International Society of Antioxidants in Nutrition and Health

11th World Congress on Polyphenols Applications
June 20-21, 2017 - University of Vienna - Austria

VIENNA POLYPHENOLIS 2017

Agenda

www.polyphenols-site.com
VALORIZATION OF TOMATO BY-PRODUCTS: INFLUENCE OF OHMIC HEATING PROCESS ON POLYPHENOLS EXTRACTION

COELHO, Marta Isabel (1,2); PEREIRA, Ricardo (2); TEIXEIRA, José António (2); PINTADO, Manuela (1)

1: Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquitecto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; 2: CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal

mccoelho@porto.ucp.pt

Introduction: Current extraction treatments, may cause degradation of bio-compounds hampering their added value1,2. Phenolic compounds extraction of Lycopersicon esculentum (tomato) by-products were optimized using ohmic heating (OH), as an alternative extraction technology.

Material & Methods: Design of experiments was applied to different extraction time, temperature and ethanol concentration and optimized by response surface methodology. The antioxidant activity, quantitative profile of phenolic compounds and carotenoids were determined.

Results: A significant increase of phenolics content and antioxidant activity were obtained at 70 and 40 ºC (p<0.05). The best extraction conditions were 70 ºC, 15 min and 70% of ethanol; with a total phenolic content of 2.550 ± 0.072 mg gallic acid equivalents/gbiomass.

The effects of electric fields were evaluated (4, 6, 11 V cm-1); at 4 V cm-1 significant changes were observed between conventional extractions and OH treatments (p<0.05). The phenolic compounds were identified including, rutin, kaempferol, naringenin, quercetin and chlorogenic acid. A fast OH extraction due to Joule effect, allowed an increase of 77 and 61% in rutin and naringenin extraction, respectively, towards control sample.

Conclusion: In conclusion, OH shows to have a high potential as an environmental-friendly, economical and fast process for the recovery of polyphenols from industrial tomato by-products.

The author Marta Coelho would like to acknowledge FCT for your PhD grant with the reference [grant number SFRH/BD/111884/2015]

Funding for this work was provided by Fundação para a Ciência e Tecnologia through the project UID/Multi/50016/2013 and is grate