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Abstract

Spoof plasmons mimic noble metal plasmons. The equivalent of the plasma fre-

quency is an energy scale imposed by the geometry of the metal grating upon which

they propagate. In this paper we show that the dispersion of spoof plasmons in the

THz can be controlled placing a doped graphene sheet on the proximity of a metallic

grating, adding more versatility to this type of system. We develop a semi-analytical

model, based on a perfect-metal diffraction grating. This model allows to reproduce

well FDTD calculations for the same problem but with much less computer time. We

discuss the optical properties of the system covering a spectral range spanning the

interval from the THz to the mid-IR. It is shown that the system can be used as both

a perfect absorber and a sensing device. For illustrating the latter property we have

chosen different alcohols as analytes. The frequency at which perfect absorption ap-

pears can be controlled by the geometric parameters of the grating and by the value of

the Fermi energy in graphene. The theoretical results predicted throughout this work

can be verified experimentally in the future.
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1 Introduction

It is a well known result that a perfect flat conducting surface does not support surface plas-

mon polaritons (SPPs).1 A real metal/dielectric interface, on the other hand, does support

SPPs, but their energy is of the order of the plasma energy of the metal, which, for most

good plasmonic metals (i.e. with relatively low losses, like gold or silver) is in the ultraviolet

spectral range,2 which is an energy scale too high for many sensing applications.

An usual method to excite low-energy plasmons in a perfect metal is to introduce periodic

structures (namely grooves or holes) in its surface. Under these conditions, the corrugated

system supports surface modes which, strictly speaking, are not SPPs (because those are

excited in flat interfaces), but effectively mimic their properties, and for that reason they

are usually referred to as spoof plasmons (or spoof surface plasmons, SSPs). These plasmons

were firstly studied and named by Pendry et al. in 2004, who showed that these solutions were

equivalent to the ones retrieved from a flat metal/dielectric interface with the permittivity

of the metal being modelled by an effective permittivity dependent on the geometry of the

grooves.3 Using that method, the authors were able to calculate an approximate dispersion

relation for these plasmons. Later, this method was generalized to show that spoof plasmons

are supported by real periodically-grooved metals,4 and different authors have also suggested

that spoof plasmons can be excited in small structures with only a few unit cells.5

The advantage of this type of plasmons is that their energy depends highly on the geom-

etry of the grooves, and particularly on their depth. In fact, using the effective permittivity

method, one finds that the effective plasma energy of the corrugated perfect metal —which

2



allows the estimation of the spoof plasmons energy— is given by6

ωeff
p =

πc

2h
√
ε
, (1)

where h is the depth of the grooves and ε the permittivity of the medium inside the grooves.

This result (which will be rederived in this work, using a different method) suggests that,

in general, the scale of the grooves’ dimensions has a substantial impact on the frequency

of the spoof plasmons. For this reason, these plasmons have been regarded recently as

a promising alternative to traditional SPPs for applications that include waveguides,7–10

couplers/decouplers,11,12 leaky wave antennas13–15 and sensing devices,16–18 specially in the

THz spectral range (which is very useful, since many fundamental excitations —like phonons

in a lattice or molecule vibrations in a gas— have frequencies which lie in the THz and mid-IR

spectral regions19).

Although the optimization of the geometry of the grooves allows an effective tuning of

the frequency of the spoof plasmons, it has the disadvantage of being immutable for some

certain system —and many times, building many different systems with slightly different

geometric parameters may not be the most practical solution. In traditional plasmonics, the

usual solution for this limitation is the introduction of graphene, because its Fermi energy

(that strongly controls its plasmonic response20) can be easily varied either through chemical

doping or the application of a gate potential.21 Other advantages of graphene include its high

carrier mobility (what translates in small losses, compared to noble metals22) and a strong

light confinement in its surface.23

Following these features, we propose in this work the usage of a doped graphene sheet

to effectively tune the plasmonic properties of the spoof plasmons, by controlling graphene’s

Fermi energy and the distance to the grooved metallic surface. A first approach to this

problem has been carried out by Ding et al.,24 for a 2D metal grating, using the effective

medium approach to describe the periodic region of the structure; we, on the other hand,
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consider a 1D metal grating, and have employed a mode-matching method considering the

metal to be perfect, what will prove to be a good approximation. Moreover, we have ac-

counted for the non-local effects in the graphene conductivity, using Mermin’s formula (see

the Supporting Information for further details). The addition of graphene is shown to be

very efficient when the energy of the uncoated diffraction grating SSPs is close to the energy

of the graphene plasmons, especially in the THz spectral range. Afterwards, we will propose

how this tunnability can be used for waveguiding and sensing applications.

2 Spoof plasmons in a grooved metallic surface coated

with graphene

Let us consider a semi-infinite grooved perfect-conducting surface coated by a graphene sheet

parallel to its surface, like the one depicted in Figure 1.

a w

d

h

s
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III

ε1

ε2

ε3z

x

y

Figure 1: Front-view schematic representation of the system presently under study. The grey
area depicts a substract where the the perfect metal thin film, in gold color, is deposited.
The light-blue areas depict the dielectric regions and the dark-blue thin area is the graphene
sheet. All the different geometrical parameters and dielectric functions in either region I–III
are marked in the figure. The system is assumed to be infinite in the z-direction and periodic
in the x-direction.
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We divide the dielectric area in three different regions (I, II and III) which can, in general,

have different permittivities (ε1, ε2 and ε3, respectively). The grooves in the metal are

assumed to be rectangular, with width a, depth h, and period d; the metal itself is assumed

to be perfect. The graphene sheet is lying at a distance s from the top of the grooves, and

is described by a non-local conductivity σ (which will be discussed later) dependant on its

Fermi energy EF and relaxation energy Γ.

2.1 Dispersion Relation

The procedure we adopted to characterize the spoof plasmons consists on the modal de-

composition of their fields in a Fourier series. This method has been used in the literature

before,1,25,26 but never in the presence of graphene. The starting point is the solution of

the wave equation retrieved from Maxwell’s equations in either region I, II or III. Consid-

ering explicitly p-polarized modes with a frequency ω and a harmonic time-variation e−iωt,

the magnetic field in region λ must have the form Bλ(r, t) = Bλ(x, y)e−iωtẑ (omitting the

z-dependence) with

Bl(x, y) =
∞∑

n=−∞

Bneiβnxeiκ
(1)
n y, (2)

Bll(x, y) =
∞∑

n=−∞

eiβnx
[
C+
n eiκ

(2)
n y + C−n e−iκ

(2)
n y
]
, (3)

Blll(x, y) =
∞∑
n=0

An cos
[nπ
a

(
x− a

2

)]
cos
[
κ(3)
n (y + h)

]
, (4)

and the respective electric fields are given by

Eλ(r, t) =

(
ic2

ωελ

)
∇×Bλ(r, t). (5)

Note that equations (2)–(4) were written explicitly to ensure that (i) the fields in region I

do not diverge as y → ∞; and (ii) the tangential component of the electric field in region

III always vanishes in the surface of the metal. This is a consequence of the fact that
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a perfect metal does not admit non-null electric fields on its inside, and the tangential

electric field is continuous across any interface. The coefficients An, Bn and C±n are, for the

moment, unknown, while the electromagnetic wave equation imposes that κ
(1)
n = κ(βn, ε1),

κ
(2)
n = κ(βn, ε2) and κ

(3)
n = κ(nπ/a, ε3), with κ(q, ε) ≡

√
εω2/c2 − q2. Furthermore, since

the grooved system is periodic, the corresponding fields must obey the Bloch’s Theorem,

B(r + dx̂) = eiqdB(r), which means that βn = q + 2nπ/d (q being the momentum of the

plasmons in the x-direction). Another consequence of Bloch’s Theorem is that we need only

to determine the fields in an unit cell |x| < d/2 of the system, and the fields elsewhere are

then totally determined.

In order to find the coefficients An, Bn and C±n , we need to evaluate the boundary

conditions at the interfaces I/II and II/III. The detailed derivation from this point onwards

is presented in the Supporting Information (SI), where we show that the dispersion relation

of the spoof plasmons in this system is given by the matrix equation det(M− I) = 0, where I

is the unit matrix with elements [I]`m = δ`m and M is a matrix whose elements [M]`m = M`m

are given by

M`m = i
ε2

ε3

a

d

(
2

1 + δ`0

) ∞∑
n=−∞

(
χ+
n + χ−n
χ+
n − χ−n

)
κ

(3)
m

κ
(2)
n

sin
(
κ

(3)
m h
)

cos
(
κ

(3)
` h
)S∗n`Snm, (6)

with

χ±n =
1

2

[
1 +

σ(βn, ω)κ
(1)
n

ωε0ε1

± ε2κ
(1)
n

ε1κ
(2)
n

]
eiκ

(1)
n se∓iκ

(2)
n s (7)

and S`n = 1
a

∫ a/2
−a/2 dx e−iβ`x cos

[
nπ
a

(
x− a

2

)]
in an integral with an analytical solution. In the

previous expression, σ(q, ω) is the non-local conductivity of the graphene sheet (consult the

SI for further details); note therefore that all the influence of the graphene in the dispersion

is contained in the factors (χ+
n +χ−n )/(χ+

n −χ−n ) in each term of the sum, which are equal to

1 in its absence.

At this point, it is interesting to observe that a simple approximation we could have done
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to simplify our calculations was to consider that, in region III (the grooves), only the lowest

mode n = 0 was non-zero (that is, An = A0δn0). In doing so, the corresponding equation for

the dispersion relation of the spoof plasmons becomes

1 = i
ε2

ε3

a

d

√
ε3ω

c
tan

(√
ε3ω

c
h

) ∞∑
n=−∞

(
χ+
n + χ−n
χ+
n − χ−n

)
|Sn0|2

κ
(2)
n

, (8)

where we have used the explicit expression for κ
(3)
0 . The first thing to note in the above

expression is that, in the absence of graphene and dispersive dielectric media, it can only

have solutions when the momentum of the leading mode in region II, κ
(2)
0 , is imaginary,

because otherwise the RHS would be imaginary while the LHS is real. This means that the

plasmonic solutions are only allowed in the region q >
√
ε2ω/c, what is not surprising, and

is only a consequence of the bound nature of surface modes. On the other hand, the above

equation can only have a solution when the tangent function present on its RHS is positive,

what means that these solutions can only appear below a certain maximum frequency ωmax

given by

ωmax =
πc

2h
√
ε3

. (9)

Comparing this frequency with the effective plasma frequency given by equation (1), we

conclude that these are exactly the same, meaning that we recover the solution from the

effective permittivity model with a completely different model, when we make the same

approximation. Note that this expression has some limitations, namely the fact that it

is only valid for frequency-independent permittivities, but nonetheless it is very useful to

make a rough estimation of the order of magnitude of the plasmons frequency, although it

tends to overestimate it; following the analogy to the perfect metal/dielectric interface, a

better definition of a reference value for the spoof plasmons’ fundamental mode frequency is

ωref = ωmax/
√

1 + ε1.

Apart from allowing the determination of ωmax, equation (8) has the additional advantage

of being much easier to solve than the exact equation det(M−I) = 0, which gets increasingly
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demanding with the number of modes we introduce in the fields description in region III.

Although this approximation looks somewhat naive, we will show later on that it produces

really accurate results.

2.2 Optical Properties

If we add an impinging field in our description of the fields in region I [eq. (2)], the formalism

described in the previous section allows for the calculation of the optical properties of the

system (namely its reflectance). From a practical point of view, this result is particularly

useful, because the reflectance of the system is easily measurable and allows the indirect

measurement of other quantities like the absorbance spectrum and the identification of plas-

monic resonances (note that there is no transmittance in this system, since a perfect metal

is a perfect reflector).

Assuming that the impinging electromagnetic wave has a frequency ω and makes some

angle θ with the y-axis, the field in region I must be rewritten as

Bl(x, y) = B0

∞∑
n=−∞

eiβnx
[
e−ikyyδn0 + rneiκ

(1)
n y
]
, (10)

where B0 is the intensity of the impinging magnetic field, and we have redefined the coef-

ficients Bn ≡ B0rn, so that the rn coefficients have the meaning of reflectance amplitudes.

In the previous expression, ky is the momentum of the impinging wave in the y-direction,

given by ky = k cos(θ), k =
√
ε1ω/c. On the other hand, Bloch’s Theorem now imposes that

βn = kx + 2nπ/d, kx = k sin(θ). From this point onwards, the procedure is completely anal-

ogous to the previous one. Following the already described steps (with the differences noted

in the SI), we arrive at another matrix equation, this time with the form (M − I) · A = F,

where the matrices M and I are the same as before, A is a column with elements [A]` = A`

and F is a column with elements [F]` = φ`, defined in equation (24).

Unlike the previous case —where we found the solution (M− I) · A = 0, with no source
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term—, the source introduced by the impinging wave allows the immediate determination

of the coefficients rn, upon the resolution of the previous equation [and using equation (21)].

From these coefficients, the reflectance of the system is simply defined as

R(ω) =
∑
n∈PM

Re

{
κ

(1)
n

ε1

}
Re

{
ε1

κ
(1)
0

}
|rn|2, (11)

where Re{x} stands for the real part of x, and both summations are performed strictly over

the propagating modes (PM). For the energy scale of interest in this problem (up to a few

THz), typically only the fundamental n = 0 mode is propagating, and hence the reflectance

takes the simpler form R(ω) = |r0|2. The absorbance, on the other hand, corresponds to the

fraction of energy which is not reflected, being thus given by A = 1−R.

Besides enabling the calculation of the reflectance and absorbance spectra, the deter-

mination of the rn coefficients has the additional advantage of allowing the representation

of the loss function20 of this problem, defined as L(ω, q) ≡ −
∑

n Im{rn} (Im{x} stands

for the imaginary part of x), which allows for the indirect determination of the dispersion

relation of the spoof plasmons —even without the approximation considered in the previous

section. Occasionally, we will be using a slightly different definition for the loss function,

L̃ = sgn(L) log(1 + |L|), aimed at highlighting the dimmer dispersion curves in the presence

of brighter ones. In the previous definition, sgn(x) stands for the sign of x, and |x| stands

for its absolute value.

3 Results and Discussion

For the results that will be presented henceforth, graphene’s conductivity has been calcu-

lated through Mermin’s non-local formula,20,27 synthetically presented in the SI. Moreover,

although the results presented in the previous section were derived for isotropic media only,

we will now occasionally consider hBN, which is anisotropic; the generalization of the pre-

vious results to this case is discussed in the SI as well. Finally, hBN’s dielectric function
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was retrieved from Ref. 28, Al2O3’s dielectric function was retrieved from Ref. 29, while the

alcohols’ (methanol, ethanol, 1-propanol and 2-propanol) and water’s dielectric functions

were retrieved from Ref. 30.

3.1 Comparison to FDTD Simulations

In the absence of graphene, equation (8) recovers the previously reported result for the dis-

persion relation of the spoof plasmons.1,25 However, its applicability to describe real systems

depends on the validity of the approximations employed so far, namely the fact that we have

considered an ideal metal, and described the field inside the grooves with only one mode.

To test the validity of these approximations, it is useful to compare the results we obtain

analytically through equation (8) to fully-numerical results reported in the literature.

In particular, Ng et al. 16 studied a similar system to ours (albeit without graphene),

and calculated the corresponding dispersion relation through an FDTD method using the

commercial software Lumerical Solutions, Inc.. Although the authors studied a system

with trapezoidal grooves, instead of the rectangular grooves our model describes, we have

considered an effective parameter for the width of those grooves (close to the average between

the two trapeze bases), and calculated the dispersion relation for the same system. Both

curves are plotted in Figure 2(a), and the agreement between them is excellent. This shows

that the approximations described above do not jeopardize the utilization of this method to

describe real systems. Moreover, Figure 2(a) also shows that ωref provides indeed a good

estimation of the order of magnitude of the spoof plasmons’ fundamental mode frequency.

In the presence of graphene, on the other hand, we can assess the validity of the single-

mode approach inside the grooves by comparing the analytical solution in that approximation

to the corresponding loss function spectrum (which considers an arbitrary number of modes).

That study is represented in Figure 2(b) for two different damping regimes, where the black

dashed curve is the analytical solution obtained though equation (8) for the indicated pa-

rameters, and the white dashed curve is the same as the blue one in Figure 2(a) (hence,
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Figure 2: (a) Comparison between the dispersion relation of the spoof plasmons calculated
through equation (8) (blue) and through an FDTD method (dotted red, retrieved from
Ref. 16), in the absence of graphene. (b) Loss function (LF) of the system in the presence
of graphene, overlaid by the analytical dispersion relation of the same system with (dashed
black) and without (dashed white) graphene, for two different values of the graphene damping
energy Γ. All the parameters are specified in each plot. The dot-dashed line in each plot is
the dispersion of the light.

without graphene). This Figure shows that the approximation carried out in equation (8) is

very good for high-to-moderate values of the damping in the graphene; on the other hand,

when the damping is low, the approximation is less accurate (it should “detach” from the

light line at lower momenta), but nonetheless it provides a very good description of the max-

imum frequency of the SSP in the first Brillouin zone (measured at q = π/d). Furthermore,

comparing the black and white dashed lines, Figure 2(b) suggests that the addition of the

graphene tends to increase the energy of the spoof plasmons, what will be explored next.

3.2 Tuning of the Dispersion Relation

The behaviour observed in Figure 2(b) suggests that the dispersion relation of the spoof

plasmons can be tuned by the introduction of a graphene sheet in the system. This adds

two additional parameters to the problem —the graphene’s Fermi energy EF and the spacer

width s— that can be easily changed to control the energy of the spoof plasmons, while

keeping the qualitative characteristics of their dispersion unchanged. This feature is shown
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in Figure 3, where are represented (a)–(c) the dispersion relation of the spoof plasmons when

varying individually the graphene’s Fermi energy EF, the spacer width s, and the graphene’s

relaxation energy Γ, respectively; and (d)–(f) the maximum frequency in the Brillouin zone

(at q = π/d) in function of the same parameters.

On the one hand, Figure 3(a) confirms that there is an actual scaling of the plasmons’

energy due to the graphene, which can be higher than 40%, for a doping up to 0.5 eV.

This enhancement increases strictly (and almost linearly) with the increasing of EF, and its

limit is settled by experimental limitations: in general, Fermi energies much greater than

0.5 eV are difficult to achieve.31,32 On the other hand, this enhancement is greatly favoured

by small spacer widths [see Figure3(b)], what results from a stronger coupling between the

metal and the graphene under those conditions. On the opposite regime (when the distance

between the metal and the graphene increases considerably), these effectively decouple and

we recover the ‘no graphene’ behaviour. Nevertheless, Figure 3(e) shows that there is a slight

saturation of the enhancement for spacers smaller than ∼ 0.5 µm, what means that there is

no significant gain in further reducing that dimension.

Finally, Figures 3(c) and (f) intend to show that the relaxation energy of the graphene

sheet plays a very important role in this analysis. Although this is not an actively changeable

parameter, it should be relatively small in order to guarantee greater energy enhancements

—in fact, for Γ values larger than ∼ 15 meV, the enhancement is very small even for high

graphene doping and small spacer widths. Using hexagonal Boron Nitride as a spacer be-

tween graphene and the grating will reduce the value of Γ significantly.33

This behaviour may be of the utmost importance for actively controllable plasmonic

waveguides in the THz spectral range. The spoof plasmons can be excited in a grooved

surface using a system as depicted in Figure 4, which takes advantage of attenuated total

reflection (ATR) method34 to overcome the momentum mismatch between the impinging

light and the bound surface modes (similarly to the well-known Kretschmann-Raether35 or

Otto36 configurations). Afterwards, one can tune the energy of these plasmons within a

12



0.00 0.01 0.02 0.03 0.04 0.05

0.0

0.5

1.0

1.5

2.0

2.5
(a)

1.4

1.6

1.8

2.0

2.2

0.0 0.1 0.2 0.3 0.4 0.5
-0.4

-0.2

0.

(d)

0.00 0.01 0.02 0.03 0.04 0.05

0.0

0.5

1.0

1.5

2.0

2.5
(b)

1.4

1.6

1.8

2.0

2.2

0.1 1 10 100
-0.4

-0.2

0.

(e)

0.00 0.01 0.02 0.03 0.04 0.05

0.0

0.5

1.0

1.5

2.0

2.5
(c)

1.4

1.6

1.8

2.0

2.2

5 10 15 20 25 30
-0.4

-0.2

0.

(f)

Figure 3: Top: dispersion relation of the spoof plasmons for several values of (a) the
graphene’s Fermi energy EF, (b) the spacer width s and (c) the graphene’s relaxation energy
Γ. Bottom: maximum frequency of the plasmons (for q = π/d) in function of (a) EF, (b) s
and (c) Γ. All the parameters are specified in each plot. The dot-dashed line in the left-side
plots is the dispersion of the light. ‘NG’ stands for ‘no graphene’.
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reasonable range by applying a gate voltage between the graphene sheet and the metal.

Another advantage of using graphene is that its losses are very small: estimating the prop-

agation length as ζ = 2πv/ω′′ (v = ∂ω′/∂q is the group velocity of the spoof plasmons, with

ω = ω′ − iω′′), our calculations predict that ζ is of the order of millimetres even when the

graphene is highly doped (EF & 0.5 eV); however, one must note that our model does not

account for the damping in the metal itself. This is not a strong limitation, since in the THz

the skin depth in the metal is very small —thus validating our approach—, and hence losses

in the metal will be small.

THz
light q

Spoof Plasmons

Figure 4: Example of a configuration that allows the excitation of spoof plasmons in the
system. THz light is impinged in a thin metallic plate which only transmits evanescent
modes. The momenta of the evanescent waves is higher than that of the incident light, being
able to match the spoof plasmons momenta and thus excite them. The Fermi energy of the
graphene sheet can be regulated by applying a variable gate potential.

Finally, it should be noted that the energy-enhanced spoof plasmons studied thus far

are effectively hybrid modes that result from the coupling between the plasmons in the

metal and in the graphene. Therefore, the strong enhancements observed in Figure 3 are

particular of the THz spectral range, and cannot, in general, be reproduced for much higher

(or lower) energies. The reason for this behaviour is that, outside this spectral (THz) range,

the characteristic energy scales of the plasmons on the graphene and the metal become very

different, and they cannot efficiently couple. This feature is clearly visible in Figure 5, where

are plotted side-by-side the loss functions of a system like the one studied in Figure 3, and

one whose dimensions were reduced around 30-fold, what predicts a 30-fold increase in the

frequency of the SSPs to around ωref ∼ 50 THz, well deep in the mid-infrared (mid-IR)
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region. In both plots, the yellow dashed line corresponds to the dispersion of the spoof

plasmons without graphene, and the red dashed line is the dispersions of the graphene

surface plasmons (GSPs) in a air/graphene/air configuration (this configuration is used for

simplicity of the analysis).

It is clear that, in the THz range, these curves are very close, which translates into a

strong coupling between the plasmons in the graphene and in the metal, and thus provokes

a strong enhancement of the energy of the hybrid mode. In the mid-IR range, on the other

hand, these curves have different energy scales and the plasmons do not couple efficiently, thus

provoking a small enhancement of the hybrid mode energy. It is also interesting to note that,

in the latter case, an additional low-energy mode arises in the spectrum, corresponding to

a acoustic graphene plasmon in a flat metal/air/graphene/air configuration20 (black dashed

line in the Figure). The Bragg reflections of this mode at the edges of the Brillouin zone are

clearly visible.

Another evidence of this feature is visible in Figures 5(c) and (d), where the electric field

intensity was plotted inside and in a vicinity of a groove for both systems above studied, and

both in the presence and absence of graphene. While in (c) (THz range) the introduction of

the graphene strongly changes the field distribution in the overall system (including inside

the grooves) —strongly enhancing the field in the groove wedges—, in Figure (d) (mid-IR)

the changes are much less important, and concentrate only on the nearest vicinity of the

graphene, where arise some field oscillations due to acoustic graphene plasmons.

This analysis evidences that, in the smaller system, the plasmons in the metal and in the

graphene are, in fact, decoupled, from where we conclude that graphene cannot be used to

efficiently tune the energy of the SSPs in this spectral range.

However, the fact that the graphene does not change the behaviour of the SSPs under

these conditions may be useful for different applications —for example, it has been shown

that presence of the grating below the graphene provokes a strong enhancement of its optical

absorption in the IR spectral range.37 On a different perspective, graphene-coated metallic
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(a) (b)

(c) (d)

Figure 5: Top: Loss function spectrum of two different systems whose spoof plasmons lie on
the (a) THz and (b) mid-IR spectral range, in the presence of doped graphene. Overlaid to
the loss function are the dispersion of the spoof plasmons in the absence of graphene (‘NG
SSP’, dashed yellow) and the dispersion of the graphene surface plasmons (‘GSP’, dashed
red) in a air/graphene/air configuration. In (b) is also plotted the dispersion of the acoustic
plasmons in a flat metal/air/graphene/air configuration (‘MDGD’, dashed black). The white
dot-dashed curve is the dispersion of the light in the air. Bottom: electric field intensity in
the vicinity of a groove for (c) the THz and (d) the mid-IR corresponding systems, with and
without graphene. Both distributions were calculated for q = 0.9π/d (for the corresponding
d in each system), what translates into the frequencies (c) 1.94 THz and 2.86 THz and (d)
46.3 THz and 47.3 THz, respectively without and with graphene. All remaining parameters
are the same as disclosed in (a) and (b). The color-scale is the same in both panels of each
figure (c) or (d).
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surfaces have been studied recently as an alternative to traditional metallic surfaces for op-

toelectronic applications, due to its much higher ability to resist oxidation and corrosion38,39

(what is a recurring problem in plasmonics), while keeping (or even improving) the surface’s

characteristics.

3.3 Application to filtering and sensing

Coming back to the THz spectral range, spoof plasmons have a particularly interesting effect

on the reflectance spectrum of the grating, which is visible in Figure 6. In this figure, the

reflectance spectra has been plotted for the case of a flat metal surface and a for two different

geometries of a grooved metal. Comparing the three plots, one sees that the introduction

of the grooves changes dramatically the reflectance spectrum of the system, which goes

from an almost perfect reflector to exhibiting well-defined resonances corresponding to the

excitation of spoof plasmons. These results were verified for several different materials in

the spacer. Unsurprisingly, the position of these resonances is strongly controlled by the

geometric dimensions of the system, since they are intrinsically connected to the dispersion

relation of the spoof plasmons. This becomes clear in Figure 6(d), where is represented the

loss function of the air/Al2O3/air system. Comparing the position of the resonances in either

case to the respective dispersion curves, one sees that, qualitatively, the resonance occurs

where the dispersion intersects the Brillouin zone boundary.

In the plots of the previous figure, a neutral graphene sheet has been placed in the system

in order to add some damping which brightens the dispersion curves in Figure 6(d); however,

its conductivity is very low and therefore the behaviour of the system does not differ very

much from the no-graphene case. It has the additional advantage of allowing the excitation

of the spoof plasmons in the case where neither dielectric region is dispersive —without the

graphene, the reflectance spectrum of the air/air/air configuration would be identically equal

to 1 even for the grooved system.

However, a much more useful behaviour arises when the graphene is doped, as presented
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Figure 6: Reflectance spectrum of (a) a flat and (b),(c) a grooved metallic surface, with air
above the graphene and inside the grooves, and several different materials in the spacer. Sys-
tems in plots (b) and (c) have different groove depths, what deeply influences the reflectance
spectrum. In figure (d) is represented the loss function of the systems in (b) and (c) with
Al2O3.
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in Figure 7(a). Since the graphene doping strongly controls the dispersion curves of the

system, it indirectly also controls the position of the resonances, which can be adjusted at

will by varying the graphene’s Fermi energy. Furthermore, the results show that the graphene

sheet strongly increases of absorbance of the system even for low doping. This translates in

very strong resonances, whose width is controlled by the graphene damping Γ, which can

have their minimum as low as R = 0. This situation of full-absorbance can be very useful

for the development of actively-tunnable filters in the THz spectral range. Figure 7(b) shows

that this tuning may be superior than 1 THz, and for dopings above 0.3 eV the energy at

the resonance is fully absorbed.
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Figure 7: (a) Reflectance Spectrum of a graphene-coated metallic grating for several values
of the Fermi energy of the graphene sheet. ‘NG’ stands for ‘no graphene’, whereas ‘CNP’
stands for ‘charge neutral point’, equivalent to EF = 0.0 eV. (b) Position of the resonance
(top) and minimum reflectance (bottom) of the reflectance spectrum, for several different
spacer materials.

On an alternative perspective, the difference between the spectra for different spacers

in Figure 6 shows that the reflectance spectrum of the metal grating is highly sensitive

to changes in the dielectric function of its composing materials, what suggests its utility for

sensing applications. This approach has already been explored in the literature, with different

authors proposing its usage to discern media with different refractive indexes18,40 placed

inside the grooves of a corrugated surface. In this work, however, we propose a different
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configuration in which the material to be sensed is placed above the graphene sheet in a

layer with some thickness b. This approach is preferable when the aim is to sense very thin

layers of fluids, in the order of 10 µm. This thin layers are smaller than the wavelength of the

THz radiation, so no Fabry-Perot oscillations occur, what poses a more challenging problem.

In Figure 8(a) is plotted the reflectance spectrum of an air/fluid/hBN/air configuration,

where the fluid being sensed is either an alcohol (ethanol, methanol, 1,2-propanol), water,

or none (air).
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Figure 8: (a) Reflectance Spectrum of a graphene-coated metallic grating for several different
fluids placed above the (neutral) graphene. (b) Position of the resonance (top) and minimum
reflectance (bottom) of the reflectance spectrum, for the different alcohols being sensed.

This resonances visible in that spectrum, with neutral graphene, already allow to discern

whether the material being sensed is water, an alcohol, or none, but the resonance position

of the different alcohols is very similar, what may cause difficulties to discern them from

each other. A possible solution to overcome this difficulty is to dope the graphene sheet and

trace the resonance position and minimum reflectance with the graphene’s Fermi energy,

what is done in Figure 8(b). On the one hand, the graphene doping increases the separation

between the resonance position of the different alcohols up to 30%; however, the greatest

effect occurs in the minimum reflectance, since the total-absorption point for each alcohol

arises for a different value of graphene doping, what provides an effective method to discern
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them. These results show how adding graphene to the system can also be used for sensing

purposes.

4 Conclusions

In this work, we were able to show that the widely-studied tunnability of graphene can be

successfully applied to a metallic grating in order to control its dispersion relation, especially

in the THz spectral range. We also showed that this feature can have several applications,

ranging from optoelectronic waveguides to filters and to THz sensing, with the additional

bonus of providing graphene-protected metallic surfaces.

The model we employed proved to be accurate when benchmarked against FDTD calcu-

lations, but has some limitations that should be properly emphasized. The most important

one is the fact that the metal is considered ideal, which means that its validity is restricted

to situations where the metal’s skin depth is negligible, such as the case of the THz and

mid-IR radiation in most good plasmonic metals. For the same reason, although this model

accounts for non-local effects in the graphene, it cannot account for non-local effects in

the metal surface, that should be important when the graphene sheet is very close (a few

nanometers) from the metal surface; under those conditions, further corrections need to be

employed to ensure experimentally accurate results.41,42 However, in our case, the distance

between graphene and the metal grating is large enough for non-local effects to negligible

compared to that length scale.

Acknowledgments

E J Dias and N M R Peres acknowledge support from the European Commission through

the project ”Graphene-Driven Revolutions in ICT and Beyond” (Ref. No. 696656) and the

Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic

Financing UID/FIS/04650/2013.

21



Supporting Information Available

The following files are available free of charge.

A Calculation details of the dispersion relation of the

spoof plasmons

The coefficients An, Bn and C±n are determined using the boundary conditions across in-

terfaces I/II and II/III. Starting by the former, these are the continuity of the tangen-

tial electric field, Ex
l (x, s) = Ex

ll(x, s), and the discontinuity of the magnetic field propor-

tional to the density of surface currents in the graphene sheet, K, given by the expression

Bl(x, s) − Bll(x, s) = µ0K · x̂. According to Ohm’s Law, the density of surface currents

is proportional to the electric field in that surface, K(r, q, ω) = σ(q, ω)E‖(r, q, ω), where

σ(q, ω) is the surface’s conductivity. This function is assumed to be uniform in every point

of the sheet, but we allow it to be dependent on the momentum of the EM field, in order to

account for non-local effects. Note that this discussion is valid for any 2D material in the

interface between regions I and II (not only graphene, but also an electron gas or a doped 2D

transition metal dichalcogenide, for example) as long as the adequate conductivity function

for that material is considered.

Since the electric fields in the neighbouring regions of this interface are composed by

the superposition of several modes with different momenta, each mode that composes the

total electric field is effectively influenced by a different conductivity, and the overall current

density can be written as

Kx(x) =

(
ic2

ωε1

) ∞∑
n=−∞

iκ(1)
n Bneiβnxσ(βn, ω)eiκ

(1)
n s. (12)

Using the above expression and the mentioned boundary conditions, one finds that the C±n
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and the Bn coefficients are related by the expression C±n = χ±nBn, with

χ±n =
1

2

[
1 +

σ(βn, ω)κ
(1)
n

ωε0ε1

± ε2κ
(1)
n

ε1κ
(2)
n

]
eiκ

(1)
n se∓iκ

(2)
n s. (13)

On the other hand, at the interface II/III, the tangential electric field is continuous,

Ex
ll(x, 0) = Ex

lll(x, 0), as well as the magnetic field, Bll(x, 0) = Blll(x, 0), but only in the

region |x| < a/2; in the complementary region a/2 < |x| < d/2, the tangential electric field

must vanish, Ex
ll(x, 0) = 0. Therefore, when multiplying the first condition by e−iβ`x and

integrating it in |x| < a/2, we can take advantage of the fact that the integrand must vanish

at a/2 < |x| < d/2 to conclude that

∫ a/2

−a/2
dx e−iβ`xEx

lll(x, 0) =

∫ a/2

−a/2
dx e−iβ`xEx

ll(x, 0) =

∫ d/2

−d/2
dx e−iβ`xEx

ll(x, 0). (14)

Further noting that the last term in the previous equation yields the integral
∫ d/2
−d/2 dx e−iβ`xeiβnx =

dδ`n, this boundary condition can be written as

B` = i
ε2

ε3

a

d

(
1

χ+
` − χ

−
`

) ∞∑
n=0

κ
(3)
n

κ
(2)
`

sin
(
κ(3)
n h
)
S`nAn, (15)

where the S`n is defined as the integral (with an analytical solution)

S`n ≡
1

a

∫ a/2

−a/2
dx e−iβ`x cos

[nπ
a

(
x− a

2

)]
. (16)

The second boundary condition may, in turn, be multiplied by cos
[
`π
a

(
x− a

2

)]
and inte-

grated it in |x| < a/2, yielding the equation

A` =

(
2

1 + δ`0

) ∞∑
n=−∞

S∗n`

cos
(
κ

(3)
` h
)(χ+

n + χ−n
)
Bn. (17)

where we have used the integral
∫ d/2
−d/2 dx cos

[
`π
a

(
x− a

2

)]
cos
[
nπ
a

(
x− a

2

)]
= a

2
(1 + δ`0)δ`n.
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Equations (15) and (17) relate reciprocally the coefficients An and Bn; merging the two

equations, we arrive at

A` =
∞∑
m=0

i
ε2

ε3

a

d

(
2

1 + δ`0

) ∞∑
n=−∞

(
χ+
n + χ−n
χ+
n − χ−n

)
κ

(3)
m

κ
(2)
n

sin
(
κ

(3)
m h
)

cos
(
κ

(3)
` h
)SnmS∗n`

Am. (18)

Defining the expression in brackets in the previous expression as M`m, we may write it

as
∑∞

m=0(M`m − δ`m)Am = 0, what may be rewritten in the matrix form


M00 − 1 M01 · · ·

M10 M11 − 1 · · ·
...

...
. . .

 ·

A0

A1

...

 =


0

0

...

 . (19)

It is now obvious that the previous equation can only admit solutions if the determinant

of the square matrix in the LHS (designated hereby as M − I, where I is the unit matrix)

vanishes. That equation, det(M− I) = 0, is therefore the equation that sets the dispersion

relation of the spoof plasmons allowed in this system.

B Calculation details of the reflectance amplitudes

The calculation procedure for this case is completely analogous to the previous one, using

now the field in region I given by equation (10). This slightly changes the solutions of the

boundary conditions at the interface I/II, which now yield the equations C±` = χ±` r`+δ`0Λ±,

with the χ±` being the same as before, and

Λ± ≡ 1

2

[
1− σ(βn, ω)ky

ωε0ε1

∓ ε2ky

ε1κ
(2)
n

]
e−ikyse∓iκ

(2)
n s. (20)

Because of these new terms, the relations between the coefficients Am and rm are slightly
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changed to the equations

r` = i
ε2

ε3

a

d

(
1

χ+
` − χ

−
`

) ∞∑
n=0

κ
(3)
n

κ
(2)
`

sin
(
κ(3)
n h
)
S`nAn − δ`0

(
Λ+ − Λ−

χ+
0 − χ−0

)
, (21)

A` =

(
2

1 + δ`0

) ∞∑
n=−∞

S∗n`

cos(κ
(3)
` h)

(
χ+
n + χ−n

)
rn +

(
2

1 + δ`0

)
S∗0`(Λ

+ + Λ−)

cos(κ
(3)
` h)

. (22)

Merging once again the previous two equations, we arrive at an expression with the form∑∞
m=0(M`m − δ`m)Am = φ`, or, in the matrix form,


M00 − 1 M01 · · ·

M10 M11 − 1 · · ·
...

...
. . .

 ·

A0

A1

...

 =


φ0

φ1

...

 , (23)

with

φ` ≡ −
(

2

1 + δ`0

)
S∗0`

cos(κ
(3)
` h)

{
Λ+

[
1−

(
χ+

0 + χ−0
χ+

0 − χ−0

)]
+ Λ−

[
1 +

(
χ+

0 + χ−0
χ+

0 − χ−0

)]}
. (24)

This is a readily solvable equation which allows the direct calculation of the An coeffi-

cients, and the calculation of the rn coefficients using equation (21).

C Graphene’s Conductivity

For the conductivity of the graphene sheet, we have used Mermin’s formula, which includes

non-local effects. Let x ≡ q/kF and y ≡ ~ω/EF be dimensionless variables constructed from

q and ω, respectively. EF refers to the graphene’s Fermi energy, kF = EF/(~vF) is the Fermi

momentum (vF ≈ c/300 is the Fermi speed) and Γ is the material’s relaxation energy. The

formula we have used was retrieved from Gonçalves and Peres,20

σ(q, ω) = 4iσ0
~ω
q2
χτ

(
q

kF

,
~ω
EF

)
, (25)
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with σ0 ≡ e2/(4~) and

χτ (x, y) =

(
1 + i Γ

yEF

)
χg

(
x, y + i Γ

EF

)
1 + i Γ

yEF
χg

(
x, y + i Γ

EF

)
/χg(x, 0)

(26)

χg(x, y) =



χ
(1)
B (x, y), Re[y] > x ∧ Re[y] < 2− x,

χ
(2)
B (x, y), Re[y] > x ∧ Re[y] > 2− x,

χ
(3)
B (x, y), Re[y] > 2 + x,

χ
(1)
A (x, y), Re[y] < x ∧ Re[y] < 2− x,

χ
(2)
A (x, y), Re[y] < x ∧ Re[y] > 2− x,

χ
(3)
A (x, y), Re[y] < x− 2.

(27)

χ
(1)
B (x, y) = − 2

π

EF

(~vF)2
+

1

4π

EF

(~vF)2

x2√
y2 − x2

[
F

(
y + 2

x

)
− F

(
2− y
x

)]
, (28)

χ
(2)
B (x, y) = − 2

π

EF

(~vF)2
+

1

4π

EF

(~vF)2

x2√
y2 − x2

[
F

(
y + 2

x

)
+ iG

(
2− y
x

)]
, (29)

χ
(3)
B (x, y) = − 2

π

EF

(~vF)2
+

1

4π

EF

(~vF)2

x2√
y2 − x2

[
−iπ + F

(
y + 2

x

)
− F

(
y − 2

x

)]
, (30)

χ
(1)
A (x, y) = − 2

π

EF

(~vF)2
− i

4π

EF

(~vF)2

x2√
x2 − y2

[
F

(
y + 2

x

)
− F

(
2− y
x

)]
, (31)
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χ
(2)
A (x, y) = − 2

π

EF

(~vF)2
+

i

4π

EF

(~vF)2

x2√
x2 − y2

[
iπ − F

(
y + 2

x

)
+ iG

(
2− y
x

)]
, (32)

χ
(3)
A (x, y) = − 2

π

EF

(~vF)2
+

1

4π

EF

(~vF)2

x2√
x2 − y2

[
−π +G

(
y + 2

x

)
−G

(
y − 2

x

)]
, (33)

where we defined F (x) ≡ x
√
x2 − 1− arccosh(x) and G(x) ≡ x

√
1− x2 − arccos(x).

D Particular Case of Axial Materials

Axial materials are a special case of isotropic materials characterized by the fact that they

have different permittivities along (εy) and perpendicularly (εx) to their optical axis. An

example of an axial material is the hexagonal Boron Nitride (hBN), whose optical axis we

assume to be perpendicular to its surface and parallel to the y-axis.

As a consequence, its permittivity is described by a tensor rather than a scalar, what

slightly changes the Maxwell equations which describe it. In particular, the electromagnetic

wave equation takes the form εx(k2
x + k2

z) + εyk2
y = εxεyω2/c2, which means that equa-

tions (2)–(4) still hold, with the only difference being that the correspondent momentum

in region ν for the nth mode in the y direction must be adapted as
√
ενω2/c2 − β2

n →√
εxνω

2/c2 − (εxν/ε
y
ν)β2

n. Furthermore, the electric field is still related to the magnetic field

through equation (5) with εν → εxν .

With these two modifications, all the calculations presented in the previous section may

be generalized almost effortlessly to the case in which any the regions of our system are filled

with an axial dielectric medium.
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