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Abstract: This work presents the design and implementation of a wireless body area 
network based on Bluetooth Low Energy (BLE) which enables the integration of 
multiple sensor nodes into a smartphone-based system in order to monitor the 
posture of cyclists. The wireless posture monitoring system presented in this 
chapter obtains the orientation in space of each body segment in which the sensor 
nodes are placed and calculates the trunk angle, the knee angle and the angle of 
inclination of the road. This system collects raw sensor data from accelerometers, 
magnetometers and gyroscopes and sends the data via BLE to an Android 
smartphone, which plays the role of central station and performs the data 
processing concerning the posture calculation. This chapter describes the 
development of the hardware and software of the sensor nodes, which are based 
on the CC2540 BLE system-on-chip, as well as the development of the Android 
application. Experimental results concerning the measurement of the posture of a 
cyclist are provided in order to validate the implementation. 
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1. INTRODUCTION 
Body posture monitoring is an emerging area of study and development, 



2 Chapter #
 with applications in areas such as sports, healthcare and entertainment. 
Posture monitoring systems based on wireless body area networks (WBANs) 
[1] present several advantages compared to conventional systems based on 
cameras. Unlike the latter, the former can be used in uncontrolled 
environments, under any lighting conditions and without line of sight to the 
receptor. 

WBANs require small-sized wireless sensors that can be conveniently 
placed in the user’s body, as well as low power consumption hardware and 
energy efficient protocols, in order to provide adequate battery lifetime [2]. 
Sensor nodes in a WBAN normally send the collected data to a central 
station, such as a personal computer, with capacity to process and store the 
data. With the technological advancement, smaller personal devices, such as 
smartphones, also started to become suitable for these tasks, with the 
advantage of greater portability.  

The posture of an athlete during the cycling activity can dramatically 
influence his performance. Several studies in this area were made, either 
with elite athletes or amateur cyclists. The aero position, where the cyclist 
adopts a lowered position with the trunk almost horizontal and the arms 
extended forward with elbows tucked in, has the advantage of reducing the 
drag imposed by wind resistance. However, in [3], the authors conclude that 
the upright position allows higher VO2, ventilation, heart rate, and workload 
for untrained cyclists performing with maximal effort. Moreover, the upright 
position makes the cycling exercise less costly during steady state. In [4], the 
authors conclude that the posture has a very large effect on the performance 
of active cyclists during constant-load exercises. 

Besides the trunk posture, the performance of cyclists can be affected if 
the angle of the knee is not the most correct. In [5], anaerobic tests were 
performed with trained and untrained cyclists. Results show that the seat 
should be adjusted to allow the leg to be flexed by 25-35 degrees for 
untrained cyclists, in order to contribute to the prevention of injuries and 
increase the performance. 

Mobile sensing is an attractive emerging area of research and development 
[6], [7] that uses sensor data collected by users’ smartphones to extract 
relevant information. Some of these research works are applied to cycling, 
monitoring sensor data from the bicycle, the user’s body or the environment 
[8], [9], [10]. 

BikeNet [8] is a project that performs the mapping of user experience 
based on various sensors adapted to a conventional bicycle using a network 
of wireless sensors based on the IEEE 802.15.4 standard. In order to provide 
the interface between the sensor network and a smartphone, this system uses 
an IEEE 802.15.4/Bluetooth gateway. Data collection focuses on parameters 
such as noise and carbon dioxide levels, speed, geographical location and 
user’s stress level. The cyclist’s posture is not monitored. 

The Copenhagen Wheel project [9] developed a wheel that can be adapted 



#. Wireless body area network for cycling posture monitoring 3
 in a conventional bicycle in order to turn it into an electric bike. An iPhone 
smartphone communicates with the central part of the wheel (hub) using 
Bluetooth, providing geographical location services and allowing the user to 
manually lock/unlock the bike, change the gear and adjust the level of 
actuation of the electric motor. This system does not collect any 
physiological data from the cyclist. 

This chapter, which provides a revised and extended version of a previous 
paper [17], presents a system that allows the real-time monitoring of the 
posture of cyclists through the use of wireless sensor nodes placed on the 
body of the cyclists. The developed sensor nodes, which are composed by 
two boards (sensor module and wireless module), send the collected data to 
an application developed for Android smartphones. The sensor module 
integrates 3-axis accelerometers, magnetometers and gyroscopes. 

The wireless communication between the sensor nodes and the 
smartphone is based on Bluetooth Low Energy (BLE) [11], which is a 
wireless technology optimized for ultra-low power consumption, designed to 
be used on devices that have to operate for long periods without having to 
replace or recharge their batteries. BLE is a new technology that is currently 
only available on some recent smartphones. However, similarly to previous 
Bluetooth versions, the trend is for BLE to be integrated on most 
smartphones in the future. In contrast, IEEE 802.15.4/ZigBee [12], [13], 
which is an alternative low power wireless technology, generally lacks 
smartphone support. 

This chapter is organized as follows: The next section provides a 
description of all the components of the developed system, including the 
hardware of the sensor nodes, the code implemented in the nodes and the 
smartphone application. Section 3 describes the process for calculating the 
relevant posture angles. In Section 4, experimental results are presented and 
discussed. Finally, Section 5 presents the conclusions.  

2. DEVELOPED SYSTEM 
2.1 System Overview 

The cycling posture monitoring system presented in this chapter is 
composed of two main physical components: a smartphone (central station) 
and multiple wireless sensor nodes on the body of the cyclist, which 
communicate using BLE, as shown in Fig. 1. 
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 Figure 1. Architecture of the developed cycling posture monitoring system. 
 Each sensor node has the task of collecting raw posture data from the body 

segment where it is placed. The sensor node is composed by two boards: 
sensor module and wireless module. Each sensor module integrates three 
sensors: accelerometer, magnetometer and gyroscope, which generate data 
on each of the three axes: x, y, z. The accelerometer provides the inclination 
angle between the accelerometer position and the gravity field, the 
magnetometer provides the angular difference between its position and the 
magnetic field of the Earth, and the gyroscope compensates errors in the 
calculation through the detection of rotational movements. 

In order to monitor the posture of cyclists, three sensor nodes are placed in 
the user’s body: one on the chest, in order to measure the inclination of the 
trunk relative to the horizontal plane; one on the upper leg and one in the 
lower leg, to obtain the knee angle. In order to calculate the trunk angle 
(relative to the bicycle), it is necessary to measure the inclination of the 
bicycle. For this purpose, we chose to use the sensors integrated on the 
smartphone, which is placed on the bicycle handlebar, taking advantage of 
the available equipment and thus avoiding the use of another sensor node. 

The raw data from the sensor modules are sent via BLE to the developed 
application on a BLE compatible (Bluetooth Smart Ready) smartphone. 
Besides performing the basic functions of a Bluetooth connection, the 
application is capable of calibrating the sensors and calculating the posture 
angles (pitch, roll and yaw) for each body segment based on the raw data. 
Based on this information, the application provides the trunk and knee 
angles of the cyclist. This posture information can be visualized on the 
application, stored on the smartphone, or sent to a remote computer in real-
time using Wi-Fi or a mobile data connection. 
2.2 Sensor Node Hardware 

The wireless module of the sensor node, shown in Fig. 2 (a), is a Texas 
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 Instruments CC2540EM module, which contains a CC2540 SoC (System-
on-Chip) [14], an external antenna, two 20-pin connectors that provide 
access to the pins of the CC2540, and auxiliary components. The CC2540 
integrates, in the same chip, an 8051-based microcontroller with 8 kB RAM 
and 128 kB of flash memory and a BLE transceiver, which operates in the 
2.4 GHz frequency band with a data rate of 1 Mbps. The current sensor node 
prototype is relatively large due to the size of the external antenna. However, 
the size of the sensor node can be easily reduced in the future with the use of 
a wireless module with integrated antenna, such as the Panasonic PAN1720. 
Since this module is also based on the CC2540 SoC, the same embedded 
code developed for this prototype could be used without the need of changes. 

 

 Figure 2. Sensor node hardware: (a) wireless module; (b) sensor module top view; (c) sensor 
module bottom view with the battery. 

 The top and bottom views of the developed sensor module are shown in 
Fig. 2 (b) and (c), respectively. Its three sensors are divided into two distinct 
units. The InvenSense MPU-6000 (Motion Processing Unit) contains an 
accelerometer, a gyroscope, a digital motion processor (DMP) and an I2C 
bus. The accelerometer has a sample resolution of 16 bits, its range is 
programmable to ± 2g, ± 4g, ± 8g or ± 16g and its output data rate can be 
between 4 Hz and 1 kHz. In this case, we used is a range of ± 2g, which 
provides a sensitivity of 61.0 µg/LSB. The I2C bus allows the MPU-6000 to 
access data from an external sensor, which in the case of this system is a 
Honeywell HMC5883L magnetometer. This high resolution magnetometer 
contains a 12-bit ADC which provides a resolution of 5 milligauss for a 
range of ± 8 gauss, allowing between 1 and 2 degrees of compass precision. 

Data acquisition from the sensors to the CC2540 was performed using the 
SPI (Serial Peripheral Interface) interface of the MPU-6000 chip. 
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 2.3 Embedded Code 

The code developed for the sensor nodes was based on the BLE protocol 
stack provided by Texas Instruments, version BLE-CC2540-1.3.2. In order 
to provide adequate communication between two BLE stations in the context 
of this system, we created a service to send periodic notifications from 
peripheral stations to the central station, i.e., from slaves to the master. This 
service is implemented in the peripheral station, which takes the role of 
GATT (Generic Attribute Profile) server, whereas the central station acts as 
GATT client. 

The service created contains only one characteristic, whose value is a 20-
byte data frame, and a descriptor (CCC - Client Characteristic 
Configuration) that activates the mode of periodic notification sending 
(0x0001). We used notifications instead of the indications because the 
former does not require further exchange of packets between the master and 
the slave after the data transmission for the acknowledgement, so the 
overhead is lower, making the transmission process more efficient. Fig. 3 
presents the flowchart of the data transmission process from the peripheral 
station to the central station. 

 

 Figure 3. Flowchart of the data transmission at the peripheral station. 
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 This process starts at the BLEPeripheral_Init bloc, which is responsible 
for parameter initialization at the GAP layer with respect, for example, to the 
role of the device (in this case peripheral), definition of the advertising 
interval and initialization of the attributes of the GATT layer, more 
specifically the services implemented. In the next phase, 
BLEPeripheral_ProcessEvent processes all events that are triggered. In the 
case of the firmware implemented, whenever an event concerning the 
periodic data transmission is detected the periodicDataSendTask block is 
called. This block is responsible to collect the values of the sensors, place 
them in the data frame payload and call the service created, 
SendDataServiceNotify. After verifying if notifications are enabled, this 
service calls the GATT_Notification function to send the information to the 
central station. 

Data acquisition from the sensor module using SPI can be made using one 
of three different methods: polling of status bits, interrupt, or DMA [15]. 
Initially, the idea was to use the DMA controller of the BLE stack for data 
acquisition, but this controller defines a type of packet that does not match 
the format accepted by the MPU-6000. Therefore, we implemented a 
function, based on the method of polling of status bits, to read/write the data 
through SPI without resorting to the BLE stack. 

After the acquisition of raw data from the sensors, the program constructs 
the payload of the data frame to be sent to the central station, which is shown 
in Fig. 4. Each sensor is sampled at 16 bits, which means that 2 bytes are 
required to represent the x, y and z values from each sensor, resulting in 18 
bytes. Each frame includes also a sequence number (SN) and a sensor 
identifier (SID) to allow the smartphone application to properly identify the 
origin of the data from the different sensor nodes. Therefore, the length of 
the payload is 20 bytes, which corresponds exactly to the maximum allowed 
BLE payload, at application level, for transmission of notifications.  

 

 Figure 4. Data frame payload of the BLE interface.  
The sampling rate of the sensors modules was set to 30 Hz, which 

corresponds to a frame rate of 30 fps, a value typically used by motion 
capture applications [16]. The BLE connection interval parameter was set to 
100 ms and the slave latency was set to zero, which means that each sensor 
generates three samples per 100 ms. Since it is not possible to send this 
amount of data in a single notification, each peripheral station has to send 
three notifications (data frames) per connection event. 
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 2.4 Smartphone Application 

The Android application was developed and tested using a Google Nexus 
5 smartphone with Android v4.4 (KitKat). This application aims to monitor 
the posture of amateur or professional cyclists during training or 
competition. The smartphone assumes the role of central station and 
provides a user interface. It receives the sensor information collected from 
the monitored body segments and calculates the angles of the torso and 
knees and the inclination of the road in real-time, according to the process 
described in the next section. It has the capacity to store the data, display a 
chart of the monitored angles or forward the data to a remote computer. This 
application uses the Google BLE API, which has the advantage of 
compatibility with the majority of the most recent Android smartphones.  

When started, the application begins the BLE device (sensor nodes) 
discovery process, and proceeds to the connection establishment. Once 
connected, it is possible to collect data from the sensor nodes. Once the 
nodes are calibrated and placed on the body, a training/competition session 
can be started. During a session, the values of the measured parameters 
referred in Section 3 are calculated in real-time and stored in the smartphone. 
The behavior of these parameters along the time can also be viewed through 
charts.  

Fig. 5 illustrates the main blocks of the developed smartphone application, 
which correspond to the Android activities.  

 

 Figure 5. Main blocks of the developed smartphone application. 
 
The first block, "Start", corresponds to the main activity, and represents 

the initial screen of the application. The block titled "List Nodes" 
corresponds to the activity "DevicesList", which lists all sensor nodes found 
via BLE. After establishing the connection, the activity that provides the 
sensor nodes information is "InfoSensor", which corresponds to the "Nodes 
Information" block. The blocks "Calibrate Sensors" and "Calculate Posture" 
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correspond to the activities "Calibrate" and "Posture", respectively. Finally, 
the "Charts Display" block, which comprises the activities "Results" and 
"Graph", allows the presentation of results regarding the posture calculation. 

For the implementation of BLE technology in the application, as GATT 
client, we used a set of methods already available in a base application 
provided by Google through the Android Developers site. This base 
application consists of various BLE-related activities for discovery of 
compatible devices, establishment of connection to a GATT server, and 
receiving data in the form of notifications (GATT notifications). The 
methods inherent to these tasks are included in a service called 
BluetoothLeService. 

The BluetoothAdapter object is required in all activities that use 
Bluetooth. It represents the Bluetooth adapter (radio interface) of the device 
itself, and it is through this object that the Android application can interact 
with Bluetooth. 

After activation of the Bluetooth interface, the device discovery process 
is done using the startLeScan() method from the BluetoothAdapter object. 
As the device discovery process is demanding in terms of energy 
consumption, it is automatically suspended after 4 seconds, which is enough 
time to find all the sensor nodes in this system. Anyway, a new scan can be 
performed by pressing the "Scan" button in the activity "DevicesList". This 
activity presents the name of each BLE device found, along with its MAC 
address. 

The process of connection establishment between the GATT client and 
the GATT server is done using the connectGatt() method. This method 
returns an instance of BluetoothGatt object, which allows performing 
various client-side operations. The activity "InfoSensor" presents the data 
received from the sensor nodes, as well as the respective services and 
features that are supported by the GATT server, and communicates with the 
BluetoothLeService application service. 
2.5 Sensor Modules Calibration 

Before the sensor modules of the system are used for the first time, they 
require calibration. This process, which can be performed using the 
developed smartphone application, consists on obtaining the maximum and 
minimum readings of the accelerometer, magnetometer and gyroscope along 
the axes x, y and z, and storing them in a specific file. After that, the file 
becomes available to be used during the cycling activities, in order to 
normalize the raw sensor data for the calculation of the pitch, roll and yaw 
angles. Fig. 6 shows the calibration screen of the activity "Calibration". For 
each axis, the current value is shown in black and the value stored when the 
respective button is pressed is shown in red. The gyroscope values are not 
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 being used; therefore its minimum and maximum values are not accurate. 

 

 Figure 6. Sensor calibration panel of the smartphone application. 

3. POSTURE CALCULATION 
The three angles that describe the orientation of each sensor node on the 
respective body segment are pitch, roll and yaw. Pitch and roll are calculated 
using the normalized vector of the accelerometer values for each axis (ax, ay, az), whereas yaw is obtained by the horizontal components (Xh and Yh) of the 
Earth’s magnetic field. The equations representing the pitch, roll and yaw are, 
respectively: 
 

݄ܿݐ݅ܲ  = ݊ܽݐܿݎܽ ቌ ௔೤
ට௔మೣା௔೥మ

ቍ (1) 
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݈݈݋ܴ  = ݊ܽݐܿݎܽ ቀି௔ೣ
ି௔೥ቁ (2) 

 
  Yaw = ݊ܽݐܿݎܽ ቀ௑೓

௒೓ቁ (3) 
 
For the sensor node placed in the trunk, the pitch angle obtained in (1) 
provides the inclination of the trunk with respect to the horizontal plane. In 
order to obtain the trunk angle with respect to the bicycle, it is necessary to 
calculate the difference between the pitch and the angle of inclination of the 
bicycle, which is measured with the smartphone placed on the handlebar. 
This angle is calibrated before the start of the cycling activity by placing the 
bicycle in a horizontal terrain and pressing a button in the application which 
sets the angle to zero.  
The other two sensor nodes are used to measure the knee angle. For this 
purpose, one node is placed in the upper leg and the other is placed on the 
lower leg. The knee angle between these two body segments is given by (4). 
 

௞௡௘௘ܣ  = ௏ሬሬԦೠ೛೛೐ೝಽ೐೒ .௏ሬሬԦ೗೚ೢ೐ೝಽ೐೒ ݏ݋ܿܿݎܽ
ฮ௏ೠ೛೛೐ೝಽ೐೒ฮฮ௏೗೚ೢ೐ೝಽ೐೒ฮ (4) 

 
For the calculation of the orientation vectors vupperLeg and vlowerLeg, the values 
of pitch, roll and yaw for both sensor nodes are calculated at each instant and 
multiplied by the rotation matrix in each axis. The rotation matrices for each 
axis are represented by Rx(), Ry() e Rz() in (5), (6) and (7), respectively. e represent the angle of rotation about the x, y and z axis, respectively.  
 

 ܴ௑ሺߙሻ =  ൥1 0 00 cos ߙ − sin 0ߙ sin ߙ cos ߙ
൩ (5) 

 
 ܴ௒ሺߠሻ =  ൥ cos ߠ 0 sin 0ߠ 1 0− sin ߠ 0 cos ߠ

൩ (6) 
 
 ܴ௓ሺ߬ሻ =  ൥cos ߠ − sin ߬ 0sin ߬ cos ߬ 00 0 1

൩ (7) 

4. RESULTS AND DISCUSSION 
In order to verify the results of the measurement of the angles 

calculated by the developed system during cycling activities, three sensor 
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 nodes were placed on the appropriate parts of the body of an athlete, as 
shown in Fig. 7. 

 

 Figure 7. Sites of placement of the sensors on the athlete’s body: torso (left) and leg (right).  
According to the convention adopted in this chapter, the inclination of 

the bicycle during a climb corresponds to a positive angle, whereas 
during a descent this angle has negative values. Regarding the trunk 
angle, a forward reclining means positive values and reclining back 
generates negative values. The knee angle has a value of 180 degrees 
when the leg is fully extended, and as the cyclist bends the leg, the value 
of this angle decreases. 

In order to assess if the trunk angle with respect to the bicycle remains 
the same regardless of the inclination of the bicycle, a scenario where this 
inclination changes with time was tested. During the first seconds, the 
athlete's torso is upright and the bicycle is in a horizontal terrain. Then 
the athlete bends the torso forward 40 degrees, keeping this position in 
relation to the bicycle until the end of the test, while the bicycle follows 
its route on the terrain, first uphill and then downhill. As Fig. 8 shows, 
the trunk angle remained the same regardless of the positive and negative 
variations on the angle of inclination of the bicycle. 

In order to evaluate the variation of the knee angle during a cycling 
activity, a second test was performed in a scenario where the athlete 
maintains an aerodynamic position in a horizontal terrain. The seat height 
in relation to the height of the pedals is an important factor to ensure 
maximum performance. The goal is that the athlete does not fully stretch 
his legs or otherwise bends them too much while pedaling. Fig. 9 
presents the results of this test. Initially, without pedaling and with the 
leg almost fully extended, the knee angle has a value close to 160 degrees. 
After 8 s the athlete starts pedaling and the knee angle oscillates between 
80 and 150 degrees until the athlete stops pedaling. During this time, the 
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 measured values for trunk angle are around 40 to 50 degrees. There is 
some variation in this angle during the test due to the effort exerted by 
the athlete during pedaling.  

 

 Figure 8. Measurements of the trunk angle with variations on the angle of inclination of the 
bicycle along the time.  

 Figure 9. Measurements of the knee and trunk angle while resting and pedaling on a 
horizontal terrain. 
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 5. CONCLUSION AND FUTURE WORK 

Cycling performance is significantly affected by the body posture. 
This chapter proposed a system that monitors the posture of cyclists in 
real-time through the use of sensor nodes placed on the user’s body, 
which send the raw data via BLE to an Android smartphone, where it is 
processed in order to extract the posture angles. Unlike posture 
measurement systems based on cameras, this system does not require line 
of sight or controlled lighting conditions. Due to its portability, it can be 
used either by amateur or professional athletes, during training or 
competition. 

Currently, the gyroscopes of the sensor modules are not being used. 
Their data are acquired via SPI and are received the application, but are 
not used along with the accelerometer and magnetometer readings in the 
calculations. In the future the gyroscope readings may be used to 
compensate eventual measurement errors, in order to contribute to 
enhance the accuracy in the calculation of the posture. 

In the future this system will be integrated into another developed 
Android application [18] which provides a georeferenced database with 
measurements of several relevant cycling parameters, such as route, 
velocity, torque, cadence, power output and heart rate, and offers the 
functionalities of visualization current and past routes in a map, share 
data with friends, join or create events, and locate friends. The data 
collected by this application may be uploaded to a remote database, 
where it can be accessed later using the mobile app or a web browser.  

When used with electric bicycles (EBs), this system may be enhanced 
to allow the automatic control of the effort exerted by the cyclist [19]. 
The developed system may also be integrated in a mobile cockpit 
application [20] that provides useful personalized information to the 
cyclist related with the EB’s use, including EB range prediction and 
information regarding available public transport. 
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