO2 nanotubes by the conjugation of reverse polarization and anodization processes in a 

Ca/P-electrolyte. This new strategy allows the synthesis of bone-like structured TiO2 nanotubes 

enriched with bioactive elements, able to enhance osteoblastic cell functions and 

simultaneously, to minimize their degradation by corrosion. This study addresses a very 

promising and simple approach providing new insights for the further development of novel 

methodologies to improve the outcome of dental and orthopedic implants. 
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The decoration of titanium (Ti) implant surfaces with bio-functionalized TiO2 nanotubes is 

a very promising way to simultaneously improve osseointegration and avoid infection as the 

next generation of dental and orthopedic implants. Nevertheless, it has been reported that 

nanotubular films are prone to peeling off from the Ti substrate due to the poor interfacial 

adhesion. The knowledge on the interfacial properties of such interface, although not well 

explored, is crucial for understanding the mechanisms behind the poor adhesion problem of 

these films and to further achieve an easy and effective solution to solve it. 

This paper is focused on the bio-functionalization of TiO2 nanotubular films with zinc (Zn) 

as an antimicrobial and bone healing agent, together with two major constituents of the mineral 

phase of bone, namely calcium (Ca) and phosphorous (P). The main aim is, for the first time, the 

thorough characterization of the interface between TiO2 nanotubes and the Ti substrate, along 

with the better understanding of the bio-functionalization mechanisms of TiO2 nanotubes and 

their influence on the interfacial features of the films. 

TiO2 nanotubes were successfully synthesized by two-step anodization and their bio-

functionalization with Ca, P and Zn was achieved by reverse polarization and anodization 

treatments. The in-depth characterization of the morphological and chemical features of TiO2 

nanotubes was carried out along their length by scanning transmission electron microscopy 

(STEM) and energy dispersive X-ray spectroscopy (EDS), before and after bio-functionalization 

mailto:lrocha@fc.unesp.br
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treatments. STEM images showed that the interface between conventional TiO2 nanotubes and 

Ti is non-continuous due to the existence of a hollow space. However, STEM images of bio-

functionalized TiO2 nanotubes evidenced an interface with different features, due to the 

formation of an interfacial nano-thick oxide film as a consequence of anodization, with a 

thickness comprised between 230 – 250 nm.  

The results presented in this work may inspire the emergence of novel surface treatment 

strategies seeking the long-term performance of metallic-modified osseointegrated implants.  

 

Keywords: TiO2 nanotubes; Interface; Reverse polarization; Anodization; Osseointegrated 

implants. 

 

 

Dental implants require the use of materials that beyond fulfilling requirements such as 

mechanical, chemical and physical properties, must provide excellent biocompatibility and avoid 

foreign body responses [1, 2]. Along with the discovery of Ti implants, introduced by Brånemark 

in 1964, revealing the ability of titanium (Ti) to induce osseointegration, the exploration of this 

material for use in dentistry and orthopedic fields has undergone a global boom [1]. In fact, 

nowadays, Ti-based materials represent the most widely used in dental and orthopedic fields, 

owing to their good mechanical properties, excellent biocompatibility and high corrosion 

resistance, resulting from the spontaneous formation of a thin (of 3 – 10 nm in thickness) and 

stable titanium dioxide (TiO2) film on its surface  [1, 3, 4].  

In spite of the high success rate that Ti-based dental implant therapies have reached to 

replace tooth loss due to trauma or periodontal diseases, a significant number of failures have 

still been reported to be comprised between 1 – 20 % [3, 5, 6]. Dental implant failures are 

generally ascribed both to biological (e.g. bacterial infection and inadequate implant-to-bone 

contact) and biomechanical factors (e.g. occlusal overloading leading to fracture and/or damage 

of dental implant material) [5, 7]. Despite the good biocompatibility of Ti, insufficient osteogenic 

activity and the lack of antimicrobial properties are the main factors leading to delayed 

osseointegration and complicated bacterial infections, which may conduce to implant failures, 

essentially in patients with complex pathologies [4, 8-11]. Aiming to overcome the current bone-

loss and infection related complications, several studies have been devoted to functionalization 

of Ti implant surfaces by modifying their features regarding morphology, topography and 

chemistry [12-15] . 

Nanotechnology has emerged in the last years as an exciting and successful way to 

engineer Ti surfaces with nanoscale features for fast integration with  bone that is also 
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considered a nanostructured composite matrix [16-19]. Studies have shown that the decoration 

of Ti-based materials with TiO2 nanotubes through electrochemical anodization, is a simple and 

effective way to promote cellular functions, which may be ascribed to their unique 

morphological, physical and chemical properties [20-23]. The benefits of bio-functionalization 

of conventional TiO2 nanotubes have been demonstrated through in vitro and in vivo studies, as 

they have led to an enhancement on osteoblastic cell functions [24-28], ability to impair 

bacterial adhesion [29-32] or even both, simultaneously [33, 34]. Apart the outstanding 

properties that bio-functionalized TiO2 nanotubes have revealed for osseointegrated implants 

applications [35, 36], it has been reported that these films are prone to peeling off from the Ti 

substrate due to the poor interfacial adhesion between them [37]. This might have catastrophic 

consequences since, during and after implantation, osseointegrated implants are exposed to 

tribological and tribocorrosive conditions, which may induce to film degradation accompanied 

by the release of wear debris and corrosion products to implant surroundings, triggering harmful 

biological effects  and ending up in implant failure [38-45]. 

A few studies have been reported seeking to understand the poor adhesion of TiO2 

nanotubes to Ti substrate.  In accordance with Miraghaei et al. [46] TiO2 nanotubes detach easily 

from the substrate due to the dissolution of a fluoride-rich layer existing between the tubes and 

Ti. Moreover, a hydrogen-assisted crack mechanism induced by the existence of Ti-H and 

hydrogen blisters in the bottom layer of the nanotubes was proposed by Zhao et al. [47]. The 

beneficial effect of anodization of TiO2 nanotubes on their adhesion strength to Ti was reported 

by Yu et al. [37], which was ascribed to the formation of a compact layer near the nanotube 

bottom. However, the characteristics of Ti/TiO2 film interface before and after anodization, were 

not reported. The knowledge of the characteristics of Ti/TiO2 nanotubes interface is still very 

limited in literature, which is an issue of crucial importance to well-understand the poor 

adhesion problem of these films and to further achieve an effective solution to solve it.A new 

methodology for TiO2 nanotubes bio-functionalization trough reverse polarization and 

anodization processes was described by our group in a previous work [48]. Biocompatible 

calcium-phosphorous doped TiO2 nanotubes were synthesized displaying superior corrosion 

behavior than conventional nanotubes. The focus of the present contribution is on the bio-

functionalization of the calcium-phosphorous doped TiO2 nanotubes with zinc, through the 

previously reported methodology [48]. The main aim relies, for the first time, on the in-depth 

morphological and chemical characterization of the TiO2 nanotubes along their length, with 

special focus at the interface region, before and after bio-functionalization treatments. A first 
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insight on the bio-functionalization mechanisms of TiO2 nanotubes by reverse polarization and 

anodization processes is presented. 

 

 

4.2.1. Surface pre-treatment 

Commercially pure titanium (cp-Ti grade 2) (American Society for Testing of Materials – 

Grade 2) (MacMaster-carr, IL, USA) rods cut into discs of 15 mm diameter and 2 mm thickness 

were the substrates used in this study. A series of silicon carbide (SiC) sandpapers #240, #320, 

#400, #600 and #800 were used to ground cp-Ti surfaces followed by their polishing with 

alumina suspension untill achieve a mirror finishing. After polishing, the Ti samples were 

ultrasonically cleaned in ethanol (10 min) and distilled (DI) water (5 min), followed by drying at 

room temperature. 

 

4.2.2. Synthesis of TiO2 nanotubes by two-step anodization 

Titanium dioxide (TiO2) nanotubes were synthesized by two-step anodization of Ti in an 

optimized electrolyte constituted of ethylene glycol (EG), 0.3 wt. % ammonium fluoride  (NH4F) 

(VETEC, Xerém, Rio de Janeiro, Brazil) and 3 vol. % DI water. The electrolyte was continuously 

stirred (150 rpm) at room temperature (22 to 24 oC). The anodic treatments were conducted 

using a dc power supply (KEYSIGHT, N5751A) set at 60 V with a limiting current of 2.5 A.  

Firstly, Ti polished samples (anode) and a graphite rod (cathode) were immersed in the 

EG-based electrolyte separated at a fixed distance of around 2 cm, and a voltage of 60 V was 

applied for 1 h. The resulting nanotubes grown from Ti through this first anodization step, were 

intentionally removed by ultrasonication in isopropanol for 15 min followed by cleaning in DI 

water for 5 min. Secondly, the resulting nanopatterned Ti surfaces were anodized at the 

previous conditions for 30 min. The second anodization step resulted in the growth of self-

ordered TiO2 nanotube arrays, which were named as NT. Immediately after the second 

anodization step, NT samples were rinsed with DI water and dried at room temperature.  

 

4.2.3. Bio-functionalization of TiO2 nanotubes with calcium, phosphorous and zinc by reverse 

polarization and anodization 

The TiO2 nanotubular samples were bio-functionalized by reverse polarization and 

anodization processes, aiming the doping of nanotubes with calcium (Ca), phosphorous (P) and 

zinc (Zn) elements. Cathodic and anodic treatments were performed in an aqueous electrolyte 

constituted of calcium acetate (CaA) (Calcium acetate monohydrate, VETEC, Xerém, Rio de 

Janeiro, Brazil) and β-glycerolphosphate (β-GP) (β-glycerolphosphate disodium salt 
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pentahydrate, Sigma-Aldrich, St. Louis, MO, USA) as the source of Ca and P, respectively, and 

this electrolyte was named as Ca/P-based electrolyte. The concentrations of CaA and β-GP were 

established in accordance with the methodology described in a previous work [48]. Zinc acetate 

(Zinc acetate dihydrate, Sigma-Aldrich, St. Louis, MO, USA) at a concentration of 0.35 M was 

added to the previous Ca/P-based electrolyte aiming the additional incorporation of Zn in the 

nanotubular structure, and this solution was named as Ca/P/Zn-based electrolyte. 

The reverse polarization and anodization treatments were conducted using a dc power 

supply (KEYSIGHT, N5751A) set with a limiting current of 2.5 A. NT samples were reverse 

polarized at 20 V for 30 s in the Ca/P-based electrolyte, followed by anodization in the same 

electrolyte for 30 min at 100 V. These samples were named as NT-Ca/P. Additionally, NT samples 

were treated in the Ca/P/Zn-based electrolyte, at the previous reverse polarization and 

anodization conditions, and were named as NT-Ca/P/Zn. All the reverse polarization and 

anodization treatments were carried out under magnetic stirring at 200 rpm. 

 

4.2.4. Characterization of TiO2 nanotubular films 

TiO2 nanotubular samples before and after bio-functionalization treatments were 

mounted on a stub with double sided conductive carbon tape, and their morphology was 

analyzed by scanning electron microscopy (SEM) using a FEI Helios NanoLab 650. This instrument 

was equipped with a detector for energy dispersive X-ray spectroscopy (EDS). EDS spectra and 

elemental maps were acquired to evaluate the chemical composition of the nanotubular 

samples and the distribution of the elements.  

For a better understanding of the bio-functionalization mechanisms of TiO2 nanotubes, 

the morphological and chemical features of the nanotubes were evaluated along their length. 

For this purpose, thin cross-sections of the nanotubular films (around 100 nm thick) were 

obtained in a dual beam instrument equipped with focused ion beam (FIB) (TESCAN LYRA 3) 

operated with gallium (Ga) ion source. A thin gold (Au) layer was previously deposited to the 

film surface to improve the electrical conductivity. A platinum (Pt) layer of 1 µm was locally 

deposited in situ using a gas injection system and 1 nA Ga+ ion current accelerated at 30 keV. 

Initial etching was performed with 5 and 2 nA at 30 keV. The lamella was then transferred to a 

cupper (Cu) transmission electron microscopy (TEM) grid using a nanomanipulator and Pt 

deposition. Thinning was performed in 3 steps to obtain a lamella of ~ 100 nm: 1) 1 nA/30 keV; 

2) 0.1 nA/10 keV; 3) 10 pA/5 keV. A final step was accomplished with 3 keV to reduce the 

damaged layer produced during the thinning process.  
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FIB cross-sections were investigated by TEM and dark-field scanning transmission electron 

microscopy (STEM-DF) using a JEOL 2100F operating at an accelerating voltage of 200 kV. EDS 

spectra and elemental maps were obtained in the same instrument with an EDS detector (Noran 

Seven), in STEM mode. Selected area electron diffraction patterns were obtained to investigate 

the crystallinity of the anodic oxide films. 

 

 

4.3.1. Surface characterization 

Well-defined and well-organized TiO2 nanotube arrays were fabricated by two-step 

anodization in a fluoride (F-) containing electrolyte, whose surface morphology is depicted in Fig. 

4.1a. These samples are mainly composed of Carbon (C), Ti, Oxygen (O) and Fluorine (F) as 

observed in the correspondent EDS spectrum in Fig. 4.1b. As demonstrated by XPS studies 

carried out in a previous work [48], NT surfaces are composed of Ti and O mainly as TiO2.  

 TiO2 nanotubular samples were submitted to cathodic and anodic treatments aiming 

their functionalization with bioactive elements, namely calcium (Ca), phosphorous (P) and zinc 

(Zn). For this purpose, NT samples were reverse polarized in a Ca/P-based electrolyte and, 

immediately after, anodized in the same solution. The surface morphology of NT-Ca/P samples 

is shown in Fig. 4.1c, and the correspondent EDS spectrum shows the presence of Ca and P 

elements (Fig. 4.1d). To achieve the incorporation of Zn, together with Ca and P, NT samples 

were submitted to reverse polarization and anodization processes in a Ca/P/Zn-based 

electrolyte, and the morphology of the fabricated nanotubes is shown in Fig. 4.1e. The presence 

of Zn is confirmed by the EDS spectrum shown in Fig. 4.1f. No significant differences are 

observed on the nanotube surface morphology before and after bio-functionalization 

treatments.  

The EDS elemental maps in Fig. 4.2a show the homogeneous distribution of Ti, O and F 

along the surface of NT, NT-Ca/P and NT-Ca/P/Zn samples. The elemental maps of Ca and P 

extracted from NT-Ca/P samples are shown in Fig. 4.2b, while in Fig. 4.2c the elemental 

distribution of Ca, P and Zn on NT-Ca/P/Zn samples is depicted. 
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Fig. 4.1. SEM micrographs and EDS spectra showing the surface morphology and elemental composition of (a) and (b) 

NT; (c) and (d) NT-Ca/P; (e) and (f) NT-Ca/P/Zn samples.  

 

 

Fig. 4.2. (a) Elemental maps representative of Ti K, O K and F K extracted from NT, NT-Ca/P and NT-Ca/P/Zn samples. 

In (b) the elemental maps of Ca K and P K obtained from NT-Ca/P samples are depicted, while in (c) are presented the 

maps for Ca K, P K and Zn L elements acquired from NT-Ca/P/Zn samples. The elemental maps were obtained from 

the samples shown in Fig. 4.1.  

 

4.3.2. Cross-sectional characterization of nanotubular films 

Thin cross-sectional slices of the nanotubular films with approximately 100 nm thickness 

were obtained by FIB, then imaged by TEM and STEM and analyzed by EDS. The general overview 
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of TiO2 nanotubes produced by two-step anodization is depicted in Fig. 4.3a. From this TEM 

image the thickness of the film was measured as 6.1 ± 0.1 µm. In Fig. 4.3b a higher magnification 

STEM-DF image representative of the cross-sectional view of TiO2 nanotubes in the top region 

of the film is shown. The region from which the magnified image was taken is indicated by the 

inset square in Fig. 4.3a named as A1. From this image the wall and the hollow part of the 

nanotubes can be observed and, in general, the tubes are well aligned and present a uniform 

morphology. Furthermore, the insertion in this image shows the electron diffraction pattern 

composed of diffuse rings indicating an amorphous nature of TiO2 nanotubes for this region of 

the film. To study the elemental distribution along the nanotubular films thickness, STEM-EDS 

elemental maps of Ti, O and F were acquired in the upper part and at the interface region. As 

observed from elemental maps depicted in Fig. 4.3c - A1, representative of the upper part of 

TiO2 nanotubular films, it is observed that Ti, O and F are uniformly distributed along the 

nanotube thickness. Similar features are observed at the interface region shown in Fig. 4.3c - A2, 

where the distribution of these elements is also uniform. The interface between TiO2 nanotubes 

and Ti can be easily identified in the maps by the lower O and F color intensity in the area related 

to Ti substrate and, on the contrary, by the higher intensity of the color for Ti in this region. 

 

Fig. 4.3. TEM and STEM-DF images of the FIB cross-section of TiO2 nanotubular film synthesized by two-step 

anodization: (a) general overview of the film; (b) upper region of the film. The inset in (b) shows the electron 

diffraction pattern obtained for TiO2 film. In (c) are shown the STEM-EDS elemental maps of Ti K, O K and F K obtained 

from two different regions in the TiO2 nanotubular film shown in (a): A1 – the upper region of the film; A2 – the region 

at the Ti/film interface. 
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The morphological and chemical features of TiO2 nanotubes were also investigated after 

bio-functionalization treatments with Ca and P. The TEM image representative of the FIB cross- 

section of NT-Ca/P film is shown in Fig. 4.4a. The nanotube length, i.e the thickness of the film, 

was measured as 4.8 ± 0.1 µm. The upper part of the film was imaged at higher magnification as 

shown in Fig. 4.4b, in which well-aligned single nanotubes are clearly observed. The STEM-EDS 

spectrum obtained from the region indicated by the inset red square A in Fig. 4.4b, is shown in 

Fig. 4.4c. From this spectrum it is observed that C, Ti, O, F and Ca were detected in the superficial 

region of the film (until approximately 1 µm depth). Additional chemical elements such as Cu, 

Ga, Silicon (Si), Au and Pt were also detected in the uppermost regions of NT-Ca/P (Fig. 4.4c) 

film. The presence of Cu is related to the Cu grid used for TEM and STEM analyses, while the Ga 

is related to the Ga primary ion beam used by FIB system. Additionally, the detection of a small 

signal of Si is probably related with the internal fluorescence peak from Si dead layer of Si-Li 

detector [49]. Finally, the presence of Au and Pt are related to the Au surface coating performed 

before sample preparation by FIB, and to the Pt protection against Ga ions during polishing.  The 

inset spectrum in Fig. 4.4c, with energy values comprised between 2 – 5 keV, intends to show in 

more detail the peak of Ca. In this spectrum, the escape peak for Ti K (Ti K - Si K = 2.77 keV) is 

also observed. After bio-functionalization processes in the Ca/P/Zn-based electrolyte, 

nanotubular films with a length of 4.6 ± 0.1 µm were produced, as shown in Fig. 4.5a. The STEM-

DF image of the uppermost region of NT-Ca/P/Zn film is shown in Fig. 4.5b, from which well-

ordered and single nanotubes are observed. Bright dots are Pt and Au particles that penetrated 

the TiO2 nanotubes during samples preparation for FIB sectioning. The STEM-EDS spectrum 

acquired from the area highlighted by the inset red square in Fig. 4.5b is depicted in Fig. 4.5c. 

From this spectrum, elements such as C, Ti, O and F were identified, including Ca and Zn as 

shown by the more detailed spectrum added in the figure, with energy values comprised 

between 3 – 10 keV. Once again the presence of elements such as Cu, Ga, Si, Au and Pt were 

detected, whose source was previously explained in the above description of Fig. 4.4c. In this 

case, a more intense peak for Si was detected that is also probably related with the silicon 

carbide sandpapers used for polishing of Ti samples. Additionally, Chromium (Cr), Iron (Fe) and 

Cobalt (Co) were also present in the upper part of these films, which are most likely related to 

contamination from the metallic alligator clip used as the electrical conductive holder of Ti 

samples during anodization processes. It is noteworthy to highlight that additional contributions 

were found for both films at the elemental energy of P, which are related to Pt and Au. 

Therefore, it is not possible to accurately identify this element in both spectra (Fig. 4.4c and Fig. 

4.5c). However, from the EDS surface spectra obtained from NT-Ca/P (Fig. 4.1d) and NT-Ca/P/Zn 
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(Fig. 4.1f) samples (prepared without Au and Pt), it is expected that P compounds are present in 

this region of the films. 

 For a better understanding on the elemental distribution along the length of the 

nanotubes in the top region of the films, STEM-EDS spectra were acquired from different regions 

along the STEM images depicted in Fig. 4.4b and Fig. 4.5b (results not shown). From these results 

the elements were found uniformly distributed along the nanotube length, and no gradient on 

their atomic concentration was observed. Similar results were found for STEM-EDS analysis 

carried out in the central part of the bio-functionalized nanotubular films (results not shown).  

 

Fig. 4.4. TEM and STEM-DF images of the FIB cross-section of NT-Ca/P film: (a) TEM image showing a general overview 

of the film; (b) upper region of the film. In (c) the STEM-EDS spectrum obtained from the area correspondent to the 

inset red square A in (b) is shown. The inset spectrum in (c), with energy values comprised between 2 – 5 keV, intends 

to show in more detail the detected peak for Ca K.  

 

 

One of the most important issues to take into consideration when a new film is being 

developed, is related to the characteristics of the interface between the film and the substrate, 

which strongly dictates the adhesion strength of the film and consequently its interfacial 

properties. Aiming to study the interfacial features of TiO2 nanotubular films, before and after 

bio-functionalization processes, STEM-DF images were taken at the interface regions. The lower 

and higher magnification STEM-DF images at the interface of TiO2 nanotubular films are shown 

in Fig. 4.6. The region of Ti substrate is easily identified as the brighter area contrasting with the 
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darker region related to TiO2 nanotubes, as indicated in the image. A non-continuous interface 

is observed between TiO2 nanotubes and the Ti substrate, as shown by the darker region 

appearing between TiO2 nanotubes and Ti. This discontinuous interface characterized by a 

hollow space is indicated by the inset white arrow in Fig. 4.6b, and is maintained along the 

extension of the film with a thickness at a nanoscale range (35 ± 4.3 nm). 

 

Fig. 4.5. TEM and STEM-DF images of the FIB cross-section of NT-Ca/P/Zn film: (a) general overview of the film; (b) 

upper region of the film. In (c) the STEM-EDS spectrum obtained from the area correspondent to the inset red square 

A in (b) is depicted. The inset EDS spectrum in (c), with energy values comprised between 3 – 10 keV, intends to show 

in more detail the detected peaks for Ca K and Zn K elements.  

 

 

After bio-functionalization treatments, remarkable changes were observed at the 

interface, as the continuous hollow space was not observed anymore, although some defects 

were still present. The interface regions of NT-Ca/P and NT-Ca/P/Zn films are shown in Fig. 4.7a 

and b, respectively, with both films presenting an interface with similar morphological features. 

From higher magnification STEM-DF images shown in Fig. 4.7c and d, it is observed a porous 

interface characterized by the presence of an oxide film between, bellow and above the pores, 

suggesting the growth of an oxide film during the functionalization treatments. A second 

interface was found in these films, as observed from the line appearing along the films length, 

which is indicated with the inset white arrows in the figures. This second interface supports the 

hypothesis of a voltage-assisted oxide film formation, with thickness values comprised between 
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230 – 250 nm for both nanotubular films. NT-Ca/P and NT-Ca/P/Zn films are overall amorphous, 

as confirmed from electron diffraction patterns obtained from the lower, middle and upper 

regions of the films, characterized by broad and diffuse rings in every case (results not shown). 

For a better knowledge of the differences observed at the interface region before and 

after bio-functionalization treatments, the current vs. time curves were recorded during all the 

anodization processes (Fig. 4.8). The current vs. time evolution recorded during the second step 

of anodization for TiO2 nanotube formation is shown in Fig. 4.8a. This is a typical curve showing 

the three main stages of current achieved during anodization of Ti for nanotube formation [50]. 

Firstly, there is a decrease in the current values from 60 mA until approximately 15 mA. 

Afterwards, a slightly increase in the current is observed until 20 mA followed by a period of 

stabilization until the end of the anodization process. The current evolution achieved during bio-

functionalization of NT samples in the Ca/P-based electrolyte is observed in Fig. 4.8b. In this 

curve it is shown the initial period of reverse polarization applied for 30 s, in which the current 

values were kept approximately at 750 mA. In the inset graph in Fig. 4.8b it is observed the 

evolution of the current during the anodization step carried out at 100 V for 30 min. As observed, 

as soon as a voltage of 100 V is applied, the current reaches the limiting value of 2.5 A for a few 

milliseconds, followed by a sudden decrease until approximately 0 A, a value that was kept 

constant until the end of the anodization period. The current vs. time evolution recorded during 

the synthesis of NT-Ca/P/Zn samples, is shown in Fig. 4.8c. In this case, during anodization, the 

current was kept at 2.5 A for a longer period (a few seconds), before it reaches values close to 0 

A. 

 
Fig. 4.6. STEM-DF images of the FIB cross-section of TiO2 nanotubular films in the interface region at (a) lower and (b) 

higher magnifications. 
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Fig. 4.7. STEM-DF images of the FIB cross-sections of (a) NT-Ca/P and (b) NT-Ca/P/Zn films in the interface region. 

Higher magnification images are shown in (c) and (d) for the region highlighted by inset red squares in (a) and (b), 

respectively. The white arrows show the interface between the nano-thick oxide films (grown during bio-

functionalization processes) and TiO2 nanotubes. 

 

Fig. 4.8. (a) Current vs. time evolution during the second anodization step of nanotextured Ti for TiO2 nanotube 

synthesis. The current evolutions during reverse polarization (at 20 V for 30 s) and anodization (at 100 V for 30 min) 

are shown for treatments carried out in the (b) Ca/P and (c) Ca/P/Zn-based electrolytes. The inset graphs in (b) and 

(c) intend to show in more detail the current evolution during the initial stage of anodization processes.  
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The chemical features of the interface of bio-functionalized films were studied aiming a 

better comprehension of the relation between the current vs. time evolution recorded during 

anodization, with their characteristics. For this purpose, line profile STEM-EDS analyses were 

carried out at the interface of NT-Ca/P films (Fig. 4.9a). The spectrum in Fig. 4.9b was extracted 

from the inset white square A in Fig. 4.9a and it shows the presence of Ca and P, jointly with 

other elements such as Ti, O, F, Ga and Si. The EDS spectra acquired from line scan analyses 

performed in three different spots at the interface of NT-Ca/P films is shown in Fig. 4.9c. These 

analyses were carried out along the uppermost part of the nano-thick film formed by 

anodization, as indicated by a, b and c white spots inserted in Fig. 4.9a. As it is observed, Ti, O 

and F were found along this line, however, there is a peak of Ca, only detected in point b, 

suggesting the entrapment of Ca at that site and its non-uniform distribution along the 

delimiting interface line. To check the Ca distribution outside and inside this interface, additional 

EDS analyses were carried along the points 1, 2 and 3 (shown in Fig. 4.9a), whose spectra are 

shown in Fig. 4.9d. The expected elements were found, namely Ti, O and F. Interestingly, the 

peak for Ca was also found only in point 2, evidencing the entrapment of this element at that 

place. Finally, the chemical features of the interface of NT-Ca/P/Zn films (Fig. 4.10a) were 

investigated. The general spectrum acquired from the area delimited by the inset white square 

in Fig. 4.10a is shown in Fig. 4.10b. The presence of the elements, such as Ti, O, F, Si, P, Ca and 

Zn was detected. Line scan EDS analyses were carried out at 7 specific points across the nano-

thick oxide film formed by anodization (shown in Fig. 4.10a), and the correspondent acquired 

spectra are shown in Fig. 4.10c. The EDS analysis for each point, shows clearly the presence of P 

and Zn elements non-uniformly distributed across the interface. The presence of P appeared 

more pronounced in the intermediate zone of the film, as shown by the peaks of P found in the 

spots numbered from 2 – 6. Moreover, the presence of Zn was found more prominent in the 

spots 3 and 5. It is noteworthy to highlight that in some of the presented spectra part of the 

elemental peaks are not being depicted in full, once a more detailed view of the less counted 

peaks is aimed. 
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Fig. 4.9. STEM-EDS analyses in the interface region of NT-Ca/P film: (a) STEM-DF image showing the NT-Ca/P film 

interface, with the white insets indicating where the elemental analyses were performed; (b) EDS spectrum obtained 

from the region comprised in the inset red square A in (a); (c) Line scan EDS analyses along the uppermost part of the 

nano-thick oxide film formed by anodization, as indicated by a, b and c white spots inserted in (a); (d) Line scan EDS 

analyses across the uppermost part of the nano-thick oxide film, as indicated by the inset white number 1, 2 and 3 in 

(a).   

  

 

Fig. 4.10. STEM-EDS analyses in the interface region of NT-Ca/P/Zn film: (a) STEM-DF image showing the NT-Ca/P/Zn 

film interface, with the white insets indicating where the elemental analyses were performed; (b) EDS spectrum 

obtained from the region comprised by the inset white square A in (a); (c) Line scan EDS analyses along the nano-thick 

oxide film formed by anodization, as indicated the white spots numbered in (a) from 1 – 7. 
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4.4.1. Morphological and chemical features of bio-functionalized TiO2 nanotubes 

Anodization has been extensively employed for formation of TiO2 nanotubes [18, 19, 23, 

28, 32, 35, 36, 51] and particularly, multi-step anodization of Ti in a fluoride-containing 

electrolyte has been investigated [52, 53] as it is known to improve the self-ordering of TiO2 

nanotubes [50]. To achieve the desired bone-inspired surface morphology observed in Fig. 4.1a, 

TiO2 nanotubes were synthesized by anodization of a nano-patterned Ti surface with the 

nanotube bottom hemispherical morphology. These nano-imprints with nanotube bottom 

shape, resulted from a first anodization step of a Ti smooth surface, in which TiO2 nanotubes 

were grown drilling their rounded bottom into the metallic substrate and afterwards, 

intentionally removed [50]. During anodization of nano-patterned Ti surfaces, it is believed that 

nanotubes growth is based on electric field assisted oxidation and dissolution processes, which 

rely on the formation of a passive Ti oxide film through the recombination of Ti4+, O2- and OH- 

ions and the local chemical dissolution of the growing oxide by F- ions, with the nano-imprinted 

dimples acting as nucleation sites for the initial pore formation [50, 54]. In this study, almost 

ideally hexagonally arranged nanotube arrays were grown with high self-ordering level, as 

demonstrated in a previous work from SEM imaging of nanotube hemispherical bottom 

morphology [48]. In accordance with the equifield strength model, a closed packed pore array 

with hemispherical bottom, tends to be formed to achieve a uniform field distribution at the 

pore base, and the formation of a hexagonal pore array is achieved once the self-adjustment of 

the pore-pore distance is reached. It is believed that the self-adjustment of the morphology of 

TiO2 nanotube arrays is achieved through plastic deformation of the oxide layer to achieve a 

uniform field distribution [54]. This information supports that during the first and second 

anodization steps carried out for nanotube formation, a uniform field distribution was achieved 

at the bottom of each tube and that nanotube growth was based on field assisted oxidation and 

dissolution processes.  

The synthesis of highly-ordered TiO2 nanotube arrays presenting a bone-inspired nano-

morphology was achieved. From Fig. 4.1a it is observed that this morphology is characterized by 

the presence of bigger and smaller pores and in some cases the formation of multiple pores 

inside a bigger pore is observed. This event is probably related with the nanotube formation 

mechanisms. Macak et al. [55] studied the growth phases of TiO2 nanotubes by observation of 

the top surface and the cross-section of anodized Ti in an organic electrolyte containing fluoride 

ions. In the very first stage of the electrochemical process, the authors observed that a thin and 

non-porous layer was formed where localized accelerated dissolution occurred under the action 

of the electric field. In general, in the beginning of the anodization process some pits are 
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generated due to the non-homogenous dissolution rate or local dielectric breakdown at the 

oxide surface, acting as the starting points of pore formation [54]. From two-step anodization, 

it is expected that the nano-imprints generated from the first anodizing step act as nucleation 

sites for initial pore formation and thus, behave as an intentionally designed template to trigger 

localized dissolution and obtain the desired final morphology. The formation of multiple pores 

inside a main one is probably related with the events taking place in the beginning of the second 

anodization step. Possibly, the primary localized dissolution occurred in multiple sites inside the 

same nano-dimple, resulted from the first anodization step. Macak et al. [55] observed that pore 

nucleation events become apparent over the entire surface after 1 – 3 min of anodization, 

presenting a random appearance, which is maintained after 10 min of anodization [55]. Thus, it 

is expected that the surface morphology resulting from the primary localized dissolution is 

preserved over time, since during anodization, pronounced dissolution takes place at the 

bottom of the pores, where the electric filed is stronger, making them significantly deeper over 

time [54, 55]. The illustration of the different growth stages of TiO2 nanotubes from nano-

patterned Ti substrates is schematically shown in Fig. 4.11. 

 

 
Fig. 4.11. Illustration of the different growth stages of TiO2 nanotubes from nano-patterned Ti substrates. In (a) it is 

depicted the first stage during which the local chemical dissolution of the growing anodic oxide film by F- ions takes 

place, with the nano-imprinted dimples acting as single or multiple nucleation sites; in (b) is shown a second stage in 

which the pronounced dissolution takes place at the bottom of the pores, where the electric filed is stronger; finally 

in (c) is depicted a later stage achieved after a long period of anodization (i.e. 30 min), after which the initial structure 

remains in the top region of the film while ordered tubes are underneath.  

 

The bone-inspired TiO2 nanotubes were doped with Ca and P, whose morphology and 

composition are shown in Fig. 4.1c and d, respectively. TiO2 nanotubes were bio-functionalized 

using a novel methodology recently reported [48]. From previous results, biocompatible Ca/P-

doped nanotube surfaces were synthesized by reverse polarization and anodization processes 

in a Ca/P-based electrolyte. Reverse polarization appeared as a very promising way to improve 

the surface biocompatibility by modifying the chemistry of the nanotubes without 
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compromising their morphological features. Ca and P were previously assigned to the presence 

of Ca3(PO4)2/CaHPO4, CaF2, CaCO3 and CaO species [48]. Beyond the lack of osseointegrative 

properties, Ti-based implants are also related to complicated bacterial infection due to the lack 

of antimicrobial properties, and so, the design of new implant surfaces with antimicrobial 

features is also urgently required. Recently, nano-featured surface topographies have been 

widely investigated as an attractive tool for reducing infection by preventing microbial adhesion 

at the time of implantation [56, 57]. Moreover, the surface chemistry also plays a significant role 

on bacteria adhesion. As demonstrated by Hu et al. [58] the inclusion of Zn in TiO2 coatings by 

anodization improved the osteogenic differentiation of bone marrow stem cells and 

simultaneously, provided antibacterial activity. Therefore, the possibility of Zn incorporation on 

TiO2 nanotubular structures has stimulated our interest. It was hypothesized that by changing 

the chemical composition of the anodization electrolyte, it would be possible to change the 

surface chemistry of the nanotubes, and the incorporation of Zn, without changing their 

morphology. To achieve this goal, zinc acetate was added to the anodization electrolyte. The 

presence of Zn was successfully achieved by anodization of TiO2 nanotubes in the Ca/P/Zn-based 

electrolyte (Fig. 4.1f), with no differences observed on the acquired morphology (Fig. 4.1e). In 

general, the bioactive elements (i.e. Ca, P and Zn) are uniformly distributed along the TiO2 

nanotubular samples, as observed in EDS elemental maps shown in Fig. 4.2b and c. From O and 

F EDS elemental maps (Fig. 4.2a), the hollow cavity of the nanotubes is observed indicating the 

high self-alignment of these structures, perpendicularly oriented relatively to the Ti substrate. 

TiO2 nanotubes were grown perpendicularly oriented to the Ti substrate (Fig. 4.3a) with 

high self-ordering level, as observed through single nanotubes depicted in the STEM-DF image 

of the upper part of the film (Fig. 4.3b). EDS elemental maps taken in the upper part and at the 

interface region of the film show the presence of Ti, O and F along the nanotubes length (Fig. 

4.3c). The morphological and chemical features of the films are related to the nanotube growing 

mechanisms, which are based on the establishment of an equilibrium between the oxide film 

formation at the Ti interface and the local chemical dissolution of the oxide by F-  ions. It has 

been generally accepted that a layer enriched with fluoride is formed at the oxide/metal 

interface during anodization. This layer can be ascribed to the twice fast migration rate of F- 

compared to O2- ions, resulting in a fluoride rich layer which has a thickness of a few tens of 

nanometers [37, 59]. The existence of this fluoride rich layer was already proved by XPS sputter 

profiles taken from the tube bottom side of the tubes [60]. Berger et al. [50] proved for the first 

time that TiO2 nanotubes grown in fluoride-based ethylene glycol electrolytes form a fluoride 

rich layer (few nm thick) between the individual nanotubes, and this might be the reason for the 

detection of fluoride species all over the nanotubular layer through EDS analysis.  
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After bio-functionalization of TiO2 nanotubes in both electrolytes the high level of 

ordering and integrity of the tubes is maintained along their length. Single nanotubes are clearly 

seen without any aggregates along the tube walls, they are organized in parallel to each other 

and perpendicularly oriented to Ti substrate from which they were grown (Fig. 4.4 and Fig. 4.5). 

From the EDS spectra in Fig. 4c and Fig. 4.5c it can be observed that Ti and O were detected, 

related with the presence of Ti oxide composing the nanotubes. The presence of F detected in 

both spectra indicates that bio-functionalization processes have not influenced the composition 

of the nanotubes regarding its F content. Beyond other techniques have been used to modify 

the chemical properties of Ti [61-64], reverse polarization has been revealed as a versatile 

approach to develop bio-functional implant surfaces for biomedical applications. Chen et al. [63] 

also used reverse polarization to introduce nanoscale calcium phosphate on TiO2 nanotubes. 

The electrochemical deposition treatments were conducted in an electrolyte containing 

Ca(NO3)2 and NH4H2PO4. The results indicate that β-tricalcium phosphate was formed and 

deposited in TiO2 nanotube surface, inducing to an enhanced bioactivity, protein adsorption and 

osteogenic cell responses, by improving cellular adhesion, proliferation and differentiation. 

 

4.4.2. Characterization of Ti/TiO2 nanotubes interface 

The bond strength between a film or a coating layer with the metallic substrate is a critical 

factor that influences the biomechanical stability of the implant, which is a requirement for long 

term implant success [38]. The adhesion strength between TiO2 nanotubes and Ti substrate is 

influenced by the characteristics of the interface thus compromising many of their exciting 

properties and consequently, their potential use for biomedical applications. Beyond the wide 

range of studies reported in literature showing the promising features of these nanostructures 

for the design of new implant systems, little knowledge still exists on the adhesion properties of 

nanotubular films to the Ti substrate, and thus the ability of these structures to ensure an 

appropriate long term biomechanical stability.  For this reason, the interfacial features of the 

TiO2 nanotubular films produced by two-step anodization of Ti were investigated. After the 

second anodization step for TiO2 nanotube synthesis, the presence of a non-continuous 

interface was found between the nanotubular film and the Ti substrate, as shown in Fig. 4.6. 

This interface is characterized by a hollow space that is extended over the width of the film. 

Although general adhesion of TiO2 barrier layer formed by anodization of Ti is reported to be 

good [46, 50], a few studies have shown that TiO2 nanotubes are susceptible to peeling off from 

the underlying substrate, while rinsing with water or drying, because of the poor adhesion 

strength of TiO2 nanotubes to Ti [37, 46]. 
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Aiming to understand the mechanisms underlying the TiO2 nanotube film detachment, 

researchers have recently made interesting findings. Different mechanisms have been proposed 

for nanotube detachment, namely the water assisted dissolution of the fluoride-rich layer 

existing beneath the nanotubes [37, 46]. In accordance with Miraghaei et al. [46] TiO2 nanotubes 

are detached from the substrate after immersion in aqueous solutions due to dissolution of TiF4 

layer existing between the tubes and Ti. Furthermore a hydrogen-assisted crack mechanism 

induced by the existence of Ti-H and hydrogen blisters in the bottom layer of the nanotubes was 

also reported by Zhao et al. [47], which may directly influence the interfacial adhesion between 

the nanotubes and the Ti substrate. Based on this knowledge, the existence of a hollow non-

continuous interface after anodization of Ti, might be related to water assisted dissolution of a 

fluoride-rich layer formed underneath the nanotubes. The hollow space existing between Ti 

substrate and TiO2 nanotubes bottom is of a few tens of nanometers (Fig. 4.6b), similar to the 

thickness reported for the fluoride-rich layer [59]. Notwithstanding, the existence of this non-

continuous interface might be also related to the hydrogen assisted crack mechanism reported 

by Zhao et al. [47], since TiO2 nanotubes were washed with distilled water after fabrication. 

Researchers have recently made some efforts to improve the adhesion between TiO2 

nanotubes and Ti substrate. Zhao et al. [47] reported a novel method to control the detachment 

of TiO2 nanotubes by their post-treatment in protic and aprotic solvents with different polarities. 

In accordance with the authors, the post-treatment using an organic solvent of lower polarity 

increases the adhesion of the tube layer, in contrast to the spontaneous detachment of the TiO2 

nanotube layer after treatment using a solvent of higher polarity. The beneficial effect of 

anodization of TiO2 nanotubes on their electrochemical and photoelectrochemical responses 

was reported by Miraghaei et al. [46] due to the formation of a new barrier layer beneath them. 

Furthermore, Yu et al. [37] also employed an additional anodization step of TiO2 nanotubes in a 

fluoride-free electrolyte resulting in the formation of a 200 nm thick compact layer near the 

nanotube bottom, which led to more than threefold increase in the adhesion strength. Recently, 

annealing was also a method used by Roguska et al. [65] to stabilize the interfacial region 

between Ti substrate and TiO2 nanotubes. The authors reported that after annealing at 450oC 

and 650oC there was an increase in the thickness of the crystalline interphase region from a few 

up to hundred nanometers. However, no information is given about the morphology of the 

interface before thermal treatments. Thus, beyond the previous reports on TiO2 nanotube film 

anodization have shown the formation of a nano-thick compact layer in the bottom part of the 

tubes with potential to improve their adhesion strength to the substrate, the morphological and 

chemical characterization of the newly formed film as well as of the new Ti/TiO2 interface 

generated is still missing in literature. These characterization studies are of upmost relevance 
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since this knowledge allows the better comprehension of the adhesion phenomenon (before 

and after functionalization) and thus provide new insights for further improvements.  Interfacial 

features, at a nanoscale level, may influence the performance of TiO2 nanotubes such as 

electrochemical, tribo-electrochemical and mechanical, and so dictate the widespread 

biomedical applications of these nanostructures.  

 

4.4.3. Understanding the bio-functionalization mechanisms of TiO2 nanotubes by reverse 

polarization and anodization 

The bio-functionalization of TiO2 nanotubes was achieved by reverse polarization and 

anodization processes, a methodology that was previously shown to induce the formation of 

biocompatible and corrosion resistant Ca/P-doped TiO2 nanotubular films [48]. The Ti/TiO2 

interface of bio-functionalized films was characterized aiming to understand the influence of 

reverse polarization and anodization on their features.  

After bio-functionalization of TiO2 nanotubes it is observed an interface that is not empty 

anymore, as a consequence of the formation of a nano-thick oxide film at the interface region 

of NT-Ca/P and NT-Ca/P/Zn films, which presents a nanoporous morphology (Fig. 4.7). To explain 

this observation current vs. time evolution recorded during bio-functionalization processes in 

the Ca/P and Ca/P/Zn-based electrolytes were considered (Fig. 4.8b and c). During anodization 

processes, three main stages can be identified. Firstly, once 100 V is applied, there is an increase 

in current values to its limiting value of 2.5 A (first stage), followed by a period during which the 

current drops very quickly to values near to 0 A (second stage), a stage that is kept constant until 

the end of the anodization process (third stage). This is the typical current vs. time evolution 

characteristic of the growth behavior of a compact oxide film on Ti by anodization in a fluoride 

free electrolyte [50].  A similar behavior was reported by Fernando et al. [66] during anodic 

oxidation of Ti in an electrolyte with composition similar to the one used in this study. The 

authors explained that the first stage of the graph (with limiting current of 2.5 A), is related to 

the time during which a high current contributes to the fast growth of the oxide film. As the 

oxide becomes thicker, its resistivity increases resulting in the decrease of the current to lower 

values, most likely due to the high resistivity of the newly oxide film formed that is kept constant 

with time. This behavior observed in Fig. 4.8b and c explains the nano-thick oxide film formation 

observed in Fig. 4.7, independently of the electrolyte composition. A longer duration for the first 

stage was achieved for anodization in the Ca/P/Zn electrolyte, probably related with its higher 

conductivity (Fig. 4.8c). Fernando et al. [66] reported that as higher this period, higher the total 

charge in the system is. The authors pointed out that theoretically, this would influence the total 
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amount of oxide grown during the process, with effects on the measured thickness and 

compactness of the film. Nonetheless, no significant differences were found in the thickness of 

the newly formed interfacial films, as in both cases, thickness ranges between 230 – 250 nm.  

The study of the chemical composition of the nano-thick films formed by anodization 

showed that these are composed of O and Ti, including in the inter pore-areas, evidencing the 

growth of a Ti oxide (Fig. 4.7 c and d). Furthermore, the lighter contrast at the nano-thick oxide 

film region observed in STEM-DF images (Fig. 4.7), evidences the presence of a film with a higher 

density compared to the one in a darker area. The existence of the bioactive elements (i.e. Ca, 

P and Zn) at the interface region (Fig. 4.9 and Fig. 4.10) shows that the electrolyte penetrated 

along the film length during reverse polarization and anodization processes. Line scan EDS 

analyses along and across the uppermost region of the nano-thick film formed in NT-Ca/P 

interface (Fig. 4.9a), shows that Ca was not homogeneously distributed along the film (Fig. 4.9c) 

and interestingly, appeared to be entrapped on it (Fig. 4.9d). Ca entrapment at the interface is 

an additional indicator that the oxide film was formed during bio-functionalization processes. 

Line scan EDS analysis along NT-Ca/P/Zn interface evidenced a non-uniform distribution of Zn 

and P across the nano-thick oxide film formed. Beyond Ca has been detected in this interface 

(Fig. 4.10b), its presence was not identified along the line scan analyses, and this might be 

related with its non-uniform distribution along the film length, as discussed previously. 

During reverse polarization, it is believed that positively charged ions in solution, namely 

Ca2+ and Zn2+ ions, are directed towards TiO2 nanotube surface and penetrate the nanotubes 

towards its bottom part, as schematically illustrated in Fig. 4.12a. It is believed that during this 

stage, part of the Ca2+ and Zn2+ ions are adsorbed to TiO2, and possibly Ca2+ ions react with F- 

ions. In is noteworthy that F- ions are present on TiO2 nanotube wall as a result of the nanotube 

synthesis process. As soon as the anodization process starts, it is expected that an inversion in 

the electrode polarity leads to an inversion on the ions movement: those positively charged still 

remaining in solution, such as Ca2+ and Zn2+, tend to move away the bottom part of the film and, 

on the other hand, negatively charged ions such as phosphate (PO4
3-) and oxygen (O2-), are 

directed towards the interface as illustrated in Fig. 4.12b. Simultaneously, it is expected that Ti4+ 

ions are generated at Ti surface, as a consequence of the anodic voltage applied. These ions, 

under the action of the electric filed, migrate through the hollow interface  and the bottom part 

of the tubes reacting with O2- ions moving in opposite direction  (provided by H2O or OH- in the 

electrolyte), leading to the formation of the Ti oxide film [50]. A possible mechanism for Ca 

entrapment at the interface region can be ascribed to the growing of the oxide film during 

anodization and the simultaneous movement of positively charged Ca2+ ions in direction to the 

uppermost part of the nanotubes.  
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Fig. 4.12. Schematic illustration of the bio-functionalization mechanisms of TiO2 nanotubes by (a) reverse polarization 

followed by (b) anodization. During anodization, Ti4+ ions are generated as a consequence of the polarization of Ti 

and they migrate across the hollow interface and the bottom part of the tubes reacting with O2- ions, leading to the 

formation of a Ti oxide film with thickness comprised between 230 – 250 nm.  

 

In a previous work [48], TiO2 nanotubes displayed a significantly lower passive current in 

artificial saliva after bio-functionalization treatments, independently of reverse polarization 

step. From the findings achieved in this investigation, the formation of a nano-thick oxide film 

as a consequence of anodization might be the reason for the significant improvement on the 

electrochemical behavior of nanotubular films. These results indicate that the nano-thick oxide 

film display the ability to protect the Ti substrate against corrosion, thus guaranteeing good 

prospects for their application for osseointegrated implants. 

The formation of an oxide film as a consequence of anodization in an aqueous electrolyte 

might influence the adhesion of the film to Ti substrate. This is an issue of main importance and 

therefore further adhesion tests should be conducted. Furthermore, the investigation of the 

mechanical properties of the bio-functionalized TiO2 nanotubes would be also of valuable 

interest. The mechanical properties of the films dictate their ability to withstand to mechanical 

stress, and thus to resist to degradation. The investigation of the degradation behavior of TiO2 

nanotubular samples before and after bio-functionalization, should be addressed under the 

simultaneous action of wear and corrosion (tribocorrosion), aiming to simulate the harsh and 

real conditions that osseointegrated implants are submitted to. Lastly, but not the least, a 

deepest investigation on the biological responses to these bio-functionalized TiO2 nanotubes is 
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of upmost importance. More specific biological assays must be accomplished to ensure that the 

surface features of these structures do not compromise the cellular functions. 

 

 

Bioactive elements of Zn, Ca, and P were successfully incorporated in TiO2 nanotubular 

structures through reverse polarization and anodization processes. Cross-sectioned bio-

functionalized nanotubular films were characterized regarding morphology and chemistry with 

a special focus given to Ti/TiO2 nanotubes interface. Hereafter the main outcomes of this 

research are highlighted: 

- The incorporation of Ca, P and Zn elements in TiO2 nanotubes was successfully 

achieved by reverse polarization and anodization processes, with the bioactive elements 

uniformly distributed along the topmost regions of the films as well along their length. 

- Bio-functionalization treatments do not compromise the bone-inspired morphology of 

TiO2 nanotubes, neither their high self-ordering and integrity.  

- The anodization of TiO2 nanotubes in aqueous electrolytes induces the growth of a 

nano-thick protective oxide film (230 – 250 nm) at the Ti/TiO2 nanotube interface region, which 

appears to improve the interfacial features, suggesting a better adhesion property. This 

interfacial nano-thick oxide film is constituted by Ca, P and Zn, however, these elements 

appeared to be non-uniformly distributed across the film length, with Ca found to be entrapped 

on its superficial region. 

Reverse polarization arises as a fundamental step to confer biocompatibility to TiO2 

nanotubes while anodization promotes the growth of a nano-thick oxide film at the Ti/TiO2 

interface, providing an improved corrosion behavior to TiO2 nanotubes. This highlights the 

potential of the nano-thick film to improve the bonding strength of the nanotubular film to Ti, a 

critical factor determining the biomechanical stability of an implant, and so its long term success. 

This work brings up a first insight on the bio-functionalization mechanisms of TiO2 nanotubular 

films by reverse polarization and anodization processes. This novel methodology may inspire the 

emergence of novel surface treatment strategies seeking the long-term performance of 

metallic-modified implants. 
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The lack of osseointegration and implant-related infections are two major complications 

leading to failure of dental and orthopedic implants. Therefore, the development of effective 

titanium (Ti) implant surfaces able to display enhanced osteogenic activity and antimicrobial 

properties is a challenge, and such multifunctional surfaces have only recently been studied. In 

particular, titanium dioxide (TiO2) nanotubes (NTs) have demonstrated promising features to 

modulate biological responses, as they may be easily tailored to achieve multiple functions. This 

work aims to functionalize TiO2 NTs through a novel methodology, and to study their ability to 

induce osseointegration, and concomitantly, to avoid infection.  

TiO2 NTs were bio-functionalized with bone-constituting calcium (Ca), phosphorous (P), 

and zinc (Zn) elements, the last playing a major role in bone remodeling while exhibiting 

antibacterial properties. Bio-functionalization of TiO2 NTs was achieved by reverse polarization 

anodization. Morphological and topographical surface features of NTs were observed through 

scanning electron microscopy (SEM), while surface chemistry was investigated by X-ray 

photoelectron spectroscopy (XPS). Biocompatibility studies were conducted with MG-63 and 
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human mesenchymal stem cells (hMSCs) through MTT assay. Furthermore, cell morphology and 

cytoskeleton organization were observed by SEM and laser scanning confocal microscopy 

(LSCM). The osteoblastic differentiation capacity of hMSCs was studied by real-time PCR, as well 

as their angiogenesis ability by measuring the total release of vascular endothelial growth factor 

(VEGF). Finally, viability of Staphylococcus aureus (S. aureus) was assessed by live/dead bacterial 

viability assay. Results show that TiO2 NTs modulated cells morphology, suggesting a stronger 

adhesion. Moreover, hMSCs in contact with NTs, released a significantly higher amount of VEGF 

compared to adequate Ti controls. In particular, NTs enriched with Ca, P, and Zn, induced to 

significantly up-regulated levels of bone morphogenetic protein 2 (BMP-2) and osteopontin 

(OPN) genes of hMSCs, when compared to conventional NTs, along with the significant reduction 

in the number of live bacteria as compared to Ti.  

In conclusion, the superimposition of TiO2 nanotubular-textured surfaces and their 

enrichment with Ca, P, and Zn, is a very promising approach for the development of novel bio-

selective implant surfaces able to improve osseointegration, and simultaneously, avoid 

infection. 

 

Keywords: TiO2 nanotubes; Bio-functionalization; Bio-selectivity; Osseointegration; Infection. 

 

 

Titanium (Ti) and its alloys are the most commonly used materials for orthopedic and 

dental implants applications owing their excellent mechanical properties, corrosion resistance 

and biocompatibility [1, 2]. The good corrosion resistance and biocompatibility of Ti-based 

materials, are associated with their ability to form a stable and tightly adherent TiO2 thin film 

(1.5 – 10 nm in thickness) when exposed to oxygen [1, 3]. Nonetheless, the lack of a functional 

implant-bone interface (i.e. poor osseointegration), extensive inflammation, and bacterial 

infection, have been currently reported as the main causes of failure of Ti-based implants [4-7]. 

Implant-related infections are often the result of bacteria adhesion on implant surface during 

surgery [4, 8], with S. aureus accounting for 70 % of orthopedic implants infections [5]. Infection 

may lead to extensive revision surgeries, extended antibiotic treatment, tissue integration 

impairment, significant health care expenses, and in some cases, even death [8, 9]. 

It has been reported that approximately 332.000 primary hip and 719.000 primary total 

knee arthroplasties were performed in the US in 2010, with infection rates of 0.8  – 2.2 % [9]. 

Aseptic loosening, widely related to poor osseointegration, is responsible for > 70 % hip revision 

surgeries over the mid- and long-term [10]. As concerns dental implants, a 8-year follow up 
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analysis in patients with age from 21 – 78 years reported failure rates of 2 – 3 % [11], mainly 

associated to bone loss and/or inflammation (52.5 %), as well as implant mobility (43.4 %). 

Additionally, a 10-year follow up study conducted in elderly patients (≥ 65 years), reported 

failure rates of 8 – 9 % associated with bone loss and peri-implant inflammation [12]. The 

number of dental implant procedures is expected to boost in the near future, not only because 

life expectancy is increasingly high, but also because dental implant therapies have become 

progressively adopted as a treatment option for replacing missing teeth [13]. Therefore, if 

implant-related complications are not surmounted, the number of failures is expected to rise 

within the upcoming years. 

The demand for new and innovative strategies aiming the synthesis of efficient implant 

surfaces has attracted the attention of worldwide researchers, as a strategy to mitigate failures 

of hip and dental implants. The modification of implant surface features has been currently 

adopted, and improved biological responses have been achieved through the creation of rough 

surfaces with an enhanced chemistry and a more compatible morphology/topography for bone 

cells [3, 14-16]. In particular, nanostructures have demonstrated to play a fundamental role on 

biological responses, by mimicking the nanoscale features of bone [3, 17, 18]. Anodization is a 

simple, versatile, and low-cost technique that has been widely used to fabricate TiO2 NTs in Ti 

surfaces, as the next generation of dental and orthopedic implants. TiO2 nanotubular surfaces 

have become increasingly recognized to enhance osteoblasts and mesenchymal stem cells 

(MSCs) functions, e.g. adhesion, proliferation, and differentiation [19-23], or even to reduce 

inflammation and impair bacterial adhesion or survival [24-27].  

Functionalization attempts of TiO2 NTs have been widely reported by immersion, 

electrochemical deposition, plasma spraying, sputtering, and sol-gel processes [28-31]. Beyond 

the promising potential to induce osseointegration and reduce infection, nanotubular surfaces 

can behave as effective drug delivery systems. A successful example of a drug delivery system 

based on TiO2 NTs was reported by Hu et al. [32] The authors loaded TiO2 NTs with BMP-2 and 

covered them with multilayered coatings of gelatin/chitosan for controlled drug release. The 

system demonstrated ability to promote osteoblastic differentiation of MSCs. For tailoring TiO2 

NTs with advanced functionalities, various attempts have been performed through the 

incorporation of a wide variety of bioactive and/or antimicrobial agents into their cavities, such 

as modular peptides, anti-inflammatory and/or anti-infectious drugs, as well as inorganic 

bioactive elements such as silver (Ag), Zn, P, and Ca [2, 28, 32-39]. In particular, Zn appears as a 

very interesting regulator of bone formation, since Zn2+ ions can regulate various intracellular 

signaling cascades involved in osteoblastic differentiation [40]. Previous studies have 

demonstrated that Zn promotes the expression of bone-related genes, as well as stimulate 
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osteoblast proliferation and mineralization [34, 41]. Huo et al. [34] produced TiO2 NTs 

incorporated with Zn by hydrothermal treatment, and the amount of Zn could be adjusted by 

varying nanotube diameter and length. The authors concluded that the inclusion of Zn provided 

relevant intrinsic antibacterial properties against S. aureus, as well as an excellent osteogenesis 

inducing ability, as shown by higher alkaline phosphatase (ALP) synthesis and mineralized 

nodules formation by bone MSCs. The beneficial effect of Zn was also shown by Yusa et al. [42] 

after incorporation of this element on Ti surfaces. As a result of this, human dental pulp stem 

cells presented significantly up-regulation levels of osteoblast-related genes of runt-related 

transcription factor-2 (RUNX-2), collagen type-1 (COL-1), BMP-2, ALP, OPN, and VEGF.  

The next generation of orthopedic and dental implants displaying both osteogenic and 

antibacterial properties is required to achieve improved clinical performances. In a recent work 

of our group [33], a novel and promising strategy for functionalization of TiO2 NTs was reported, 

by incorporation of Ca and P via reverse polarization anodization processes. Bio-functionalized 

TiO2 NTs displayed the ability to improve cell functions and minimize bio-degradation of Ti and 

conventional NTs by corrosion. In the present work, the additional incorporation of Zn into TiO2 

NTs was achieved through the previously reported methodology. In this study, the influence of 

bio-functionalized nanotubular surface features on osteoblast-like and hMSCs functions was 

studied. Beyond cell viability and adhesion ability, the aim was to study the differentiation of 

MSC through the expression of osteoblast-related genes (RUNX-2, ALP, COL-1, BMP-2 and OPN) 

and VEGF synthesis, and furthermore, the impact of bio-functionalization on the adhesion and 

viability of S. aureus. This study brings novel and important insights on the influence of the 

morphological, topographical and physicochemical properties of bio-functionalized TiO2 NTs to 

enhance the adhesion, differentiation, as well as the release of VEGF by hMSCs, and 

simultaneously, to decrease bacterial viability. 

   

 

5.2.1. Synthesis and characterization of bio-functionalized TiO2 NTs  

Pure Titanium (Ti, 99.7 %) foils (thickness 0.25 mm) were purchased (Sigma-Aldrich, St. 

Louis, MO, USA) and cut into 10 mm x 10 mm squares. These samples were chemically etched 

in a solution containing 10 vol. % nitric acid (HNO3) and 2 vol. % hydrofluoric acid (HF) for 10 

min. Cleaning of both groups of samples was performed in the ultrasonic bath in isopropanol 

(10 min) followed by distilled water (5 min), and finally dried at room temperature. Cleaned Ti 

samples were termed as TiP and TiE before and after chemical etching, respectively. 
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After chemical etching and cleaning, TiE samples were connected to an electrochemical 

cell with a two-electrode configuration and connected to a dc power supply (KEYSIGHT, 

N5751A). A graphite rod was used as the cathode and TiE samples as the anode. TiO2 NTs were 

synthesized by two-step anodization of TiE samples in an optimized electrolyte constituted of 

ethylene glycol (EG, Sigma-Aldrich, St. Louis, MO, USA), 0.3 wt. % ammonium fluoride (NH4F, 

Ammonium Fluoride, Sigma-Aldrich, St. Louis, MO, USA) and 3 vol. % distilled water. Firstly, TiE 

samples were anodized at 60 V for 1 h under magnetic stirring (150 rpm) followed by ultrasonic 

cleaning in isopropanol (15 min) and distilled water (5 min). Secondly, the resulting 

nanopatterned surfaces were anodized for 30 min at the previous conditions for nanotube 

growth.  Finally, the anodized samples were cleaned in isopropanol (10 min), distilled water (5 

min) and dried at room temperature. The resulting TiO2 nanotubular samples were named as 

NT. 

Afterwards, the bio-functionalization treatments of NT samples were performed 

according to a novel methodology recently reported elsewhere [33], which relies on reverse 

polarization and anodization treatments of TiO2 NTs. In brief, the electrochemical treatments 

were conducted in an aqueous electrolyte composed of 0.35 M calcium acetate (Calcium acetate 

monohydrate, Sigma-Aldrich, St. Louis, MO, USA) and 0.04 M β-glycerolphosphate (β-GP) (β-

glycerolphosphate disodium salt pentahydrate, Sigma-Aldrich, St. Louis, MO, USA), as the source 

of Ca and P respectively. For cathodic and anodic treatments, the NT samples were immersed in 

the Ca/P-based electrolyte under magnetic stirring (200 rpm) 2 cm away from a graphite rod. 

Afterwards, the surfaces were reverse polarized for 30 s, followed by anodization in the same 

electrolyte for 30 min at 100 V. Aiming the incorporation of Zn, 0.35 M zinc acetate (Zinc acetate 

dihydrate, Sigma-Aldrich, St. Louis, MO, USA) was added to the previous Ca/P-based electrolyte 

and bio-functionalization treatments of NT samples were conducted at the previous conditions. 

All the anodization processes were conducted at room temperature (22 to 24 oC). Finally, the 

samples were cleaned in isopropanol (10 min), distilled water (5 min) and dried at room 

temperature. The resulting TiO2 NTs enriched with Ca and P were named as NT-Ca/P, while the 

ones containing Zn were named as NT-Ca/P/Zn.  

The surface morphology and chemical composition of all samples were analyzed by 

Scanning Electron Microscopy (SEM, FEI Nova NanoLab 600) and Energy Dispersive X-ray 

Spectroscopy (EDS). EDS spectra were collected using 15 kV accelerating voltage with the 

samples 50 tilted, to guarantee the acquisition of more signal from TiO2 NTs and less from Ti 

substrate. Chemical composition of the surfaces was further investigated by X-ray Photoelectron 

Spectroscopy (XPS, Escaplus system, Omicron Nanotechnology) using Mg Kα as the X-ray source 

at 1253.6 eV. Sputter-etch cleaning of samples was carried out operated at 1 kV and 5 mA for 
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20 min. High resolution spectra were acquired with a resolution of 0.08 eV at a pass energy of 

40 eV. Binding energy of C 1s peak at 284.6 eV was used as the reference binding energy for 

calibration.  

 

5.2.2. Biological characterization 

Prior to cell culture experiments, the surfaces (including their backsides) were sterilized 

by 2 h immersion in ethanol 70 % (V/V) followed by 2 h of ultraviolet light irradiation, in a sterile 

culture hood.  

 

5.2.2.1. Culture of human osteosarcoma MG-63 cells 

Human osteosarcoma MG-63 cells (ATCC number CRL-1427™) were provided by Rio de 

Janeiro cell bank and were used for cell-materials interactions studies. Osteosarcoma cells 

(osteoblast-like cells) are derived from malignant bone tumors and are commonly used for 

osteoblastic models [43]. Osteoblast-like MG-63 cells in passage 105 were cultured in standard 

culture plates in Dulbecco's High Glucose Modified Eagles Medium (DMEM High Glucose, Lonza) 

supplemented with 10 % (V/V) of fetal bovine serum (FBS, Vitrocell, Embriofile) and 1 % (V/V) of 

penicillin-streptomycin (Sigma-Aldrich) in a humidified atmosphere with 5 % carbon dioxide 

(CO2) at 37 °C. The culture medium was changed every three days. For cell culture experiments, 

at approximately 80 % confluence, the adherent cells were washed with phosphate buffered 

solution (PBS) and enzymatically detached with trypsin. 

 

5.2.2.2. Culture of primary human mesenchymal stem cells 

Although cells derived from osteosarcoma are regularly used as osteoblastic models, 

these are derived from malignant bone tumors consisting of cells with abnormal functionalities 

in regards to the gene expression profiles and extracellular proteins translation, as compared to 

normal osteoblasts [43].    

Therefore, to better predict the influence of surface features on human healthy cells, studies 

were also performed with primary human mesenchymal stem cells (hMSCs). These cells are 

known to play a major role in bone formation and regeneration [44], therefore these studies 

become fundamental to strengthen our findings and predict real in vivo responses. In this study, 

hMSCs were isolated from bone marrow after surgical procedures on two adult healthy donors. 

The consent was obtained from all the individuals and all the procedures were approved by the 

ethics committee of Arthur Sá Earp Neto Faculty and Faculty of Medicine of Petrópolis (CAAE 
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number: 46618615.8.0000.5245). The cells were negative for mycoplasma [45] and 

authenticated by STR analysis [46]. 

Briefly, to isolate the cellular fraction, the collected bone marrow was homogenized in a 

vortex for three cycles of 15 s. Afterwards, it was washed in PBS and homogenized again 

followed by centrifugation for 15 min. After this step, the supernatant was discarded and the 

pellet was resuspended in Iscove’s medium (Sigma-Aldrich) supplemented as follows:  20 % 

(V/V) FBS; 1 % (V/V) ciprofloxacin antibiotic (Isofarma); 10 % (V/V) essential amino acids; 10 % 

(V/V) pyruvate; 10 % (V/V) glutamine; and 10 % (V/V) vitamins. After determination of cell 

concentration, the cellular suspension was cultured in sterile cell culture flasks (1 x 107 cells/25 

cm2) with fresh supplemented Iscove’s medium, and placed in the incubator at 37 °C and 5 % 

CO2. After 24 h post-seeding, the culture medium was replaced for the first time, and then it was 

changed every two – three days. In vitro experiments were carried out with hMSCs at 2 – 3 

passages. At approximately 80 % confluence, the adherent cells were washed with PBS and 

enzymatically detached with trypsin.  

For osteoblastic differentiation, hMSCs were cultured with Iscove’s medium 

supplemented with 10 mM β-Glycerolphosphate (Sigma-Aldrich), 50 µg/mL ascorbic acid-2 

phosphate (Sigma-Aldrich) and 100 nM dexamethasone (Sigma-Aldrich). This supplement is 

currently used to stimulate the differentiation of MSCs into osteoblasts [44]. Throughout this 

work, Iscove’s osteogenic medium was named as Iscove’s OM.  

 

5.2.2.3. Cell viability 

The viability of MG-63 cells and hMSCs cultured on TiP, TiE, NT, NT-Ca/P and NT-Ca/P/Zn 

samples was investigated through MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-

tetrazolium bromide) reduction assay. Firstly, the samples were placed (in triplicate per test 

condition) in 24-well polystyrene culture places, and afterwards 2 x 104 cells were seeded on 

each sample. The cells were additionally cultured on the wells of the culture plate for cell 

viability control. After seeding, the cells were incubated at 37 oC in a 5 % CO2 atmosphere and 

the culture medium was changed every two – three days. MG-63 cells and hMSCs were cultured 

with DMEM High Glucose and OM Iscove’s culture medium, respectively. Each culture medium 

was supplemented as previously described. 

Cell viability was evaluated after one and six days of culture. After each culture period, 

the cells were incubated with MTT (0.5 mg/mL, Sigma-Aldrich, MO, USA) for 4 hours at 37 °C.  

The MTT assay allows the assessment of metabolically active viable cells, which convert MTT 

into a purple colored formazan product [47]. After the incubation period the formazan was 
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solubilized by dimethyl sulfoxide (DMSO) and the absorbance was measured at λ = 570 nm and 

λ = 690 nm (background) on a microplate reader spectrometer (Infinite® 200 PRO, Tecan).  

Three independent experiments were carried out for cell viability studies with MG-63 and 

hMSCs, and only hMSCs derived from one patient were used to conduct these tests. 

 

5.2.2.4. Cell morphology, spreading and adhesion 

Osteoblast-like MG-63 cells and hMSCs were seeded on TiP, TiE, NT, NT-Ca/P and NT-

Ca/P/Zn samples for 24 h. The studies with hMSCs were carried out only with cells extracted 

from one single patient. For this purpose, 1 x 104 cells were seeded on materials surfaces, which 

had been previously placed into 24-well culture plates. MG-63 cells were cultured as described 

above. After one day of incubation, the cells were washed in PBS and fixed for 2h (room 

temperature) with 2.5 % (V/V) glutaraldehyde (Electron Microscopy Sciences) in 0.1 M 

cacodylate buffer, pH 7.4 (Electron Microscopy Sciences). Afterwards, the samples were washed 

three times (5 min each) in cacodylate buffer and then postfixed with 1 % (V/V) osmium 

tetroxide in distilled water for 1 h, in dark conditions. After washing steps in cacodylate buffer 

and distilled water, the cells were dehydrated in series of graded ethanol solutions of 15 %, 30 

%, 50 %, 70 %, 90 % and 100 % (V/V), followed by critical point drying (Leica EM CPD030, Leica 

microsystems, Austria).  Finally, the samples were placed onto a stub and sputter coated with 

carbon. The cell morphology was then observed in a FEI Magellan 400 microscope. 

Morphological features of hMSCs were also investigated by laser scanning confocal 

microscopy by cytoskeleton staining of actin filaments and nucleus. Briefly, 1 x 104 hMSCs were 

seeded on materials surfaces for 2 h incubation period in Iscove’s medium. After this time, the 

cells were washed in PBS and fixed with a solution of 4 % (V/V) paraformaldehyde in PBS for 20 

min. Afterwards, hMSCs were washed twice in PBS (5 min each) and permeabilized with 0.1 % 

(V/V) Triton X-100 in PBS, for 30 minutes. After washing in PBS the cells, were incubated in 50 

nM NH4Cl in PBS for 15 min for blocking of non-specific binding sites. Then, hMSCs were 

incubated with Alexa Fluor® 546 Phalloidin (Molecular Probes, Life Technologies) in darkness for 

60 min, and after washing twice in PBS (5 min each), the nucleus was stained with 4’,6-

Diamidino-2-Phenylindole, Dehydrochloride (DAPI) (Molecular Probes, Life Technologies) for 10 

min. At the end, the cells were imaged using a Leica TCS SP3 confocal microscope. 

 

5.2.2.5. Expression of osteoblast-related genes 

The expression levels of osteoblast-related genes were determined by real-time 

quantitative polymerase chain reaction (qPCR). hMSCs were seeded (2 x 104 cells) on TiP, TiE, 

NT, NT-Ca/P and NT-Ca/P/Zn samples and incubated for 14 days in OM Iscove’s. Four different 
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samples were used per each condition. After 14 days of incubation, the cells were washed in PBS 

and the total RNA was extracted using RNeasy Plus mini kit (Qiagen) in accordance with 

manufacturer’s instructions. Afterwards, the RNA concentrations were determined by using a 

NanoDrop 2000c spectrophotometer (Thermo Scientific) at 260 nm (A260). Only samples with 

A260/A280 and A260/A230 ratio equal or greater than 1.8 were used for the subsequent steps, since 

this is an indicator of absence of contamination by protein and organic compounds. After RNA 

extraction and quantification, first-strand cDNA was synthesized from 200 ng of RNA using 

SuperScript® IV First-Strand synthesis kit (InvitrogenTM, Life Technologies), by following 

manufacturer’s instructions. The qPCR experiments were carried out with a 7500 Real-Time PCR 

system (Applied Biosystems®) using Power SYBR® green PCR master mix (Applied BiosystemsTM, 

Life Technologies).  

The relative expression of genes related to osteoblastic differentiation was determined, 

namely runt-related transcription factor-2 (RUNX-2), alkaline phosphatase (ALP), collagen type-

1 (COL-1), bone morphogenetic protein-2 (BMP-2) and osteopontin (OPN). Their main 

functionalities may be summarized as follows: RUNX-2 is an essential transcription factor 

involved in the very early stage of osteoblast differentiation; ALP is a specific protein that 

displays a crucial role in osteoblast differentiation and mineralization of bone matrix; COL-1 is a 

key structural protein of bone matrix; BMP-2 is a protein that stimulates bone formation; and 

OPN is a major structural protein of bone matrix [48-52]. The nucleotide sequences of forward 

(F) and reverse (R) primers used for qPCR are shown in Table 5.1. The relative gene expression 

levels were determined based on the comparative Ct method (also known as 2-𝝙𝝙Ct) [53], and 

these were normalized to that of the endogenous housekeeping gene cancer susceptibility 

candidate 3 (CASC-3).  Fold change values were determined with TiP as the reference group. 

The qPCR assays were performed only for hMSCs and two independent experiments were 

carried out with cells obtained from each donor. Therefore, a total number of four independent 

tests (n = 4) were carried out. 

Table 5.1. Forward (F) and reverse (R) sequences of primers used for qPCR. 

Gene Forward primer sequence (5’ – 3’) Reverse primer sequence (5’ – 3’) 

RUNX-2 
ALP 
COL-1 
BMP-2 
OPN 
CASC-3 

TGGTTACTGTCATGGCGGGTA 
ACTGGTACTCAGACAACGAGA 
GAGGGCCAAGACGAAGACATC 
ACTACCAGAAACGAGTGGGAA 
AGACCTGACATCCAGTACCCT 
AGCCTTCTTTCCTGCAACCA 

TCTCAGATCGTTGAACCTTGCTA 
ACGTCAATGTCCCTGATGTTATG 
CAGATCACGTCATCGCACAAC 
GCATCTGTTCTCGGAAAACCT 
GTGGGTTTCAGCACTCTGGT 
GGTCCTGCTCCCATGTGTATATG 

 

5.2.2.6. Alkaline phosphatase activity and matrix mineralization 

In this study, human fibroblasts (hFb) and human Saos-2 osteosarcoma cells were cultured 

on polystyrene culture plate wells as negative and positive controls of osteoblastic 



Chapter 5 

 

 
120 

differentiation of hMSCs, respectively. Human fibroblasts were obtained from surgical 

procedures of a healthy donor child in accordance with a local Ethical Committee (University of 

Grande Rio – UNIGRANRIO, CAAE number: 46799215.1.3001.5282) and Saos-2 cells were 

provided by Rio de Janeiro cell bank. Saos-2 cells were used as positive control instead of MG-

63 cells, because they reveal the most mature osteoblastic labelling profile [43]. Alkaline 

phosphatase (ALP) activity and matrix mineralization were assessed for hFb, Saos-2, and hMSCs 

seeded on culture plate wells (2 x 104 cells, in triplicate) for 14 and 21 days, respectively. It is 

noteworthy that hFb were cultured in Iscove’s medium, Saos-2 in DMEM High Glucose medium, 

and hMSCs in Iscove’s OM. DMEM high clucose and Iscove’s culture mediums were 

supplemented as above described. 

After 14 days of culture, the cells were washed in PBS and fixed with a solution of 4 % 

(V/V) paraformaldehyde in PBS for 20 min. After washing in PBS, the ALP activity was detected 

by incubation in a mixture of naphthol AS-MX phosphate alkaline solution with fast red violet B 

salt (Leukocyte Alkaline Phosphatase Kit, Sigma-Aldrich), in accordance with manufacturer’s 

instructions. Finally, images were acquired in an inverted microscope (Zeiss, Axio Observer.D1, 

Germany) by using a 10 x objective. The matrix mineralization of cells was evaluated by Alizarin 

Red S staining (Sigma-Aldrich). Briefly, after culturing for 21 days, all the cells were washed in 

PBS and fixed with a solution of 4 % (V/V) paraformaldehyde in PBS for 20 min, and then washed 

with distilled water. Afterwards, the cells were incubated with Alizarin red S solution 1 % (wt/vol) 

for 30 min. Finally, the samples were washed 5x with distilled water to remove the unabsorbed 

dye, and images were obtained in the previous mentioned inverted microscope (10 x objective). 

 

5.2.2.7. Analysis of VEGF secretion 

hMSCs were seeded (2 x 104 cells) on TiP, TiE, NT, NT-Ca/P and NT-Ca/P/Zn samples and 

incubated for 14 days in Iscove’s OM. The culture medium was changed every two days. At day 

14, 1 mL of the culture medium was collected with 48 h of incubation, for detection and 

quantification of vascular endothelial growth factor (VEGF) produced by hMSCs in contact 

with the different materials. VEGF detection was performed through bead-based immunoassay 

with the XMap Technology (Luminex Corp, USA) by using a singleplex kit (Biorad, USA). 

Afterwards, washes were performed using the automated washer Bio-Plex Pro (Biorad, USA). 

Identification and quantification of the magnetic beads containing VEGF were performed with a 

Bio-Plex MAGPIX system (Biorad, USA) following manufacturer’s protocol. Finally, the 

concentration of VEGF was quantified with xPONENT software version 4.2 (Biorad, USA). These 

experiments were carried out in triplicate, to guarantee the repeatability of the results. 
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5.2.3. Antibacterial test 

The antibacterial ability of TiO2 nanotubular surfaces was accessed using S. aureus as the 

target organism. S. aureus ATCC 6538 obtained from stock solid cultures were grown in Tryptic 

Soy Broth medium (TSB, Liofilchem) at 37 °C for approximately 24 h. Before bacterial seeding, 

the samples were placed inside a 24-well culture plate and all the samples were sterilized by 

immersion in ethanol 70 % (V/V) for 2 h inside a sterile culture hood. 

Bacterial concentration was determined by measuring absorbance at 620 nm (EZ Read 

800 Plus Microplate reader, Biochrom), and the cell suspension was adjusted to an optical 

density corresponding to the final concentration of 1 x 105 cell/mL.  

Samples previously sterilized by immersion in ethanol 70 % (v/v) for 2 h in 24-well plates, 

were seeded with 1 mL of the prepared cell suspension and incubated for 2 h at 37 °C and 120 

rpm. Samples were then washed twice in PBS and the viability of adherent bacteria was accessed 

by LIVE/DEAD® BacLightTM bacterial viability kit (Molecular Probes, Life Technologies) in 

accordance with manufacturer’s instructions. Finally, the total number of live and dead bacteria 

adhered on materials surfaces was determined by fluorescence microscope (Olympus BX51, 

Perafita, Portugal), using a combination of the 470 to 490 nm and 530 to 55 nm optical excitation 

filters. A total number of 35 images were acquired for each sample, from which the number of 

live and dead bacteria were counted. For each testing condition, three samples were used and 

three independent experiments were carried out.  

 

5.2.4. Statistical analysis 

All the quantitative data were expressed as means ± standard deviations. The statistical 

tool SigmaStat 3.5 (Systat Software, San Jose, CA, USA) was used for statistical analysis with p < 

0.05 considered as being statistically significant and p < 0.01 considered highly significant. 

One-Way ANOVA was applied to determine the differences between the different groups 

of surfaces and Tukey HSD post hoc analysis was used for pair-wise comparisons between 

groups. In particular, the statistical significance in the relative gene expression of hMSCs, 

measured between the control group and all the others testing groups, was determine by t-

student test.  

 

 

5.3.1. Surface characterization  

In this study, smooth and micron/nano-roughened Ti surfaces (TiP and TiE) were taken as 

control groups, whose morphologies are depicted in Fig. 5.1a and b respectively. The 

morphological and chemical surface features of TiO2 nanotubular films synthesized by two-step 



Chapter 5 

 

 
122 

anodization processes are depicted in Fig. 5.1c. A bone-inspired morphology was achieved at a 

nano-scale level, with NTs characterized by non-uniform diameters ranging from 50 – 90 nm, as 

reported in a previous study [33]. XPS studies were conducted to determine the surface chemical 

features of TiO2 NTs, through which chemical elements such as Ti, Oxygen (O) and Fluorine (F) 

were detected. The individual XPS spectra of these elements were deconvoluted into their 

components aiming to study their binding states. The deconvoluted peaks are shown in the 

individual spectra of the elements with reference to the subpeak binding energy and the 

possible chemical compound assigned to it (Fig. 5.1c). The high resolution spectra of Ti 2p3/2 and 

O 1s confirm the presence of TiO2 by the subpeaks found at 458.8 eV and 530 eV [36, 54, 55], 

respectively. The energy difference of 5.7 eV for Ti 2p1/2 and Ti 2p3/2 confirms the presence of 

TiO2  [54]. Two additional contributions were found in Ti 2p3/2  spectrum, which are most likely 

related to the presence of Ti2O3 (456.9 eV) and Ti-OH (458.3 eV) compounds [56, 57]. The O 1s 

spectrum showed an additional subpeak at 531.4 eV assigned both to the presence of Ti2O3 and 

Ti-OH [54, 55, 58] compounds. Adsorbed fluoride (F-) ions on TiO2 nanotubular surfaces were 

also found by the F 1s peak detected at 684.6 eV [54]. EDS analysis confirmed the presence of 

Ti, O, F and C (Fig. 5.1f – black curve). These results are in good agreement with our previous 

study [33], in which XPS and EDS studies were carried out for NT surfaces.  

The surface morphology of NT-Ca/P and NT-Ca/P/Zn samples is shown in Fig. 5.1d and e, 

respectively. No significant differences are observed on the morphological/topographical 

features of both bio-functionalized nanotubular surfaces compared to the non-treated ones (Fig. 

5.1c). However, dissimilar chemical features were found after bio-functionalization treatments. 

NT-Ca/P surfaces are composed of Ca and P as shown by the individual XPS spectra of Ca 2p and 

P 2p in Fig. 5.1d. The Ca 2p3/2 subpeak detected at 347.6 eV, in agreement with the P 2p peak 

found at 132.9 eV, evidence the presence of Ca3(PO4)2 compounds on TiO2 NTs [36]. 

Furthermore, the energy found for Ca 2p3/2 subpeak may be also related to the presence of 

CaHPO4 species, as confirmed by the P 2p subpeak found at 134.1 eV  (Fig. 5.1d) [36]. Moreover, 

additional contributions were found in Ca 2p3/2 main peak at 346.7 eV and 348.6 eV, which might 

be assigned to CaCO3/CaO and CaF2 [36, 59, 60] compounds respectively. These findings are in 

accordance with XPS results reported in a previous work for similar NT-Ca/P surfaces [33]. The 

EDS spectrum obtained from NT-Ca/P samples (Fig. 5.1f – red curve) showed the presence of Ti, 

O, F, Ca, P, and a small amount of sodium (Na) from the anodization process. Once Na was not 

detected by XPS, it is probably located in deeper regions of TiO2 NTs. As regards NT-Ca/P/Zn 

surfaces, Zn and P elements were detected by XPS, and the correspondent high resolution 

spectra are shown in Fig. 5.1e. Although the presence of Ca 2p was found insignificant on these 

surfaces by XPS, a small amount of Ca was detected by the EDS (Fig. 5.1f – blue curve), most 
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probably because it is located deep in TiO2 NTs. Furthermore, EDS analysis also showed the 

presence of Ti, O, F, Zn and P. The peak for Zn 2p3/2 was found at 1021.6 eV and assigned to ZnO 

compounds [61], while P 2p was revealed at 133.6 eV and related to PO4
3- groups adsorbed to 

TiO2 NTs [36]. It is noteworthy to highlight that Ti 2p, O 1s and F 1s were also detected on NT-

Ca/P and NT-Ca/P/Zn surfaces by XPS and assigned to the presence of TiO2, Ti2O3 and Ti-OH, as 

well as F- ions adsorbed to TiO2 NTs (results not shown). 

 

Fig. 5.1. SEM micrographs of (a) TiP, (b) TiE, (c) NT, (d) NT-Ca/P and (e) NT-Ca/P/Zn surfaces. The inset images in (a) 

and (b) intend to show the morphological/topographical surface features in more detail. The representative high 

resolution XPS spectra of deconvoluted Ti 2p, O 1s and F 1s detected on NT surfaces are shown in (c). Furthermore, 

the XPS spectra of Ca 2p and P 2p detected on NT-Ca/P surfaces are depicted in (d), while in (e) the XPS spectra for 

Zn 2p3/2 and P 2p detected on NT-Ca/P/Zn surfaces are shown. The information extracted from deconvolution is 

depicted in each individual spectrum in respect to the subbeak binding energy and possible chemical compound 

assigned to it. In (f) the EDS spectra acquired from NT, NT-Ca/P and NT-Ca/P/Zn samples are depicted. 
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5.3.2. Biological characterization 

5.3.2.1. Viability and adhesion of MG-63 and hMSCs 

The viability of MG-63 cells (human osteoblast-like osteosarcoma cell line) cultured on 

materials surfaces (i.e. TiP, TiE, NT, NT-Ca/P and NT-Ca/P/Zn) was investigated after one and six 

days of incubation, and the results are graphically represented in Fig. 5.2a. TiE surfaces were 

chosen also as positive control due to its well-known ability to improve osteoblast functions and 

by its attractiveness in clinical applications [62]. The percentage of absorbance values measured 

after MTT assay were converted into a percentage that was calculated in reference to TiP 

samples, which means that the absorbance value measured for TiP was taken as 100 %. After 

the first day of incubation, MG-63 osteoblast-like cells adhered on TiP and on all the nanotubular 

surfaces displayed a significantly inferior level of metabolic activity compared to the one on TiE 

surfaces. After six days of culture, as expected, a significant increase of cellular metabolic activity 

is observed for all groups, confirming cell proliferation throughout the culture time. 

Interestingly, it is observed that the metabolic activity of cells adhered on TiE and all the 

nanotubular surfaces, was significantly superior compared to TiP surfaces. This evidences that 

all the groups of treated surfaces are biocompatible. 

 

Fig. 5.2. (a) Metabolic activity of MG-63 cells cultured on TiP, TiE, NT, NT-Ca/P and NT-Ca/P/Zn samples after one and 

six days of incubation. SEM micrographs of MG-63 cells adhered on (b) TiP, (c) TiE, (d) NT, (e) NT-Ca/P and (f) NT-

Ca/P/Zn samples after one day (24 h) of culture. Inset white arrows point to cytoplasmic protrusions of cells 

(filopodia). At day 1: (#) significantly different from TiE, p < 0.05; at day 6: (*) significantly different from TiP, p < 0.05. 

 

The morphology of osteoblasts adhered on the different groups of samples was 

investigated after 24 h of culture, and the representative SEM micrographs are shown in Fig. 
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5.2b–f. Significant differences are observed between cell morphology on Ti (Fig. 5.2b and c) and 

nanotubular surfaces (Fig. 5.2d–f). MG-63 cells adhered on nanotubular surfaces display a 

stretched and elongated shape when compared with those on Ti groups, in which they exhibit 

spreader morphologies apparently covering a higher surface area. In all the cases, noticeable 

plasma membrane protrusions (filopodia) are visible evidencing cell-surface and cell-cell 

interactions. Interestingly, although a high density of filopodia has been found on all the 

surfaces, the cytoplasmic extensions presented different features: thinner and longer on Ti-

based surfaces, and thicker and shorter on nanotubular surfaces, as shown in Fig. 5.3a and b 

respectively. These differences may be observed in more detail in Fig. 5.3c and d. Curiously, 

filopodia endings display a “ball-like” morphology on Ti surfaces (Fig. 5.3c) compared to the 

flattened filopodia shape observed on nanotubular surfaces (Fig. 5.3d).  

 

Fig. 5.3. SEM micrographs showing the differences between cytoplasmic protrusions (filopodia) of MG-63 cells 

adhered on (a) Ti and (b) nanotubular surfaces after one day (24 h) of culture. Inset white arrows point to filopodia. 

Higher magnified images of filopodia are shown in (c) and (d) for Ti and nanotubular surfaces, respectively.  

 

The biocompatibility of treated and non-treated nanotubular surfaces was also 

investigated for human mesenchymal stem cells (hMSCs) by MTT assay. The percentage of 

absorbance values are depicted in Fig. 5.4a after cell culture in OM for one and six days. After 

one day of culture, a significant lower metabolic activity was measured for cells adhered on NT-
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Ca/P and NT-Ca/P/Zn samples as compared to TiE, and after six days these differences were kept 

significant only for NT-Ca/P/Zn samples.  

As regards hMSCs morphology after 24 h of adhesion, significant differences were 

observed for cells adhered on Ti and nanotubular samples, as previously observed for MG-63 

cells. It is clearly perceived that cells adhered on nanotubular surfaces (Fig. 5.4d–f) present a 

more stretched and elongated morphology with filopodia interacting with nanotubular surfaces. 

On the other hand, the cells adhered on TiP and TiE surfaces (Fig. 5.4b and c), show a less defined 

morphology, and are spreader along the surface apparently covering a larger surface area. 

Filopodia are also observed for these cells evidencing interaction with the surface and 

neighboring cells. 

 

Fig. 5.4. (a) Metabolic activity of hMSCs cells cultured on TiP, TiE, NT, NT-Ca/P and NT-Ca/P/Zn samples after one and 

six days of incubation in OM. SEM micrographs of hMSCs cells adhered on (b) TiP, (c) TiE, (d) NT, (e) NT-Ca/P and (f) 

NT-Ca/P/Zn samples after one day (24 h) of culture. Inset white arrows point to cytoplasmic protrusions of cells 

(filopodia). At day 1: (#) significantly different from TiE, p < 0.05; at day 6: (*) significantly different from TiE, p < 0.05. 

 

In order to understand the cytoskeleton organization of hMSCs adhered on Ti and 

nanotubular surfaces in an early stage of adhesion, the actin filaments were observed by 

confocal fluorescence microscopy and the results are shown in Fig. 5.5. As observed, clear 

differences are noticed between the morphology of hMSCs adhered on Ti (i.e. TiP and TiE) and 

nanotubular surfaces (i.e. NT, NT-Ca/P and NT-Ca/P/Zn). The cells on Ti surfaces present a 

rounder morphology compared to the cells adhered on nanotubular surfaces, and undergone a 

remarkably less stretching. On the other hand, the cells on nanotubular surfaces are already 
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very well stretched and elongated.  This indicates that cells settled faster on TiO2 NTs, and that 

they have quickly interacted and became adapted to these surfaces earlier than on Ti. The cells 

on all the nanotubular surfaces present a typical morphology characterized by a stretched and 

tinny cell body (Fig. 5.5c–e). Nevertheless, the cell endings are spreader along the surfaces 

compared to the main body, evidencing a higher contact and an intense interaction with the 

substrate through a high number of filopodia (Fig. 5.5e) and stress fibers formation, which are 

key signals for cell adhesion and migration [32].  

 

Fig. 5.5. Confocal fluorescence images showing actin cytoskeleton organization of hMSCs adhered on (a) TiP, (b) TiE, 

(c) NT, (d) NT-Ca/P, and (e) NT-Ca/P/Zn samples after 2h of incubation.  

 

5.3.2.2. Osteogenic differentiation of hMSCs 

To better characterize the osteoblastic phenotype of hMSCs cultured on standard culture 

plates in OM, primary human fibroblasts (hFb) and osteoblast-like Saos-2 cells (Saos-2) were 

taken as negative and positive controls, respectively. The colorimetric assay for detection of ALP 

was carried out after 14 days of culture for the three groups of cells, and the results are shown 

in Fig. 5.6. As observed in Fig. 5.6a, hFb are not producers of ALP, contrarily to Saos-2 (Fig. 5.6b), 

as would be expected since Saos-2 cells exhibit mature osteoblast phenotype [43]. As evidenced 

from Fig. 5.6c, hMSCs cultured in OM are producers of ALP after 14 days of culture, indicating 

that the cells have undergone osteoblastic differentiation. This was confirmed by matrix 
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mineralization performed after 21 days of culture for the same groups of cells, for which 

mineralization occurred in Saos-2 (Fig. 5.6e) and hMSCs (Fig. 5.6f), contrarily to hFb (Fig. 5.6d).  

 

 Fig. 5.6. Optical micrographs of (a) hFb, (b) Saos-2 and (c) hMSCs after colorimetric assay for detection of ALP (14 

days of culture). The colorimetric assay for detection of mineralization nodules was also carried out and the optical 

micrographs of (d) hFb, (e) Saos-2 and (f) hMSCs are shown for 21 days of culture.   

 

The relative expression of osteogenesis-related genes, namely runt-related transcription 

factor 2 (RUNX-2), alkaline phosphatase (ALP), collagen type-1 (COL-1), bone morphogenetic 

protein-2 (BMP-2) and osteopontin (OPN) was determined to investigate whether 

morphological/topographical and chemical features of Ti and nanotubular surfaces influence the 

osteogenic differentiation of hMSCs. The gene expression of the different targets is shown in 

Fig. 5.7, and the values are presented as fold changes, which were calculated in reference to the 

control group TiP. The results show that while no significant differences were found for the 

expression of RUNX-2 (Fig. 5.7a) and ALP (Fig. 5.7b) genes within the different groups, 

statistically significant differences were observed for COL-1 (Fig. 5.7c), BMP-2 (Fig. 5.7d) and 

OPN (Fig. 5.7e) genes expression. 

The expression of COL-1 was significantly up-regulated in hMSCs cultured on TiE (p < 0.01), 

NT (p < 0.05) and NT-Ca/P/Zn (p < 0.01) surfaces compared to the control group TiP (Fig. 5.7c). 

Instead, the relative expression of BMP-2 was found significantly down-regulated for NT (p < 

0.01), NT-Ca/P (p < 0.01) and NT-Ca/P/Zn (p < 0.05) surfaces relatively to TiP (Fig. 5.7d). 

Moreover, OPN gene expression was also down-regulated in hMSCs present on NT (p < 0.01) 

and NT-Ca/P (p < 0.01) surfaces (Fig. 5.7e). Interestingly, a clear trend of a higher expression of 

both BMP-2 and OPN genes for NT-Ca/P/Zn is observed, when compared to NT-Ca/P and NT 

samples, as observed in Fig. 5.7d and e. To further confirm this trend, the relative expression of 
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BMP-2 and OPN genes was determined settling NT as the reference group, and the results are 

shown in the insets graphs in Fig. 5.7d and e, respectively. As clearly observed, the expression 

of BMP-2 gene was significantly higher for NT-Ca/P (p < 0.01), and even more pronounced for 

NT-Ca/P/Zn surfaces (p < 0.01) compared to NT control group. Furthermore, significantly higher 

differences (p < 0.05) were also found for the relative gene expression of OPN for NT-Ca/P/Zn 

samples as compared to NT. The BMP-2 and OPN genes were around 3 times more expressed in 

hMSCs cultured on the nanotubular surfaces enriched with Zn, when compared to conventional 

nanotubular surfaces. It is noteworthy that significantly different (p < 0.05) gene expression 

levels of BMP-2 and OPN genes were also observed for NT-Ca/P/Zn compared to NT-Ca/P 

samples, with fold change values determined by taking NT-Ca/P surfaces as the reference 

(results not shown). 

 

 

Fig. 5.7. Relative expression of (a) RUNX-2, (b) ALP, (c) COL-1, (d) BMP-2 and (e) OPN genes of hMSCs cultured on TiP, 

TiE, NT, NT-Ca/ and NT-Ca/P/Zn samples after 14 days of incubation in OM. Fold change values were calculated against 

the control TiP. (*), significantly different from TiP, p < 0.05; highly significantly different from TiP (**) p < 0.01. The 

insets in (d) and (e) show the relative gene expression of BMP-2 and OPN respectively, whose values were calculated 

with NT samples as the control group. (*), significantly different from NT, p < 0.05; highly significantly different from 

NT (**) p < 0.01.  Gene expression levels were normalized against housekeeping gene CASC-3.  
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5.3.2.3. VEGF release by hMSCs 

To investigate the possible role of surface characteristics on vascularization process, the 

quantity of vascular endothelial growth factor (VEGF) produced by hMSCS was quantified after 

14 days of culture in OM, and the results are shown in Fig. 5.8. The cells in contact with NT and 

NT-Ca/P/Zn surfaces produced significantly higher VEGF amounts compared to the ones on TiP 

and TiE surfaces (p < 0.01). Furthermore, a significantly higher extent of VEGF was also released 

by cells on NT-Ca/P compared to TiE surfaces (p < 0.01).  

 

 

Fig. 5.8. Amount of VEGF produced by hMSCs adhered on TiP, TiE, NT, NT-Ca/P and NT-CA/P/Zn surfaces after 14 days 

of culture in OM. (*) significantly different from TiP, p < 0.01; (#) significantly different from TiE, p < 0.01. 

 

5.3.3. Microbiological characterization 

The influence of materials surface features on the early adhesion and viability of S. aureus 

was investigated, by counting the number of live and dead bacteria adhered to the different 

groups of surfaces. These results are shown in Fig. 5.9a, in which the percentage of live and dead 

bacteria adhered after 2h of culture is depicted for each group. The number of total live bacteria 

was converted into a percentage in reference to TiP samples, meaning that the total number of 

live bacteria counted on TiP samples was taken as 100 %. The number of live bacteria adhered 

on NT, NT-Ca/P and NT-Ca/P/Zn surfaces was significantly lower compared to the number on TiE 

samples (p < 0.01). On the other hand, a significantly higher number of dead bacteria was found 

on NT-Ca/P and NT-Ca/P/Zn surfaces, when compared to TiP and TiE. The representative images 

of live (green color) and dead (red color) bacteria adhered on the different groups of surfaces 

are shown in Fig. 5.9b–f. In agreement with the previous results, a higher number of live bacteria 

are observed on TiP and TiE compared to NT, NT-Ca/P and NT-Ca/P/Zn surfaces.  
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Fig. 5.9. (a) Live and dead bacteria adhered on TiP, TiE, NT, NT-Ca/P and NT-Ca/P/Zn samples after 2h of culture. The 

representative fluorescence images of live (green) and dead (red) adhered bacteria are shown for (b) TiP, (c) TiE, (d) 

NT, (e) NT-Ca/P and (f) NT-Ca/P/Zn surfaces. For live bacteria: (*) highly significantly different from TiE (p < 0.001); 

For dead bacteria: (*) highly significantly different from TiP and TiE (p < 0.001). 

 

 

5.4.1. Biocompatibility and adhesion ability of MG-63 and hMSCs  

The benefits of the superimposition of micro- and nano-scale topographies on osteoblasts 

and MSCs functions such as adhesion, proliferation, and differentiation have been reported in 

previous studies [14, 63, 64]. Therefore, it is believed that the enhanced metabolic activity of 

osteoblast-like cells on TiE samples after one day of culture (Fig. 5.2a), could have been 

modulated by the combined micro/nano-topographical surface features (Fig. 5.1b). Zhao et al. 

[63] explained that micro/nano topographies may regulate the integrin-mediated cell adhesion 

process, through several intracellular signal transduction pathways [65]. Nonetheless, the 

promoter effect of TiE surfaces on cell viability is neither too strong nor long lasting since by day 

six, the metabolic activity on nanotubular samples is at the same level as that of TiE samples 

(Fig. 5.2a), which highlights the biocompatibility of TiO2 NTs, before and after bio-

functionalization treatments. On the other hand, Ti smooth samples keep inducing a significantly 

lower metabolic activity throughout the culture time, which is most likely related to the absence 

of either micro or nano topographical cues. 

The metabolic activity of hMSCs increased with culture time for all the groups of surfaces 

(Fig. 5.4a), however, at a rather limited rate compared to the one observed for MG-63 cells (Fig. 

5.2a). This is probably related with the low metabolic activity of primary hMSCs and their low 

proliferation rate, when compared to tumoral cells [66]. In addition, it is known that throughout 

differentiation, the proliferative potential of hMSCs decreases [67]. This also may explain the 
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limited proliferation rate of these cells because, as they were cultured in OM, most likely they 

were already undergoing a differentiation process at that time. 

Both osteoblast-like cells and hMSCs presented very well stretched morphologies when 

adhered to nanotubular surfaces compared to those of cells on TiP and TiE surfaces (Fig. 5.2b–f 

and Fig. 5.4b–f). These differences may be related with the dissimilar features of Ti and 

nanotubular surfaces, namely their chemistry, surface energy, and nano 

morphology/topography. These characteristics may play, separately or together, fundamental 

roles on the initial protein adsorption and subsequent cell adhesion process [1, 68, 69]. Nano 

topographical surface features that directly correspond to the sizes of extracellular matrix (ECM) 

proteins, are known to modulate their initial surface adsorption. Kubo et al. [70] showed the 

benefits on adding nanonodules on Ti micro-roughened surfaces to boost their capacity of early 

albumin adsorption. In particular, it is known that the high negative charged density at sharp 

edges of TiO2 NTs are expected to promote the adsorption of ECM proteins such as vitronectin, 

fibronectin, fibrinogen and albumin, which mediates the adsorption of cells to these regions 

trough integrin receptors present in negatively charged osteoblast membrane surface [71, 72]. 

Nanotubular structures are known to strongly influence the clustering of integrins into focal 

adhesion complexes, and further activation of intracellular signaling cascades controlling cell 

adhesion, cell shape, proliferation, migration, differentiation, and apoptosis [73, 74]. Although 

NTs diameters are known to significantly regulate the activation of integrin-mediated 

intracellular signaling pathways, the optimal range of nanotube diameters to improve cell 

functions still remains unclear. Controversial results are found in literature, for different studies 

carried out with 15 – 150 nm diameter NTs [21]. In the present work, TiO2 NTs with inner 

diameters ranging from 50 – 90 nm and wall thickness comprised between 14 – 24 nm were 

synthesized [33]. It is believed that the highly stretched morphology observed for MG-63 and 

hMSC cells on NTs may be related with their non-uniform diameters. Integrins clustering takes 

place when they are distanced less than 70 nm [75], and in general, small diameter NTs are 

known to induce a higher extent of focal adhesion contacts transduced in a stronger cell 

adhesion and cytoskeleton rearrangement [71, 73, 76, 77]. Based on this knowledge, it is 

hypothesized that NTs with non-uniform diameters induced the adhesion of proteins in 

preferential areas of the surfaces, most likely at those places where the density of small-

diameter tubes was higher, which consequently might have induced to focal adhesion 

complexes formation by clustering of integrins at those places. Through activation of 

intracellular signaling pathways, an increased cytoskeleton stress was probably created inducing 

cell stretching across the tubes. As observed in Fig. 5.3d filopodia of cells interacts with NTs by 

crossing them along their walls, and in general they do not penetrate inside their hollow cavity. 
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This may further indicate that proteins are mainly adsorbed on nanotube wall where cells 

adhere preferentially. 

A dramatic stem cell elongation was also observed by Oh et al. [78] in 100 nm diameter 

NTs, which induced cytoskeletal stress and differentiation into osteoblasts. The high cytoskeletal 

tension influences stem cells shape, and their well spreading and stretching across nanotube 

surfaces predicts their fate towards osteoblast phenotype [21]. In fact, the high cytoskeleton 

tension may induce to mechanotransduction events and trigger intracellular signaling pathways, 

which control differentiation [21, 79]. However, in this study no correlations were found 

between the enhanced hMSCs stretching on NTs, and their ability to differentiate into 

osteoblasts, as it will be further on discussed in more detail.  

Different morphologies are observed between filopodia of cells adhered on Ti-based and 

nanotubular surfaces. As stated by Matilla et al. [80], filopodia are actin-rich plasma membrane 

protrusions that function as sensors for cells to probe their environment, and are involved in a 

high number of cell responses such as cell migration and adhesion. In general, osteoblastic-like 

cells adhered on Ti surfaces present longer and thinner filopodia (Fig. 5.3a), and their endings 

display a “ball-like” shape morphology (Fig. 5.3c). On the contrary, osteoblast-like cells adhered 

on nanotubular surfaces show shorter and thicker filopodia (Fig. 5.3b) with flattened endings 

(Fig. 5.3d). This is an indicator that MG-63 cells are sensitive to nanotubular surface features, 

and further suggests that they are stronger adhered to these surfaces. The ability of nanotubular 

surfaces to strengthen cell adhesion is also suggested by the improved stretching of hMSCs 

adhered on NTs right after 2h of adhesion, when compared to the rounder and less stretched 

morpholohy of cells adhered on Ti surfaces (Fig. 5.5). Furthermore, the formation of stress fibers 

is also observed for hMSCs on nanotubular surfaces, essentially located in cells’ endings where 

well-developed lamellipodia and filopodia are found, through which generally cell spreading 

occurs [81]. These findings are in accordance with the study performed by Lv et al. [62], who 

also found that TiO2 NTs promoted the early adhesion of human stem cells, by accelerating their 

adhesion as compared to smooth and acid-etched Ti surfaces. Also, Park et al. [73] 

demonstrated that TiO2 NTs induced to improved MSC adhesion and spreading as compared to 

smooth Ti, through focal contact formation and stress fiber assembly. 

 

5.4.2. Osteogenic differentiation and angiogenic ability of hMSCs 

MSCs play a major role in bone formation and regeneration [44], and their differentiation 

into mature osteoblasts is comprised by different cellular stages, which are identified by specific 

markers [48]. Thus, the expression of a series of osteogenic specific genes are involved in 
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osteoblast differentiation and maturation [82], and some of those important bone markers were 

addressed in this study. 

After 14 days of culture in OM, the expression of BMP-2 was found down-regulated in 

hMSCs adhered on NT, NT-Ca/P and NT-Ca/P/Zn samples, compared to TiP control (Fig. 5.7d). 

Interestingly, although BMP-2 regulates osteogenesis by modulating the expression of RUNX-2 

[49, 83], which is known as a master regulator of osteogenic gene expression [82], no link 

between the down-regulation of BMP-2 and the expression of RUNX-2 was observed (Fig. 5.7a). 

Additionally, no correlation between the expression of ALP and COL-1 genes, and the down-

regulation of BMP-2 was established (Fig. 5.7b and c). This may be related with the activation 

level of RUNX-2, which is not being influenced by BMP-2. RUNX-2 is an important transcriptional 

factor needed for the osteoblast lineage commitment, and further modulation of osteoblast 

differentiation, bone development, and the expression of ECM protein genes [49, 50, 82, 84]. In 

the earliest stage, MSCs form pre-osteoblasts that secrete ALP, an early marker of ostogenesis 

[49], while in a later stage mature osteoblasts secrete bone organic matrix rich in COL-1, which 

afterwards become mineralized through hydroxyapatite deposition [48]. The expression of ALP 

and COL-1 present similar levels for hMSCs cultured both on Ti and nanotubular surfaces, 

suggesting that osteogenic differentiation is not being compromised by surface modification 

treatments induced on Ti surfaces. As regards the lower expression of BMP-2 in cells cultured 

on nanotubular surfaces, no correlation was found with the increased cell stretching observed 

for these cells, as previously discribed. Studies found in literature show the reverse trend, since 

cell stretching stress is reported to induce osteogenic differentiation of stem cells [63, 85-87]. A 

possible explanation for this behavior may be related with surface chemistry, which is different 

for all the nanotubular surfaces as compared to Ti surfaces. The presence of fluoride ions 

adsorbed to TiO2 NTs were found on all the nanotubular surfaces (Fig. 5.1c), and previous studies 

have reported that fluoride regulate osteoblastic differentiation [88-90]. A recent study 

conducted by Gandhi et al. [89] showed that fluoride induced chronic oxidative and 

inflammatory stress in osteoblast-like cells, which was highlighted to possibly hamper osteoblast 

differentiation. Furthermore, Zhao et al. [88] found that fluoride inhibited BMP-2 expression 

levels in rat osteoblasts. Thus, the presence of fluoride on TiO2 nanotubular surfaces may be a 

possible reason for the reduced BMP-2 levels.  

Remarkably, the expression levels of OPN followed the same trend of BMP-2 for NT and 

NT-Ca/P samples, in which OPN gene was down-regulated compared to Ti smooth and rough 

surfaces (Fig. 5.7d and e). This suggests that the regulation of OPN gene is being influenced by 

BMP-2. In fact, some reports have mentioned that BMP-2 regulates the cellular gene expression 

of OPN [91-93], however, the mechanisms behind still remain unclear. It is known that the BMP 
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signaling pathway plays multiple and crucial roles in bone formation and is involved in several 

stages of its development [49]. The stimulation of the differentiation of MSCs into osteoblasts 

through BMP-2 is mainly achieved through stimulating Smad signaling pathway. By activating 

Smad-1/5/8 and RUNX-2, BMP-2 regulates the expression of osteoblastic-specific genes such as 

OPN, a late osteogenic marker [49, 50, 83]. Yang et al. [93] studied the role of BMP-2 on the 

enhancement of RUNX-2 and OPN expression by Smad-1 and signal-related kinase (ERK) 1/2 

signaling pathways, and concluded that extracellular ERK 1/2 pathway modulates BMP-2-

induced OPN expression. Thus, it is believed that Smad and/or ERK 1/2 are the most probable 

pathways involved in the control of OPN expression by BMP-2. However, further studies must 

be performed to clarify this hypothesis.  

Besides gene expression levels of BMP-2 and OPN have been found down-regulated in 

cells cultured on nanotubular surfaces compared to TiP, these genes were significantly up-

regulated on TiO2 nanotubular surfaces enriched with ZnO compounds (Fig. 5.1e), when 

compared to NT and NT-Ca/P surfaces (insertions in Fig. 5.7d and e). This suggests that the 

inclusion of Zn on TiO2 NTs is enhancing the osteoblastic differentiation of hMSCs. It is known 

that Zn ions (Zn2+) concentration is relatively high in bone and it has been propose to stimulate 

bone formation and mineralization [40]. Previous studies have demonstrated that Zn plays an 

important role in differentiation of osteoblasts and bone remodeling. Recently, Yusa et al. [42] 

demonstrated that Zn-modified Ti surface enhances osteoblast differentiation of dental pulp 

stem cells. The authors reported that Zn-Ti surfaces, beyond exhibited significantly up-regulated 

gene expression levels of BMP-2, OPN, RUNX-2, ALP, and COL-1, also promoted ECM 

mineralization. Additionally, it is suggested that the improved osteogenic-genes expression in 

Zn-Ti surfaces was linked to the activation of Smad-1/5/8. In particular, the enrichment of TiO2 

NTs with Zn has shown promising results by improving osseointegration both in vitro and in vivo 

[41]. For example, Huo et al. [34] reported that the incorporation of Zn on nanotube arrays 

showed excellent ostegenesis inducing ability through higher activity of extracellular ERK 1/2, 

which is one of the alternative pathways (non-Smad-dependent pathway) that regulates 

osteogenic differentiation of stem cells [94]. These finding are in accordance with recent 

discoveries reporting that Zn2+ ions regulate several intracellular signaling pathways including 

BMP-2 signaling cascade.  It is believed that intracellular influx of Zn2+ ions is controlled by Zn 

transporters involved in bone homeostasis [40]. Based on these findings, it is hypothesized that 

Zn2+ ions liberated from NT-Ca/P/Zn samples reaches the intracellular environment through Zn 

specific transporters, and by this way may enhance the activity of intracellular signaling 

pathways involved in osteogenic differentiation, including Smad and/or ERK 1/2. As previously 

mentioned, BMP-2 is known to promote osteoblast differentiation and OPN is a mature 
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osteoblast marker gene recognized to play an important role in bone formation, resorption, and 

remodeling [42, 51]. By enhancing the BMP-2 and OPN levels, the addition of Zn on nanotubular 

surfaces seems be of crucial importance to act as a potent inducer of bone formation and 

remodeling.  

As regards hMSCs adhered on nanotubular surfaces, although not statistically significant, 

a trend is observed for a gradual decrease in the metabolic activity of cells adhered on those 

bio-functionalized samples as compared to conventional NTs, both after one and six days of 

culture (Fig. 5.4a). A lower metabolic activity is indicator of a lower proliferation rate, and this is 

agreement with the interrelation found between proliferation and differentiation of cells during 

development of osteoblast phenotype [14]. This slight suppressive effect of metabolic activity is 

possibly related to hMSCs differentiation tendency found for bio-functionalized NTs, in 

particular those containing Zn. However, the micro/nano scale surface topography of TiE 

samples seems to result in an additive effect on hMSCs metabolic activity, when compared to 

NT-Ca/P and NT-Ca/P/Zn samples (day one), and after six days this difference become only 

significant for NT-Ca/P/Zn samples. Nevertheless, nanotubular samples are shown to support 

MSC proliferation and do not compromise their viability, as the values are never lower than that 

of the well-known biocompatible Ti smooth surfaces. The stronger adhesion strength of cells 

adhered on nanotubular surfaces may also be related with the lower proliferation rate since, as 

explained by Zhao et al. [63], as cells need to detach slightly to undergo division, a tight adhesion 

is expected to hamper this process.  

Bone is a highly vascularized tissue, and blood vessels largely contribute for bone growth 

and remodeling [95, 96]. Therefore, vasculogenesis and angiogenesis processes are required for 

proper osseointegration. Vascular endothelial growth factor (VEGF) is among the many 

identified growth factors that initiates and controls angiogenesis [97]. The amount of VEGF 

produced by hMSCs after 14 days of incubation in OM, was found to be significantly higher for 

NT and NT-Ca/P/Zn surfaces compared to TiP and TiE surfaces (Fig. 5.8). Moreover, hMSCs on 

NT-Ca/P surfaces released a significantly higher amount of VEGF in relation to TiE, although 

these differences were found not significant when compared to TiP surfaces. These results may 

be related with the morphological/topographical and physicochemical properties of the 

surfaces. In previous studies, surface topography and surface energy were found to regulate the 

secretion of angiogenic factors by cells, partially via α2β1 integrin signaling [97, 98]. TiO2 

nanotubular surfaces, in addition to nanotopography, are more hydrophilic (higher surface 

energy [62]) compared to Ti surfaces (results not shown). Thus, it is believed that both 

nanotopography and physicochemical features of nanotubular surfaces are influencing the 

synthesis of VEGF, probably mediated by integrin signaling pathways. Although not statistically 
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significant, there is a trend for a lower VEGF production by cells in contact with NT-Ca/P, as 

compared to NT and NT-Ca/P/Zn surfaces. However, no relation has been found between VEGF 

synthesis and the presence of Ca, which is the main difference existing between the surfaces. 

One must be highlighted that VEGF and BMP-2 play important roles in the communication 

between osteogenesis and angiogenesis [98]. In accordance with previous studies, the 

production of VEGF by osteoblasts is regulated by factors that stimulate osteogenesis, including 

BMP-2 [97, 99]. Based on this knowledge, we postulate that the lower expression level of BMP-

2 gene for NT surfaces is not compromising the synthesis of VEGF.  

 

5.4.3. Early bacterial adhesion and survival on Ti and nanotubular surfaces 

In addition to complicated infections, bacterial adhesion on implant surfaces may 

compromise the osseointegration process [1]. In this study, the early adhesion of S. aureus on 

Ti and nanotubular surfaces was investigated. The main aim was to understand the influence of 

the surface features on bacterial adhesion, as well as infer on their ability to impair their viability.  

In this study, a significantly higher number of live bacteria was adhered on TiE surfaces 

compared to NT, NT-Ca/P and NT-Ca/P/Zn surfaces (Fig. 5.9). One of the main differences 

between theses surfaces is the micro/nano topography of TiE surfaces. As compared to smooth 

surfaces, roughened substrates have demonstrated potential to enhance the adhesion and 

growth of infectious bacteria [15, 100-103].  Wu et al. [15] studied the effects of surface 

topography on S. epidermidis using clinically relevant Ti surface finishes, and they found that 

bacterial adhesion and growth was substantially higher on rough (0.830 µm < Ra < 11 µm) 

surfaces than on the Ti polished (Ra = 0.006 µm) surfaces after 24 h of culture. The observed 

differences were linked to the substantially higher roughness of the former surfaces at lengths 

scales comparable to that of bacterial colonies (several microns). Whitehead et al. [104] also 

studied the adhesion of bacteria on substrates with micrometer and sub-micrometer 

dimensions, and found that S. aureus and Pseudomonas aeruginosa (P. aeruginosa) were 

retained mainly in the largest (2 µm) surface features. On the other hand, in vitro antibacterial 

properties of nanostructured Ti surfaces have been demonstrated by several studies [25, 105, 

106]. Puckett el al. [107] examined the adhesion of S. aureus, S. epidermidis, and P. aeruginosa 

on conventional Ti (nano-smooth) and nanostructured Ti surfaces after 1 h of culture. The results 

indicated that nanorough Ti surfaces are the best surfaces for inhibiting bacterial adhesion. The 

authors explained that the decreased bacterial attachment was related with the higher surface 

energy of nanostructured Ti surfaces which increased fibronectin adsorption, and subsequently 

decreased bacteria attachment. The above mentioned studies suggest that while micron-
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roughened Ti substrates show potential to enhance the adhesion and growth of bacteria, 

nanostructured Ti surfaces display the reverse trend.  

An additional interesting outcome in this investigation is related with the remarkably 

higher number of dead bacteria on NT-Ca/P and NT-Ca/P/Zn surfaces, when compared to TiP 

and TiE surfaces. These results suggest that TiO2 nanotubular surfaces display the ability to 

impair bacterial functions in respect to their viability. Ercan et al. [25] also found that TiO2 

nanotubular structures reduced the number of live adhering S. epidermidis and S. aureus. 

However, the mechanisms behind such strong bactericidal effect of TiO2 NTs are still poorly 

understood, and controversial results are found in literature. Antimicrobial properties of TiO2 

NTs are reported to be related mainly to the following mechanisms: 1) formation of reactive 

oxygen species (ROS) in bacteria [105]; 2) disruption of bacteria membrane due to stress effects 

induced by NTs [25]; and 3) oxidative stress induced by photocatalytic activity of TiO2 [106]. In 

fact, the topographical cues of TiO2 NTs may be one of the reasons for the lower bacterial 

viability. Kang et al. [108] reported that bacterial cell membrane damage resulting from direct 

contact with single-walled carbon NTs is the probable mechanism leading to bacterial cell death. 

This mechanism was also addressed by Shi et al. [26] to explain the increased antibacterial 

activity of TiO2 NTs with diameters ranging from 30 – 60 nm. The authors suggested that physical 

contact of bacteria with NTs could induce a punch on bacteria with cell membrane ruptures and 

cytoplasm outflow, leading eventually to cell apoptosis. 

Beyond morphological/topographical characteristics, all the nanotubular surfaces present 

different chemical features as compared to Ti surfaces. These surfaces beyond TiO2, which is 

also present on Ti surfaces, are composed of adsorbed fluoride ions (Fig. 5.1c), which can inhibit 

the metabolism and growth of bacteria. Breaker [109] reported that bacteria such as Escherichia 

coli  or fungi such as Candida albicans cannot survive upon long exposure to fluoride 

approaching 250 mM, the concentration found in some fluoride toothpastes. It is believed that 

fluoride can affect bacterial metabolism through a set of actions and different mechanisms such 

as acting directly as an enzyme inhibitor [110]. Recently, Liu et al. [111] reported that the 

incorporation of fluoride ions into bioactive glasses significantly promoted the antimicrobial 

activity against periodontal pathogens. Thus, the mechanism behind the bactericidal activity of 

nanotubular surfaces compared to Ti may be also related with fluoride action by inhibiting 

enzymatic activity of bacteria. Furthermore, although not statistically significant, the number of 

live and dead bacteria adhered on NT-Ca/P surfaces was found lower and higher, respectively, 

when compared to bacteria adhered on NT and NT-Ca/P/Zn surfaces (Fig. 5.9), suggesting that 

Ca and P also may influence bacteria viability. However, further studies should be performed to 

better understand the simultaneous action of topographical and physicochemical features of 
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TiO2 NTs, on the significant decrease and increase of live and dead adhered bacteria, 

respectively. 

 

 

TiO2 NTs enriched with Ca, P and Zn were successfully synthesized by reverse polarization 

anodization treatments carried out over conventional TiO2 nanotubular surfaces. The influence 

of bio-functionalized TiO2 NTs on the biological performance of MG-63 and hMSCs cells was 

investigated, together with their ability to display antimicrobial properties. Henceforward the 

main outcomes of this study are highlighted: 

- Bio-functionalized TiO2 nanotubular surfaces are biocompatible for MG-63 and hMCS 

cells. 

- TiO2 nanotubular surfaces modulated the morphology of MG-63 and hMSC cells: both 

cells presented a more stretched morphology compared to Ti smooth and rough surfaces. 

- Although a high density of filopodia was found for cells adhered on Ti and nanotubular 

surfaces, significant differences were found between them: thinner and longer filopodia were 

found on Ti contrasting with thicker and shorter extensions on NTs, with these latter suggesting 

stronger cell-surface adhesion properties. 

- The expression of BMP-2 was found down-regulated in hMSCs adhered on 

conventional TiO2 NTs compared to Ti, which was reflected in a down-regulation of OPN. 

- OPN gene expression is probably regulated by BMP-2 levels: the enrichment of TiO2 

nanotubular surfaces with Zn significantly enhanced the expression of BMP-2, which was 

reflected in the up-regulation of OPN. 

- All TiO2 nanotubular surfaces induced the release of significantly higher amount of 

VEGF as compared to smooth and micro/nano-roughened Ti surfaces; 

- TiO2 nanotubes, before and after bio-functionalization, presented significantly 

enhanced antimicrobial properties compared to Ti surfaces. 

Taking together the enhanced BMP-2 and OPN expression levels along with the higher 

amount of VEGF produced, these results suggest that the combined effect of TiO2 nanotubular-

textured surfaces with the surface enrichment with Ca, P, and Zn, is a very promising approach 

to promote bone formation, remodeling and vascularization processes, thereby improving 

implant osseointegration. Simultaneously, these surfaces display antimicrobial properties 

coming up with new insights for the development of efficient bio-selective surfaces for 

osseointegrated implants applications. 
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It has been shown that the synthesis of TiO2 nanotubes by anodization provides 

outstanding properties to Ti surfaces intended for dental and orthopedic implants applications. 

Beyond the very well-known potential of these surfaces to improve osseointegration and avoid 

infection, the knowledge on the adhesion and degradation behavior of TiO2 nanotubes under 

the simultaneous action of wear and corrosion is still poorly understood and these are issues of 

tremendous importance. The main aim of this work is to investigate, for the first time, the tribo-

electrochemical degradation behavior of Ti surfaces decorated with TiO2 nanotubes before and 

after bio-functionalization treatments. 

Well-aligned TiO2 nanotubes (NTs) were produced containing elements natively present 

in bone such as calcium (Ca) and phosphorous (P), in addition of zinc (Zn) as an antimicrobial 

agent and stimulator of bone formation. The synthesis of Ca/P/Zn-doped nanotubes (NT-

Ca/P/Zn) was achieved by reverse polarization and anodization treatments applied to 

conventional TiO2 nanotubes grown by two-step anodization.  The nanotube surfaces were 

analyzed by scanning electron microscopy (SEM) while dark-field scanning transmission electron 

microscopy (STEM-DF) was used to characterize the Ti/TiO2 nanotubular films interfaces. Tribo-

electrochemical tests were conducted under reciprocating sliding conditions in artificial saliva. 

The open circuit potential (OCP) was monitored before, during and after sliding tests, and the 

coefficient of friction (COF) values were registered during rubbing action. The wear tracks 

mailto:lrocha@fc.unesp.br
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resulting from sliding tests were characterized by SEM and wear volume measurements were 

carried out by 2D profilometry. 

The results show that the tribo-electrochemical behavior of TiO2 nanotubes was 

significantly improved after bio-functionalization treatments. The higher electrochemical 

stability and lower mechanical degradation of these films was correlated with their improved 

adhesion strength to Ti substrate, which is granted by the nano-thick oxide film formed at the 

interface region, during bio-functionalization processes. A first insight on the degradation 

mechanisms taking place during tribo-electrochemical action is proposed. The outcomes of this 

study may contribute in a great extent for the development of new implant surfaces with 

improved biomechanical stability and thus contribute for the long term success of dental 

implants. 

 

Keywords: TiO2 nanotubes; Bio-functionalization; Film adhesion; Tribocorrosion; Dental 

implants. 

 

 

Titanium (Ti) and Ti alloys are the gold standard materials for dental implants applications 

mainly owing to their superior mechanical properties, biocompatibility and excellent corrosion 

resistance [1]. It is well documented that biocompatibility and corrosion resistance properties 

are mainly dictated by the formation of a well-adhering, dense and protective passive TiO2 film 

(2 – 10 nm thickness) on the Ti-based materials surface when exposed to oxygen-containing 

environments [2-5]. However, despite the high corrosion resistance of Ti, the stability of the 

passive film may be modified in the presence of aggressive in vivo conditions, enhancing the 

corrosion process [6-9]. Furthermore, Ti-based materials display poor wear resistance, 

presenting severe adhesion wear and low abrasion resistance [9-12]. 

After implantation and the establishment of an adequate contact between bone and the 

implant surface (osseointegration), dental implants might be subjected to mechanical 

solicitations arising from biting forces generated during mastication. The masticatory action may 

induce cyclic micro-movements at the implant/bone interface and consequently to shear 

stresses at that place [9, 13]. This occurs in the presence of a corrosive biological environment 

leading to the degradation of the dental implant material simultaneously by wear and corrosion 

processes, a phenomenon known as tribocorrosion [14-16]. As a consequence of wear-corrosion 

processes taking place at implant /bone interface, wear debris and corrosion products may be 

released to the implant surroundings and induce to adverse biological reactions and, ultimately, 

lead to implant loosening [17-19]. In spite of the negative impact that tribocorrosion processes 
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may have on the long term biological and mechanical stability of dental implants, the 

development of new implant systems addressing an integrated approach, which includes wear-

corrosion resistance as a pre-requisite for implant success, is still lacking. 

Recent advances in the fabrication of novel coatings and nanopatterning of dental implant 

surfaces have been achieved and there is a strong believe that nanoscale materials will produce 

the new generation of implant materials [20]. In the last decades, vertically aligned TiO2 

nanotubes grown in Ti surfaces by electrochemical anodization have become increasingly 

popular to enhance adhesion, growth and accelerate the osteogenic differentiation of 

osteoblasts and mesenchymal stem cells (MSCs) [21-26]. Furthermore, these nanostructures 

have shown the ability to display antimicrobial properties and thus inhibit microbial infections 

[27-35]. Additionally, TiO2 nanotubes possess a lower elastic modulus (36 – 43 GPa) than cp-Ti 

(120 – 166 GPa), which is closer to that of natural bone (11 – 30 GPa), and thus TiO2 nanotubular 

structured Ti surfaces are expected to have improved biomechanical compatibility, by reducing 

stress shielding effect [36-39].  

TiO2 nanotubes have been functionalized through different approaches in an attempt to 

develop new strategies for the construction of biomimetic systems mimicking the natural 

extracellular micro-environments, addressing osseointegration [23, 40-42] and microbial 

implant-infection related issues [43, 44]. Beyond all the evidences that TiO2 nanotubes may 

effectively enhance cellular functions while simultaneously decrease bacterial action [45], the 

study of the adhesion properties of nanotubular films to the Ti substrate as well as their 

degradation mechanisms by wear-corrosion processes are still missing. These topics are of main 

relevance since poor adhesion strength of TiO2 films before and/or after functionalization 

treatments, as well as their degradation through wear and corrosion mechanisms, may strongly 

compromise their use for osseointegrated implants applications. The biomechanical stability 

must be ensured after implantation since it might influence the implant lifetime, the probability 

of failure and thus the quality of life for implant receiving patients. 

In this work the tribo-electrochemical degradation behavior of TiO2 nanotubes before and 

after bio-functionalization processes is studied, for the first time, through reciprocating sliding 

tests in artificial saliva. A first insight on the tribo-electrochemical degradation mechanisms of 

TiO2 nanotubes was proposed, and remarkable differences were observed between 

conventional and bio-functionalized TiO2 nanotubes. 

 

 

 



Chapter 6 

 

 
150 

 

6.2.1. Surface pre-treatment 

Commercially pure titanium (cp-Ti, ASTM grade 2) rod (MacMaster-carr, IL, USA) was cut 

into discs of 15 mm diameter and 2 mm thickness. A series of silicon carbide (SiC) sandpapers 

from #240 to #1200 were used to ground cp-Ti disc surfaces followed by their polishing. The 

surface mirror finishing was achieved by using a polishing cloth with non-crystallizing colloidal 

silica suspension (MasterMet 2, Buehler, Lake Bluff, IL, USA). After polishing, the cp-Ti samples 

were cleaned in the ultrasonic bath in isopropanol (10 min) followed by distilled water (5 min), 

and finally dried at room temperature. Cp-Ti smooth surfaces were the substrates used in this 

study and were taken as the control group, named as Ti.  

 

6.2.2. TiO2 nanotubes synthesis and bio-functionalization 

The synthesis of TiO2 nanotubes relied on two-step anodization processes carried out in 

an organic electrolyte constituted of ethylene glycol (EG, Fluka Analytical, St. Louis, MO, USA), 

0.3 wt. % ammonium fluoride (NH4F, Ammonium Fluoride, Sigma-Aldrich, St. Louis, MO, USA) 

and 3 vol. % distilled water. The anodization processes were conducted at room temperature 

(22 to 24 oC) and the electrolyte was under continuous magnetic agitation (150 rpm). A DC power 

supply (Keysight (Agilent) Technologies N5772A) was used for the anodic treatments with a 

limiting current of 2.5 A. 

For TiO2 nanotube fabrication, firstly, Ti smooth samples (anode) were immersed in the 

EG electrolyte jointly with a graphite rod (cathode), separated at a distance of about 2 cm, and 

the power supply was set at 60 V for 1 h. Afterwards, the samples were ultrasonically cleaned in 

isopropanol (15 min) and distilled water (5 min) aiming to intentionally remove the nanotubular 

film grown in Ti surfaces during the first anodizing step, and create a nanopatterned Ti surface 

with nanotube bottom shape imprinted on it. Finally, these nanopatterned surfaces were 

anodized for 30 min at the previous conditions, to synthesize the TiO2 nanotubular films with 

the desired morphology. At the end of the process, the samples were cleaned in isopropanol (10 

min), distilled water (5 min) and dried at room temperature. The resulting Ti samples with TiO2 

nanotubes were named as NT.  

The NT samples previously synthesized were bio-functionalized by following a new 

methodology described in a previous work [46], which relies on reverse polarization and 

anodization treatments. The processes were carried out in a continuously stirred (200 rpm) 

aqueous electrolyte composed of 0.35 M calcium acetate (Calcium acetate monohydrate, Sigma-

Aldrich, St. Louis, MO, USA), 0.04 M β-glycerolphosphate (β-GP) (β-glycerolphosphate disodium 
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salt pentahydrate, Sigma-Aldrich, St. Louis, MO, USA) and 0.35 M zinc acetate (Zinc acetate 

dihydrate, Sigma-Aldrich, St. Louis, MO, USA) as the source of Calcium (Ca), Phosphorous (P) and 

Zinc (Zn), respectively. The cathodic and anodic treatments were conducted at room 

temperature (22 – 24 oC) using a DC power supply (Keysight (Agilent) Technologies N5772A) set 

at a limiting current of 2.5 A. For bio-functionalization of TiO2 nanotubes, the NT samples were 

immersed in the aqueous electrolyte containing Ca, P and Zn elements (Ca/P/Zn-based 

electrolyte), distanced 2 cm from a graphite rod. Afterwards, the samples were reverse polarized 

for 30 s, followed by anodization in the same electrolyte for 30 min at 100 V. Finally, the samples 

were cleaned in isopropanol (10 min), distilled water (5 min) and dried at room temperature. 

The resulting Ti samples decorated with Ca, P and Zn-doped TiO2 nanotubes were named as NT-

Ca/P/Zn. After preparation, the samples were stored in a desiccator before performing 

tribocorrosion tests. 

 

6.2.3. Surface and cross-section characterization of the TiO2 nanotubular films 

The surface morphology of TiO2 nanotubular samples was investigated by scanning 

electron microscopy (SEM) using a JEOL JSM-6490LV. The surface chemistry of bio-

functionalized nanotubes was accessed by energy-dispersive X-ray spectroscopy (EDS) (Pegasus 

X4M), using an acceleration voltage of 15 kV.  

A dual beam instrument equipped with focused ion beam (FIB) with a gallium (Ga) ion 

source (TESCAN, LYRA 3) was used to obtain thin cross-sections (around 100 nm thick) of the 

TiO2 nanotubular films. The samples surface was gold sputtered to improve the electrical 

conductivity during FIB preparation. To protect the thin cross-sections a platinum (Pt) layer of 1 

µm was deposited in situ using a gas injection system and 1 nA Ga+ ion current accelerated at 30 

kV. Initial etching was conducted with 5 and 2 nA at 30 keV. Thinning was performed in 4 steps 

to obtain a lamella of ~ 100 nm: 1) 1 nA/30 keV; 2) 0.1 nA/10 keV; 3) 10 pA/5 keV; and 4) 3 keV. 

The cross-sections were observed at the Ti/TiO2 nanotubes interface regions by dark-field 

scanning transmission electron microscopy (STEM-DF) using a JEOL 2100 F operating at an 

accelerating voltage of 200 kV. The length of the nanotubular films was measured from the 

samples observed by STEM. 

 

6.2.4. Tribo-electrochemical experiments 

The experimental approach used for tribo-electrochemical tests is similar to the one 

shown in a previous work by Souza et al. [13] The different groups of samples were fixed in an 

electrochemical cell with the desired surface facing upwards and in contact with the electrolyte. 

A modified Fusayama’s artificial saliva (AS) [47] was used at 37 oC (pH = 5.5), with chemical 
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composition as follows: NaCl (0.4 g/L), KCl (0.4 g/L) , CaCl2.2H2O (0.795 g/L), Na2S.9H2O (0.005 

g/L), NaH2PO4.2H2O (0.69 g/L) and Urea (1 g/L). This electrolyte has been widely used in previous 

investigations [13, 48-50] to simulate the highly corrosive oral cavity environment with Cl−, F−, 

and H+ ions, playing a significant role on corrosion of dental implant materials [51]. Another 

reason for its use is related with the similar electrochemical behavior that metallic materials 

display in Fusayama´s saliva compared to the one in natural saliva [52]. The exposed surface 

area to AS was fixed at 0.63 cm2. 

The electrochemical cell was mounted on a CETR tribometer (Model UMT 2, Campbell, 

California, USA) in a pin-on-disk configuration, and an alumina (Al2O3)  ball (Ø 10 mm) was 

selected as the counterbody material since it has high wear resistance, chemical inertness and 

electrical insulating properties [9]. A three-electrode setup was used with testing samples as the 

working electrode, a Pt counter electrode, and a saturated calomel electrode (SCE) 

(Hg/Hg2Cl2/saturated KCl solution; SCE = +244 mV vs. NHE) was used as the reference electrode. 

For tribo-electrochemical experiments, the open circuit potential (OCP) was monitored 

prior to rubbing action until stabilization, during the whole duration of sliding and after the 

mechanical action, during 1800 s. The electrochemical measurements were carried out using a 

potentiostat Gamry Reference 600 coupled to Gamry framework software (Gamry Instruments, 

Warminster, PA, USA). The reciprocating sliding tests against alumina ball were performed at a 

normal load of 1 N, a sliding frequency of 1 Hz, and a linear displacement amplitude of 650 µm 

during 300 s and 1800 s. The tribometer was coupled to UMT-2 software (Campbell, California, 

USA) to monitor the tangential force during sliding, from which the friction coefficient (COF) was 

calculated. After testing, all the samples were ultrasonically cleaned with isopropanol during 10 

minutes followed by distilled water for 5 minutes. Finally all the samples were dried at room 

temperature. It is noteworthy that all the experiments were performed for a minimum number 

of three samples for each condition, to assure the repeatability of the results.  

 

6.2.5. Characterization of the wear tracks 

After tribo-electrochemical experiments all the wear tracks were deeply analyzed. The 

morphological and chemical features of the wear scars were investigated by SEM (FEI Nova 200 

(FEG/SEM)) and EDS (Pegasus X4M). 

To calculate the volume of the degraded material from the samples exposed to tribo-

electrochemical action (wear volume), the model previously described by Doni et al. [53]  was 

followed. The wear track length was taken constant for all the tests as 650 µm, and the borders 

of the wear tracks were assumed as part of a calotte. The width and the deepness of the wear 

tracks were extracted from their profiles obtained by 2D profilometry (Veeco, Dektak 150) and 
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the data analysis was performed with the aid of the affiliated software (Dektak version 9.4). For 

each wear track, three 2D profiles were taken in its central region. The final wear volume was 

calculated through the following equation: 

 

𝚫𝐕 = [
𝟏

𝟑
∗ 𝛑 ∗ �̅�𝟐(𝟑𝐑 − �̅�)] + �̅�𝐰 ∗ 𝐥       (1) 

 

where 𝛥𝑉 is the total wear volume loss for each wear track in µm3, �̅� is the average deepness 

values, R is the radius of the alumina ball (counterbody), �̅�𝑤 is the average value of the wear 

loss area calculated from 2D profiles (obtained directly through the software), and l is the total 

length of the wear track (i.e. 650 µm). The final wear volume measurements were calculated 

from three wear tracks for each condition of test. 

 

6.2.6. Statistical analysis 

Data presented in this study are expressed as the arithmetic mean ± standard deviation 

(SD). The statistical tool SigmaStat 3.5 (Systat Software, San Jose, CA, USA) was used for 

statistical analysis. The evaluation of the data was carried out by one-way analysis of variance 

(ANOVA) in combination with Tukey HSD post hoc test for pair-wise comparisons between 

groups, with a significance level of p < 0.05.  

 

 

6.3.1. Characterization of TiO2 nanotubular films 

Titanium (Ti) smooth surfaces depicted in Fig. 6.1a were treated by two-step anodization 

in an ethylene glycol electrolyte containing fluoride (F-) ions. Well-ordered Ti dioxide (TiO2) 

nanotubes were grown from Ti surfaces, whose morphology is shown in Fig. 6.1b. The nanotubes 

are characterized by non-uniform diameters ranging from 50 – 90 nm as reported in a previous 

study [46]. The anodized Ti surfaces present a homogenous morphology, with TiO2 nanotubular 

structures uniformly distributed along the surface area without film cracking. After bio-

functionalization treatments by reverse polarization and anodization, zinc (Zn) was incorporated 

on nanotubular structures together with calcium (Ca) and phosphorous (P) without changing 

their surface morphology, as shown in Fig. 6.1c and Fig. 6.1d.  

The cross-section of the nanotubular films, before and after bio-functionalization 

treatments, are shown in Fig. 6.2a and b respectively. Conventional anodic TiO2 nanotubular 

films are characterized by a non-continuous interface as observed in Fig. 6.2a. The presence of 

a hollow space between the film and the Ti substrate is observed suggesting a poor adhesion of 
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the film. The interface of NT-Ca/P/Zn films present distinctive features as observed in Fig. 6.2b. 

This interface, beyond presenting some porosity at the nanoscale range, shows that the voided 

space existing before is not continuous anymore due to the formation of an oxide film during 

bio-functionalization treatments, with a thickness comprised between 230 – 250 nm.  

 

Fig. 6.1. SE SEM micrographs of (a) Ti, (b) NT and (c) NT-Ca/P/Zn surfaces. The inset images show the surface 

morphology in more detail. In (d) the EDS spectrum characteristic of NT-Ca/P/Zn samples is depicted. 

 

 

Fig. 6.2. STEM-DF micrographs of the FIB sections of (a) NT and (b) NT-Ca/P/Zn nanotubular films at the interface 

region. The inset white arrow in (a) highlights the hollow space existing between Ti substrate and NT film while in (b) 

shows the nano-pores existing at the interface instead of a continuous hollow space. In (b) is also depicted the nano-

thick oxide film (230 – 250 nm) formed during bio-functionalization treatments. 
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6.3.2. Tribo-electrochemical behavior of TiO2 nanotubular films  

6.3.2.1. Electrochemical behavior before, during and after sliding 

The evolution of the open circuit potential (OCP) before, during and after reciprocating 

sliding tests is shown in Fig. 6.3a. Before sliding Ti, NT and NT-Ca/P/Zn samples were immersed 

in artificial saliva (AS) and the OCP was recorded until stabilization. After the period of 

stabilization and before mechanical solicitations, the OCP of non-treated and Ti treated samples 

stabilized at different values, revealing their different tendencies to corrosion. As observed in 

Fig. 6.3a, NT-Ca/P/Zn samples display the highest OCP values (0.13 V vs. SCE) and so the lowest 

tendency to corrode, followed by NT (-0.15 V vs. SCE) and Ti smooth (-0.4 V vs. SCE) samples. 

The higher OCP values noticed for anodized Ti samples might be related with the presence of 

protective TiO2 nanotubular films in their surfaces. The lower tendency to corrosion of TiO2 

nanotubes compared to Ti, has been already reported in previous studies [54, 55]. The improved 

electrochemical behavior observed for TiO2 nanotubes after bio-functionalization processes 

maybe ascribed to the protective nano-thick oxide film formed at the interface region, as it will 

be further on discussed in more detail. This trend is kept during the whole duration of sliding 

and also afterwards. 

As soon as the mechanical solicitations start on Ti smooth samples a fast and significant 

potential drop is observed from -0.4 V vs. SCE down to approximately -0.8 V vs. SCE, indicating 

the quick disruption and/or removal of the TiO2 native layer (depassivation) due to the rubbing 

action of the alumina counterbody [9]. Once Ti oxide film is mechanically depassivated, the bare 

Ti surface becomes in contact with fresh electrolyte and thus exposed to its corrosive effects, 

which causes a lowering in the OCP, whose final value is dependent on the surface ratio of 

passive-to-active material [56]. Small variations in the OCP values are observed during the whole 

duration of rubbing action, due to the successive depassivation/repassivation phenomena 

taking place in between mechanical contact events in the wear track. This 

depassivation/repassivation behavior of Ti immersed in AS was already reported by Souza et al. 

[13]. At the time sliding is finished, the OCP immediately evolves to higher values due to the 

progressive re-growth of the passive film (repassivation) in the wear track.  

As soon as NT samples are submitted to rubbing action (Fig. 6.3a – red curve) the OCP is 

maintained stable for approximately 100 s and then a monotonic decrease takes place during 

the whole duration of sliding, reaching the lowest value of -0.3 V vs. SCE. This behavior suggests 

that during the first moments of sliding the TiO2 nanotubes were able to withstand the 

mechanical action and protect the Ti substrate against corrosion. As soon as the mechanical 

interaction is stopped the OCP progressively and slowly evolves to higher values, revealing a 

gradual repassivation of the wear track. It is evident that after the period of stabilization, the 
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OCP of NT samples reaches a lower value than the one initially recorded before sliding. This 

indicates that the electrochemical features in the worn area were changed after mechanical 

solicitations.  

For NT-Ca/P/Zn samples a distinct behavior is observed compared to Ti and NT samples. 

As soon as the sliding starts the OCP drops and, immediately after, it goes back to noble values 

reaching a steady state for approximately 1000 s.  After this plateau the OCP goes down until 

approximately -0.1 V and afterwards, it slightly evolves to higher values until the rubbing action 

is stopped. Once it is finished an uninterrupted repassivation occurs and at the end, the OCP 

reaches a stable and similar value to the one attained during the first plateau observed during 

the first 1000 s of sliding. For a better understanding of this behavior, additional reciprocating 

sliding tests were carried out for NT and NT-Ca/P/Zn samples for a shorter sliding period of 300 

s. The OCP evolutions before, during and after the sliding tests carried out at this condition are 

depicted in Fig. 6.3b. 

 

Fig. 6.3. Evolution of the open circuit potential (OCP) before, during and after reciprocating sliding tests in Ti, NT and 

NT-Ca/P/Zn samples during (a) 1800 s and (b) 300 s. The tribo-electrochemical experiments were performed in AS at 

a sliding frequency of 1 Hz, a load of 1N and a displacement of 650 µm.  

 

Considering NT samples, as soon as the sliding starts no significant potential variation is 

detected during approximately 100 s, as previously observed. After this period, the OCP drops 

gradually down until the end of rubbing action, as can be seen in more detail in the inset graph 

in Fig. 6.3b (red curve). Once the sliding is stopped the OCP tends to slightly increase and stabilize 

in a lower value than the one reached before sliding. This behavior demonstrates that a short 

period of mechanical solicitations on NT surfaces is enough to modify the electrochemical 

features of the worn area. A distinctive behavior is observed for NT-Ca/P/Zn surfaces. As 

depicted in more detail in the inset graph in Fig. 6.3b (blue curve), the mechanical solicitations 

leads to a decrease in the OCP followed by a fast recovery to higher values, after which a steady 

is reached. As the mechanical solicitations are stopped, the OCP goes back to the level before 
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sliding, suggesting a complete recovery of the electrochemical properties of the film by 

repassivation in the wear track.  

The evolution of the repassivation potential with time (repassivation kinetics) was 

calculated 300 s after the rubbing process was stopped, in accordance with the model reported 

by Hanawa et al. [57]. The repassivation kinetics was calculated using the following equation: 

ΔV = 𝑘1 ∗ 𝑙𝑜𝑔(𝑡) + 𝑘2                  (2) 

where ΔV is the potential variation, t is the time after interrupting the sliding, k1 represents the 

rate of repassivation and k2 is a constant. These parameters were determined for sliding tests 

carried out for 1800 s, by fitting measured values to the equation 2. The repassivation kinetics 

is significantly higher (p < 0.05) for NT-Ca/P/Zn samples (0.046 ± 0.011 V/s) compared to NT 

samples (0.007 ± 0.002 V/s), which is in accordance with the significantly higher increase in the 

OCP after the end of sliding tests for bio-functionalized nanotubes (Fig. 6.3a – blue curve). As 

stated by Wood [15], the ability of a film to repassify quickly after its mechanical damage, is the 

key to being able to reduce the dissolution losses during wear-corrosion. As regards the 

repassivation rate of Ti samples (0.125 ± 0.01 V/s), it is significantly higher (p < 0.001) compared 

to both nanotubular samples. 

 

6.3.2.2. Coefficient of friction evolution during sliding 

The coefficient of friction (COF) evolution during sliding tests was recorded together with 

OCP and is shown in Fig. 6.4. For Ti smooth samples the COF was maintained relatively constant 

throughout the whole duration of sliding around a mean value of 0.5 (Fig. 6.4a). This is the 

expected value for the tribological pair Ti surface/alumina ball, as reported in previous studies 

[13, 58]. Some oscillations are observed in the COF measured during sliding, which may be 

ascribed to the release of wear particles in the contact region (third body particles), with part of 

them being either accumulated or ejected out of the contact region as sliding keeps on [9, 13].  

Regarding NT samples, a short running-in-period is observed during the first 100 s, which 

is related with the period during which the OCP is maintained stable (Fig. 6.4b). Afterwards, as 

long as the OCP progressively decreases, the COF is kept stable around a mean value of 0.65. 

However, approximately 600 s before the sliding is finished, the COF tends to slightly decrease 

to values near 0.6. On the NT-Ca/P/Zn samples no differences in the COF are noticed during the 

OCP plateau achieved in the first 1000 s of sliding, along which the values are kept constant 

around 0.75 (Fig. 6.4c). However, the decrease in the OCP values after this period, is 

accompanied by a slight decrease in the COF from 0.75 down to 0.70. These COF values indicate 

the presence of Ti oxide film in the worn area, as they are characteristic of the tribological pair 
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Ti oxide/alumina. Similar steady state COF values comprised between 0.6 – 0.8 were reported 

for reciprocating sliding tests carried out against alumina ball on anodized Ti samples [48, 49, 

58]. 

 

Fig. 6.4. Evolution of the open circuit potential (OCP) and the coefficient of friction (COF) during reciprocating sliding 

tests in (a) Ti, (b) NT and (c) NT-Ca/P/Zn samples during 1800 s. The tribo-electrochemical experiments were carried 

out in AS at a sliding frequency of 1 Hz, a load of 1N and a displacement of 650 µm.  

 

6.3.2.3. Characterization of the wear tracks 

The SEM micrographs representative of the wear tracks resulting from tribo-

electrochemical tests are shown for Ti, NT and NT-Ca/P/Zn samples in Fig. 6.5a, b and c, 

respectively. The SEM images are shown both in secondary electrons (SE) and backscattered 

electrons (BSE) imaging modes, for a better understanding of the topographical and elemental 

features of the worn areas. The intensity of the BSE signal is related with the atomic number of 

the elements present in the sample since as higher the atomic number is, stronger the BSE signal. 

A region characterized by high atomic number elements is traduced in a brighter image and so, 

BSE images may provide important information on the elemental distribution along the wear 

tracks, with darker regions being related to the most oxidized areas (e.g. Ti oxides) once O has a 

lower atomic number than Ti. 

The wear track morphology of Ti samples is shown in Fig. 6.5a, which presents curved 

borders, similar to the wear track morphology previously observed by Marques et al. [59] after 

reciprocating sliding tests on Ti immersed in AS with an alumina sphere. In Fig. 6.5b is clearly 

shown the irregular shape of the wear track of NT compared to Ti samples, as a result of 

nanotube film detachment from the Ti substrate.  From BSE image, it is observed that a large 

part of the film was detached from the periphery of the contact area, since the brighter areas 

are correspondent to Ti substrate. This is an indicator of the poor adhesion of TiO2 nanotubes to 

Ti. In the central area of this wear track, which corresponds to the sliding contact area, it is 

observed a darker region probably associated to wear debris resulting from film degradation, 

which have become entrapped and compacted generating a tribolayer. As observed in Fig. 6.5c 

the wear track on NT-Ca/P/Zn samples present huge differences compared to the one on NT 

samples. This wear track presents a completely different shape, with no signs of film detachment 
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on its periphery. From BSE image it is observed that the film has been removed from the central 

part of the wear track (brighter areas), however, a large area is still protected with film. This is 

an indicator that bio-functionalized nanotubes display an improved ability to withstand cyclic 

mechanical solicitations avoiding film detachment, probably due to the improved adhesion 

strength of bio-functionalized TiO2 nanotubes to the Ti substrate. The higher mechanical 

destruction of NT samples is emphasized by their wear track length (1348 ± 37.5 µm), which is 

significantly higher (p < 0.001) compared to the maximum length measured on Ti (894.4 ± 62.8 

µm) and NT-Ca/P/Zn (842 ± 37.4 µm) wear tracks.  

 

Fig. 6.5. SE/BSE SEM micrographs of the wear tracks resulting from tribo-electrochemical tests in (a) Ti, (b) NT and (c) 

NT-Ca/P/Zn samples for 1800 s of sliding duration. The maximum wear tracks length is included in BSE images for all 

the groups. The tribo-electrochemical experiments were carried out in AS at a sliding frequency of 1 Hz, a load of 1N 

and a displacement of 650 µm.  

 

Higher magnification SEM images were took in the border (A1) and in the central region 

(A2) of the wear tracks, as indicated by the inset red squares in Fig. 6.5a, b and c. These images 

are shown in Fig. 6.6. Regarding Ti samples (Fig. 6.6a and b), ploughing lines aligned in the 

direction of the sliding movement are observed probably resulting from third body particles 

entrapped in the contact region leading to a predominant abrasive wear mechanism. 

Furthermore, extensive plastic surface deformation is observed along the wear track resulting 

from the high and continuous contact pressure applied on the surface during rubbing with the 

harder ceramic counterbody [59], with maximum Hertzian contact pressure being estimated as 

400 MPa.  

As observed in Fig. 6.6c, the irregular border of the wear track of NT samples shows clear 

signs of film detachment. The presence of cracks are identified in the film outside the worn area, 

which might suggest film degradation by fatigue wear and film delamination. In the middle part 

of the worn area (Fig. 6.6d) severe plastic deformation and ploughing lines are observed in 
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parallel to the direction of the counterbody movement showing evidences of abrasion. The wear 

debris coming out from film detachment may either act as abrasive bodies or get pressed 

between the two sliding bodies forming a compacted oxide layer between each other, as 

observed in Fig. 6.6d. As regards NT-Ca/P/Zn samples, abrasive wear marks are observed in SE 

image shown in Fig. 6.5c, along with plastic deformation of the nanotubular film (Fig. 6.6e and 

f). No signs of film detachment in the periphery of the wear track are observed, together with 

the absence of film cracking. For all the samples, mechanical wear also occurred by adhesion 

phenomena, through material transfer from the materials surface to the alumina ball, as 

observed under naked eyes after sliding tests. Wear of anodized Ti samples by abrasion and 

adhesion mechanisms have been previously identified in other studies [14, 59, 60].  

 

Fig. 6.6. SE SEM micrographs of the wear tracks of (a and b) Ti; (c and d) NT; (e and f) NT-Ca/P/Zn samples in the 

border and central regions. These are higher magnification images of the areas highlighted by the inset red squares 

in Fig. 6.5, named as A1 (border) and A2 (center). The tribo-electrochemical experiments were carried out in AS for 

1800 s at a sliding frequency of 1 Hz, a load of 1N and a displacement of 650 µm.  

 

Detailed SEM micrographs in the border and central regions of the wear tracks are shown 

in Fig. 6.7 for NT and NT-Ca/P/Zn samples. From BSE images shown in Fig. 6.7a is clear the entire 

detachment of TiO2 nanotubes from the periphery of the sliding contact area. In the central 
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region of the wear track (Fig. 6.7b) it is observed part of the compacted oxide film (darker region) 

and the Ti substrate in the underlying plan (brighter region). From higher magnification images 

took in the border of the wear track of NT-Ca/P/Zn samples (Fig. 6.7c) is observed that the film 

is organized in different layers, which are structured in different plans. No signs of complete 

detachment of the film is found in this region, and interestingly, it is observed that the 

nanotubes still maintain their integrity in the subsurface plans (inset image in Fig. 6.7c). In the 

uppermost part of the film it seems that the wear debris became entrapped in the open pores 

of the nanotubes filling them up and, in some cases, covering the nanoporous structure. The 

wear track in the central region (Fig. 6.7d) presents similar characteristics with nanotube 

structures obstructed in the outermost part of the film, and remaining undamaged in the 

underlying plans (inset image in Fig. 6.7d). From BSE image it is evident that the nanotubular 

film detached from specific areas, as highlighted in the figure. 

 
Fig. 6.7. BSE SEM micrographs of the wear tracks of (a and b) NT; (c and d) NT-Ca/P/Zn samples in the border and 

central regions. The inset images in (c) and (d) show that TiO2 nanotubes survived both in the border and central 

regions of the worn NT-Ca/P/Zn samples. The tribo-electrochemical experiments were carried out in AS for 1800 s at 

a sliding frequency of 1 Hz, a load of 1N and a displacement of 650 µm.  

 

The elemental composition of the wear tracks was investigated. EDS spectra were 

acquired from two different regions, the less oxidized (brighter areas – A1) and the most 

oxidized (darker areas – A2), as depicted in Fig. 6.8a and b for NT and NT-Ca/P/Zn wear tracks, 

respectively. From Fig. 6.8a it is confirmed both the presence of Ti in the brighter areas and the 

presence of Ti oxide in the darker ones. Elements present in the electrolyte such as P, potassium 

(K) and Ca were also detected in the oxidized regions. The same observations were found for 
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NT-Ca/P/Zn wear tracks. In this case, the detection of Ca and P elements may be also related 

with the composition of NT-Ca/P/Zn films.  

 

Fig. 6.8. BSE SEM micrographs in the central region of the wear tracks of (a) NT and (b) NT-Ca/P/Zn surfaces. The EDS 

spectra acquired from the inset squares (A1 and A2) are shown for both groups, together with the description of the 

chemical elements found and their atomic percentages (At. %). The tribo-electrochemical experiments were carried 

out in AS for 1800 s at a sliding frequency of 1 Hz, a load of 1N and a displacement of 650 µm.  

 

In Fig. 6.9a and b the wear tracks of NT and NT-Ca/P/Zn samples resulting from 300 s 

sliding tests are shown, respectively. After 300 s of mechanical solicitations, the non-

functionalized TiO2 nanotubes detached from the contact region and neighboring areas, with 

part of the oxide film remaining in the central region of the wear track, as depicted in SE and 

BSE images in Fig. 6.9c, which are amplified from the inset red square in Fig. 6.9a. 

Scratches/grooves along with severe plastic deformation are visible inside the wear track aligned 

with the pin movement. From Fig. 6.9b it can be seen that bio-functionalized TiO2 nanotubes 

present significantly lower mechanical damage with no signs of film detachment, as evident 

from higher magnification images shown in Fig. 6.9d. 

 

6.3.2.4. Wear volume and wear track profiles 

Wear volume measurements were carried out based on 2D profiles extracted from the 

central region of the wear tracks by 2D profilometry.  The wear volumes calculated for all the 

groups of samples submitted to sliding tests during 1800 s and 300 s are shown in Fig. 6.10. The 

wear volume estimated from wear scar dimensions is the sum of wear loss due to corrosion and 
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the wear loss due to sliding wear [60]. After tribo-electrochemical tests carried out for 1800 s, 

the wear volume of NT samples was 2.9 ± 0.4 x 106 µm3, significantly higher compared to Ti (1.9 

± 0.3 x 106 µm3) and NT-Ca/P/Zn (1.2 ± 0.2 x 106 µm3) samples. Similar results were acquired for 

sliding tests performed during 300 s, with NT samples presenting a significantly higher wear 

volume (3.2 ± 0.8 x 106 µm3) compared to NT-Ca/P/Zn samples (0.5 ± 0.4 x 106 µm3). 

 

Fig. 6.9. BSE SEM micrographs of the wear tracks of (a) NT and (b) NT-Ca/P/Zn samples after 300 s of sliding. Higher 

magnification SE/BSE SEM images were obtained from the inset red squares and are shown in (c) for NT and in (d) for 

NT-Ca/P/Zn surfaces. The tribo-electrochemical experiments were carried out in AS at a sliding frequency of 1 Hz, a 

load of 1N and a displacement of 650 µm.  

 

The 2D profiles representative of the wear tracks remaining on Ti, NT and NT-Ca/P/Zn 

samples after 1800 s sliding tests are depicted in Fig. 6.11a, while in Fig. 6.11b are shown the 

wear tracks profiles on NT and NT-Ca/P/Zn samples submitted to 300 s sliding tests. The 

maximum depth reached in the wear tracks is depicted in Table 6.1, jointly with the film 

thickness values for each different group of samples. The wear scar depth of Ti samples achieved 

a maximum value around 10.7 ± 0.4 µm, which is significantly higher than the ones measured 

on NT (7.9 ± 0.9 µm) and NT-Ca/P/Zn (7.1 ± 0.4 µm) samples. The maximum wear track depths 

measured on nanotubular samples are in the same order of magnitude of the films thickness 

(Table 6.1), indicating that in both cases the films were fully detached from the substrate. For 

sliding tests carried out for 300 s, the maximum depth of the wear track on NT samples (8.3 ± 
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1.2 µm) is significantly higher compared to NT-Ca/P/Zn samples (4.1 ± 0.1 µm) as clearly 

observed in Fig. 6.11b, which is in accordance with the significant lower wear volume measured 

for bio-functionalized samples.  

 

Fig. 6.10. Wear volume measurements after tribo-electrochemical tests carried out for 1800 s and 300 s sliding tests. 

For 1800 s SLIDING: (*) significantly different from Ti and NT-Ca/P/Zn, p < 0.05; for 300 s SLIDING: (*) significantly 

different from NT-Ca/P/Zn, p < 0.001. The tribo-electrochemical experiments were carried out in AS at a sliding 

frequency of 1 Hz, a load of 1N and a displacement of 650 µm. 

 

 

Fig. 6.11. 2D profiles obtained by profilometry in the central region of the wear tracks of Ti, NT and NT-Ca/P/Zn 

samples after sliding tests carried out for (a) 1800  and (b) 300 s. The tribo-electrochemical experiments were carried 

out in AS at a sliding frequency of 1 Hz, a load of 1N and a displacement of 650 µm. 

 

Table 6.1. Maximum depth of the wear tracks on Ti, NT and NT-Ca/P/Zn samples after 1800 s and 300 s sliding tests. 

The thickness of NT and NT-Ca/P/Zn films is also presented.   

Group Maximum wear track depth (µm) 
 

1800 s SLIDING                                        300 s SLIDING 

Film thickness (µm) 

Ti 10.7 ±  0.4 - - 

NT 7.9 ± 0.9 * 8.3 ± 1.2 6.1 ± 0.1 

NT-Ca/P/Zn 7.1 ± 0.4 * 4.1  ± 0.1 # 4.6 ± 0.1 

(*) significantly different from Ti, p < 0.05;  (#) significantly different from NT, p < 0.05. 
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6.4.1. Surface and interfacial features of TiO2 nanotubular films 

TiO2 nanotubes were grown from Ti smooth surfaces presenting a bone-inspired 

morphology at a nanoscale (Fig. 6.1b). The well-ordered structure of the nanoarrays was 

achieved by two-step anodization of Ti in an organic electrolyte containing fluoride (F-) ions. This 

methodology allows the synthesis of well-aligned nanotubular films with a specific morphology, 

which is preset by the first anodization step through the production of hemispherical footprints 

on Ti smooth surfaces. The mechanisms underlying the nanotube formation by two-step 

anodization in a fluoride containing electrolyte are well documented in literature [61-64]. The 

methodology to acquire the specific surface morphology depicted in Fig. 6.1b is reported in 

detail in a previous study [46], in which the mechanisms underlying nanotube formation are 

addressed and established a correlation with the final surface morphology achieved.  

 Beyond the morphology, the surface chemistry is also known to play a crucial role on 

cellular functions [65]. The doping of TiO2 nanotubes with Ca and P elements natively present in 

bone, together with Zn, which is known to induce osteogenic differentiation and provide 

antibacterial activity [45], was successfully achieved by reverse polarization and anodization 

treatments of NT samples in a Ca/P/Zn-based electrolyte. The bio-functionalization treatments 

were applied without compromise the surface morphology previously achieved, as shown in Fig. 

6.1c. Dissimilar features are found at the Ti/TiO2 nanotubes interface before and after bio-

functionalization treatments, as revealed in Fig. 6.2a and b, respectively. Anodization of TiO2 

nanotubes induces to the growth of a nano-thick oxide film (230 – 250 nm) at the interface 

region, which appears to improve the adhesion of the nanotubular film to Ti substrate. The 

features of Ti/TiO2 nanotubes interface may influence the biomechanical stability of the film and 

thus the ability to withstand cyclic mechanical solicitations, which may compromise its long term 

success for osseointegrated implant applications. Beyond the wide range of studies reported in 

literature showing the promising features of TiO2 nanotubes, most of them are concerned with 

their impact on biological performances. No information regarding the degradation behavior of 

the nanotubular systems by the simultaneous action of wear and corrosion is reported, which is 

a subject of paramount importance. The understanding of the tribo-electrochemical behavior of 

TiO2 nanotubes before and after bio-functionalization treatments is the main aim of this work, 

and is addressed in the following section. 
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6.4.2. Tribo-electrochemical degradation mechanisms of TiO2 nanotubes before and after bio-

functionalization treatments 

After immersion of Ti, NT and NT-Ca/P/Zn samples in AS, and before sliding tests, their 

OCP stabilized at different values, reflecting different surface activation stages (Fig. 6.3a). As 

reported by Ponthiaux et al. [16] the OCP provides information on the electrochemical state of 

a material, reflecting its active or passive state. An increase in the OCP (anodic shift) indicates a 

more passive state and on the contrary, a decrease (cathodic shift) indicates a more active state. 

After the period of OCP stabilization, a dense and passive oxide film of a few nanometers is 

expected to be present on Ti smooth surfaces [54, 66], while micron-length TiO2 nanotubular 

films exist in both anodized Ti surfaces. The higher OCP achieved for NT and NT-Ca/P/Zn samples 

(Fig. 6.3a) is probably associated to the physical barrier created by TiO2 nanotubular films with 

insulating properties, providing corrosion protection to the Ti substrate by hindering current 

flow. The less active state of TiO2 nanotubes in different simulating body fluids has been 

reported in previous works [54, 55, 67, 68]. 

The fast and effective passivation behavior of NT samples was demonstrated before by 

potentiodynamic polarization studies in AS [46]. Demetrescu et al. [67] concluded that the low 

corrosion current density obtained for the TiO2 nanotube samples tested in AS, was correlated 

to the formation of a strong passive barrier layer. Furthermore, Yu et al. [54, 55] demonstrated 

that TiO2 nanotubes display better corrosion resistance compared to smooth Ti, which was also 

ascribed to the presence of a TiO2 barrier layer. Thus, the less active state achieved for 

nanotubular samples immersed in AS, is also probably related to the formation of a passive oxide 

film which protects Ti substrate against corrosion. Interestingly, significantly higher OCP values 

were achieved after bio-functionalization treatments. Bio-functionalized TiO2 nanotubes, 

beyond the fast and effective passivation ability, are also expected to display a significantly 

lower passive current in AS compared to conventional nanotubes [46], most likely due to the 

presence of a nano-thick oxide film at the interface region (Fig. 6.2b). The oxide film grown 

during bio-functionalization treatments might play a main role in corrosion, by restricting the 

movement of metal ions from the metallic surface to the surrounding medium [46]. 

Both groups of anodized Ti surfaces decorated with TiO2 nanotubes present significantly 

higher OCP values before, during and after reciprocating sliding tests compared to Ti surfaces 

(Fig. 6.3a). It is known that the OCP recorded during sliding tests is a mixed potential reflecting 

the state of the unworn material and the state of the material in the wear track [16]. Garcia et 

al. [66] proposed the concept of active wear track area to investigate the wear-corrosion 

mechanisms of passive materials under sliding conditions. The active wear track area is defined 
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as the part of the surface area that loses its passive film under mechanical loading, becoming 

activated electrochemically and suffering corrosion. 

At the time the alumina ball is loaded on NT samples and the sliding starts, the OCP keeps 

stable for approximately 100 s (Fig. 6.3a and b – red curves). This behavior indicates that the 

electrochemical passive state of the material in the wear track keeps unaltered. During this time 

the COF values are characteristic of alumina/Ti oxide tribological pair (Fig. 6.4b), thus indicating 

that the alumina ball is sliding against the TiO2 nanotubular film. After this period of sliding, the 

OCP drops down (cathodic shift) suggesting that a more active state is achieved in the wear 

track, probably related to the detachment of the nanotubular film and the exposure of the 

metallic substrate to fresh electrolyte promoting corrosion. This may initiate a galvanic coupling 

between the passive surface and the bare Ti substrate, with consequent local dissolution of Ti 

[16]. For a better understanding of the OCP evolution during tribocorrosion, Vieira et al. [69]  

emphasized two different situations may happen: 1) the establishment of a galvanic coupling 

between the completely depassivated wear track and the surrounding passive area, or 2) a 

galvanic coupling within the wear track between depassivated and still passive areas [69]. 

Regarding NT samples the galvanic coupling is probably established according to the second 

case. As the sliding goes on the OCP slowly decreases indicating a gradual depassivation in the 

wear track area. In fact, after 1800 s of sliding the nanotubular film has been completely 

detached from the Ti substrate in the sliding contact area and from its periphery, as shown in 

Fig. 6.5b.  As observed in Fig. 6.9a, the full detachment of the film occurred during the first 300 

s of sliding. 

The morphology of the wear debris resulting from tribo-electrochemical degradation of 

conventional TiO2 nanotubes is shown in Fig. 6.12a. From these SEM micrographs it is clearly 

observed that the main mechanisms assisting TiO2 nanotubular film degradation are tube 

smashing and densification in the top region, accompanied by delamination and full detachment 

of the nanotubes, through cracks formation and propagation from the surface to subsurface 

regions of the film. These mechanisms are schematically illustrated in Fig. 6.13a. It is clearly 

observed that most of the wear debris are either single or aggregated nanotubes, coming from 

nanotube film break in different parts along the film length, resulting in fragments of the tubes 

with variable dimensions. The densification of the nanotubes accompanied by wear and fracture 

was also previously observed by nanoindentation studies [36, 70]. Xu et al. [71] also studied the 

mechanical behavior of TiO2 nanotube arrays by nanoindentation and observed that as the 

indentation depth increases the nanotubes break, interacting with neighboring nanotubes 

causing them to bend and fracture, with small fragments becoming compacted gradually, 

resulting in densification. 
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Fig. 6.12.  SE SEM micrographs showing the wear debris morphology generated during tribo-electrochemical 

degradation of (a) NT and (b) NT-Ca/P/Zn samples. 

 

 

Fig. 6.13. Illustration of the tribo-electrochemical degradation mechanisms of TiO2 nanotubes in (a) NT and (b) NT-

Ca/P/Zn samples. 
 

As a result of NT film detachment after 100 s of sliding, a large amount of film debris are 

released in the contact region, with part of them being either pushed out of the contact or 

becoming entrapped in it.  As soon as the sliding goes on it is expected that the wear debris in 

the contact region are continuously exposed to mechanical and electrochemical solicitations, 
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and several actions are prone to take place simultaneously or sequentially interacting with each 

other in a complex way. One of them is the formation a compact oxide film in the central region 

of the wear track as a result of the continuous smashing/densification of the film debris, as 

observed after 1800 s (Fig. 6.5b, Fig. 6.6d and Fig. 6.7b) and 300 s (Fig. 6.9a and Fig 9c) sliding 

tests. The formation of this tribolayer may grant protection to the Ti substrate against corrosion 

and wear, and may explain both the COF and the gradual lowering of the OCP during sliding. A 

similar level of mechanical destruction of NT samples is observed after 300 s (Fig. 6.9a) and 1800 

s (Fig. 6.5b) sliding tests. This suggests that after the catastrophic NT film degradation which 

takes place between 100 s – 300 s of sliding, the tribolayer formed in the contact region has the 

ability to protect the substrate against mechanical wear as long the sliding action takes place, as 

emphasized by the similar wear volumes measured after 300s and 1800 s sliding tests (Fig. 6.11).  

Simultaneously to tribolayer formation, it is expected that during sliding some of the debris are 

pushed against the nanotubular film which is surrounding the sliding contact region, along with 

the counterbody movement. This probably induces to cyclic compressive stresses, which may 

lead to the progressive structural damage of surface and subsurface regions of the film, with 

formation and propagation of cracks and consequent delamination. This reveals the poor 

adhesion strength of TiO2 nanotubes to the Ti substrate and its brittleness. Because of the brittle 

nature of TiO2 nanotubes, they probably elastically bend up to very small strain and 

consequently, they collapse [71]. Signs of fatigue wear are visible through cracks on the 

nanotubular film surface outside the wear track (Fig. 6.6c). It is noteworthy that within crack 

formation and propagation the electrolyte may penetrate into the substrate inducing corrosion, 

which may further contribute to film detachment.  

As previously mentioned, the OCP measured during sliding is a mixed potential reflecting 

the intrinsic potentials of the materials in active and passive areas. This may explain the fact that 

beyond a large surface area of the Ti substrate is exposed to fresh electrolyte during sliding tests 

on NT samples, the minimum OCP achieved was around -0.3 V vs. SCE (Fig. 6.3a – red curve). 

Once the sliding is stopped the OCP evolves slightly to higher values and does not reach the 

initial OCP back, indicating that repassivation takes place at a rather limited oxidation rate. The 

electrochemical state of the material in the worn area was irreversibly modified as a 

consequence of sliding, with lower OCP values reflecting the more active electrochemical state 

of NT samples.  

The tribo-electrochemical behavior of NT-Ca/P/Zn samples is significantly different 

compared to NT samples which may be both ascribed to the electrochemical and mechanical 

properties of the films as well to its adhesion strength to Ti substrate. After bio-functionalization 

treatments a nano-thick oxide film is formed at the interface of TiO2 nanotubes (Fig. 6.2b) 
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providing corrosion protection to Ti [46]. In addition, this may contribute to the less active 

electrochemical state (noble OCP) that bio-functionalized TiO2 nanotubes exhibit during the 

whole duration of sliding, this also suggests that the contribution of corrosion reactions on their 

tribo-electrochemical degradation behavior is lower compared to Ti and NT films. However, 

additional studies should be performed to confirm this assumption. 

The chemical features of NT-Ca/P/Zn surfaces may also influence their OCP values. In this 

work X-ray photoelectron spectroscopy (XPS) studies were carried out, from which the presence 

of Zn was detected on these surfaces and mostly assigned to ZnO compounds (results not 

shown). From observation of potential-pH diagram of Zn it is known that zinc oxides and 

hydroxides are soluble in acid media, which is accompanied by the release of Zn2+ ions that in 

equilibrium conditions have a standard potential of -0.762 V/NHE (Zn2+/Zn) [72]. As the pH of AS 

at 37 oC is 5.5, it is expected that once NT-Ca/P/Zn samples are immersed in solution, the ZnO 

compounds are dissolved with formation of Zn2+ ions. This may explain the OCP drop in the 

beginning of mechanical solicitations and the fluctuations (cathodic shifts) registered along the 

sliding tests (Fig. 6.3a and b – blue curves). Beyond Zn, NT-Ca/P/Zn samples are also composed 

of Ca and P. From literature it is known that the corrosion resistance of Ti in simulating body 

fluids (pH = 7.4, 37 oC) is enhanced after deposition of a calcium phosphate layer on its surface 

[73, 74]. Additionally, Alves et al. [58] studied the tribocorrosion behavior of anodic films 

produced in an electrolyte containing β-glycerophosphate and different concentrations of 

calcium acetate. The authors hypothesized that the reason for the improved tribocorrosion 

behavior of the anodic films, beyond the crystalline structure, could be the higher calcium 

content. Thus, it is believed that the Ca and P elements may have a beneficial effect on the tribo-

electrochemical behavior of TiO2 nanotubes, however, the underlying mechanisms are still 

unknown.    

As soon as the mechanical solicitations starts, the OCP of NT-Ca/P/Zn samples drops and 

immediately after evolves to noble values reaching a steady state that is maintained during 

approximately 1000 s (Fig. 6.3a – blue curve). From sliding tests carried out for 300 s it is believed 

that the nanotubular film has not been fully detached out from the substrate during this first 

plateau, as suggested from SE and BSE images depicted in Fig. 6.9b and d. From wear track 

profiles shown in Fig. 6.11b it is confirmed the non-detachment of the film during the first 300 s 

of mechanical solicitations, since the maximum wear track depth is lower than the thickness of 

the film (Table 6.1) and significantly inferior to the maximum depth reached after 1800 s of 

sliding (Table 6.1). After 1000 s of sliding the OCP shifts down (cathodic shift) probably related 

to the detachment of the film with exposure of Ti substrate to the electrolyte, and thus achieving 

a more active state. As soon as the OCP decreases it is observed a slight decrease in the COF 
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values (Fig. 6.4c), which may be related with film detachment. Afterwards, the OCP slightly 

increases as long as the sliding keeps on, which might be related to the filling of the nanotubes 

with film debris, accompanied by their continuous smashing and compactness in the sliding track 

creating a kind of a compact oxide film blocking the passage of the electrolyte and protecting 

the Ti substrate from the corrosive attack. This behavior may also indicate the repassivation 

ability of these samples as long as the sliding occurs.  

From Fig. 6.7c and d it is observed that after 1800 s of sliding, the nanotubular film is 

organized in different layers in the wear track, which are found in different plans. In the topmost 

part, the nanotubes are not visible probably as a consequence of the successive mechanical 

solicitations as the rubbing action goes on. In the central region are visible some parts from 

where the fully detachment of the film took place, together with others where the nanotubes 

still maintain their integrity with well-opened pores. This suggests that the degradation of the 

film occurs gradually and by layers probably by a cracking-assisted mechanism. As a 

consequence of cyclic and compressive stresses induced on the surface and subsurface regions 

of the film, the nanotubes may crush and be smashed from the top to the inner regions. Cracks 

are visible along the wear track which may induce to film delamination. On the contrary to NT 

samples, the film cracking is restricted to the contact region and no detachment occurs in the 

vicinity of the worn area.  

The morphology of the wear debris observed after tribo- electrochemical degradation of 

bio-functionalized TiO2 nanotubes is remarkable different compared to the one observed for 

non-functionalized nanotubes, as shown in Fig. 6.12b. Most of the wear debris present smaller 

dimensions and a non-defined morphology probably as a result of the 

mechanical/electrochemical solicitations at which were imposed for a longer period of time, as 

a consequence of the improved adhesion strength of the film and its resistance to detach as long 

as the sliding takes place. Contrarily to NT samples, the mechanical degradation of NT-Ca/P/Zn 

samples seems to occur gradually. The main mechanisms assisting the tribo-electrochemical 

degradation of bio-functionalized TiO2 nanotubes may be summarized as smashing and 

densification in the top region, with gradual detachment of the film by layers, through cracks 

formation and propagation from the top to the inner regions of the film. These mechanisms are 

schematically illustrated in Fig. 6.13b.  The results above discussed are in good agreement with 

the significantly lower wear volume measured for bio-functionalized nanotubes both after 300 

s and 1800 s of sliding compared to conventional TiO2 nanotubes (Fig. 6.10).  

 Finally it is noteworthy to highlight that on unloading, the OCP of NT-Ca/P/Zn samples 

immediately starts to increase and reaches, after some time, the OCP achieved during the first 

1000 s of sliding (Fig. 6.3a – blue curve). On the other hand, if the sliding is finished after 300 s, 
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the OCP achieves the initial OCP back (Fig. 6.3b – blue curve). This suggests that if the 

nanotubular film is not completely detached during sliding, the material in the wear track has 

the ability of repassivation with the re-establishment of the initial surface passive state. 

However, once the nanotubular film peels off and comes out of the substrate, the passive state 

achieved in the first 1000 s of sliding is re-established instead of the initial one. This behavior 

shows the very strong repassivation ability of bio-functionalized nanotubes even when the 

nanotubular film is detached, suggesting that the higher OCP of these samples is related to the 

existence of the nano-thick oxide film at the interface.  

As future work it would be of upmost important to investigate the mechanical properties 

of the TiO2 nanotubes, before and after bio-functionalization. The information of the Young’s 

modulus and hardness of the films must be addressed to understand their influence on the tribo-

electrochemical degradation behavior of the films.  

 

 

The tribo-electrochemical behavior of TiO2 nanotubes before and after bio-

functionalization treatments was investigated by reciprocating sliding tests carried out in 

artificial saliva. The tribo-electrochemical behavior of bio-functionalized TiO2 nanotubes was 

significantly improved both from the electrochemical and the mechanical point of view. 

Hereafter follows the main outcomes of this study:  

- The electrochemical stability of TiO2 nanotubes is enhanced after bio-functionalization 

treatments, displaying a less active state during the whole duration of tribo-electrochemical 

tests. 

- Bio-functionalized TiO2 nanotubes display improved wear resistance, with the ability 

to withstand mechanical solicitations during 1000 s without fully film detachment. 

- The improved tribo-electrochemical behavior of bio-functionalized nanotubes is 

granted by the nano-thick oxide film grown at Ti/TiO2 nanotubes interface, which concedes 

electrochemical stability and improves the adhesion strength of the film to Ti substrate, resulting 

in a reduced wear volume loss. 

- A first insight on the main degradation mechanisms of TiO2 nanotubular films was 

proposed which relies on tube smashing and densification, accompanied by delamination and 

detachment of the tubes, through cracks formation and propagation from the surface to 

subsurface regions of the film.  

This investigation provides, for the first time, new knowledge on the main degradation 

mechanisms of TiO2 nanotubes before and after bio-functionalization treatments. The 
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methodology adopted for nanotubes functionalization, based on reverse polarization and 

anodization treatments, shows up as a very simple and effective way to create a multifunctional 

nano-thick oxide film at the interface region. This film has the ability to protect Ti substrate 

against corrosion and the simultaneous action of mechanical wear, by blocking the passage of 

current and enhancing the adhesion strength of the film to the substrate. This comes out as a 

very promising methodology to improve the long term biomechanical stability of TiO2 nanotubes 

for osseointegrated implants applications. 
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After insertion into bone, dental implants may be submitted to tribocorrosive conditions 

resulting in the release of metallic ions/wear debris, which can induce to peri-implant bone loss 

and loosening of the implant. Despite the promising ability of TiO2 nanotubes (NTs) to improve 

osseointegration and avoid infection-related failures, the understanding of their degradation 

under the simultaneous action of wear and corrosion has not been explored. The main focus of 

this work is to study, for the first time, the tribo-electrochemical behavior of bio-functionalized 

TiO2 NTs submitted to multiple wear actions, and compare it with conventional TiO2 NTs. 

TiO2 NTs grown by anodization were doped with bioactive elements, namely calcium (Ca), 

phosphorous (P), and zinc (Zn), through reverse polarization anodization treatments. 

Characterization techniques such as scanning electron microscopy (SEM), energy dispersive X-

ray spectroscopy (EDS), and scanning transmission electron microscopy (STEM), were used to 

characterize the films. Tribo-electrochemical tests were carried out in artificial saliva (AS) by 

two-cycle reciprocating sliding tests. The open circuit potential (OCP) was monitored before, 

during, and after both cycles of sliding, during which the coefficient of friction (COF) was 

calculated. The resulting wear scars were analyzed by SEM and EDS, and wear volume 

measurements were performed by 2D profilometry. Finally, the mechanical features of TiO2 NTs 

were accessed by nanoindentation. 
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The results show that although all TiO2 nanotubular films display a highly stable tribo-

electrochemical response when submitted to multiple sliding actions, this was significantly 

improved after bio-functionalization. The enhanced electrochemical stability and wear 

resistance were granted by a nano-thick oxide film formed at Ti/TiO2 NTs the interface, which 

increased significantly their adhesion strength and consequently their hardness. Additionally, 

the elastic modulus of TiO2 NTs was significantly lower compared to Ti, and closer to that of 

natural bone. This study provides fundamental and new insights for the development of 

multifunctional TiO2 NTs with long-term biomechanical stability and improved clinical outcomes. 

 

Keywords: TiO2 nanotubes; Bio-functionalization; Tribocorrosion; Film adhesion; Mechanical 

properties; Multiple sliding actions. 

 

 

Metallic implants made out of titanium (Ti) and Ti-based materials are the most commonly 

used for dental implants therapies owing their mechanical properties, excellent biocompatibility 

and high corrosion resistance [1, 2]. However, these materials present serious shortcomings as 

regards the absence of osteogenesis inducing ability and the lack of antimicrobial properties [1-

3]. To overcome these issues, various studies on the modification of Ti surfaces features such as 

morphology/topography and chemistry, have been undertaken [2, 4-8]. A special focus has been 

devoted in the production of novel nanopatterned Ti implant surfaces and there is a strong 

believe that nano-functionalized surfaces will produce the new generation of dental implant 

materials [4, 9-12]. 

The exceptional features of TiO2 NTs have been widely recognized to promote 

osseointegration and reduce infection, the most commonly reported complications of currently 

used Ti-based dental implants [1, 13-16]. These are very flexible structures for building of new 

functionalities and further achieve enhanced biocompatibility [17]. TiO2 NTs may be easily 

coated with bioactive polymers [18] or nanoparticles [19], and have demonstrated excellent 

ability to act as efficient and controlled drug delivery systems, by encapsulation of drugs, 

bioactive molecules or inorganic elements into their hollow cavities [20-24]. The lack of 

biomechanical compatibility of metallic dental implants and bone is known to induce stress 

shielding effect and consequently bone resorption. This is an additional shortcoming that TiO2 

NTs have demonstrated ability to overcome, since they display lower elastic modulus than Ti 

and closer to that of natural bone [1, 3, 25-27].  

Ti-based materials have a serious disadvantage since they are known to display low wear 

resistance [28] and this may induce various harmful consequences. During insertion, dental 
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implants are subjected to both wear and corrosion actions (tribocorrosion) that may lead to 

material degradation in vivo. Furthermore, dental implants may be also exposed to 

tribocorrosion in a long term, since cyclic micro-movements are known to take place at 

implant/bone interface as a consequence of chewing action [29, 30]. Consequently, dental 

implant material degradation by wear/corrosion processes, may result in the release of metallic 

ions/wear debris to adjacent tissues, which may induce to several biological complications [31-

33]. Various studies have shown that TiO2 nanoparticles are internalized by bone cells impairing 

their functions [34] and activating inflammatory reactions which may induce to osteolysis, and 

ultimately to implant failure [35-37]. In this light, the study of the degradation behavior of TiO2 

nanotubular surfaces is of crucial importance and this is still missing in literature. To further 

emphasize this need, it has been reported that TiO2 NTs display poor adhesion strength to the 

substrate [38-40]. This is an issue of high priority since the poor adhesion of TiO2 NTs may 

compromise their widespread applications. 

In this contribution the tribo-electrochemical degradation behavior of TiO2 NTs is studied 

before and after bio-functionalization treatments. To simulate in vivo harsh environmental 

conditions, for the first time, reciprocating sliding tests were carried out in artificial saliva at 37 

°C under multiple cycles of sliding, intended to mimic the multiple mechanical solicitations that 

dental implants might be daily exposed. Here we describe the effects of bio-functionalization 

treatments on the tribo-electrochemical performance of TiO2 NTs and correlate them with the 

adhesion strength and mechanical properties of the films. 

 

 

7.2.1. Synthesis of TiO2 NTs and bio-functionalization 

To prepare TiO2 NTs, two anodization steps were carried out in an optimized organic 

electrolyte composed of ethylene glycol (EG, Fluka Analytical, St. Louis, MO, USA), 0.3 wt. % 

ammonium fluoride (NH4F, Ammonium Fluoride, Sigma-Aldrich, St. Louis, MO, USA) and 3 vol. 

% distilled water. In the first anodization step Ti smooth samples (anode) were immersed in the 

EG-based electrolyte together with a graphite rod (cathode), separated at a distance of about 2 

cm, and a constant voltage of 60 V was applied for 1 h. Afterwards, the resultant nanotubular 

film was intentionally removed by sonication in isopropanol (15 min) and distilled water (5 min), 

leaving a nanotextured Ti surface for the second anodizing step. The second anodization step 

was conducted at the previous conditions for an anodization time of 30 min, to synthesize 

vertically aligned and ordered TiO2 nanotubular films with a specific morphology. The resulting 

Ti samples with TiO2 NTs were named as NT. 

Bio-functionalization of TiO2 NTs was conducted based on a novel methodology described 
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in a previous work [41], based on reverse polarization anodization treatments. The NT samples 

were subjected firstly to reverse polarization in an aqueous electrolyte composed of 0.35 M 

calcium acetate (Calcium acetate monohydrate, Sigma-Aldrich, St. Louis, MO, USA), 0.04 M β-

glycerolphosphate (β-GP) (β-glycerolphosphate disodium salt pentahydrate, Sigma-Aldrich, St. 

Louis, MO, USA) and 0.35 M zinc acetate (Zinc acetate dihydrate, Sigma-Aldrich, St. Louis, MO, 

USA) as the source of calcium (Ca), phosphorous (P) and zinc (Zn), respectively. The reverse 

polarization step was carried out for 30 s in the Ca/P/Zn-based electrolyte, followed by 

anodization step in the same electrolyte for 30 min at 100 V. A graphite rod was used as the 

counter electrode and was placed about 2 cm away from the sample. After bio-functionalization, 

the nanotubular samples were named as NT-Ca/P/Zn. The outcomes of the tribo-

electrochemical tests showed two dissimilar behaviors for these samples. Therefore,  these were 

devided in two different groups named as NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2.  

NT, NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2 samples, were cleaned in isopropanol (10 min), 

distilled water (5 min) and dried at room temperature. Finally, all the samples were stored in a 

desiccator until performing tribocorrosion tests.                                     

A DC power supply (Keysight (Agilent) Technologies N5772A) was used for cathodic and 

anodic treatments with a limiting current of 2.5 A, and all of them were conducted at room 

temperature (22 – 24 °C) under stirring conditions.  

 

7.2.2. Characterization of TiO2 nanotubular films 

The surface morphology of TiO2 nanotubular samples was investigated before and after 

bio-functionalization treatments by scanning electron microscopy (SEM) using a FEI Helios 

NanoLab 650 equipped with a detector for energy dispersive X-ray spectroscopy (EDS). 

Elemental analyses of the samples were performed by EDS, using an acceleration voltage of 10 

kV.  

Thin cross-sections (around 100 nm thick) of TiO2 nanotubular films were obtained by a 

dual beam instrument equipped with focused ion beam (FIB) with a gallium (Ga) ion source 

(TESCAN, LYRA 3). A platinum (Pt) layer of 1 µm was deposited in situ using a gas injection system 

and 1 nA Ga+ ion current accelerated at 30 kV aiming to protect the thin cross-sections. The 

initial etching was conducted with 5 and 2 nA at 30 keV, and thinning was performed in 4 steps 

to obtain a lamella of ~ 100 nm: 1) 1 nA/30 keV; 2) 0.1 nA/10 keV; 3) 10 pA/5 keV; and 4) 3 keV. 

The Ti/TiO2 NTs interface was observed by imaging the FIB-sections by dark-field scanning 

transmission electron microscopy (STEM-DF) using a JEOL 2100 F operating at an accelerating 

voltage of 200 kV.  
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7.2.3. Tribo-electrochemical experiments 

A tribo-electrochemical approach was used to investigate the degradation behavior of 

nanotubular samples under the simultaneous action of wear and corrosion. The samples were 

fixed in an electrochemical cell, with an exposed surface area of 0.63 cm2 to the test solution. A 

modified Fusayama’s artificial saliva (AS) [42] was used at 37 °C (pH = 5.5), with chemical 

composition as follows: NaCl (0.4 g/L), KCl (0.4 g/L), CaCl2.2H2O (0.795 g/L), Na2S.9H2O (0.005 

g/L), NaH2PO4.2H2O (0.69 g/L) and Urea (1 g/L). This solution has been previously used in various 

studies  [43-46] to mimic the extremely corrosive oral environment composed of Cl−, F−, and H+ 

ions, which play a significant role on corrosion of dental implant materials [47]. Furthermore, it 

is known that metallic materials display a similar electrochemical behavior in Fusayama´s saliva 

and natural saliva [48]. The tests were conducted in a pin-on-disk CETR tribometer (Model UMT 

2, Campbell, California, USA) with a reciprocating sliding configuration, and an alumina (Al2O3) 

ball (Ø 10 mm) was used as the counterbody. In a three-electrode setup the testing samples 

were used as the working electrode, a platinum counter electrode, and a saturated calomel 

electrode (SCE) (Hg/Hg2Cl2/saturated KCl solution; SCE = +244 mV vs. NHE) was used as the 

reference electrode.  

The reciprocating sliding tests were performed at a normal load of 1 N, a sliding frequency 

of 1 Hz and a linear displacement amplitude of 650 µm. Two independent cycles of sliding were 

carried out for 1800 s, with an interval of 2000 s between both. The open circuit potential (OCP) 

was monitored using a potentiostat Gamry Reference 600 coupled to Gamry framework 

software (Gamry Instruments, Warminster, PA, USA) before the first period of sliding until 

stabilization, during both cycles of sliding and afterwards, during their correspondent periods of 

stabilization of 2000 s. During both periods of sliding the tribometer was coupled to UMT-2 

software (Campbell, California, USA) to monitor the tangential force during sliding, through 

which the coefficient of friction (COF) was calculated. At the end, all the samples were 

ultrasonically cleaned with isopropanol (10 min) followed by distilled water (5 min). To assure 

the repeatability of the results, all the tests were accomplished for a minimum number of three 

samples for each group. 

 

7.2.4. Characterization of the wear tracks 

After tribo-electrochemical testing, the morphological and chemical features of the wear 

scars were investigated by SEM (FEI Nova 200 (FEG/SEM)) and EDS (Pegasus X4M). 

To calculate the wear volume of the samples, the model previously described by Doni et 

al. [49] was strictly followed. The wear track length was taken constant for all the tests as 650 

µm. The width and the deepness of the wear tracks were extracted from the profiles obtained 
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by 2D profilometry (Veeco, Dektak 150) and the data analysis was performed with the software 

(Dektak version 9.4). The final wear volume measurements were calculated from three wear 

tracks for each condition of test. 

 

7.2.5. Nanoindentation tests 

The mechanical properties of Ti polished samples (mirror-finishing) and TiO2 nanotubular 

samples were measured using a nanoindentation system (Micro Materials NanoTest), with a 

load resolution of 50 nN.  

To avoid the influence of substrate, preliminary experiments were carried out to select 

the most appropriate load to be applied, in such a way that the maximum indentation depth 

was always less than 10 % of the thickness of the films [27]. Afterwards, the maximum applied 

load during nanoindentation was set as 5 mN and the holding time was 5 s. 

The reduced modulus (Er) and hardness were determined from indentation load-

displacement data following the Oliver and Pharr methodology [50]. The hardness is determined 

from the maximum load and the projected area of contact. The Er combines the mechanical 

properties of the indenter and the sample, and is given by the following equation: 

 

1

𝐸𝑟
=

(1− 𝜈1
2)

𝐸1
+  

(1− 𝜈2
2)

𝐸2
                  (1) 

 

where 𝜈1 and 𝐸1 are the Poisson´s ratio and Young’s modulus of the specimen and, 𝜈2 and 𝐸2 

are the Poisson’s ratio and Young’s modulus of the indenter, respectively. For the diamond 

Berkovich indenter probe used, 𝐸2 = 1140 GPa and 𝜈2 = 0.07. The 𝜈1 of TiO2 NTs was chosen to 

be the same as that bulk TiO2 (i.e. 0.28) [51], while the 𝜈1 of Ti was assumed as 0.32. The elastic 

modulus (E) of TiO2 NTs and Ti samples was calculated by fitting the measured Er values in 

equation (1). The minimum of six indentations per each sample were used for elastic modulus 

and hardness calculations. 

 

7.2.6. Statistical analysis 

In this study the data is presented as the arithmetic mean ± standard deviation (SD). The 

statistical analysis was conducted by means of statistical tool SigmaStat 3.5 (Systat Software, 

San Jose, CA, USA). Data analysis was performed by one-way analysis of variance (ANOVA) in 

combination with Tukey HSD post hoc test, with a significance level of p < 0.05.  
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7.3.1. Characterization of TiO2 nanotubular films 

The surface morphology of TiO2 NTs synthesized by two-step anodization of titanium (Ti) 

surfaces is shown in Fig. 7.1a. After bio-functionalization of NT samples in the Ca/P/Zn-based 

electrolyte by reverse polarization and anodization processes, the morphology of the NTs was 

preserved as shown in Fig. 7.1b. Both nanotubular surfaces are characterized by NTs with non-

uniform diameters ranging from 50 – 90 nm as reported in a previous study [41]. The chemical 

features of NT and NT-Ca/P/Zn samples were determined by semi-quantitative EDS analysis, and 

the atomic % of the elements detected is depicted in Table 7.1. Both groups of samples are 

composed of Ti, oxygen (O) and fluorine (F), and NT-Ca/P/Zn samples are additionally 

constituted of Ca, P and Zn elements. In a previous work, XPS studies conducted in NT samples 

showed that Ti and O were mainly found as TiO2 [41]. 

 

Fig. 7.1. SE SEM micrographs of (a) NT and (b) NT-Ca/P/Zn surfaces. Dark-field STEM micrographs at the interface of 

(c) NT and (d) NT-Ca/P/Zn nanotubular films. In (c) the inset white arrow shows the lacuna between Ti substrate and 

NT film while in (d) shows the nano porosity at the interface instead of a continuous hollow gap. In (d) is also 

highlighted the nano-thick oxide film grown during bio-functionalization (230 – 250 nm). 

 

Table 7.1. Atomic percentage (At. %) of the elements detected in NT and NT-Ca/P/Zn samples by EDS. 

Element NT (At. % ± SD) NT-Ca/P/Zn (At. % ± SD) 

Ti K 
O K 
F K 
Ca K 
P K 
Zn L 

21.82 ± 1.64 
53.18 ± 1.26 
8.90 ± 0.53 

- 
- 
- 

23.66 ± 1.05 
51.70 ± 3.98 
9.46 ± 0.73 
0.26 ± 0.04 
0.33 ± 0.03 
1.35 ± 0.12 
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The interfacial features of TiO2 nanotubular films were studied before and after bio-

functionalization treatments. Although no differences were found on NTs morphology, bio-

functionalization induced significant changes in the interface between Ti substrate and TiO2 NTs. 

The Ti/TiO2 NTs interface is shown in Fig. 7.1c and d for NT and NT-Ca/P/Zn samples respectively. 

For conventional TiO2 NTs a non-continuous interface characterized by a hollow space between 

Ti substrate and TiO2 film is observed (Fig. 7.1c), suggesting a poor adhesion strength of the NTs. 

On the other hand, after bio-functionalization treatments, the hollow gap existing before is no 

longer continuous along the interfacial region due to the formation of a nano-thick oxide film 

(230 – 250 nm thickness). This newly formed film at the interface, beyond present some porosity 

at the nanoscale range, induced the formation of a more continuous interface which appears to 

improve the adhesion of the film to the Ti substrate. 

 

7.3.2. Tribo-electrochemical behavior of TiO2 nanotubular films submitted to two-cycle sliding tests 

7.3.2.1. Open circuit potential and coefficient of friction evolutions 

The open circuit potential (OCP) evolution before two-cycle sliding tests in NT and NT-

Ca/P/Zn samples is shown in Fig. 7.2a. It is noteworthy that two different trends were observed 

during sliding tests carried out in NT-Ca/P/Zn samples and both trends are reported as NT-

Ca/P/Zn#1 and NT-Ca/P/Zn#2. Before mechanical solicitations, all the samples were immersed 

in artificial saliva (AS) until OCP stabilization. The OCP reflects the electrochemical surface 

activation stage (active vs. passive), revealing its tendency to corrosion so that a higher OCP 

indicates a lower corrosion trend. After the period of stabilization both group of samples 

stabilized at significantly different OCP values. NT samples achieved a stable OCP around -0.14 

V vs. SCE that differs strikingly from NT-Ca/P/Zn samples potential, which stabilized around 0.11 

– 0.12 V vs. SCE. Higher OCP values were found for NT-Ca/P/Zn samples as compared to NT 

samples during the whole duration of two-cycle sliding tests. These differences might be related 

with the different interfacial features of TiO2 nanotubular films before and after bio-

functionalization treatments, as will be further on discussed in more detail (discussion section). 

As soon as the first cycle of sliding starts on NT samples (SLIDING 1), it is observed that 

the OCP is kept stable for approximately 100 s and afterwards, a gradual decrease takes place 

during its whole duration reaching the lowest value of -0.3 V vs. SCE. As soon as the sliding is 

finished the OCP gradually evolves to noble values during the whole 2000 s stabilization period. 

Once the second cycle of sliding starts (SLIDING 2), the OCP starts to decrease immediately and 

a gradual lowering is observed during its complete duration reaching a minimum value of -0.3 V 

vs. SCE. Interestingly, it is noticed that after the end of SLIDING 2, the OCP tends to stabilize at 

a value similar to that achieved previously in the final stage of SLIDING 1. The coefficient of 
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friction (COF) evolution during SLIDING 1 is shown in Fig. 7.2b. It is observed that in the first 

period of 300 s of sliding the COF is around 0.7 – 0.75, and after this period it decreases and 

tends to stabilize in values around 0.66 – 0.67. As observed in Fig. 7.2c, once the SLIDING 2 starts, 

the COF values are similar to the ones measured at the end of SLIDING 1 (i.e. 0.66 – 0.67) and 

these slightly drop down during SLIDING 2, reaching a minimum value of around 0.61 at the final 

stage.   

 

Fig. 7.2. (a) Evolution of the open circuit potential (OCP) before, during and after two-cycle reciprocating sliding tests 

in NT, NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2 samples. The coefficient of friction values (COF) measured during the first 

sliding cycle (SLIDING 1) are shown in (b), while in (c) are depicted the COF values registered during the second sliding 

cycle (SLIDING 2). Both sliding periods lasted for 1800 s.  

 

As referred above, two distinct electrochemical behaviors were observed for NT-Ca/P/Zn 

samples submitted to two-cycle sliding tests and both are presented in Fig. 7.2a as NT-Ca/P/Zn#1 

and NT-Ca/P/Zn#2. As soon as the first cycle of mechanical solicitations starts on NT-Ca/P/Zn#1 

samples, the OCP immediately drops a few mV and is maintained stable during approximately 

800 s. After this time, the OCP drops until -0.1 V vs. SCE and immediately after goes up again, 

and then tends to slightly progress to lower values until SLIDING 1 is stopped, reaching a 

minimum value of 0.08 V vs. SCE. At the end of SLIDING 1 the OCP immediately and rapidly 

evolves to higher values, and after 2000 s stabilize at around 0.04 V vs. SCE. After the period of 
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stabilization when the second cycle of sliding starts, the OPC falls down and gradually reaches 

lower values during approximately 1000 s, after which the OCP starts to evolve to values 

increasingly high. As soon as SLIDING 2 is stopped, the OCP increases and reaches a similar value 

to the one initially recorded before the second sliding action. Concerning the COF evolution 

during SLIDING 1, this is maintained in a stable value of 0.75 during its total duration. When 

SLIDING 2 starts the COF is similar to the one attained at the end of SLIDING 1, and it slowly falls 

to lower values during the whole duration of mechanical solicitations. However, a remarkable 

higher drop is observed after 1000 s of sliding, which is coincident with the moment at which 

the OCP starts to increase (Fig. 7.2a). 

In respect to NT-Ca/P/Zn#2 samples, as soon as SLIDING 1 starts the OCP drops only a few 

millivolts (around 0.01 V vs. SCE ) and reaches a steady state for approximately 1200 s, after 

which the OCP falls down again a few millivolts and remain stable until the end of sliding. Once 

it is finished, the OCP evolves to more noble values reaching a stable value similar to the one 

achieved during the first plateau. After 2000 s stabilization period, the SLIDING 2 starts and the 

OCP slightly drops a few millivolts, and is maintained stable during the whole duration of sliding. 

Once mechanical action is finished, the OCP recovers and stabilizes in a value about 0.01 V vs. 

SCE, slightly inferior to the one recorded immediately before SLIDING 2. The COF evolution 

during the first cycle of sliding is similar to the one observed for NT-Ca/P/Zn#1 samples, which 

was kept in a stable value of 0.75. During SLIDING 2 duration, the COF measured is similar to the 

one registered at the end of SLIDING 1 and starts slowly decreasing after about 1000 s, which is 

coincident with the moment that COF values start decreasing for NT-Ca/P/Zn#1 during SLIDING 

2 (Fig. 7.2c). It is noteworthy that the COF values measured during all the cycles are characteristic 

of the tribological pair Ti oxide/alumina of sliding and so they indicate the presence of Ti oxide 

film in the worn area.  

 

7.3.2.2. Wear tracks characterization  

Representative SEM images of the wear tracks on NT, NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2 

samples are shown in Fig. 7.3. The SEM images are shown both in secondary electron (SE) and 

backscattered (BSE) imaging modes aiming a better characterization of the topographical and 

chemical features of the worn areas resulting from two-cycle reciprocating sliding tests. 

From SE/BSE SEM images of the wear track on NT samples (Fig. 7.3a) it is observed that 

TiO2 nanotubular film detached from the Ti substrate, including from the periphery of the sliding 

contact area. Film detachment is transduced in a wear track with irregular borders and a 

significantly higher length when compared to the wear tracks on NT-Ca/P/Zn#1 (Fig. 7.3b) and 

NT-Ca/P/Zn#2 (Fig. 7.3c) samples. The brighter areas in BSE SEM images are related to those 
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regions characterized by a high atomic number, namely Ti, and contrast with those darker areas 

where elements with a low atomic number are present, such as O. In this light is it observed that 

the central region of the wear track of NT samples is characterized by the presence of oxidized 

areas, which are probably related to the formation of a tribofilm as a consequence of oxide film 

debris entrapment and compactness in the contact region. In contrast, both wear tracks on NT-

Ca/P/Zn samples are characterized by curved borders with similar dimensions, and the 

detachment of the nanotubular film seems that have occurred mainly in the central region of 

the wear tracks, as suggested by the brighter contrast in BSE images (Fig. 7.3b and c). 

 

Fig. 7.3. SE/BSE SEM micrographs of the wear tracks in (a) NT, (b) NT-Ca/P/Zn#1 and (c) NT-Ca/P/Zn#2 samples after 

two-cycle reciprocating sliding tests in artificial saliva. The maximum wear tracks length is included in BSE images for 

all the groups.  

 

A more detailed view of the wear tracks in the border and central regions is provided by 

BSE SEM images shown in Fig. 7.4a-b for NT samples. From these images it is confirmed that the 

film has been completely detached from the periphery of the contact region and Ti substrate 

became exposed to the aggressive environment provided by AS, and cracks are observed in the 

film remaining outside the wear track. In the central region, it is observed the presence of areas 

from where the nanotubular film was detached and others where the formation of a compact 

oxide film took place (tribofilm). 

No significant differences were observed in the border and central regions of the wear 

tracks on NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2 samples, and the representative images of their wear 

tracks are shown in Fig. 7.4c (border) and Fig. 7.4d (center). In the border region it is observed 

that the film is characterized by areas with dissimilar levels of damage: smooth areas that 

contrast with rougher regions with pores obstructed, and others where open tubes are still 

visible. In the central region, it is confirmed that NTs have been completely detached in some 
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areas, while in others still maintain their integrity. The obstruction of the pores in the topmost 

regions is also observed and indicated in Fig. 7.4d. 

 

Fig. 7.4. BSE SEM micrographs of the wear tracks of (a and b) NT; (c and d) NT-Ca/P/Zn samples in the border and 

central regions. The inset images in (c) and (d) show the presence of TiO2 NTs in the border and central regions.  

 

7.3.2.3. Wear volume  

After two-cycle tribo-electrochemical tests wear volume measurements were performed 

by 2D profilometry. The final wear volumes include both the contribution of wear due to 

corrosion and sliding wear, and are graphically presented in Fig. 7.5. The wear volume loss in 

conventional TiO2 nanotubular samples was 4.05 ± 1.24 x 106 µm3, significantly higher as 

compared to NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2 samples whose wear volumes were measured as 

1.22 ± 0.01 x 106 µm3 and 1.58 ± 0.22 x 106 µm3 respectively.  

 

7.3.3. Mechanical properties of TiO2 nanotubular films 

The mechanical properties of TiO2 nanotubular films were accessed before and after bio-

functionalization treatments. An additional group of samples of pure Ti was included due to its 

relevance on clinical procedures in respect to dental implants. The elastic modulus and the 

hardness of Ti, NT and NT-Ca/P/Zn samples are depicted in Table 7.2.   
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TiO2 NTs revealed a significantly lower elastic modulus when compared to pure Ti 

samples, both before and after bio-functionalization. As regards hardness measurements, Ti 

samples displayed significantly higher values in relation to both NT and NT-Ca/P/Zn samples. 

Interestingly, after bio-functionalization treatments an improvement in the hardness of the 

nanotubular films is observed, as shown by the significantly higher hardness (around 300 MPa) 

measured for NT-Ca/P/Zn as compared to NT samples (Table 7.2). 

 

Fig. 7.5. Wear volume measurements after two-cycle reciprocating sliding tests in NT, NT-Ca/P/Zn#1 and NT-

Ca/P/Zn#2 samples. (*) significantly different from NT, p < 0.05. 

 

Table 7.2. Elastic modulus and hardness values measured for Ti, NT and NT-Ca/P/Zn samples. 

Group Elastic modulus 
(GPa ± SD) 

Hardness 
(GPa ± SD) 

Ti 127.25 ± 5.80  2.58 ± 0.12 

NT 46.18 ± 4.03* 0.58 ± 0.08* 

NT-Ca/P/Zn 46.99 ± 4.05* 0.89 ± 0.15*# 

 (*) significantly different from Ti, p < 0.05;  (#) significantly different from NT, p < 0.05. 

 

 

7.4.1. Tribo-electrochemical degradation of TiO2 nanotubular films under two-cycle sliding tests 

The understanding of how new implant surfaces behave when submitted to the 

simultaneous action of sliding wear and corrosion is of paramount importance since dental 

implants might be exposed to these actions at early, mid and long term after insertion. Relative 

micro-movements take place between the implant surface and the surrounding bone tissue and 

may lead to several and harmful complications. In our present contribution we report on the 

synthesis of novel bio-functionalized TiO2 nanotubular surfaces and their tribo-electrochemical 

performance. To simulate in vivo conditions, bio-functionalized TiO2 NTs were submitted to 

multiple sliding actions in the presence of artificial saliva (AS) and their tribo-electrochemical 

response was compared with conventional TiO2 NTs. 
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After immersion of NT samples in AS a stable OCP is achieved (Fig. 7.2a – black curve) and 

once SLIDING 1 takes place it is kept stable for 100 s, followed by a gradual decrease during the 

whole duration of sliding. Variations in OCP reflect the passive or active electrochemical state of 

the material. An increase (anodic shift) indicates a more passive state while a decrease (cathodic 

shift) suggests a more active state [52]. Furthermore, it is known that the OCP measured during 

sliding action is a mixed potential which reflects the electrochemical state of the material 

outside (unworn) and inside (worn) the wear track [52]. In this light, during the first 100 s of 

SLIDING 1 it seems that the electrochemical state of NT samples in the sliding contact area is 

kept unaltered, probably because TiO2 NTs are able to withstand the mechanical actions and 

protect the underlying Ti substrate from AS. The gradual lowering of the OCP after this time 

suggests that the film is progressively degraded as sliding occurs. The COF monitored during this 

period indicates that the alumina ball is rubbing against an oxide film since 0.66 – 0.67 are typical 

COF values for alumina/Ti oxide tribological pair. Similar COF values comprised between 0.6 – 

0.8 have been reported for sliding tests carried out on oxidized Ti surfaces against alumina ball 

[43, 44, 53]. When SLIDING 2 starts the OCP begins decreasing gradually and once it is finished 

it increasingly evolves to noble values, and interestingly it follows similar depassivation and 

repassivation rates of the ones registered during and after SLIDING 1, respectively. Although the 

COF during SLIDING 2 tends to decrease, it still indicates that an oxide film is present in the 

contact region, whose presence is confirmed by observation of the SEM BSE images of the wear 

scar remaining on NT samples (Fig. 7.3a and Fig. 7.4b). From these images it is observed that 

after two-cycle sliding a huge amount of NT film has been completely detached from the 

periphery of the contact area and the formation of a compact oxide film is observed in the 

central region, where the sliding contact took place. Possibly, one of the main mechanisms 

behind NT samples degradation relies in film detachment due to poor adhesion to the Ti 

substrate. Some cracks are visible in the film remaining outside the wear track (Fig. 7.4a) possibly 

resulting from cyclic compressive stresses generated during sliding, induced by film debris that 

are pushed against the film surrounding the contact area. The presence of cracks shows the 

brittleness of the film and suggests that it might have failed due to delamination. 

The formation of the compact oxide film during tribo-electrochemical interactions 

(tribofilm) may grant both corrosion and wear protection to the substrate material as deduced 

from electrochemical behavior and COF measurements. Based on this knowledge it is presumed 

that the gradual decrease of the OCP during SLIDING 1 and SLIDING 2 is being influenced by the 

formation of this tribofilm. It is believed that the formation of this film occurs during sliding as a 

consequence of film debris release into the contact region, which are consequently entrapped 

and compacted as the rubbing action goes on. As Vieira et al. [54] highlighted, this may initiate 
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a galvanic coupling in the wear track between depassivated and still passive areas and strongly 

influence the evolution of the potential during tribocorrosion. This tribofilm is probably granting 

the stable electrochemical features of NT samples when submitted to multiple sliding actions, 

as observed from the similar depassivation and repassivation rates for both cycles of sliding.  

Both NT-Ca/P/Zn samples show similar OCP values before mechanical solicitations (Fig. 

7.2a – green and blue curves), and these are significantly higher compared to NT samples. The 

higher OCP reveals that TiO2 NTs display a less active electrochemical state after bio-

functionalization. This may be related with the fast and effective passivation ability of these 

samples immersed in AS, as previously deduced from potentiodynamic polarization studies of 

NT samples after bio-functionalization through the same methodology used in this study [41]. 

The improved electrochemical performance of bio-functionalized NTs is believed to be related 

with the formation of a nano-thick oxide film at the interface between Ti and TiO2 NTs as 

observed in Fig. 7.1d, as a consequence of anodization process. Probably, the Ti4+ ions released 

from the Ti substrate at the moment of anodic polarization, reacted with O2- ions moving in 

opposite direction (provided by H2O or OH- in the electrolyte), and formed a Ti oxide film at the 

interface [55]. As soon as mechanical solicitations start on NT-Ca/P/Zn#1 samples the OCP shifts 

down probably due to the wear of the topmost layers of the nanotubular film and after around 

800 s, a more abrupt OCP fall takes place that may be related with the degradation of the film 

and exposure of the substrate to the harsh environment provided by AS. Immediately after the 

end of SLIDING 1, the OCP quickly recovers to higher values at a faster repassivation rate 

compared to NT samples, which highlights their ability of repassivation and the re-establishment 

of a noble potential close to the one attained during the first 800 s of sliding. During SLIDING 2, 

a different behavior is observed: the OCP slowly shifts down for around 1000 s, and afterwards 

it starts to evolve to values increasingly high towards the one achieved before sliding. 

Simultaneously to this noble evolution of the OCP, it is observed a decrease in the COF (Fig. 7.2c 

– green curve). This behavior suggests that repassivation of the wear track may be related with 

the formation of a tribofilm in the contact area with lubricant properties. To further investigate 

this phenomenon additional BSE SEM images were taken in the wear tracks of both NT and NT-

Ca/P/Zn samples, however, before cleaning procedure. In this way, additional information on 

the morphological and chemical features of the scar region in direct contact with alumina 

counterbody could be obtained. These images are shown in Fig. 7.6a and b for NT and NT-

Ca/P/Zn samples, respectively. In the central region of the wear tracks remaining on NT and NT-

Ca/P/Zn samples the presence of compacted mixed oxide films were found with a smooth 

topography, contrasting with less oxidized regions from where most of the film has been 

probably detached. The presence of smooth regions was observed in a higher extension for NT-
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Ca/P/Zn samples, including in the border region of the wear track after samples cleaning as 

observed in Fig. 7.4c. From observation of Fig. 7.6a and EDS spectra extracted from regions A1 

and A2 indicated in the figure, it is observed that the smooth oxide films are characterized by a 

significantly higher at. % of P. The presence of P-rich oxide films are also found on NT-Ca/P/Zn 

samples as observed from Fig. 7.6b and the correspondent EDS spectra in areas A1 and A2. The 

smooth areas found in NT-Ca/P/Zn samples are composed additionally by Zn and a higher at. % 

of Ca as a result of their bio-functionalization with these elements. 

 

Fig. 7.6. BSE SEM micrographs in the central region of the wear tracks of (a) NT and (b) NT-Ca/P/Zn samples. The EDS 

spectra acquired from the inset red squares (A1 and A2) are depicted for both groups along with the insertion of the 

elemental composition and the atomic percentage (At. %) of the detected elements. 

 

Hanawa et al. [56] reported that calcium phosphate is naturally formed on Ti surface 

immersed in a electrolyte solution containing inorganic ions found in biofluid, and approximately 

60 % of the phosphate was PO4
3-. The authors explained that the formation of a calcium 

phosphate layer on Ti surface was firstly dictated by the adsorption of hydrated phosphate ions 

to Ti. Furthermore, previous studies have also demonstrated the ability of anodic Ti oxide films 

to induce the formation of apatite when immersed in simulated body fluid [57, 58]. As soon as 

NT-Ca/P/Zn samples are immersed in AS and reciprocating sliding takes place, it is expected TiO2 
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film debris are released and PO4
3- ions in solution adsorb on their surface. Simultaneously, these 

are submitted to complex mechanical and electrochemical solicitations, during which film debris 

become entrapped in the contact region and are continuously smashed and compacted. This 

possibly induced the formation of a P-rich compact oxide film (tribofilm) in some areas of the 

wear track, most likely in those where the nanotubular film is thicker, as schematically illustrated 

in Fig. 7.7. Under wear action, PO4
3- ions are known to undergo favorable reactions resulting in 

protective tribofilms [59, 60]. The presence of this tribofilm is most likely related with the 

increase of the OCP for NT-Ca/P/Zn#1 samples after 1000 s of SLIDING 2, and the simultaneous 

COF decrease (Fig. 7.2a and c – green curves). It is known that phosphate groups may act as 

lubricants [61], reducing the frictional force resisting to the relative sliding movement between 

neighboring surfaces, which is transduced in a lower COF. This might explain the smoothening 

effect observed on the surface of the film. Although not so evident for NT surfaces, a small trend 

is also observed for a gradual decrease in the COF during SLIDING 2 (Fig. 7.2c – black curve) and 

the formation of this P-rich film may also be a reasonable explanation for that. On the other 

hand, another possibility is that once TiO2 nanotubular film has undergone severe detachment, 

the alumina ball could be also in contact with the Ti substrate, which has a COF characteristic of 

around 0.45 [53].  

 

 

Fig. 7.7. Illustration of the formation mechanisms of the P-rich oxide film during tribo-electrochemical interactions 

on bio-functionalized TiO2 NTs in AS. Firstly, PO4
3- ions adsorb to TiO2 NTs and wear debris generated during sliding 

as shown in (a) and then, as the tribo-electrochemical interactions take place there is the formation of a compact P-

rich oxide film on the top of bio-functionalized TiO2 NTs as depicted in (b). The smoothening effect observed on the 

surface of the film is related with the lubricant properties of PO4
3- ions.  
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Even though the OCP values measured during two-cycle sliding tests have been 

significantly different for NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2 samples, the trend of OCP evolution 

was found quite similar between both during mechanical solicitations (Fig. 7.2a – green and blue 

curves). In both cases two steady-states were achieved during SLIDING 1 at different OCP values, 

and at different time periods. Although during SLIDING 2 the OCP decreased only a few millivolts 

for NT-Ca/P/Zn#2 samples, the trend for COF decrease after 1000 s is similar to NT-Ca/P/Zn#1 

samples (Fig. 7.2c – green and blue curves). No significant differences were found in the wear 

volume loss measured between NT-Ca/P/Zn#1 and NT-Ca/P/Zn#2 samples (Fig. 7.5), and 

therefore the differences in the OCP between both seem not be related with the level of 

mechanical damage of the nanotubular films. Most probably, the experimental conditions used 

for reciprocating sliding tests are close to the threshold conditions for NTs withstand mechanical 

solicitations without failure, which is dependent on their mechanical properties. Furthermore, 

the OCP might be also influenced by the total extension and thickness of the tribofilm formed, 

which may be thinner or thicker as the OCP is lower or higher, respectively. It is noteworthy to 

highlight that the OCP fluctuations observed during two-cycle sliding tests for both NT-Ca/P/Zn 

samples, might be related with Zn2+ ions liberation that have standard potential of -0.762 V vs. 

NHE (Zn2+/Zn) [62].  

The wear volume loss was found significantly higher for NT than for both NT-Ca/P/Zn 

samples showed (Fig. 7.5). These differences may be related with the different adhesion 

strength of NT and NT-Ca/P/Zn films to the substrate, which seems be significantly higher for 

the latter. This is demonstrated by the lower mechanical damage observed for NT-Ca/P/Zn 

samples (Fig. 7.3), in parallel with their significantly reduced wear volume loss (Fig. 7.5). No 

detachment is observed in the area outside the contact region for these samples and the survival 

of NTs is found even in the border and central regions of their wear tracks (Fig. 7.4c and d). As a 

consequence of bio-functionalization of TiO2 NTs and the formation of a nano-thick oxide film 

at the interface, the interfacial bonding to the substrate increased significantly, and 

consequently their ability to withstand to both electrochemical and mechanical solicitations 

possibly by minimizing initiation and propagation of cracks. 

For all the samples the main wear mechanisms identified include abrasion evidenced by 

abrasion grooves induced by third body particles, along with plastic deformation of the 

nanotubular film (Fig. 7.3 and Fig. 7.6). Furthermore, adhesion phenomenon also occurred as 

observed from material transfer to the counterbody after sliding tests.  

 

7.4.2. Mechanical properties of TiO2 NTs: significance and impact on wear resistance 

The design of new implant systems with excellent mechanical properties is a requirement 
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for long term implant success. After bio-functionalization treatments the hardness of TiO2 

nanotubular films became significantly higher as compared to conventional TiO2 NTs (Table 7.2). 

The hardness values for NT and NT-Ca/P/Zn samples were measured as 0.58 ± 0.08 GPa and 0.89 

± 0.15 GPa, respectively. Xu et al. [51] also studied the mechanical behavior of TiO2 nanotube 

arrays and found out their hardness as 0.94 GPa, which is in the same order of magnitude of our 

results. This improvement may be related with the nano-thick oxide film formed at the interface 

Ti/TiO2 NTs after anodization treatments in the Ca/P/Zn-based electrolyte. The growth of this 

film at the interface improved significantly the adhesion strength of TiO2 NTs to the substrate, 

as previously deduced from the different tribo-electrochemical responses observed between NT 

and NT-Ca/P/Zn samples. It has been previously reported that the hardness is dependent on the 

film adhesion properties to the substrate, in such a way that as higher the adhesion strength 

higher the hardness [63, 64]. A film with good adhesion to the substrate will constrain its plastic 

flow making the indentation more difficult that is transduced in a higher hardness than the one 

with poor adhesion [63, 65]. This is also in good agreement with the significantly reduced wear 

loss in NT-Ca/P/Zn samples when compared to NT samples (Fig. 7.5), since a higher hardness is 

generally correlated with an improved wear resistance [53, 66-68]. Once NT-Ca/P/Zn films 

display improved adhesion properties to the substrate, consequently they display an improved 

ability to resist to mechanical wear.   

Our results show that the hardness and elastic modulus of Ti surfaces are 2.58 ± 0.12 GPa 

and 127.25 ± 5.80 respectively. These are in agreement with Soares et al. [27] who measured 

the hardness and elastic modulus of Ti polished surfaces by nanoindentation as 2.6 ± 0.7 GPa 

and 143 ± 23 GPa, respectively. In our work, the elastic modulus of TiO2 NTs was significantly 

lower (around 63%) than that of Ti and was comprised between 42 – 52 GPa, both for NT and 

NT-Ca/P/Zn samples (Table 7.2). Existing literature describes elastic modulus of TiO2 nanotube 

arrays ranging 4 – 43 GPa [1, 69]. Our results are in accordance with the study performed by 

Crawford et al. [69] who reported an elastic modulus for TiO2 NTs of approximately 36 – 43 GPa, 

also found significantly lower than that of the Ti substrate. This reduction may be related with 

the porous structure of TiO2 nanotubular films [27]. TiO2 nanotubular surfaces display an elastic 

modulus approaching that of natural bone, which is around 11 – 30 GPa [26]. Therefore these 

surfaces are expected to have improved biomechanical compatibility than pure Ti, by reducing 

stress shielding effect [70] which is very well known to induce bone resorption at implant bone 

interface.  
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The tribo-electrochemical performance of conventional and bio-functionalized TiO2 NTs 

was investigated when submitted to multiple sliding actions in artificial saliva. Furthermore, the 

mechanical properties of those films were investigated and correlations were found with their 

tribo-electrochemical responses. The main conclusions are as follows: 

- TiO2 NTs display a highly stable tribo-electrochemical response when submitted to 

multiple sliding actions.  

- The tribo-electrochemical behavior of TiO2 NTs was significantly improved after bio-

functionalization treatments both from the electrochemical and mechanical point of view. 

- Bio-functionalization of TiO2 NTs by reverse polarization anodization induced the 

formation of a nano-thick oxide film at the interface region which improved significantly the 

adhesion strength of the NTs to Ti substrate. 

- The improved adhesion of bio-functionalized TiO2 NTs was correlated with their 

increased hardness, and consequently linked to the significantly enhanced wear resistance of 

these films. 

- TiO2 NTs display the ability to induce the formation of a protective P-rich tribofilm 

when submitted to tribo-electrochemical actions in AS, which appears to grant both 

electrochemical protection and mechanical wear resistance. 

- The elastic modulus of TiO2 NTs is significantly lower compared to that of smooth Ti, 

and close that of natural bone. 

In brief, bio-functionalized TiO2 NTs through reverse polarization anodization display an 

improved ability to withstand multiple tribo-electrochemical solicitations. These show up as 

multifunctional surfaces able to simultaneously provide corrosion protection, resistance to 

mechanical degradation and avoid bone resorption by reducing stress shielding effect. This study 

provides fundamental and new insights for the development of TiO2 NTs in Ti surfaces with long 

term biomechanical compatibility and stability towards the new generation of dental implants.   
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The main aim of this project was to synthesize bone-inspired TiO2 nanotubes (NTs) with 

multiple functionalities, aiming to address, simultaneously, three of the main causes of failures 

in implant dentistry: tribocorrosion, infection and poor osseointegration. To achieve the main 

aim, a systematic and multidisciplinary approach was followed, through which new scientific 

knowledge was produced in research fields not yet explored in literature. The development of 

this project comprised several independent studies, which were reported in different scientific 

papers all interrelated with each other. 

The possibilities for surface functionalization are countless. In this work, a simple and 

novel methodology was followed based in a well-known and widely used technique for surface 

functionalization, including by dental implant companies, i.e. anodization. Biocompatible TiO2 

nanotubular surfaces were synthesized and enriched with bioactive elements, namely calcium 

(Ca), phosphorous (P), and zinc (Zn). Beyond surface chemistry, the novel methodology adopted 

induced to modification of TiO2 NTs/Ti substrate interface features, which are known to dictate 

the adhesion strength of the film to the substrate and subsequently its tribo-electrochemical 

performance. Henceforward are described the main results of this project, which were reported 

in five scientific papers from chapter 3 to chapter 7. The interrelation existing between the main 

outcomes of each chapter were established, and some important topics were additionally 

discussed. 

 

8.1.1. Reverse polarization anodization of TiO2 NTs: a simple and novel methodology to achieve 

bio-multifunctionalization 

In this study conventional TiO2 NTs were functionalized by reverse polarization 

anodization that emerged as a simple, versatile, cost-effective, and novel methodology to 

provide them multiple and key functionalities for osseointegrated implants applications.  

One of the main routes seeking the synthesis of bio-functionalized TiO2 NTs was, firstly, 

the optimization of the production protocol of conventional TiO2 NTs. As primarily described in 

chapter 3, and further confirmed in the following chapters, TiO2 NTs were synthesized by two-

step anodization processes that relied in the growth of highly ordered nano-arrays with non-

uniform diameters ranging from 50 – 90 nm. A bone-inspired surface morphology was achieved 

and the mechanisms behind the growth formation of such micron-length NTs were addressed 

in chapter 3 and chapter 4. The strategies for bio-functionalization of TiO2 NTs were, for the first 

time, described in chapter 3, in which reverse polarization anodization was found as the most 

promising to achieve an efficient biofunctional implant surface.  



Chapter 8: General results and discussion. Final conclusions. 

 

 
206 

From all the studies described from chapter 3 to chapter 7 it is observed that reverse 

polarization anodization of TiO2 NTs influenced their surface chemistry without compromising 

their morphological/topographical features. After bio-functionalization treatments, TiO2 NTs 

displayed similar diameters as compared to the conventional ones, and their thickness was 

around 4.5 – 5.6 µm (chapter 3 and chapter 4). The versatility of this new methodology is shown 

by the enrichment of TiO2 NTs with distinct bioactive elements, namely Ca, P, and Zn, by simply 

changing the anodization electrolyte composition. As pointed out in chapter 4, not only the 

surface chemistry of the NTs was changed, but also their chemical features along their length, 

even in the region near the interface with the Ti substrate. Two main groups of bio-

functionalized NTs were synthesized and named in accordance with their chemical composition 

as NT-Ca/P and NT-Ca/P/Zn samples. Through XPS studies Ca, P and Zn were found mainly 

assigned to Ca3(PO4)2, CaO, PO4
2- groups, and ZnO compounds adsorbed to TiO2 (chapter 3 and 

chapter 5). As discovered in chapter 3, reverse polarization appeared as an essential step to be 

applied before anodization, to induce the formation of additional compounds on NTs, such as 

CaO. This finding was reported to be possibly related with the improved biocompatibility of 

reverse polarized NTs, as compared to the ones functionalized only by single anodization.  

The nanotubular surfaces, before and after bio-functionalization, were found more 

hydrophilic as compared to conventional Ti smooth surfaces (chapter 3), which is known to 

influence cell functionalities, together with surface morphology/topography and chemistry. The 

biocompatibility of NT-Ca/P samples for osteoblast-like cells was firstly proved in chapter 3, and 

then confirmed in chapter 5. In this latter chapter in-depth biological studies were conducted 

for NT-Ca/P and NT-Ca/P/Zn samples from which their biocompatibility was evidenced both for 

osteoblast-like and human mesenchymal stem cells (hMSCs). 

Bringing together reverse polarization and anodization steps, TiO2 NTs were granted with 

multiple and crucial functionalities for the production of enhanced implant surfaces. While 

reverse polarization arose as a fundamental step for the synthesis of biocompatible Ca/P and 

Ca/P/Zn-doped TiO2 NTs, the anodization step was found to play a key role on the improvement 

of their electrochemical and tribo-electrochemical responses in artificial saliva (AS). This 

improved ability to withstand both to corrosive and tribocorrosive environments, was linked 

with the formation of a nano-thick oxide film at the interface region as a consequence of 

anodization. These findings resulted from the studies reported in chapter 3, 4, 6 and 7 and will 

be discussed in more detail in the following sections. 
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8.1.2. Understanding the influence of TiO2 NTs bio-functionalization on human cells and bacterial 

responses: impact on osseointegration and infection 

The incorporation of bioactive elements natively present in bone such as Ca and P, is a 

well-known approach to improve the bio-functionality of Ti-based surfaces [1, 2]. Based on this 

knowledge, these elements were chosen to enrich TiO2 NTs intended for dental and orthopedic 

applications, along with Zn that plays an important role in osteoblast differentiation and bone 

formation, and also display antimicrobial properties [3, 4]. 

As clearly shown in chapter 5, nanotubular surfaces modulated the morphology of 

osteoblast-like and hMSCs, by inducing to a highly stretched shape compared to cells on smooth 

and micro/nano-roughened Ti surfaces. Furthermore, early adhesion studies showed that cells 

interacted faster with nanotubular surfaces, and after 2 h of adhesion the formation of stress 

fibers along with well-developed lamellipodia and filopodia suggested an improved adhesion 

ability.  It is believed that the cell adhesion process has been controlled by nanotubular surface 

features, namely morphology, topography, chemistry, and energy. These characteristics may 

play, separately or together, key roles on the initial protein adsorption to NTs, and consequently 

interfere in cell functionalities such as adhesion, cytoskeleton organization, proliferation and 

differentiation [5]. The topographical/morphological and physicochemical characteristics of TiO2 

NTs are known to control the adhesion of extracellular matrix (ECM) proteins and subsequently 

modulate cell adhesion through integrin receptors [6, 7]. 

As reported in chapter 7, NTs display a lower elastic modulus as compared to smooth Ti, 

whose values are around 42 – 52 GPa and 121 – 134 GPa, respectively. The reorganization of 

actin cytoskeleton may be modulated by focal adhesion complexes via integrin receptors, which 

are sensitive to substrate stiffness and may induce to mechanotransduction activating 

intracellular signaling pathways [8-10]. Stiff matrix is known to induce cell spreading size, well-

aligned stress fibers and enhanced focal adhesion assembly, features generally assigned to 

osteogenic phenotype. Therefore, it is believed that beyond the effect of 

morphological/topographical and physicochemical surface features on cell adhesion, the 

mechanical properties of TiO2 NTs may also induce to mechanotransduction stimuli, and 

synergistically modulate cell shape. This is in accordance with previous studies in which TiO2 NTs 

triggered intracellular cascades, which are known to regulate mechanotransduction and MSCs 

commitment to osteoblastic differentiation [11-13]. Shih et al. [8] provided evidences that the 

matrix stiffness affects osteogenic phenotype of MSCs by mechanotransduction events 

mediated by α2-integrin. The authors showed that substrate stiffness regulates the activity of 

several kinase activities involved in osteogenic differentiation (e.g. ROCK, FAK and ERK 1/2). The 

lower elastic modulus of TiO2 NTs is also expected to reduce stress shielding effect, since it is 
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closer to that of natural bone (11 – 30 GPa) [14, 15]. Stress shielding is usually a consequence of 

the mismatch of mechanical properties between bone and implant materials, and is widely 

known to induce bone resorption [16]. Therefore, Ti surfaces decorated with TiO2 NTs are 

expected to improve the biomechanical compatibility of implant materials and so, their long-

term success.  

An additional interesting outcome from the study reported in chapter 5, is related with 

the key role of Zn to induce osteogenic differentiation of hMSCs by regulating the expression 

levels of bone morphogenetic protein 2 (BMP-2), which is known to control osteogenic 

differentiation [17]. It is believe that the higher expression of BMP-2 might have stimulated 

osteopontin (OPN) expression, a major structural protein of bone matrix [18]. Furthermore, 

nanotubular surfaces, with or without zinc, induced hMSCs to release significantly higher 

amount of vascular endothelial growth factor (VEGF), when compared to smooth and 

micro/nano-roughened Ti surfaces. VEGF synthesis is being probably modulated by the unique 

surface morphological/topographical and/or physicochemical characteristics of TiO2 NTs. VEGF 

is known to play a significant role in angiogenesis and vascularization, which play main roles in 

bone healing and formation [19]. Beyond promoting cellular functions, NT-Ca/P/Zn surfaces 

showed the ability to impair S. aureus viability, and thus behave as bio-selective surfaces.  

In brief, NT-Ca/P/Zn surfaces are biocompatible both for osteoblast-like and hMSCs, able 

to modulate cell adhesion and osteogenic differentiation, and stimulate the release of VEGF, 

when compared to adequate controls. In addition to their antimicrobial properties and the 

ability to reduce stress-shielding effect, these results suggest that TiO2 nanotubular-textured 

surfaces and their enrichment with Zn is a very promising approach to design new bio-selective 

functional surfaces for osseointegrated Ti implants, by improving osseointegration and 

simultaneously avoiding infection. Based on these outcomes, these surfaces were selected for 

tribo-electrochemical tests, which are fully reported in chapter 6 and 7 of this thesis.    

 

8.1.3. Improved tribo-electrochemical behavior of bio-functionalized TiO2 NTs under single and 

multiple sliding actions 

It is very well-known that TiO2 NTs may effectively enhance cell functionalities and display 

antimicrobial properties. However, their widespread biological applications may be 

compromised by the poor adhesion strength of NTs to the Ti substrate [20], and no studies have 

been undertaken neither to investigate this main issue nor to find a way to overcome it. 

One of the main objectives of this work was the in-depth characterization of the 

morphological features of the interface between TiO2 NTs and Ti substrate, before and after bio-

functionalization treatments. This study is reported in chapter 4, and one of the main outcomes 
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relied on the poor adhesion of conventional NTs, through observation of a non-continuous 

interface characterized by a hollow space between the nanotubular film and the substrate. After 

bio-functionalization treatments remarkable changes were observed at the Ti/TiO2 NTs interface 

region, due to the formation of a nano-thick oxide film (230 – 250 nm) during anodization 

process, which appeared to improve NTs adhesion to Ti. The formation of this nano-thick oxide 

film at the interface confirmed the hypothesis postulated in chapter 3, to explain the 

significantly lower passive current measured for bio-functionalized NTs as compared to the 

conventional ones and smooth Ti in AS. This nano-thick oxide film is acting as a protective barrier 

against the passage of current, therefore effectively protecting the substrate against corrosion.  

 The adhesion properties and degradation mechanisms of TiO2 NTs were investigated by 

tribo-electrochemical tests carried out in AS under single and multiple sliding actions, to better 

mimic real in vivo conditions that dental implants might be exposed to in real life. These studies 

were reported in chapter 6 and 7 and, for the first time, several fundamental findings were 

achieved. The poor adhesion of conventional TiO2 NTs was undoubtedly confirmed and bio-

functionalization came out as a very promising approach to overcome it. Besides the more active 

electrochemical state, conventional TiO2 NTs suffered catastrophic destruction right after 100 –

300 s sliding actions accompanied by significantly higher wear volume loss as compared to bio-

functionalized NTs, either when submitted to single or multiple sliding actions in AS. The 

improved tribo-electrochemical behavior after bio-functionalization was correlated with the 

significantly higher adhesion strength of the NTs to the substrate, granted by the nano-thick 

interfacial film formed by anodization. The high adhesion strength was correlated with the 

higher hardness measured for these films, which consequently enhanced their mechanical wear 

resistance. From these studies a first insight on the main degradation mechanisms of TiO2 NTs 

was proposed that relies on tube smashing and densification, along with delamination and 

detachment of the tubes, through cracks formation and propagation from the surface to 

subsurface regions of the film.  

An additional important outcome from the study reported in chapter 7 is the ability of 

TiO2 NTs to induce the formation of a protective P-rich tribofilm with lubricant properties during 

tribo-electrochemical solicitations. This film may help to explain the open circuit potential (OCP) 

evolution during sliding, both for conventional and bio-functionalized NTs, as well as the high 

electrochemical stability observed in both cases when submitted to multiple sliding actions. 

Beyond the improved electrochemical properties, the formation of this tribofilm is believed to 

synergistically improve the wear resistance ability of TiO2 NTs. Conventional NTs showed similar 

degradation by mechanical wear after sliding tests carried out for 300 s and 1800 s, and 

furthermore, this trend was kept after 2-cycle sliding periods undertaken for 1800 s each. As 
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concerns bio-functionalized NTs, a trend of a gradual degradation was observed for sliding tests 

carried out for 300 s and 1800 s, and no significant differences were registered when 2-cycle 

sliding tests were carried out. These results highlight the ability of NTs to withstand multiple 

cycles of mechanical solicitations, and suggest that the degradation induced by mechanical wear 

in the beginning of sliding actions, dictate their long term degradation. This ability of 

nanotubular films to avoid further mechanical degradation as long mechanical solicitations take 

place, is believed to be strongly related with the formation of the compact P-rich tribofilm, which 

grants both protection against corrosion and wear. 

The outcomes reported in this section are of tremendous clinical significance since aseptic 

loosening of dental implants is generally ascribed to peri-implant inflammatory reactions 

induced by the liberation of metallic ions and solid wear debris, as a consequence of material 

surface degradation [21, 22]. Ribeiro et al. [23] showed that TiO2 nanoparticles are internalized 

by human osteoblasts inducing modifications on their behavior. Furthermore, Wang et al. [24] 

suggested that chronic exposure of hMSCs to Ti wear debris in vivo, may contribute to decreased 

bone formation at the implant/bone interface by reducing population of viable hMSCs and 

compromising their differentiation into functional osteoblasts. Peri-implant inflammation is 

currently associated to periprosthetic bone resorption (osteolysis) with subsequent implant 

failure, along with the need of an additional surgery to the patient, always painful and expensive. 

Bio-functionalized TiO2 NTs display superior resistance to withstand corrosive and tribocorrosive 

actions, as compared to pure Ti and conventional TiO2 NTs. Therefore, these are very promising 

candidates to minimize implant degradation in vivo, and subsequently contribute for the 

establishment of a stable bone-implant anchorage, enhancing the implant life span. 

 

 

This thesis focused on the development of multifunctional TiO2 NTs through reverse 

polarization anodization, an easy and innovative strategy which provide them the ability to 

overcome the main risk factors known to induce dental implant failures. The main outcomes of 

this work are summarized as follows: 

- Reverse polarization anodization is a simple and effective methodology to modify the 

chemistry of TiO2 NTs without compromising their morphology. These two steps complement 

each other: while reverse polarization is fundamental to provide biocompatibility, anodization 

is key step to improve the interfacial features of conventional TiO2 NTs. 

- Ti surfaces decorated with hydrophilic TiO2 NTs were fabricated with a bone-inspired 

morphology. These surfaces displayed an elastic modulus closer to that of bone, modulated 

osteoblast-like and hMSCs morphologies and reduced S. aureus viability, compared to pure Ti.  
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- TiO2 NTs displayed angiogenic properties by stimulating the synthesis of VEGF, and 

their enrichment with Zn supplied them with osteogenic properties by modulating the 

expression of osteogenesis-related genes. 

- Bio-functionalized TiO2 NTs displayed improved corrosion and tribo-electrochemical 

properties as compared to pure Ti and conventional NTs. These improvements were suited by 

the formation of nano-thick oxide film at the interface by anodization, with insulating and 

adhesion strengthening properties. While the insulator properties of the film granted TiO2 NTs 

enhanced corrosion protection, the adhesion strengthening increased their hardness and 

consequently their wear resistance. 

- All the nanotubular films displayed a highly stable tribo-electrochemical behavior 

when submitted to multiple cycles of mechanical solicitations. The formation of a P-rich oxide 

tribofilm during tribo-electrochemical solicitations protects effectively the substrate against 

long-term degradation by wear and corrosion. 

In this project, efforts to achieve TiO2 NTs with improved functionalities have been made. 

By comparing with the available literature, this thesis remarkably shows that significant 

improvements have been achieved. By means of a simple approach, key functionalities of 

conventional TiO2 NTs were improved which are expected to have huge clinical impact as regards 

the biological, microbiological and tribo-electrochemical performances of Ti-based implant 

materials. The new methodology discovered may bring new insights to improve already existing 

implant systems, or even to create new surfaces with enhanced functionalities. This study takes 

along a fundamental and insightful contribution by providing new knowledge on the 

mechanisms behind tribocorrosive degradation of nanotubular films, and simultaneously, by 

contributing with an effective and low cost method to overcome it.   

One aspect of paramount importance is that the findings reported in this thesis find 

possibility of practical implementation. They may be translated and applied in dental and 

orthopedic industries, launched into the market and effectively help people by providing them 

a better quality of life, while at the same time saving companies’ resources. 

To finalize, the main aim of this thesis was successfully achieved and the central 

hypothesis validated: Titanium surfaces decorated with TiO2 NTs display multiple bio-

functionalities: tribo-electrochemical resistance, antibacterial activity and osseointegration 

ability. 
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Throughout the different stages of development of this thesis a few research questions 

have arisen, for which neither always a plausible answer has been found based on the existing 

literature. Henceforward are described some of those unanswered questions: 

- One of the main outcomes resulting from the study reported in chapter 3, highlights 

reverse polarization as a critical step to enhance surface biocompatibility, which was ascribed 

to the formation of CaO compounds  on TiO2 nanotubes (NTs). However, little knowledge still 

exists on the effect of CaO on cell functionalities and further studies must be carried out to clarify 

this hypothesis. Furthermore, it should be elucidated why cell functions (i.e. metabolic activity 

and adhesion) are compromised, as compared to conventional NTs, if reverse polarization is not 

applied before anodization step. 

- Fluoride ions (F-) adsorbed on TiO2 NTs were thought to impair hMSCs differentiation 

towards osteoblast phenotype, and also to display bactericidal activity against S. aureus. Even 

though this topic has been discussed in chapter 5 based on literature review, the mechanisms 

behind such biological effects still remained unclear. Additional studies should be undertaken to 

better understand the possible role of F- ions on human cells and bacterial functions. 

- Although all the nanotubular surfaces displayed the ability to impair bacterial viability, as 

shown in chapter 5, the mechanisms behind such effect need to be in-depth investigated. 

- The metabolic activity of hMSCs cultured in osteogenic medium for six days, was lower 

for those cells adhered on bio-functionalized NTs as compared to the ones on micro/nano-

roughened Ti surfaces. This trend was reported in chapter 5, and it was assumed to be 

simultaneously influenced by surface features and osteoblastic differentiation of hMSCs. 

However, the influence of these factors on metabolic activity and proliferation of hMSCs 

remained uncertain, and additional studies should be performed for clarification. 

- Biological studies have demonstrated improved cell adhesion properties on TiO2 NTs, with 

cells presenting a very well stretched morphology as compared to smooth and micro/nano-

roughened Ti surfaces (chapter 5). However, it remained unclear the effect of surface 

morphology on cell adhesion, and consequently on its shape. Once surface morphology is 

dictated by NTs diameter and wall-thickness, additional studies should be performed by 

changing the nanotube features and assessing their influence on cell responses. 

- The poor adhesion strength of conventional TiO2 NTs was firstly demonstrated in chapter 

4, and further confirmed in chapter 6 and 7 by tribo-electrochemical testing. Nevertheless, little 

knowledge still exists on the real mechanisms governing film detachment. 
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Academic knowledge builds upon the work of others… there is no an end for research! 

Hereafter are proposed a few topics considered important to be undertaken for further 

improvements on the current findings, or to provide new insights for exploring other subjects: 

- The execution of in-depth studies for understanding the mechanisms underlying cell 

adhesion process would be of upmost important. To achieve this knowledge an interesting 

approach would be the quantification of extracellular matrix (ECM) proteins (e.g. albumin and 

fibronectin) adsorbed to TiO2 NTs, and the labeling of cell membrane proteins associated to focal 

adhesion complexes involved in cell adhesion process (e.g. vinculin and paxillin). 

- The understanding of the relation existing between cell morphology and osteoblastic 

differentiation could be achieved by western blot analysis, to study focal adhesion kinase 

activities involved in intracellular signaling pathways that regulate osteoblast phenotype. 

- An in-depth study on the osteoblastic differentiation ability of hMSCs in contact with bio-

functionalized NTs should be undertaken. This could be achieve, for example, through 

quantification of alkaline phosphatase activity (ALP) and bone morphogenetic protein-2 (BMP-

2) synthesized by cells in contact with nanotubular surfaces. Furthermore, it would be of upmost 

relevance to understand the mineralization ability of cells after 21 days of culture.  

- The study of the release profile of chemical elements constituting bio-functionalized TiO2 

NTs (i.e. F, Ca, P and Zn) would also of highest significance. This could be achieved by immersion 

tests in simulating body fluid, and quantification of ionic species release by inductively coupled 

plasma atomic emission spectroscopy (ICP-AES). This information is of crucial importance to 

understand the influence of these elements on cell functionalities. 

- An additional topic of profound importance would be the study of osteoblasts ability to 

internalize wear particles released from degradation of bio-functionalized NTs by tribocorrosion, 

as well as their toxicity potential.  

- The use of additional electrochemical techniques to quantify the ionic current released 

during mechanical solicitations, would be also an interesting approach to study the 

tribocorrosion behavior of bio-functionalized TiO2 NTs. 

- To explore thermal treatments of bio-functionalized NTs, as a way to improve their 

multiple functionalities. This seems be a promising strategy to further improve biological 

performance, antibacterial activity and also achieve enhanced tribocorrosion resistance. 

- Bio-functionalized NTs are versatile systems that may be conjugated with other 

techniques to achieve enhanced bio-functionalities. In particular, TiO2 NTs have been widely 

recognized as efficient controlled delivery systems of a wide range of bioactive compounds.   
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