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Abstract 

 

 The current progress of sequencing systems facilitates the sequencing of the genomes and 

transcriptomes of countless organisms on our planet. However, it is not simple to measure the quality 

of the processed data, mainly in the study of non-model organisms, for which there is little if any, 

information available. The Korf Lab developed a method for the evaluation of genomes integrity, 

through the identification of 248 core eukaryotic genes (CEGs) that are present in nearly all of the 

eukaryotes. The main goal of this work is to evaluate the use of the CEGs in RNA-Seq of non-model 

organisms. For that two software’s were developed: seqQIrefmetrics to calculate a set of reference-

based quality metrics, including identification, chimerism, accuracy and contiguity, based on the 

literature, and three new metrics, comprising fragmentation(1,2,3,4,5+), coverage and non-match, 

increasing the number of metrics available for transcriptome quality assessment; and 

seqQIidentifyCEGs to identify and report the number of CEGs present in each transcriptome assembly. 

To carry out the main objective, RNA-Seq data from nine model organisms (Arabidopsis thaliana, 

Aspergillus nidulans, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, 

Oryza sativa, Saccharomyces cerevisiae and Xenopus tropicalis), processed with Trinity, were used to 

evaluate how CEG detection correlates with the quality of the transcriptomes. In order to identify CEGs, 

protein sequences from assembled transcripts were predicted with TransDecoder. Metrics calculated 

by seqQIrefmetrics were associated with the number of CEGs identified by seqQIidentifyCEGs in each 

assembled transcriptome, through linear regressions. Among these metrics only contiguity and 

coverage were used to create predictive models, achieving an R2 of 0.787 and 0.640; and a RMSE of 

5.86 and 6.90, respectively. These findings indicate that the CEGs can be used as a quality tool. In 

fact, the linear regressions enable to infer prospectively the quality of the assembled transcripts, 

without the necessity of additional information, such as a reference genome sequence or structural 

annotations. This approach is extremely important for RNA-Seq of non-model organisms, where there is 

no such information to evaluate the quality of the assembled transcripts in a reliable manner.
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Resumo 

 
 Os progressos nas plataformas de sequenciação atuais permitem a obtenção dos genomas e 

transcritomas dos inúmeros organismos que habitam o nosso planeta. Contudo, não é simples avaliar 

a qualidade dos dados já processados, principalmente em estudos de organismos não modelo, para 

os quais existe pouca, se alguma, informação disponível. O grupo de investigação “The Korf Lab” 

desenvolveu um método para avaliar a integridade de sequências genómicas, através da identificação 

de 248 “core eukaryotic genes” (CEGs) que são conservados nos eucariontes. O principal objetivo 

deste trabalho é avaliar a utilização dos CEGs em RNA-Seq de organismos não modelo. De modo a 

atingir este objectivo dois softwares foram desenvolvidos: seqQIrefmetrics, para calcular um conjunto 

de métricas baseadas em referência, incluindo “identification”, “chimerism”, “accuracy” e 

“contiguity”, com base na literatura, e três novas métricas, “fragmentation(1,2,3,4,5+)”, “coverage” e 

“non-match”, aumentando assim o numero de métricas disponíveis para a avaliação da qualidade de 

transcritomas; e seqQIidentifyCEGs para identificar e reportar o número de CEGs presentes em cada 

transcritoma. Os dados de RNA-Seq de nove organismos modelo (Arabidopsis thaliana, Aspergillus 

nidulans, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Oryza 

sativa, Saccharomyces cerevisiae e Xenopus tropicalis), processados com o Trinity, foram usados para 

avaliar como a detecção dos CEGs se correlaciona com a qualidade dos transcritomas. De modo a 

identificar os CEGs, as sequências proteicas dos transcritos assemblados foram determinadas com o 

TransDecoder. As métricas calculadas com seqQIrefmetrics foram associadas com o número de CEGs 

identificados com seqQIidentifyCEGs, em cada transcritoma assemblado, através de regressões 

lineares. Entre estas métricas apenas “contiguity” e “coverage” foram usadas para criar modelos 

preditivos, atingindo um R2 de 0,787 e 0,640; e um RMSE de 5,86 e 6,90, respetivamente. Estes 

resultados sugerem que os CEGs poderão ser usados como uma ferramenta de qualidade. Na 

verdade, as regressões lineares permitem inferir a qualidade dos transcritos assemblados, sem a 

necessidade de informação adicional, como um genoma de referência ou anotações estruturais. Este 
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método é assim extremamente importante para estudos de RNA-Seq de organismos não modelo, onde 

não existe tal informação que permita avaliar a qualidade dos transcritos de um modo viável. 
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1. Introduction 

 

1.1. Context and motivation 

 

The Human Genome Project (HGP) started in 1990, and it was a 13-year-long effort to obtain 

the first human genome sequence, costing a total of $3 billion over this period. The HGP was 

accomplished with first-generation sequencing equipment or Sanger sequencing (Sanger et al., 1977), 

a chain-termination method developed in 1975 by Edward Sanger. The conclusion of the HGP 

encouraged the development of cheaper and faster sequencing methods, resulting in the establishment 

of the second-generation sequencing, or next-generation sequencing (NGS), technologies. NGS 

platforms perform massively parallel sequencing, during which millions of fragments of DNA from a 

single sample are sequenced in parallel, allowing an entire genome to be sequenced in less than one 

day. In the past decade, several NGS platforms have been developed that provide low-cost, high-

throughput sequencing, and some of the current technologies are described in Table 1. The NGS has 

countless applications in the biological research fields. In health, NGS enables to re-sequence the 

human genome to identify genes and regulatory elements involved in pathological processes, and also 

the sequencing of bacterial and viral organisms to identify novel virulence agents. Furthermore, gene 

expression studies or transcriptome analysis using NGS, or RNA sequencing (RNA-Seq), have begun to 

replace older methods such as microarrays, providing opportunities for multidimensional examinations 

of transcriptomes, in which high-throughput expression data are obtained at a single-base resolution 

(Grada and Weinbrecht, 2013). 
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Table 1 - Current-sequencing platforms. Seller and respective instrument, with the run time in hours, mean of read 

length, reads per run in millions, yield per run (Gb, billion of bases and Mb, million of bases) and cost per run and Mb. The 
indicated prices concern the sequencing reaction reagents and do not include library preparation reagents, labor, data 

storage or analysis, equipment or maintenance. Adapted from (Li et al., 2014b). 

Company Instrument 
Run 
time 

(hours) 

Read 
length 
(mean) 

Reads 
per run 

(millions) 

Yield 
per 
run 

Cost per 
run ($) 

Cost 
per Mb 

($) 

Illumina 
HiSeq 

2000/2500 
132 50 6,000 

300 
Gb 

18,725.00 0.06 

Illumina MiSeq 39 250 30 
7.5 
Gb 

982,75 0.13 

Life 
technologies 

PGM 7.3 176 6 
1.056 

Gb 
749.00 0.71 

Life 
technologies 

Proton 2-4 81 70 
5.67 
Gb 

834.00 0.15 

Pacific 
Biosciences 

RS 0.5-2 1,289 0.03 
38.67 

Mb 
136.38 3.53 

Roche 454 20 686 1 
686 
Mb 

5,985.00 8.72 

 

The current progress of sequencing systems facilitates, therefore, the sequencing of the 

genomes and transcriptomes of countless organisms on our planet. However, it is not simple to 

measure the quality of the processed data. The Korf Lab developed a method for the evaluation of 

genomes integrity, through the identification of 248 core eukaryotic genes (CEGs) that are present in 

nearly all of the eukaryotes (Parra et al., 2009), in such a way that the number of CEGs present in the 

assemblies mirrors the quality and overall utility of the genome sequences. Regarding the 

transcriptomic assemblies, a set of metrics already published (Martin and Wang, 2011) enables to 

evaluate their quality, but it can only be applied for well-studied organisms due to the need for a 

reference genome and structural annotations, preventing the use in non-model species, for which there 

is little, if any, information available. 

 

1.2. Objectives 

 

The main goal of this master thesis is to evaluate the core eukaryotic genes (CEGs) as a quality 

control tool for RNA-Seq of non-model organisms. The utilization of the CEGs as a tool to evaluate the 

quality of these transcriptomes is important since the quality metrics previously mentioned rely on a set 
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of reference transcripts, which is not available for non-model organisms. In order to achieve this goal 

the following specific objectives were set up: 

 

o Review the state-of-the-art and relevant concepts for the later steps. 

o Obtain RNA-Seq sequencing data from model organisms and process the data using two different 

strategies. 

o Develop a set of reference-based quality metrics and evaluate de novo and reference-based 

strategies based on these metrics. 

o Develop a tool to survey the CEGs in the transcriptomic assemblies. 

o Evaluate the relationship between the CEGs and the reference-based quality metrics through linear 

regressions. 

o Establish quality predictive models. 

 

1.3. Organization of the contents 

 

Chapter 2. Fundamentals of genetics 

Comprehensive review of the genetic foundations that underlie the living beings, with emphasis on the 

main mechanisms and molecules involved. 

 

Chapter 3. Transcriptomics 

Enlightenment of the transcriptomics object of study, along with its concepts and main methodologies 

will be described. 

 

Chapter 4. Evolutionary genomics and genome annotation 

The evolutionary genomics as a valuable key for genome annotation, and the main steps that led to the 

development and construction of the core eukaryotic genes. 

 

Chapter 5. Methodologies 

The required data processing will be described. 

 

Chapter 6. Code implementation 
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The description of the algorithms used to develop the necessary tools. 

 

Chapter 7. Results and discussion 

The results obtained by the reference-based quality metrics and by the survey of the CEGs in the 

reconstructed transcriptomes. The results of the linear regressions conducted between these two 

variables will also be addressed. 

 

Chapter 8. Conclusions and future work 

A global analysis of this work will be described, along with their possible improvements. 
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2. Fundamentals of genetics 

 

2.1. DNA as the source of biological information 

 

The organisms now inhabiting the earth descended from a Last Universal Common Ancestor 

that lived approximately 3 billion years ago (Glansdorff et al., 2008). This evolutionary process is the 

result of amazingly efficient mechanisms to store, replicate, express and diversify biological 

information. In fact, all organisms, from bacteria and protozoa to more complex living beings, such as 

plants and animals, use vast quantities of information to develop and survive in their environments. 

These organisms must transmit their information to the next generations, ensuring the genetic 

continuity of each species. This biological information is encoded in a molecule called deoxyribonucleic 

acid, called DNA, and expressed in the form of proteins, with many functions in an organism including 

structural proteins, which make up the cellular compartments; motor proteins, which, as the name 

implies, are involved in the cellular movement; transport proteins, which carry materials across 

biological membranes; regulatory proteins, which control protein and gene function; and signaling 

proteins, that receive and process signals to initiate a physiological response (Hartwell et al., 2011f; 

Lodish et al., 2003j). 

 

2.2. Structure and organization of DNA 

 

DNA structure was published in 1953 by James Watson and Francis Crick (WATSON and 

CRICK, 1953). They determined that DNA consists of two antiparallel complementary strands of 

nucleotides, twisted around each other to form a right-handed double helix, held in place by hydrogen 

bonds between complementary base pairs: adenine pairs with thymine (A / T) and guanine pairs with 

cytosine (G / C). The structure of the DNA molecule can be seen in Figure 1. Each nucleotide is 
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composed of a deoxyribose sugar, a phosphate group, and a nitrogenous base, which, as noted, can 

vary among four kinds. The nucleotides are covalently linked in a polynucleotide chain through the 

phosphate groups, in which the 5’-phosphate group of one nucleotide is joined to the 3’-hydroxyl group 

of the next nucleotide, creating a phosphodiester bond. The addition of nucleotides is performed from 

the position 5’ to the position 3’ of the strand (5’ - 3’) (Nelson and Cox, 2008a). 

 

   

Figure 1 - Tridimensional view of the DNA molecule. The DNA molecule is composed by two polynucleotide strands 
arranged in a double helix, stabilized by hydrogen bonds between the nucleotide bases: adenine (A) forms two hydrogen 

bonds with thymine (T) and cytosine (C) forms three hydrogen bonds with guanine (G). The arrows reflect the antiparallel 
relation between the polynucleotide strands. Adapted from (Alberts et al., 2010). 

 

The biological information stored in DNA is organized in hereditary units called genes. These 

segments of DNA contain the information required for the synthesis of a biological product (protein or 

RNA) and determine the characteristics of an organism: its appearance and how it behaves and 

survives in its environment (Lodish et al., 2003a). DNA molecules carrying genes are organized in 

chromosomes, structures that package and manage the storage and expression of DNA. The entire 

collection of chromosomes in an organism is its genome (Hartwell et al., 2011g). 
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2.2.1.  Structure of genes and genomes in prokaryotes 

 

The genome of prokaryotes is usually organized in a single chromosome with a circular DNA 

molecule (Lodish et al., 2003b; Hartwell et al., 2011i). Other DNA molecules are also present, called 

plasmids. These smaller molecules can replicate independently of the main chromosome and confer 

resistance to toxins and antibiotics in the environment. Plasmids are especially prone to experimental 

manipulation and are powerful tools for genetic engineering and recombinant DNA technology (Cooper 

and Hausman, 2007a; Nelson and Cox, 2008c). On prokaryotes, genomes have few noncoding 

regions, and genes are very closely packed and arranged in operons, specialized in specific metabolic 

functions (Lodish et al., 2003c). 

 

2.2.2.  Structure of genes and genomes in eukaryotes 

 

The genomes of eukaryotes are larger and more complex than those of prokaryotes. Much of 

the complexity results from the abundance of several different types of noncoding sequences (or 

intergenic regions), which constitute a large fraction of the genomes of higher eukaryotes. Eukaryotic 

genomes are also organized in multiple chromosomes, each containing a linear molecule of DNA 

bound to small proteins, histones, comprising a structure called chromatin. Histones are extremely 

important in the storage of DNA in the cell nucleus and are involved in a range of activities, including 

DNA replication and gene expression (Cooper and Hausman, 2007f). Unlike prokaryotes, eukaryotic 

genes involved in a single pathway are often physically separated in the DNA, even located on different 

chromosomes. Large amounts of noncoding sequences are found inside of most eukaryotic genes. 

Such genes are structured in pieces of coding sequences, the exons, separated by noncoding 

segments, the introns. These noncoding segments are extremely rare in prokaryotes and uncommon in 

many unicellular eukaryotes such as Saccharomyces cerevisiae (Lodish et al., 2003d; Cooper and 

Hausman, 2007g). The genomic and genic structure in eukaryotes is represented in Figure 2. 
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Figure 2 - Eukaryotic genome and gene structure. The eukaryotic genome is organized in intergenic (non-coding) 
and genic (coding) regions. Genes comprise the coding region. This figure illustrates the promoter, responsible for 

controlling the initiation of transcription with the CpG Island; the transcription start site; the exons (coding regions) and 
introns (non-coding segments); the donor and acceptor sites used to splice exons on both sides of an intron in a process 

known as splicing; the 5’ and 3’ untranslated regions (UTR’s). These regions are important in the regulation of translation; 
the initial and final exons with the corresponding start and stop codons; and the poly-A site. Adapted from (Akhtar et al., 

2008). 

 

2.3. An overview of gene expression 

 

In any organism, genes specify the amino acid sequence of every protein, and, therefore, the 

kinds of proteins that are synthesized. However, the information encoded in DNA is not directly used 

for protein synthesis. There is a molecule that transports that information, acting as an intermediary. 

This molecule is the ribonucleic acid (RNA) and it is synthesized from DNA by a process called 

transcription. RNA molecules that carry the information encoded in DNA for protein synthesis are called 

messenger RNA (mRNA). Translation follows transcription, which is the actual synthesis of proteins 

according to the information in mRNA, with the intervention of other RNA molecules: transfer RNA 

(tRNA) translates the information in mRNA into a specific sequence of amino acids, and ribosomal RNA 

(rRNA) is a component, alongside proteins, of ribosomes, the protein complexes where translation 

occurs (Berg et al., 2002a; Nelson and Cox, 2008b). 
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The flow of genetic information depicted here was called the central dogma of molecular 

biology (Crick, 1970), which is illustrated in Figure 3. However, the simplified representation of the 

central dogma as a straightforward process from DNA to protein, having mRNA as an intermediary, 

does not reflect the role of proteins and even RNA in regulating gene expression (Lodish et al., 2003a; 

Berg et al., 2002b). As a matter of fact, the behavior of cells and their capacity to adapt to changes in 

their environments are determined not only by their genes but also by which of those genes are 

expressed at any given time, which in turn is determined by regulatory events (Cooper and Hausman, 

2007b). 

 

 

Figure 3 - Simplified representation of the central dogma of molecular biology. mRNA is synthesized from DNA 
by a process called transcription. The information carried by mRNA is then translated into proteins, which make up the 

structure of cells and are responsible for most of its functions. Translation occurs in ribosomes with the intervention of two 
other types of RNA molecules: transfer RNA (tRNA) and ribosomal RNA (rRNA). tRNA transports the amino acids to the 

growing polypeptide chain and rRNA is a component of ribosomes. 

 

2.4. Transcription 

 

Transcription consists in the polymerization of ribonucleotides (monomers of RNA) directed by 

complementary base pairing with the template strand of DNA that composes the gene. Transcription of 

DNA in prokaryotes and eukaryotes follows the same basic steps: initiation, elongation, and 

termination. Primarily, the enzyme responsible for catalyzing RNA synthesis, the RNA polymerase, 

binds to a DNA sequence at the beginning of the gene that controls the initiation of transcription: the 

promoter. Then, RNA polymerase catalyzes the formation of the RNA molecule by adding nucleotides in 

the 5’ to 3’ direction. Finally, terminators sequences in the RNA molecules instruct RNA polymerase to 

stop transcription (Hartwell et al., 2011a). 

 

DNA mRNA Protein 

Transcription Translation 

5’ 

5’ 

3’ 

3’ 

5’ 3’ 

Amino acid 
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2.4.1.  Transcription in prokaryotes 

 

In prokaryotes, the affinity of RNA polymerase for the promoter is increased by the binding of 

RNA polymerase to a protein called sigma factor (Hartwell et al., 2011b). As previously mentioned, 

prokaryotic genes are usually organized in a cluster called operon, since they operate as a unit from a 

single promoter. The expression of an operon produces a polycistronic mRNA, which carries 

information for the synthesis of several proteins involved in a common biological process. As 

prokaryotic cells have no nucleus, translation of an mRNA can begin while transcription is still 

occurring, that is, transcription and translation can occur simultaneously (Lodish et al., 2003d, 2003i). 

 

2.4.2.  Transcription in eukaryotes 

 

Transcription is considerably more complex in eukaryotic cells. In eukaryotes, promoters are 

diverse, more complex and there are three different RNA polymerases (I, II, III) that interact with 

transcription factors to initiate and modulate transcription. Each class of RNA polymerase transcribes 

distinct classes of genes (Cooper and Hausman, 2007c; Hartwell et al., 2011c). Additionally, a type of 

regulatory sequences called enhancers or silencers can stimulate or repress transcription, even when 

separated by long distances from the promoters regions. Enhancers and silencers bind to specific 

transcription factors to regulate the activity of RNA polymerase (Cooper and Hausman, 2007d). 

In eukaryotes, the protein-coding genes are transcribed to yield a long initial pre-messenger 

RNA (pre-mRNA), which undergo several modifications to become a functional mRNA. These 

modifications are called RNA processing. Initially, all mRNAs are modified at the two ends: the 5’ end 

of a nascent RNA chain is immediately target of several enzymes that synthesize the 5’ cap, a 7-

methylguanylate that is connected to the terminal nucleotide of the RNA. This cap protects an mRNA 

from enzymatic degradation, assists in its export to the cytoplasm and is very important in the initiation 

of translation; the 3’ end of a pre-mRNA is cleaved by an endonuclease to yield a free 3’-hydroxyl 

group, to which a poly-A tail, with 100-250 bases, is added by an enzyme called poly-A polymerase. 

The final step in the processing of eukaryotic mRNA is the RNA splicing: the introns are cleaved and 

the coding exons are joined and included in the final mRNA. The RNA splicing is carried out by a 

complex structure called the spliceosome, composed of four subunits known as small nuclear 
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ribonucleoproteins, or snRNPs. Each snRNP contains small nuclear RNAs (snRNAs) associated with 

proteins. The process of RNA splicing involves primarily three types of sequences, represented in figure 

4: splice-donors, occurring in the region where the 3’ end of an exon connects to the 5’ end of an 

intron; branch sites, located within the intron; and splice-acceptors, at the 3’ end of the intron, where it 

joins with the next exon. These regions enable to detach each intron from the exons that precede and 

follow it, and then to join the respective exons. Briefly, the mechanism of splicing involves two cuts in 

the pre-mRNA: the first cut occurs in the splice-donor site, particularly at the 5’ end of the intron. After 

this first cut, the 5’ end of the intron attaches to an Adenine at the branch site located within the intron. 

The splice-acceptor site, at the 3’ end of the intron, is the target of the second cut. This cut enables to 

remove and discard the intron. Finally, the splicing of the adjacent exons completes the process of 

intron removal, establishing a splice-junction: the region where the two exons are connected in the 

mRNA. The presence of multiple introns in eukaryotic genes enables, in turn, a process called 

alternative splicing, illustrated in Figure 4. In alternative splicing, the exons can be joined in multiple 

combinations, allowing a single gene to express different mRNA molecules (known as isoforms) that 

may encode related proteins with different functions. Mature mRNAs also have sequences at their 5’ 

and 3’ ends that are important in regulating the efficiency of translation. These regions are the 5’ and 

3’ untranslated regions (5’ and 3’ UTRs) and are located just after the 5’ cap and just before the poly-A 

tail, respectively. Prokaryotes also have 5’ and 3’ UTRs, but are much shorter than those in eukaryotic 

mRNAs (Lodish et al., 2003e; Hartwell et al., 2011d). 

 After processing, mRNA can be transported to the cytoplasm to be translated. Thus, in 

eukaryotic cells transcription and translation differ temporally and spatially, since they occur in the 

nucleus and cytoplasm, respectively. As each gene is transcribed from its own promoter, one 

monocistronic mRNA is obtained, which is translated in a single polypeptide or protein (Lodish et al., 

2003f, 2003i). 
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Figure 4 - Alternative splicing event. Eukaryotic pre-mRNAs are composed of exons (coding sequences) and introns 

(non-coding sequences). Three regions are extremely important during the process of splicing: splice-donors, branch sites, 
and splice-acceptors. During splicing, the exons can be joined in different combinations, yielding different mRNA molecules, 

called isoforms. This process is called alternative splicing and enables a single gene to express different proteins. 

 

2.5. Translation 

 

As described, translation is the process in which the sequence of nucleotides in an mRNA is 

converted into a sequence of amino acids, yielding a polypeptide chain. As in transcription, translation 

occurs in three phases: initiation, elongation and termination. In prokaryotes and eukaryotes protein 

synthesis occurs in the cytoplasm and has the participation of three different types of RNA molecules: 

mRNA, tRNA and rRNA. The messenger RNA carries the genetic information encoded in DNA in the 

form of a series of three nucleotide sequences, called codons. Each codon specifies a particular amino 

acid through a coding system called genetic code, depicted in Figure 5. It is worth noting that some 

codons contain the letter U, from the nucleotide uracil, due to the replacement of thymine by uracil in 
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the RNA. Among the several features of the genetic code redundancy and unambiguity are highlighted, 

since more than one codon may specify the same amino acid, but each codon specifies only one 

amino acid. The genetic code comprises 64 codons, with 61 encoding amino acids. The synthesis of a 

polypeptide chain usually starts with the codon AUG, corresponding to methionine, and therefore it is 

called the start or initiation codon. However, in some bacteria the start codon is the GUG and in the 

eukaryotes, occasionally, the CUG is used as start codon, encoding the initial methionine. The 

remaining three codons (UAA, UGA and UAG) do not encode any amino acid and correspond to stop 

codons, indicating the termination of the synthesis of a polypeptide chain. The sequence of codons 

between a start and stop codon correspond to an open reading frame (ORF). Moreover, the sequence 

of codons in an ORF specifies the sequence of amino acids in a polypeptide chain and indicates where 

synthesis starts and ends. 

 

   

Figure 5 - The genetic code. This table contains the 64 codons that constitute the genetic code. In order to be read the 
first letter in the left column should be selected, followed by the second letter in the top row and the third letter in the right 

column. The names of the amino acids are abbreviated. Adapted from (Hartwell et al., 2011h). 

 

The molecule responsible for interpretation of codons is the tRNA. Each tRNA has attached one 

amino acid that is transported to the growing end of a polypeptide chain. The correct tRNA is selected 

at each step because this molecule also has a three-nucleotide sequence, called anticodon, which is 
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complementary to the corresponding codon in the mRNA. Finally, rRNA molecules associate with 

proteins to establish ribosomes: molecular machines that move throughout mRNA and catalyze the 

assembly of amino acids into polypeptide chains. The resulting polypeptide chains undergo post-

translational changes as folding, association with other chains and chemical modifications, required for 

the production of functional proteins (Hartwell et al., 2011e; Lodish et al., 2003g). 

 

2.6. The versatility and role of RNA 

 

The primary structure of RNA is similar to that of DNA: RNA is a chain-like molecule composed 

of nucleotides joined by phosphodiester bonds. However, these molecules have some differences: most 

cellular RNAs are single-stranded, the sugar component of nucleotides is a ribose and, as described 

above, the thymine in DNA is replaced by uracil. RNA also folds into a diversity of secondary and 

tertiary structures. Pairing of complementary bases forms the simplest secondary structures, which can 

cooperate to form more complex tertiary arrangements. The folded domains of RNAs have in some 

cases catalytic capacities, known as ribozymes (Tanner, 1999). Ribozymes can catalyze splicing and 

some RNAs also have self-splicing activity. rRNA also plays a catalytic role in the formation of peptide 

bonds during translation (Allison, 2007b; Lodish et al., 2003h). 

In addition to mRNA, tRNA and rRNA there are other types of RNA molecules with special 

functions. Not only proteins can regulate gene expression but also the noncoding micro RNA (miRNA). 

These molecules are short double-stranded RNAs that are encoded by hundreds of genes in plants and 

animals. One mode of action of miRNAs is to inhibit translation by RNA interference (RNAi). In RNAi, 

miRNAs associate with a protein complex called RNA-induced silencing complex (RISC) and induce 

degradation of homologous mRNAs. In addition, miRNAs can associate with a different protein 

complex, RNA-induced transcriptional silencing (RITS), and repress transcription by inducing histone 

modifications that lead to chromatin condensation (Cooper and Hausman, 2007e). 

The sum of all transcripts produced in a cell, under a given set of conditions, is its 

transcriptome (Allison, 2007a). In contrast, with the genome, which is essentially static, an organism's 

transcriptome actively changes and is dependent on many factors, including environmental conditions 

and stage of development of the organism (Velculescu et al., 1997). The following Chapter will address 

some of the methods used to study the entire collection of RNAs in a given cell, included in the field of 

transcriptomics. 
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3. Transcriptomics 

 
 Transcriptomes provide insights about the functional elements of genomes, uncover the 

molecular constituents of cells and tissues, and help to understand the processes related to 

development and diseases. Therefore, the objectives of transcriptomics are to understand and quantify 

transcriptomes. Transcriptomes identify all types of transcripts in a given cell, tissue or organism, 

analyzes the expression levels and determines the structure of genes, such as their regulation sites and 

splicing patterns (Wang et al., 2009). Over the past decades, several technologies have been 

developed (Morozova et al., 2009). Some of the first methods were the Northern blot (Alwine et al., 

1977), reverse transcription quantitative PCR (RT-qPCR) (Becker-André and Hahlbrock, 1989; Noonan 

et al., 1990) and microarrays (Schena et al., 1995). The latter offered a survey on the expression levels 

of thousands of transcripts simultaneously, which stimulated, in turn, several studies to characterize 

the expression profiles of different cell types and disease states. However, microarrays can only detect 

transcripts homologous to those present on the array and do not provide information about the coding 

sequence of the detected transcripts. More limitations involve the requirement of prior knowledge about 

genomes sequences, and a limited range of detection due to the background (Okoniewski and Miller, 

2006; Royce et al., 2007) and saturation of signals (Wang et al., 2009). In fact, a great disadvantage of 

microarrays is the indirect inferring of the identity and abundance of a transcript from hybridization 

intensity measures (Morozova et al., 2009). 

 

3.1. RNA-Seq 

 

DNA sequencing offered new methods to study the transcriptomes. Initially, the processes of 

cloning complementary DNAa, commonly called cDNA (Carninci et al., 2003), or expressed sequence 

                                                

a Double stranded DNA molecule synthetized from an mRNA template, using reverse transcriptase. 
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tag librariesb (ESTs) (de Souza et al., 2000), followed by Sanger sequencing (Sanger et al., 1977), were 

the adopted procedures. However, these approaches are expensive, have relatively low throughput, 

detecting only the more abundant transcripts, and are labor intensive to be regularly used on a 

transcriptome-wide scale (Morozova et al., 2009). In the last years, the whole-transcriptome 

sequencing using NGS technologies (Loman et al., 2012), or RNA-Seq, proved to be an important 

method for detecting and quantifying transcriptomes (Wolf, 2013; Mutz et al., 2013; Martin and Wang, 

2011; Li et al., 2014b; Wang et al., 2009; Ozsolak and Milos, 2011; Wang et al., 2011).  

The high sequencing depth of the RNA-Seq experiments offers a wide survey of transcriptomes, 

including the small and low-expressed non-coding transcripts with regulatory roles. The sequencing 

depth is a parameter extremely important in the design of NGS experiments and corresponds to the 

average number of times that each nucleotide is expected to be sequenced (Sims et al., 2014). For 

example, a 30x sequencing depth means that each nucleotide of each transcript was sequenced, on 

average, 30 times. Generally, in an RNA-Seq experiment a population of RNA is initially fragmented and 

converted into a library of cDNA. Then, the cDNA library is sequenced by NGS platforms to produce 

millions to billions of short sequences called reads, representing virtually the cDNA fragments. The 

reads can be obtained from one end or both ends of the cDNA fragments, establishing the so-called 

single-ended or paired-ended reads, respectively (Nagarajan and Pop, 2013). In a paired-ended 

protocol, each read from a pair usually has between 75-150 bp, separated by a known distance, 

allowing exon connectivity across long ranges. This feature enables to guide more distance connections 

between regions of transcript isoforms, and, therefore, to recover the multiple splicing isoforms from a 

single gene in a sensible manner (Martin and Wang, 2011).  

Short repeats of sequences are another issue that paired-ended reads enable to overcome. 

Sequencing reads including stretches of repeats can increase the complexity of the assemblies and 

lead to erroneous conclusions. Although repeats most often occur within intergenic regions, 

establishing a minor problem for RNA-Seq, repeats that are present in the transcript sequences can be 

resolved by paired-ended reads that span the repeated segment. Additionally, the use of strand-specific 

RNA-Seq protocols (Levin et al., 2010) provides a clear distinction between sense and antisense 

transcription (Pelechano and Steinmetz, 2013), allowing to recover overlapping transcripts that are 

derived from opposite strands of the genome. This consideration enables therefore to detect antisense 

                                                

b Fragments of mRNA sequences derived from sequencing reactions, performed on randomly selected clones from cDNA libraries. 
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transcripts, common in higher eukaryotes, and to study gene-dense genomes, such as those of lower 

eukaryotes (Martin and Wang, 2011). 

All of the current NGS technologies can be used for transcriptome sequencing: Illumina HiSeq 

2000/2500 and MiSeq; Roche 454 GS FLX+; Life Technologies Ion Proton and Personal Genome 

Machine (PGM); and the Pacific Biosciences RS (PacBio) (Liu et al., 2012; Quail et al., 2012; Li et al., 

2014b). Independently of the technology used, the software called PHRED (Ewing et al., 1998; Ewing 

and Green, 1998) analyzes the sequencing report of the respective machine and performs the base 

calling, which is the identification of each nucleotide. This software also assigns a quality value to each 

base, known as the PHRED score. This score reflects the estimated probability of an erroneous calling, 

and can be calculated by equation (1): 

 

PHRED =  -10 × log(P) (1) 

 

where P corresponds to the probability of a given base has been incorrectly detected. For example, a 

PHRED score of 30 indicates that the probability of that base to be wrong is 1 in 1000. Additionally, 

PHRED introduced the QUAL file format to store the quality values, which is complemented by FASTA 

files (Pearson and Lipman, 1988) that contain the nucleotide sequences of each read. However, the 

FASTQ file format emerged as a common format for storing and handling sequence data, combining 

both the nucleotide sequences of each read and the per base PHRED scores, encoded in ASCII 

characters (Cock et al., 2010). 

 After sequencing, the obtained reads are pre-processed to remove low-quality reads, adaptor 

sequences, and contaminant DNA, since these elements may lead to misassemblies and erroneous 

conclusions during downstream analysis. There are different tools that provide pre-processing features 

and quality control tasks, such as PRINSEQ (Schmieder and Edwards, 2011) and FASTQC (Andrews, 

2010). PRINSEQ enables to filter, trim and reformat sequence reads on FASTA, QUAL and FASTQ files. 

The filtering options allow to select sequence reads by length, quality scores, GC contentc, number of N 

basesd, sequence duplicatese, among other parameters; the trimming options enable to trim bases 

                                                

c Guanine and cytosine percentage. 

d Number or percentage of unknown bases, represented by Ns. 

e Artificially duplicated sequences during the different steps of the sequencing protocols. 
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from the 5’ and 3’ end, trim poly-A/T tails and trim reads to a specific length; finally, the reads can be 

reformatted to remove sequence headers or rename sequence identifiers, to switch between upper or 

lower case and to convert between DNA and RNA sequences. FASTQC provides quality control checks 

for sequencing data, including summary statistics (total sequences, sequence length, GC content) and 

representative graphics for the read length and GC content distribution, quality scores, sequence 

duplication levels and other reports. 

The reads are subsequently assembled to reconstruct the original transcripts and to measure 

their expression levels. The algorithms used to reconstruct the transcripts are based on the assumption 

that highly similar reads were sequenced from the same region in the cDNA molecule, and this 

similarity is used to amend the individual reads into larger contiguous sequences, or contigs, 

recovering the original transcripts (Nagarajan and Pop, 2013). In order to reconstruct the transcripts, 

there are two main strategies: reference-based or de novo assembly(Martin and Wang, 2011). 

 

3.1.1.  Reference-based 

 

If the target transcriptome has a reference genome, the transcriptome can be reconstructed 

using that genome. Initially, the reads are aligned to the reference genome using splice-aware aligners, 

such as TopHat (Trapnell et al., 2009) and STAR (Dobin et al., 2013). Splice-aware aligners are 

programs that align RNA-Seq reads to a genome. In TopHat the reads are initially mapped against the 

whole reference genome using a read alignment program called Bowtie (Langmead et al., 2009). 

Bowtie uses a data structure, called the FM index (Ferragina and Manzini, 2001), to store and rapidly 

search the reference genome sequence. However, Bowtie does not allow alignments containing large 

gaps, precluding it of aligning reads that span introns, since, as previously described, the introns are 

removed from mRNA during the process of splicing (in higher eukaryotes the introns span a very wide 

range of lengths, typically from 50 to 100,000 bases). Therefore, the reads that align to a splice 

junction are called “initially unmapped reads” or IUM reads, and are set aside, while the remaining 

(non-junction reads) are aligned to the respective exons. The next step is to assemble the mapped 

reads, using an assembly utility in Maq (Li et al., 2008), extracting the consensus sequence and 
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inferring that are putative exons. Then, TopHat searches for splice junctionsf, enumerating all possible 

donor and acceptor sites between neighboring exons. The IUM reads are then searched against the 

splice junctions, in order to find reads that span these segments. This process is achieved through a 

seed-and-extend strategy, in such a manner that the IUM reads are split into smaller fragments, which 

are then aligned to the genome. The fact that several fragments align to the genome far apart from 

each other is an evidence to TopHat that a given read spans a splice junction. Finally, TopHat 

estimates the location of the splice sites (Trapnell et al., 2009, 2012) and reports all read alignments 

against the genome sequence. The TopHat pipeline here described is represented in the following 

Figure: 

   

Figure 6 - TopHat pipeline. Initially, the reads are mapped to the genome sequence, and the IUM reads are collected. 
After assembling the covered regions in a consensus sequence and searching for the potential splice junctions, the IUM 

reads are aligned to these regions via a seed-and-extend algorithm. Adapted from (Trapnell et al., 2009). 

 

Recently, a new version of TopHat, the TopHat2 (Kim et al., 2013) was developed. Besides 

Bowtie, TopHat2 can use Bowtie2 (Langmead and Salzberg, 2012) as its core alignment tool. Bowtie2 

enables to handle gapped alignments (Bowtie only finds ungapped alignments) and is faster and more 

                                                

f Based on known junctions signals, such as GT and AG dinucleotides in the 5’ and 3’ ends of the introns, respectively. 
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sensitive with reads longer than 50 bp. TopHat2 enables to map the reads against the transcriptome of 

the organism under study, if an annotation file is provided, and then performing the search for spliced 

alignments using the remaining reads, against the genome sequence. Additionally, TopHat2 allows 

insertions and deletions in the spliced alignment detection step. 

In contrast to TopHat, STAR aligns non-contiguous reads (reads that align to splice junctions) 

directly to the reference genome, without splitting them, through two major steps: seed searching and 

clustering/stitching/scoring. In the first step, STAR finds the Maximal Mappable Prefix (MMP) for each 

read, starting from the first base. The MMP is the longest substring of each read that matches exactly 

one or more substrings of the genome. If the read comprises a splice junction, it cannot be mapped in 

a contiguous manner to the genome, and so the first portion of the read, called seed, will be mapped 

to the donor splice site. Then the algorithm searches the MMP for the unmapped portion of the read, 

which, in some cases, will be mapped to the acceptor splice site. This sequential search for MMPs only 

to the unmapped portions of the read is represented in Figure 7. The second step of STAR, 

clustering/stitching/scoring, consists in building alignments from each entire read, by merging all the 

seeds that were initially aligned to the genome. 

 

    

Figure 7 - MMP search detecting a splice junction. The RNA-Seq read here illustrated cannot be contiguously 

mapped to the genome, because it aligns to a splice junction. Therefore, the first MMP was mapped to a donor splice site. 
The second MMP search is repeated for the unmapped portion of the read, which, in this case, was mapped to an acceptor 

splice site. Adapted from (Dobin et al., 2013). 

 

After the mapping process, it is necessary to identify correctly all possible isoforms of each 

gene and quantify their expression levels. These processes can be performed by a software package 

called Cufflinks (Trapnell et al., 2010), which assembles individual transcripts from reads that have 

been aligned to the genome. First it clusters the reads that overlapped in a single locus and builds an 

overlap graph to represent all possible isoforms. Then the algorithm analyzes and crosses the graph to 

join compatible reads into assembled isoforms. Cufflinks employs a parsimonious approach, this is, the 

algorithm reports the minimum set of transcripts that explain the splicing events in the input data. 
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Cufflinks then estimates the transcripts expression levels, based on the quantity of reads that support 

each isoform. However, alternatively spliced isoforms from the same gene will share exons, 

complicating the counting of reads for each transcript, since a read from a shared exon could have 

come from several isoforms. Therefore, Cufflinks employs a maximum-likelihood method (Scholz, 

2006), a procedure for finding the value of one or more parameters of a given statistical model, to 

estimate an assignment of abundance to each transcript. The expression levels are reported in FPKM 

units, consisting of the number of reads that map to each transcript normalized by each transcript’s 

length and library size, allowing comparisons within and between samples (Trapnell et al., 2010, 

2012). In addition to Cufflinks, the transcripts sequences can be reconstructed and evaluated for their 

expression using Scripture (Guttman et al., 2010). By contrast, Scripture initially builds connectivity 

graphs containing each base of a chromosome, representing all possible connections of the bases in 

the transcriptome. The nodes in the graphs correspond to the bases and edges are added if there is a 

read that joins two bases. Then, Scripture crosses the graphs to find all paths that have a statistically 

significant read coverage, to reconstruct all isoforms from a locus. The expression levels are also 

reported in FPKM units (Guttman et al., 2010). 

 

3.1.2.  de novo 

 

When the transcriptome under study does not have a reference genome, the de novo 

transcriptome assembly is the adopted strategy. In this case, the redundant property of the short reads 

is used to find overlaps, in order to assemble them into transcripts (Martin and Wang, 2011). Several 

de novo transcriptome assemblers have been developed, such as Trans-ABySS (Robertson et al., 

2010), Oases (Schulz et al., 2012) and Trinity (Grabherr et al., 2011). These packages are based on 

constructing, simplifying, and resolving De Bruijn graphs (Zerbino and Birney, 2008; Chaisson and 

Pevzner, 2008; Pevzner et al., 2001; Compeau et al., 2011) to extract the putative transcripts. A De 

Bruijn graph, represented in Figure 8, is a directed graphg that uses substrings of length k (k-mers), 

usually obtained from the reads, to represent nodes. Pairs of nodes are connected if the k-mers differ 

by one character, creating a k-1 overlap between two k-mers. Once this representation is established it 

                                                

g  Mathematical structure commonly used to represent data: nodes represent objects and their relations are mirrored by edges or 

connections between the nodes. 
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is possible to analyze each path in the graph and to recover the possible transcript sequences, given 

the overlaps of k-1. 

 

 

Figure 8 - De Bruijn graph. The construction of a De Bruijn Graph starts with the generation of all k-mers with length k 

(5 in this example) from the reads. Then they are integrated into a De Bruijn Graph and two k-mers are connected if they 
share an overlap equal to k-1. The existence of sequencing errors or SNPs (A/T) and also introns or deletions between the 

reads introduces alternative paths through the graph, which can be traversed by specific algorithms to recover the most 
probable transcripts sequences. Adapted from (Martin and Wang, 2011). 

 

Trans-AbySS and Oases assemble the data multiple times, varying one parameter, the k-mer 

size used to compute the De Bruijn graphs. In each assembly, the reads are used to build a De Bruijn 

graph, which is then analyzed and resolved to remove potential errors and to extract the transcripts 

sequences from each connected locus or cluster in the graph. Finally, all individual k-mer assemblies 

are merged into a final assembly (Schulz et al., 2012; Zhao et al., 2011). Trinity, on the other hand, 

combines three modules: Inchworm, Chrysalis and Butterfly, depicted in Figure 9. Originally, the first 

steps of Inchworm were to extract all overlapping k-mers from the reads, using a fixed length of k = 25, 

and to estimate their abundance. Currently these processes are made by a faster k-mer abundance 

catalog-generating tool, called Jellyfish (Marçais and Kingsford, 2011). So, after Jellyfish generates the 

k-mer library (k = 25), Inchworm builds an initial set of contigs based on k-1 overlaps, using a greedly 

assembling algorithm for fast and efficient assembly. A greedly assembling algorithm joins overlapped 

reads by making a series of locally optimal solutions, leading to a globally suboptimal solution. 

Generally, Inchworm generates full-length transcripts for a dominant isoform, but it recovers only the 

unique portions of alternatively spliced transcripts. Chrysalis then resorts to the original reads and 

paired read links, if available, to cluster the related Inchworm contigs, on the basis of shared read 

support and if they share at least one k-1 overlap. This process clusters together regions that have 

probably originated from alternatively spliced transcripts. The second and final step of Chrysalis is to 

transform the contig clusters into De Bruijn graphs, building one for each cluster and partitioning the 
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reads among the clusters. Last but not least, Butterfly analyzes the individual De Bruijn graphs in 

parallel and report all plausible full-length transcripts for alternatively spliced isoforms (Grabherr et al., 

2011; Haas et al., 2013). 

 

    

Figure 9 - Trinity assembly pipeline. Inchworm constructs contigs using the k-mers generated by Jellyfish. Then, 

Chrysalis builds clusters of related Inchworm contigs, and each one is processed into a De Bruijn graph. Finally, Butterfly 
extracts all probable transcripts from each graph. Adapted from (Haas et al., 2013). 

 

3.1.2.1. Transcripts quantification 

 

Transcripts abundance (or expression levels) analysis in de novo transcriptome assemblies can 

be executed by RSEM (Li and Dewey, 2011) or eXpress (Roberts and Pachter, 2013). The fundamental 

idea of these tools is the follow: if the reads were mapped against the set of transcripts, the number of 

reads that align to each transcript would act as an indicator of that transcript’s expression level. RSEM 

runs in two major steps. First it preprocesses a set of reference transcript sequences to use later. The 

second step consists of aligning the set of reads to the reference transcripts, and the resulting 

alignments are used to calculate the transcripts abundances. However this is not a trivial process, 

because, as mentioned for Cufflinks, some reads might map to several transcripts that share common 

sequences (e.g., exons between alternatively splice isoforms), precluding the use of only sequence 

alignments to distinguish the origin of the reads that map to these transcripts. Thereby, RSEM employs 
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a method that distributes portions of expression values between transcripts, elucidated in Figure 10, 

using the Expectation-Maximization (EM) algorithm (Cappé and Moulines, 2009), a method for 

maximum-likelihood estimation (Scholz, 2006), to estimate the transcripts expression levels (Li and 

Dewey, 2011). eXpress also addresses the read-assignment problem using the EM algorithm, 

processing each sequence read at a time. In eXpress, each incoming read is assigned to the targets it 

maps, and parameters such as fragment-length distribution and sequencing read errors are 

simultaneously updated and used in the next round of assignment. Once the input data have been 

processed, relative abundances are calculated from the count distributions (Roberts and Pachter, 

2013). 

 

  

Figure 10 - Expression level estimation by RSEM. RSEM integrates the EM algorithm to estimate the transcripts 
abundances. In this example two different isoforms (long bars) are represented, containing portions of shared (blue) and 

unique (red and yellow) sequences. The reads (short bars) are initially aligned to the transcripts sequences, and the unique 

regions of isoforms will capture uniquely mapping reads (red and yellow short bars), while the shared sequences will be the 
target of multiply mapping reads. The EM algorithm estimates the relative abundances of the transcripts, and then 

fractionally assigns reads to the isoforms based on these abundances. This assignment occurs iteratively, represented as 
filled short bars (right). The eliminated assignments correspond to the hollow bars. Finally, a higher fraction of each read is 

assigned to the top isoform (highly expressed) than to the bottom isoform. Adapted from (Haas et al., 2013). 

 

RSEM reports the expression values in the following units: expected count, TPM, FPKM, and 

IsoPct. Expected count is the number of expected reads assigned to each transcript given maximum 

likelihood transcript abundance estimates; TPM or Transcripts per Million corresponds to the 

proportion of each transcript in a sample, given the abundances of the other transcripts in that sample; 

FPKM or Fragments per Kilobase of Exon per Million reads mapped provides the read counts assigned 

to each transcript normalized by transcript length and library size, to permit comparisons within and 

between samples; and IsoPct is the percentage of expression for a given isoform, compared with the 

expression of all isoforms from that gene (Haas et al., 2013; Sims et al., 2014). eXpress reports the 

abundances in FPKM units (Roberts and Pachter, 2013). 
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3.1.3.  Comparing both strategies 

 

 As mentioned above the de novo transcriptome assembly should be performed when the target 

organisms do not have a reference genome, such as in the case of non-model species. In some cases 

the de novo assembly should also be implemented when a reference genome is available because it 

can recover novel transcripts that are expressed from regions of the genome that are missing in the 

genome assembly, or it can detect transcripts that belong to an external source. As this strategy is 

independent of the correct alignment of reads against a reference genome, the prediction of splicing 

sites and the existence of long introns are not concerns for these algorithms (Martin and Wang, 2011). 

The de novo assembly of prokaryotic and lower eukaryotic organisms is simple, and the 

transcripts can be reconstructed in their full-length when the depth of coverage is higher than 30x. 

However, these genomes usually have overlapped genes transcribed from opposite strands of the DNA 

molecule, which results in the assembly of bordering genes into a single transcript. The utilization of 

strand-specific protocols and the construction of De Bruijn graphs from k-mers restricted to the forward 

strands ensures that strand specificity is not lost, and helps to overcome this issue (Martin and Wang, 

2011; Martin et al., 2010; Levin et al., 2010). 

The de novo assembly of higher eukaryotic transcriptomes is more challenging though, mainly 

because of two reasons: the larger data sets and the difficulties that arise from the intense alternative 

splicing. The millions to billions of reads that are necessary to assembly the transcriptomes of complex 

plants and mammals triggers the assemblers to consume hundreds of gigabytes of RAM, and the run 

time can be exhaustive. Still, this problem can be overcome by parallel computation, distributing the 

graph over a cluster of computational nodes. Additionally, the de novo assemblers are very sensitive to 

sequencing errors, particularly with reads obtained from low-abundant transcripts. The correct 

identification of sequencing errors is very important, in order to avoid their influence in the downstream 

analysis. Generally, the de novo transcriptome assembly requires more computational resources and a 

higher sequencing depth for full-length transcripts reconstruction, comparatively to the reference-based 

approach. The last can recover full-length transcripts with a sequencing depth as low as 10x, while a 

de novo assembly requires a minimum sequencing depth of 30x to accomplish the same task 

(Robertson et al., 2010; Martin et al., 2010). 

A reference-based approach subdivides the assembly process into smaller problems that 

correspond to independent assemblies in each locus, alleviating the computational requirements. 
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Contaminations and sequencing artifacts poses less of challenge for this strategy, because in theory it 

is not expected the alignment of these sequences against the reference genome. Furthermore, this 

strategy is very sensitive and can recover novel transcripts that do not exist in the current genomic 

annotations. Such transcripts usually have lower expression levels, and small gaps within the transcript 

sequences, caused by a lack of read coverage, that can be filled by the reference genome sequence. 

The reference-based strategy for prokaryotes and lower eukaryotes it is also easier to perform, since 

these organisms have few introns and low levels of alternative splicing. The problem that arises from 

the compact nature of these genomes can also be overcome by strand-specific RNA-Seq protocols, 

enabling to separate adjacent overlapping genes. The complex alternative splicing patterns of higher 

eukaryotes introduces some challenges to the reference-based assemblies. Splice junction reads that 

span large introns can be discarded, because the aligners usually search for introns that are smaller 

than a given length, in order to reduce the computational needs (Martin and Wang, 2011). 

The success of a reference-based assembly largely depends on the quality of the reference 

genome sequence, because the majority of the genome assemblies (except those of model organisms) 

contain a large number of misassemblies and deletions, which may lead to partially assembled 

transcriptomes. Sometimes it is possible to use the genome from a closely related species, but there is 

the risk of losing transcripts from divergent genomic regions. In sum, the reference-based 

transcriptome assembly should be the adopted strategy when a high-quality reference genome exists, 

since this method is highly sensitive and can recover full-length transcripts with lower sequencing 

depths (Martin and Wang, 2011). 

 

3.1.4.  Searching for coding regions 

 

 TransDecoder (Haas et al., 2013) is a tool that enables to identify the potential ORFs within 

transcript sequences and to report the most probable proteins. The employed procedure is based on 

the analysis of nucleotide composition and open reading frame length. Although, to maximize sensitivity 

for capturing the most significant ORFs, they can be scanned for similarity against a database of known 

proteins like UniProt (UniProt: a hub for protein information, 2014), using BLAST (Altschul et al., 1990, 

1997), or against Pfam (Finn et al., 2014) to identify common protein domains, using HMMER (Eddy 

and Wheeler, 2015). In this manner, the final predictions include sequences that have characteristics 

of coding regions and those that demonstrated similarity content against known proteins or domains. 



 27  

3.1.5.  Similarity searches 

 

 The HMMER and BLAST are widely used tools to search DNA and protein databases for 

sequence similarities with a given query, the biological sequence to be searched. The HMMER is a 

software suite that enables to construct and to search sequence databases with profile hidden Markov 

models (Krogh et al., 1994), or HMMs. Profile HMMs are statistical models of multiple sequence 

alignments, or single sequences, and contain information about how conserved each column of the 

alignment is, and which amino acids are more probabe to occur. The HMMER software comprises a 

combination of algorithms to perform the similarity searches, including striped vector-parallelized 

alignment algorithms (Farrar, 2007) and heuristic acceleration algorithms (Finn et al., 2011). The 

HMMER integrates several utilities, such as: hmmbuild, which enables to build a profile HMM from a 

multiple sequence alignment; hmmsearch, for searching a protein profile HMM against a protein 

sequence database; hmmscan, which, on the other hand, allows to search a protein sequence against 

a protein profile HMMs database; among other programs. The BLAST (basic local alignment search 

tool) performs alignments between pairs of sequences, searching for regions of local similarity. Such as 

HMMER, BLAST integrates several sequence alignment tools with distinct queries and targets, 

described in Table 2. 

 

Table 2 - BLAST programs. The BLAST consists of several utilities, each one with a specific query and target type. For 
example, BLASTP compares an amino acid query sequence against a protein sequence database. 

Program Query Target 
BLASTP Protein Protein 
BLASTN Nucleotide Nucleotide 
BLASTX Nucleotide (translated) Protein 
TBLASTN Protein Nucleotide (translated) 
TBLASTX Nucleotide (translated) Nucleotide (translated) 
 

 The BLAST algorithm initially generates all short sequences, or words, of a given length, from 

the query sequence. BLAST then searches the database sequences (previously pre-processed and 

indexed for a fast search) for exact matches to the list of words generated. If a match is found, the 

algorithm extends the alignment in both directions to generate alignments that score higher than a 

given score threshold S. The resulting alignments are called high-scoring segment pairs, or HSPs. 

BLAST also calculates the statistical significance of each score, determining the probability that two 
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random sequences (one of the length of the query sequence and the other with the length of the 

database) with the same composition (nucleotide or amino acid) could produce the calculated score. If 

the expectation value (E-value) for that database satisfies a certain threshold, the match is reported. In 

fact, the E-value provides an estimate of the number of alignments one would expect to find with a 

score greater than or equal to that of the observed alignment in a search against a random database of 

the same composition. E-values greater than 1 indicates that the alignment probably occurred by 

chance and that the query sequence is not related to the sequence in the database. Typically, E-values 

less than 1 represent biological significance (Pertsemlidis and Fondon, 2001). 

 

3.1.6.  Transcriptome quality metrics with reference 

 

Jeffrey A. Martin and Zhong Wang recommended five quality metrics (Martin and Wang, 2011) 

to assess the quality of an assembled transcriptome: completeness, contiguity, accuracy, chimerism 

and variant resolution. These metrics were developed in the context of a software pipeline, called 

Rnnotator (Martin et al., 2010), which pre-processes RNA-Seq data followed by de novo assembly and 

post-processing of the assembled transcriptome. These metrics require a genome or a set of expressed 

transcripts as a reference, and in short: accuracy measures the correctness of the assembly, this is, 

the percentage of correct bases in the assembled transcripts; completeness corresponds to the 

reference transcriptome coverage degree by all the assembled transcripts; contiguity calculates the 

number of reference transcripts represented by a single assembled transcript, covering the full length 

of the reference transcript; chimerism determines the percentage of assembled transcripts that contain 

two or more reference transcripts reconstructed into a single transcript. Chimaeras may be the result 

of biological events (gene fusions or trans-splicing), experimental sources (intermolecular ligation) or 

informatics errors (misassembled chimaeras). Misassembled chimaeras can arise from genes with 

overlapping UTRs (Martin et al., 2010). This can happens when two genes are transcribed from 

different strands, such as the case of antisense transcription, and their transcripts are joined into a 

single contig during the assembly process; and, finally, variant resolution provides the average of the 

percentage of isoforms assembled for each expressed reference transcript. This metric is especially 

useful for evaluate complex transcriptomes with predominant alternative splicing events. The 

mathematical formulation of each metric is described below: 



 29  

Completeness is the percentage of expressed reference transcripts covered by all the 

assembled transcripts, and can be calculated by equation (2). I assume values of 1 or 0, depending 

whether Ci is greater than threshold ! (e.g., 80%). Ci is the percentage of the expressed reference 

transcript i that is covered by assembled transcripts, and N is the number of expressed reference 

transcripts. 

 

Completeness = 100 × 
I(Ci ≥ α)N

i=1

N
 (2) 

 

Contiguity is defined as the percentage of expressed reference transcripts covered by a single 

assembled transcript Ti, and can be calculated by equation (3). As in completeness, I assume values of 

1 or 0, depending whether Ci is greater than threshold ! (e.g., 80%). However, in contiguity Ci is the 

percentage of the reference transcript i that is covered by a single assembled transcript Ti. N 

corresponds to the number of expressed reference transcripts. 

 

Contiguity = 100 × 
I(Ci ≥ α)N

i=1

N
 (3) 

 

Accuracy is the percentage of the correctly assembled bases, estimated using the set of 

expressed reference transcripts. Accuracy can be calculated by the equation (4), where Li is the length 

of the alignment between an expressed reference transcript and an assembled transcript Ti, and Ai is 

the number of correct bases in transcript Ti. M is the number of best alignments between the 

assembled and reference transcripts. 

 

Accuracy = 100 × 
AiM

i=1

LiM
i=1

 (4) 

 

Variant resolution is the percentage of assembled splicing isoforms, and can be calculated 

accordingly to the equation (5). Ci and Ei are the number of correctly and incorrectly assembled 

isoforms for reference gene i, respectively, Vi is the total number of isoforms for gene i, and N 

corresponds to the total number of expressed reference transcripts. 
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Variant Resolution = 100 × 
max( Ci - Ei , 0)

Vi
N
i=1

N
 (5) 

 

Chimerism is the percentage of chimaeras (Chi) that occur among all of the assembled 

transcripts (Assbl), calculated by equation (6). 

 

Chimerism = 100 × 
Chi

Assbl
 (6) 

 

These metrics enable to evaluate a set of assembled transcripts by the reference 

transcriptome coverage degree. For example, high percentages of completeness and contiguity would 

indicate a high degree of coverage for the reference set by the assembled transcripts, which means 

that the assembled transcripts can reliably represent the set of expressed reference transcripts. 

Moreover, these metrics allow to compare different assemblies and even to improve assembly 

parameters. However, the optimization of some metrics might negatively affect others. A program that 

creates many overlaps would increase the value of contiguity, but, on the other hand, the outcome of 

chimerism, due to the occurrence of misassembled chimeras, would also be high. When an RNA-Seq 

study focuses on model species (where reference genome and transcript sequences are available), 

both de novo and reference-based strategies can be used for transcriptome reconstruction, as well as 

these metrics for quality assessment. Nevertheless, a set of reference transcripts or genome may be 

difficult to obtain or not be available for some organisms (Martin and Wang, 2011). 

 

3.1.7.  Transcriptome quality metrics without reference 

 

 In most cases where de novo assembly is of interest, especially when studying non-model 

species (without reference genome), reference sequences are not available or incomplete, which 

makes the assembly evaluation task markedly more difficult. A commonly used metric that does not 

require a set of reference sequences is the N50: the length of the longest contig such that all contigs of 

at least that length composes at least 50% of the bases of the assembly. The interpretation of this 

metric is that better assemblies will have more reads assembled into longer contigs. However, this 

metric can be easily maximized, by just concatenating all of the input reads into single contigs. N50 
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measures, therefore, the continuity of contigs but not their accuracy (Li et al., 2014a). The request for 

a set of reference transcripts excludes the use of the previous metrics in de novo assembled 

transcriptomes from non-model species, due to the lack of a high-quality genome sequence and 

structural annotations. Establishing a set of reference transcripts suitable to be applied to a large 

number of organisms could offer an answer to this problem, but the variable nature of the 

transcriptomes increase the difficulty of finding not only a set of transcripts common to a wide range of 

organisms, but also present across all different types of cells with distinct differentiation patterns and 

gene expression traits. Still, if there were a collection of conserved genes with important roles in a wide 

range of living beings, it would be possible to evaluate if these genes can function as a quality control 

tool in de novo assembled transcriptomes without reference. As these genes would be present in a 

broad spectrum of organisms, it would be expected that their important functions would be reflected by 

a ubiquitous presence across all cells, contributing to the organisms’ homeostasis. Therefore, such 

reference set might provide additional information for these transcriptomes, and consequently the 

assessment of their quality. Accordingly, there is a set of orthologous genes created by the Korf Lab 

(Parra et al., 2009) present in practically all eukaryotes, and its development is described in the 

following Chapter. 
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4. Evolutionary genomics and 

genome annotation 

 
 In the past decades the number of genomic sequences available to the scientific community 

has dramatically increased. The wide availability of complete genomes stimulated the development of 

evolutionary classifications of genes encoded on these genomes, in order to extract the maximum 

evolutionary and functional information. These classification systems are closely related with two 

concepts of gene homology: orthology and paralogy (Tatusov et al., 2003). First, in evolutionary biology 

homologous genes are those that share a common origin. Thus, orthologs are homologous genes 

derived from a single ancestral gene in the last common ancestor of the compared genomes (vertical 

descent). On the other hand, paralogs are homologous genes evolved from duplication of an ancestral 

gene, often belonging to a same species. The concepts of orthology and paralogy are extremely 

important for evolutionary genomics. A clear distinction between orthologs and paralogs is the basis for 

the construction of a robust evolutionary classification of genes and reliable functional annotation of 

genomes (Koonin, 2005). Orthologous genes tend to maintain sequence conservation over evolutionary 

time, reflecting their conserved function, whereas paralogs tend to evolve toward functional 

diversification. Thus, gene classification based on orthologous relationships is a great tool of 

comparative genomics and contributes to the correct functional annotation of genomes (Parra et al., 

2007). 

 

4.1. Clusters of orthologous groups of proteins 

 

In 1997 Tatusov et al. developed a set of orthologous protein clusters that they called Clusters 

of Orthologous Groups of proteins (COGs) (Tatusov et al., 1997). The approach to the identification of 
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orthologous protein sets was based on genome-specific best hits (BeT). A BeT is a protein in a target 

genome that is most similar to a given protein from the query genome. This system is based on a 

simple fact: when comparing genes from two different genomes, the orthologs are most probably those 

pairs of genes whose proteins exhibit the greatest sequence similarity. In multiple-genome 

comparisons, pairs of potential orthologs are joined to form clusters of orthologs, represented in all or a 

subset of the analyzed genomes. Additionally, the COG construction protocol included manual splitting 

of multidomain proteins into the component domains, and subsequent manual curation and 

annotation. The COGs were originally constructed with six prokaryotic genomes (Escherichia coli, 

Haemophilus influenzae, Mycoplasma genitalium, Mycoplasma pneumoniae, Synechocystis sp. and 

Methanococcus jannaschii) and one eukaryotic genome of Saccharomyces cerevisiae. Each COG 

included proteins from at least three species, all with important cellular functions contributing to the 

homeostasis of the organisms, referred to as housekeeping functions. The number of prokaryotic 

genomes was posteriorly updated to 43 (Tatusov et al., 2001). 

The COG system was widely used for computational genomics, including applications for 

functional annotation of sequenced genomes (Natale et al., 2000) and genome-wide evolutionary 

analysis (Jordan et al., 2002). 

 

4.2. Eukaryotic orthologous groups 

 

The COGs were further updated (Tatusov et al., 2003) to include 66 genomes of unicellular 

organisms, comprising 63 prokaryotic genomes and three genomes of unicellular eukaryotes. However, 

the major update was the extension of the COG system to complex and multicellular eukaryotes, by 

constructing clusters of probable orthologs called KOGs (eukaryotic orthologous groups). The basic 

procedure for KOGs construction was the same as the previously procedure employed on COGs. The 

KOGs included proteins from seven eukaryotic genomes: three animals: Caenorhabditis elegans, 

Drosophila melanogaster and Homo sapiens; three fungi: Saccharomyces cerevisiae, 

Schizosaccharomyces pombe and Encephalitozoon cuniculi; and one plant, Arabidopsis thaliana. It is 

important to mention that the KOGs are also enriched with proteins responsible for housekeeping 

functions, including translation and RNA processing (Koonin et al., 2004). The KOG set included 4,852 

clusters of orthologs, comprising a total of 59,838 proteins. 
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4.2.1.  CEGMA 

 

In 2007, The Korf Lab developed a computational method called CEGMA (Parra et al., 2007) 

(Core Eukaryotic Genes Mapping Approach) for building a reliable set of gene annotations for genomes 

without experimental data. A set of well-characterized genes is a fundamental requirement for the initial 

steps of the genome annotation process since an accurate set of genes is extremely important to study 

species-specific properties, to train gene-finding programs and to validate automatic predictions.  

However, in eukaryotes, an accurate gene annotation process is a difficult task. Even with genomes 

where experimental data is plentiful, genes catalogs are still unfinished, under constant curation, and 

some novel genes can still be predicted and verified (Harrow et al., 2006). This process is, even more, 

difficult for newly sequenced genomes because in many cases there is little or any experimental data. 

For this purpose CEGMA allows obtaining an initial set of gene annotations on any eukaryotic genome. 

CEGMA strategy was based on a simple premise: some highly conserved proteins with 

important functions are encoded in essentially all eukaryotic genomes. Thus, CEGMA used KOGs 

database to build a set of highly conserved proteins, which were named core proteins (or core genes). 

Initially, the complete set of 4,852 KOGs was reduced to 1,788, by selecting only those with at least 

one protein from each of the six species: Homo sapiens, Drosophila melanogaster, Arabidopsis 

thaliana, Caenorhabditis elegans, Saccharomyces cerevisiae and Schizosaccharomyces pombe. Then, 

a global multiple protein alignment was produced for each KOG using T-coffee (Notredame et al., 

2000), because some KOGs had more than one protein per species. The information given by T-coffee 

was used to select the protein of each organism most similar to the global alignment. After that, each 

KOG was aligned again with T-coffee, in order to select the best alignments: all proteins must cover at 

least 75% of the length of the global alignment; no more than five internal gaps longer than ten amino 

acids; and at least 10% of identity over all rows in the alignment. Finally, the KOGs were reduced to 

458 core eukaryotic genes (CEGs), with a total of 2,748 proteins (six proteins per CEG). The mapping 

protocol of CEGMA finds orthologs of core proteins in genomic sequences and then predicts their exon-

intron structure. 
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4.2.2.  248 CEGs 

 

 A novel method for evaluating the quality of genomic assemblies was also carried out by The 

Korf Lab (Parra et al., 2009). The metrics usually used to evaluate the quality of genomes are the N50, 

previously mentioned, and the sequence coverage, defined as the ratio of the total amount of sequence 

produced divided by the estimated genome size. However, these metrics do not provide information 

about the potentiality of to identify genes in any genome assembly, i.e., they do not answer the 

question about how complete is the catalog of genes. To answer this question, The Korf Lab developed 

a novel method based on the CEGMA mapping protocol. For this purpose, the initial set of 458 CEGs 

was further refined to reduce the number of CEGs that may had paralogs. This step reduced the false 

positives when trying to find the true ortholog of a core gene. In this sense were excluded any KOG that 

contained multiple proteins from three or more species, yielding a final set of 248 CEGs. The 

proportion of these genes that can be mapped in a genome assembly provides an approximation for 

the proportion of all known genes that may be present, reflecting the utility of the genome assembly 

(Parra et al., 2009). 

 The CEGs are available (http://korflab.ucdavis.edu/Datasets/genome_completeness/) in 

FASTA format, containing 1488 protein sequences (six proteins per CEG), and in the form of multiple 

sequence alignments, performed by Clustal (Chenna et al., 2003), with the respective profile HMMs. 

Additionally, the 248 CEGs were subdivided into four groups, based on their degree of sequence 

conservation: group 1 contains the most divergent CEG proteins and group 4 contains the most highly 

conserved (Parra et al., 2009). 

 

4.2.2.1. CEGs as valuable tool for RNA-Seq 

 

This study focuses on evaluating the utilization of the 248 CEGs in RNA-Seq, especially for non-

model organisms. The de novo assembly is the transcriptome reconstruction strategy often used in 

these cases, due to the independency for reference genome sequences. However, the lack of a set of 

reference transcripts does not allow the application of the quality metrics referred in the previous 

chapter. To overcome this issue, this thesis proposes the implementation of a cluster of genes present 

in a wide range of eukaryotic organisms, to create a quality indicator for de novo assembled 
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transcriptomes without reference. As these 248 CEGs are composed of orthologous genes to three 

kingdoms of eukaryotes (Animalia, Plantae and Fungi), this is, conserved genes in these organisms, the 

CEGs are a particularly import tool. In fact, the CEGs have already been used for transcriptome 

completeness assessment in qualitative manner, by assuming that the transcriptome assembly is 

complete if a higher number of CEGs is identified (Tisserant et al., 2012; Ryan et al., 2014; Frías-López 

et al., 2015; Marchant et al., 2015), which confirms the importance of this set of orthologous genes. 

The goal for this study is to use CEGs to predict quality metrics in a quantitative way, a different and 

more ambition approach than the current application. 
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5. Methodologies 

 

5.1. Brief overview 

 

In order to address the main goal of this master thesis, RNA-Seq data from samples of nine 

model organisms (Arabidopsis thaliana, Aspergillus nidulans, Caenorhabditis elegans, Drosophila 

melanogaster, Homo sapiens, Mus musculus, Oryza sativa, Saccharomyces cerevisiae and Xenopus 

tropicalis) was processed. The data from each sample was divided, yielding three data sets: one with 

100% of the data, a second with 50% and a third with 25% of the original data, selected in randomly. 

These sets were used to assess how the decrease in the number of reads affects the results of the 

assemblies. For each data set, two transcriptome reconstruction strategies were applied: de novo and 

reference-based. The de novo strategies were used to test the hypothesis whether the identification of 

CEGs can be used to predict the transcriptome integrity of non-model eukaryotic species. The software 

Trinity was used, since more than one study indicated that Trinity is highly effective when compared 

with other assemblers (Xu et al., 2012; Duan et al., 2012; Zhao et al., 2011; Clarke et al., 2013), 

including the mentioned Oases and Trans-ABySS. In fact, this assembler is in continuous development 

and improvement, which greatly increased Trinity utility (Haas et al., 2013). The de novo assembled 

transcriptomes were also analyzed for their expression levels using RSEM. The reference-based 

strategy worked as a positive control, providing information about the state of the samples. TopHat and 

Cufflinks performed the reference-based reconstructions because the use of these programs in a single 

pipeline is recommended (Trapnell et al., 2012).  

The results of both reconstruction strategies were also compared, using a set of quality metrics 

calculated in this study. Moreover, a tool to report the number of CEGs in each assembly was also 

developed. The quality metrics were then associated with the CEGs through linear regressions to 

address if there is any relationship between these two variables, and to create models that could be 

applied to de novo assembled transcriptomes without reference.  
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In Figure 11 an overview of all methodologies is illustrated. 

 

Figure 11 - Methodologies overview. Blue - source of the data sets; gray - data sets; orange - data processing. 

 

This work was performed in a Dell PowerEdge r715 with two AMD Opteron 6272 with a total of 

32 cores and 250 gigabytes of RAM, with CentOS Linux 64 bit architecture. All the developed software 

was written in Python 2.7.9. 

 

5.2. Data sets 

 

 The transcriptomic sequencing data from Arabidopsis thaliana, Aspergillus nidulans (Alkahyyat 

et al., 2015), Caenorhabditis elegans (Saldi et al., 2014), Oryza sativa, Saccharomyces cerevisiae 

(Volanakis et al., 2013) and Xenopus tropicalis (Tan et al., 2013) were downloaded from NCBI 

Sequence Read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra). The NCBI SRA database stores 

sequencing data in the SRA format (Leinonen et al., 2011), an efficient storing system, requiring the 

conversion to FASTQ using the SRA Toolkit (version 2.4.4). The SRA Toolkit utility fastq-dump was used 

to convert the SRA data into FASTQ format. The remaining data obtained, from Drosophila 

melanogaster (Duff et al., 2015), Mus musculus (Lin et al., 2014) and Homo sapiens (Lin et al., 
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2014), were downloaded from ENCODE: Encyclopedia of DNA Elements 

(https://www.encodeproject.org/) in the FASTQ format. The studies that produced paired-ended RNA-

Seq data with 100-101 bp and using strand-specific cDNA libraries were selected, to retain the strand 

origin of the various transcripts. Hence, two different strand-specific RNA-Seq protocols (Levin et al., 

2010) were applied: a dUTP-based method for Aspergillus nidulans, Drosophila melanogaster, Homo 

sapiens, Mus musculus, Oryza sativa and Xenopus tropicalis, and an adaptor-ligation method for 

Arabidopsis thaliana, Caenorhabditis elegans and Saccharomyces cerevisiae. In the paired-ended 

libraries developed by the dUTP method, the left read maps to the reverse strand while the right read 

corresponds to the forward strand. In contrast, the left and right reads obtained by the ligation method 

map to the forward and reverse strand, respectively. The identification of which strand each read maps 

is extremely important for the correct setting of the strand-specific parameters in Trinity and 

TopHat/Cufflinks, since these programs take advantage of strand information to resolve overlapping 

sense and antisense transcripts. 

 Additionally, the reference genome sequences (FASTA file format) and respective annotationsh 

(GTF file format) of each organism, were downloaded from Ensembl Genome Browser 

(http://www.ensembl.org/index.html). The reference transcripts of each organism were extracted from 

the corresponding genomes and the respective annotations files (Figure 11), with the Cufflinks utility 

gffread (FASTA file format). The data set for each organism comprised therefore the raw reads, the 

genome and transcript sequences and the structural annotations. 

 

5.3. Quality control 

 

 Prior to the assembly procedures, all raw data sets were checked for their quality using 

FASTQC (version 0.11.3) and pre-processed by PRINSEQ (version 0.20.4) (Figure 11). The pre-

processing consisted in trimming poly-A/T tails from the 5’ and 3’ end using a minimum length of 5 

nucleotides, i.e., all repeats of As or Ts with at least this length were trimmed from either ends; trim 

bases from the right end with a quality score below 28, using a sliding window of 5 bp. The lowest 

                                                

h These files are in GTF format, the initials for General Transfer Format. This format enables to handle and to transfer information of 

genes, transcripts, exons, start and stop codons, etc. This information concerns the initial and final position in the genome, the strand 

and respective frame, and other data. 
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score is calculated inside this window, allowing to trim sequences that might contain a high-quality 

score between low-quality scores, without stopping at the highest score; remove forward and/or 

reverse exact sequence duplicates that occur more than one time; and, finally, discard reads shorter 

than 90 bp. 

 

5.4. Implemented assemblies 

 

For each FASTQ data set, three sets of different percentages of reads were generated. From 

the original data set, with 100% of the reads, two data sets with 50% and 25% of all reads were created. 

The reads were randomly extracted from the 100% data set with an implemented script, called 

selectRandreads. This selection provided three data sets for each organism, with 100%, 50% and 25% 

of the filtered reads. Both transcriptome reconstruction methods were implemented on each set. 

 

5.4.1.  Reference-based 

 

 Bowtie2 (version 2.2.5), TopHat2 (version 2.0.13) and Cufflinks (version 2.2.1) were used to 

reconstruct the transcriptomes by the reference-based strategy (Figure 11). A Bowtie index was initially 

built for each reference genome sequence using bowtie2-build, required for mapping the reads with 

TopHat. In order to specify the correct strand-specific library types the options fr-firststrand or fr-

secondstrand were run for each set for the dUTP-based or adaptor-ligation methods, respectively. The 

output i  of TopHat (accepted_hits.bam) was then provided to Cufflinks to perform the transcripts 

assembly from the read alignments. The strand-specific library types were also set to fr-firststrand or fr-

secondstrand, for the dUTP-based or adaptor-ligation methods. Cufflinks also incorporated the 

reference structural annotations, in order to guide the transcripts assembly, so that the final result 

included all reference transcripts, with (expressed) or without (non-expressed) mapped reads, as well 

as novel genes and isoforms that were assembled, by a processed called RABT assembly (Roberts et 

                                                

i Consists in a BAM file containing the read alignments against the genome. BAM is the compressed binary version of the SAM format (Li 

et al., 2009), a standard format for storing large nucleotide sequence alignments, allowing a faster access to the data. 
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al., 2011). RABT stands for “reference annotation based transcript assembly”, and consists in 

assembling novel transcripts in the context of an existing annotation. Cufflinks generated three 

important files for this work: transcripts.gtf, containing the positions of the transcripts and exons across 

the genome; isoforms.fpkm_tracking, holding the estimated expression values per isoform; and 

genes.fpkm_tracking, with the expression levels per gene. Then, a program included in the Cufflinks 

package, called gffread, extracted all assembled transcript sequences. 

 

5.4.2.  de novo 

 

 The de novo assemblies were performed using Trinity (version 2.0.6) (Figure 11). The library 

types were set to RF or FR to reflect the directionality of the reads: RF for the dUTP-based or FR for the 

adaptor-ligation protocols, respectively. The final output is a FASTA file (Trinity.fasta) containing the 

assembled transcripts. 

 The transcripts abundance estimation was computed by RSEM, with a Perl script included in 

the Trinity package called align_and_estimate_abundance. Such as in Trinity, the RF or FR options 

defined the strand-specific libraries types. RSEM generated two output files: RSEM.isoforms.results, 

containing the expression values per isoform and RSEM.genes.results, reporting the same information 

per gene. 

 

5.5. Quality metrics 

 

 The N50 was calculated for the de novo and reference assemblies, using a Perl script called 

count_fasta, downloaded from http://wiki.bioinformatics.ucdavis.edu/index.php/Count_fasta.pl. For 

the reference-based assemblies, the N50 was calculated using only the reference transcripts that 

reported expression (with mapped reads), along with novel assembled isoforms not included in the 

genome annotations. For that a Python script (transFilter) was developed that takes as input the FASTA 

file containing all transcripts sequences and the expression file per isoform, reported from Cufflinks, in 

order to select the transcripts with positive FPKM (FPKM > 0). The output is a FASTA file containing the 

expressed transcripts (annotated and novel). 
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 A set of reference-based quality metrics was calculated, including identification, coverage, 

contiguity, fragmentation(1,2,3,4,5+), accuracy, chimerism and non-match, by seqQIrefmetrics (Figure 

11). This program was developed in the scope of this master thesis, and the implementation is 

described in Chapter 6. The BLAST+ (version 2.2.30) software (Camacho et al., 2009) was used to 

perform alignments between the reference and the assembled transcripts. Two runs of BLASTN were 

executed: one to search the assembled transcripts database using the reference transcripts as queries 

(reference → assembled) and the other one to search the reference transcripts database using the 

assembled transcripts as queries (assembled → reference). The E-value was set to 1 × 10-6, using the –

evalue parameter, and the output to XMLj, using the formatting option 5. The two BLASTN outputs with 

the isoforms expression files from RSEM or Cufflinks, for the de novo or reference-based assemblies, 

respectively, were used as inputs for seqQIrefmetrics, and the reference-based quality metrics were 

calculated. 

 

5.6. CEGs identification 

 

 TransDecoder (version 2.0.1) was used to identify the ORFs within each transcript sequence 

and to obtain the corresponding protein sequences (Figure 11). The utilization of strand-specific data 

required the -S parameter to search for ORFs only in the forward strands. The peptide sequences for all 

detected ORFs were saved to a file called longest_orfs.pep. The similarity searches against UniProt and 

Pfam using BLASTP and hmmscan, respectively, were not performed, because the run time required 

for the integration of this information was overwhelming. 

 The CEGs present in each assembled transcriptome were then calculated. For that a program 

called seqQIidentifyCEGs (Figure 11) was developed, and its implementation is described in Chapter 6. 

The 248 profile HMMs that comprise the CEGs were searched for in each set of proteins obtained by 

TransDecoder, for each transcriptome in the study (longest_orfs.pep file), using the HMMER utility 

hmmsearch (version 3.1b2). The E-values were set to 1 × 10-6, using the -E and - -domE parameters. 

The output was saved in a per-domain tabular format to a text file, by the - -domtblout parameter, and 

                                                

j The XML or Extensible Markup Language is a file format designed to store, transport data and to be both human-readable and machine-

readable. 
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used as input for seqQIidentifyCEGs, with two files containing the genes and isoforms expression levels 

from RSEM or Cufflinks, for the de novo or reference-based assemblies, respectively. 

 

5.7. Models development 

 

 The normality of the reference-based quality metrics, calculated by seqQIrefmetrics, and the 

number of CEGs identified, by seqQIidentifyCEGs, was evaluated by the Lilliefors Kolmogorov-Smirnov 

test, with the lillie.test function from the nortest package, in R version 3.2.2. The Pearson correlation 

coefficient between both variables was calculated, using cor.test function from R. The lm function 

included in R was used to perform linear regressions between the reference-based quality metrics and 

the number of CEGs identified. The RMSE of each linear regression was also calculated, with the 

respective formula, using R. 
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6. Code implementation 

 

6.1. seqQIrefmetrics 

 

6.1.1.  Overview 

 

 The main objective of this work is to evaluate the utilization of the 248 CEGs as a tool to 

assess transcriptome quality of non-model organisms.  In order to calculate reference-based quality 

metrics the seqQIrefmetrics was developed. This program used assembled transcripts produced by de 

novo or reference-based assemblies and compared them to the reference transcripts. Seven metrics 

were established, namely identification, contiguity, fragmentation(1,2,3,4,5+), coverage, accuracy, 

chimerism and non-match to evaluate the quality of the assembled transcripts: 

 

o Identification: Indicates the number of reference transcripts identified by the assembled 

transcripts (Figure 12) divided by the total number of reference transcripts (equation (7)), or, in 

other words, the percentage of reference transcripts that are actually expressed in the organism, 

which are not necessarily all, given the variable nature of the transcriptomes. To the reference 

transcripts be considered identified the assembled transcripts had to align above 80% of their size, 

in order to guarantee that the assembled transcripts aligned almost completely with the reference 

transcripts, ensuring that the assembled and reference transcripts are the same. This role was 

applied to all metrics, with the exception of chimerism, which will be described below. 

Furthermore, it was only selected assembled transcripts that reported expression (FPKM > 0). 
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Figure 12 - Identification metric. One assembled transcript identifies the reference transcript A, while two assembled 
transcripts identify the reference transcript B. The reference transcript C is not identified. 

 

Identification = 100 × 
I (Aj ≥ 80%)R

i=1

R
 (7) 

 

I represents whether (1) or not (0) Aj (the coverage percentage of an expressed assembled transcript, j, 

by the alignment with a reference transcript i) is greater than or equal to 80%. R corresponds to the 

number of reference transcripts. 

 

o Contiguity: Corresponds to the number of reference transcripts identified covered by a single 

assembled transcript, above 80% of reference transcripts size (Figure 13), divided by the total 

number of reference transcripts identified (equation (8)). The contiguity metric evaluates the 

percentage of transcripts that were correctly assembled, between the assembled transcripts that 

enabled to identify the reference transcripts. This metric is based on the contiguity metric 

described in Chapter 3. 

 

 

Figure 13 - Contiguity metric. The reference transcript identified A is covered above 80% of its size, by a single 

assembled transcript. 

Reference transcript: 
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Contiguity = 100 × 
I (Ci ≥ 80%)RID

i=1

RID
 (8) 

 

I represents whether (1) or not (0) Ci (the coverage percentage of a reference transcript identified, i, by 

the alignment with an expressed assembled transcript) is equal to or greater than 80%. RID 

corresponds to the number of reference transcripts identified. 

 

o Fragmentation(1,2,3,4,5+): Corresponds to the number of reference transcripts identified that 

are not covered above 80% by a single assembled transcript. If the reference transcript aligns only 

to a single assembled transcript, it is defined as not complete, comprising only one fragment 

(fragmentation(1) – Figure 14 A). If two assembled transcripts align to reference transcript, and 

individually none of them cover the reference transcript above 80%, it is defined also as not 

complete, but comprising two fragments (fragmentation(2) - Figure 14 B). For fragmentation(3) 

(Figure 14 C) and fragmentation(4) (Figure 14 D) the same role applies. Fragmentation(5+) (Figure 

14 E) used the same role but for five or more assembled transcripts.  

 

 

Figure 14 – Fragmentation(1,2,3,4,5+) metric. The reference transcript identified A is covered below 80% of its size, 
by a single assembled transcript, while the reference transcripts identified B, C, D and E are covered by two, three, four and 

five or more (dots) assembled transcripts, respectively. 
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The sum of the reference transcripts for each fragmentation group is divided by the total number of 

reference transcript identified (equation 9). The total fragmentation is provided by 100% minus 

contiguity. The distribution of the fragmentation degree of the assembled transcripts is evaluated by 

dividing the fragmentation metric by groups. 

 

Fragmentation(1,2,3,4,5+) = 100 × 
I (Ci < 80% � Ni ≥ 1)RID

i=1

RID
 (9) 

 

I represents whether (1) or not (0) Ci (the coverage percentage of a reference transcript identified, i, by 

the alignment with a single expressed assembled transcript) is lower than 80% and Ni (number of 

expressed assembled transcripts aligning with the reference transcript identified i) is equal to or greater 

than 1. Ni defines the fragmentation group. RID corresponds to the number of reference transcripts 

identified. 

 

o Coverage: Provides the sum of the coverage (Figure 15) of all reference transcripts identified 

divided by the number of reference transcripts identified (equation (10)). Coverage corresponds 

therefore to the mean coverage of the reference transcripts identified. 

 

 

Figure 15 - Coverage metric. The reference transcripts identified A, B and C have a coverage percentage of 90%, 50% 
and 30%, of their size, respectively. The coverage of transcripts A, B and C correspond therefore to (90 + 50 + 30) ÷ 3 ≈ 

57%. 

 

Coverage = 100 × 
COViRID

i=1

RID
 (10) 
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COVi represents the coverage percentage of a reference transcript identified, i, by the alignments with 

the expressed assembled transcripts. RID corresponds to the number of reference transcripts 

identified. 

 

o Accuracy: Provides the sum of equal bases in the alignments between the reference and 

assembled transcripts, divided by the sum of the alignments length (equation 11). Accuracy 

measures the percentage of correct bases in the assembled transcripts, in relation to the reference 

transcripts identified (Figure 16). This metric is based on the accuracy metric described in Chapter 

3. 

 

  

Figure 16 - Accuracy metric. The alignment between the reference transcript identified A and the assembled transcript 
B has 18 matches (equal bases), one mismatch (red) and three gaps (blue), yielding an alignment with 22 bp. The 

accuracy of the transcript B assembly, in particular, corresponds to 18 ÷ 22 ≈ 82%. 

 

Accuracy = 100 × 
EiRID

i=1

LiRID
i=1

 (11) 

 

Ei corresponds to the number of equal bases in the alignments between a reference transcript 

identified, i, and the expressed assembled transcripts, and Li to the length of that alignments (in bp). 

RID is the number of reference transcripts identified. 

 

o Chimerism: Corresponds to the number of assembled transcripts containing two or more 

reference transcripts, matched in different regions (without overlap) (Figure 17), divided by the total 

number of expressed assembled transcripts (FPKM > 0) (equation 12). The reference transcripts 

must align in more than 80% of its length to be considered, ensuring that their sequences aligned 

almost entirely with the assembled transcripts. This metric is based on the chimerism metric 

described in Chapter 3. 
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Figure 17 - Chimerism metric. The assembled transcript A contains two reference transcripts aligned in distinct regions. 

 

Chimerism = 100 × 
I (Ci ≥ 80% � Ni ≥ 2)Expr

i=1

Expr
 (12) 

 

I represents whether (1) or not (0) Ci (the coverage percentage of each reference transcript, by the 

alignment with an expressed assembled transcript i) is higher than or equal to 80% and Ni (number of 

reference transcripts aligning with an expressed assembled transcript i) is greater than or equal to 2. 

Expr corresponds to the number of expressed assembled transcripts. 

 

o Non-match: Reports the number of assembled transcripts that did not match (Figure 18 A) with 

the reference transcripts. 

 

Figure 18 - Non-match metric. The assembled transcript A does not match with any reference transcript. The 

assembled transcript B matches with a reference transcript, but the coverage percentage of assembled transcript B is lower 
than 80% of its size. 

 

If there are matches, the respective alignment did not achieve a minimum percentage of 80% of the 

assembled transcript size (Figure 18 B), making it impossible to assess the reliability of these 
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assembled transcripts (the assembled and reference transcripts may not be the same), divided by the 

total number of expressed assembled transcripts (FPKM > 0) (equation 13). 

 

Non-match = 100 × 
I (Ci < 80% � Ci = 0)Expr

i=1

Expr
 (13) 

 

I represents whether (1) or not (0) Ci (the coverage percentage of an expressed assembled transcript i, 

by the alignments with the reference transcripts) is lower than 80% or equal to 0 (the expressed 

assembled transcript i did not match with the reference transcripts). Expr corresponds to the number 

of expressed assembled transcripts.  

 

While the identification, contiguity, fragmentation(1,2,3,4,5+), coverage and accuracy metrics quantify 

reference transcripts, the chimerism and non-match metrics quantify assembled transcripts. This is to 

assess the number of assembled transcripts not present in the reference transcriptome, providing a 

percentage of new transcripts, (not represented in the reference transcriptome) or erroneous 

assemblies by the assembler programs. The chimerism metric is calculated using the assembled 

transcripts because in this manner it is possible to assess the percentage of fused assembled 

transcripts, and to verify how much of the assembly products are fused. This can be especially 

important when doing RNA-Seq of organisms with compact genomes, more prone to this type of 

misassemblies. 

 

6.1.2.  Input files and procedures 

 

 seqQIrefmetrics uses as inputs two XML formatted outputs from two BLASTN runs. One 

searches the reference transcripts as queries against the assembled transcripts database (reference → 

assembled) to calculate the identification, contiguity, fragmentation(1,2,3,4,5+), coverage and accuracy 

metrics. The other searches the assembled transcripts as queries against the reference transcripts 

database (assembled → reference). In addition seqQIrefmetrics also has as input a file containing the 

assembled transcripts expression levels: RSEM.isoforms.results from RSEM when de novo assemblies 

are performed; or isoforms.fpkm_tracking from Cufflinks, when reference-based assemblies are 
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performed. seqQIrefmetrics provides a command-line interface to the user, depicted in the following 

Figure.  

 

 

Figure 19 - Command-line interface for seqQIrefmetrics.py. This interface explains how to execute seqQIrefmetrics 
and shows the parameters that are available to the user. 

 

The interface describes how to run seqQIrefmetrics and indicates the available parameters: 

 

o -s / - -strategy: to indicate the strategy used for the transcriptome reconstruction, “reference-

based” or “denovo”. 

o -r / - -blast_output_rf_as: to input the reference transcriptome → assembled transcriptome XML 

BLAST output. 

o -a / - -blast_output_as_rf: to input the assembled transcriptome → reference transcriptome XML 

BLAST output. 

o -e / - - expression_file: to input the file containing the transcripts expression levels per isoform, 

from RSEM or Cufflinks. 

o -A / - -assembl_min_cov: minimum coverage for assembled transcripts during the calculation of 

identification, coverage, contiguity, fragmentation(1,2,3,4,5+) and accuracy (80% by default). 

o -C / - -ref_cont_min_cov: minimum coverage for reference transcripts during the calculation of 

contiguity (80% by default). 

o -c / - -ref_chim_min_cov: minimum coverage for reference transcripts during the calculation of 

chimerim (80% by default). 

o -h / - -help: to raise the command-line interface. 

 

 seqQIrefmetrics runs as follows, first the file with the expression levels is read in order to save 

the assembled transcripts with positive expression (FPKM > 0) to a dictionary (keys: transcripts IDs; 

values: a tuple comprising the assembled transcript length, expression levels in FPKM units and 

expected counts). Only the assembled transcripts included in this dictionary are analyzed. The 
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NCBIXML parser from Biopythonk is used to read the XML BLAST outputs, and the information of the 

alignments between the reference and assembled transcripts is extracted from BLAST record objects. 

The parse of the reference →  assembled XML BLAST output is used to calculate the metrics 

identification, contiguity, fragmentation(1,2,3,4,5+), coverage and accuracy, based on all alignments 

reported for each reference transcript.  

 If one of the aligned assembled transcripts has an alignment length superior to 80% of its 

length, and the alignment length is also higher than 80% of the reference transcript length, the 

reference transcript is identified as almost complete, and a counter for contiguity sums 1. This counter 

will be used to sum all reference transcripts that meet this criterion.  

 If all aligned assembled transcripts have an alignment length superior to 80% of its length, but 

all alignments lengths are lower than 80% of the reference transcript length, the reference transcript is 

identified as fragmented. The number of aligned assembled transcripts meeting this criterion will define 

the respective fragmentation counter. If the value is one, the fragmentation counter for one 

(fragmentation(1)) sums 1, if the value is two, the fragmentation counter for two (fragmentation(2)) 

sums 1, and so on, until fragmentation counter five ((fragmentation(5+))), that count five or more 

fragments for each reference transcript. 

 Each reference transcript counted by contiguity and fragmentation(1,2,3,4,5+) counters is 

defined as identified, and therefore a counter for identification also sums 1 in both cases. 

 The IDs of the assembled transcripts that identified the reference transcripts are saved to 

another dictionary (keys: transcripts IDs; values: 0), to avoid the use the same assembled transcript 

more than once. 

 To calculate the coverage of the reference transcripts by all the aligned assembled transcripts, 

the length of each alignment is summed and divided by the reference transcript size. The reference 

transcripts counted as fragmented may contain aligned assembled transcripts establishing overlaps 

(Figure 20), in relation to the reference transcript. The initial and final positions of the assembled 

transcripts in the reference transcript are useful to evaluate the overlaps. If an assembled transcript is 

inside the boundaries of another one, complete overlaps occur (Figure 20 - A) and the extension of the 

shared region is ignored, since it is already covered. If the initial position (in the reference transcript) of 

the next assembled transcript is lower than the final position (in the reference transcript) of the 

previous assembled transcript, and the final position of the next assembled transcript is higher than 

                                                

k It is a set of tools for biological computation written in Python. 
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that for the previous assembled transcript, partial overlaps occurred (Figure 20 - B), and the coverage 

of the reference transcript is determined between the initial and final position of the first and last 

overlapped assembled transcript, respectively, which correspond to the total alignment length, divided 

by the reference transcript size. A counter for coverage metric sums the coverage percentage of each 

reference transcript. 

 

Figure 20 - Complete and partial overlaps between assembled transcripts. i1/f1 – initial and final positions of 
the alignment of the first assembled transcript (largest); i2/f2 – initial and final positions of the alignment of the second 

assembled transcript (smallest); A – The reference transcript contains two assembled transcripts establishing a complete 
overlap, so that the shared region encompasses the entire size of the small assembled transcript (i2 > i1 and f2 < f1); i3/f3 

– initial and final positions of the alignment of the third assembled transcript; i4/f4 – initial and final positions of the 
alignment of the fourth assembled transcript; B – the reference transcript contains two assembled transcripts establishing a 

partial overlap, so that the final position of the fourth assembled transcript (f4) is higher than the final position of the third 
assembled transcript (f3), and the initial position of the fourth assembled transcript (i4) is lower than the final position of the 

third assembled transcript (f3). The coverage of reference transcript B is determined between the initial (i3) and final (f4) 
positions of the third and fourth overlapped assembled transcript. 

 

 For all alignments between the reference and assembled transcripts, two counters sum the 

alignments length and the number of equal bases in those alignments, in order to calculate the 

accuracy metric.  

 When all reference transcripts are parsed, the counter for identification is divided by the total 

number of reference transcripts, in order to obtain the percentage of reference transcripts identified. 

The counters for contiguity, fragmentation(1,2,3,4,5+) and coverage are divided by the counter for 

identification, in order to obtain the percentage of reference transcripts identified covered above 80% of 

its size by a single assembled transcript, the percentage of reference transcripts identified covered by 

one, two, three, four and five or more assembled transcripts, and the mean percentage of coverage of 

Reference transcript: 

Assembled transcript: 

i1 f1 i2 f2 
A 

f4 i3 
B 

i4 f3 

Total coverage 



 57  

the reference transcripts identified. The ratio between the counter for equal bases in all alignments and 

the counter for the alignments length provides the accuracy metric. 

 The chimerism and non-match metrics are calculated using the assembled → reference XML 

BLAST output.  

 Only the assembled transcripts present in the dictionary with the expressed transcripts are 

analyzed, but not those in the dictionary containing the IDs of the assembled transcripts already 

analyzed. 

 If an assembled transcript does not report alignments against the reference transcripts, the 

counter for non-match sums 1. 

 On the other hand, if the assembled transcript reports alignments against the reference 

transcripts, the coverage of each reference transcript aligning with the assembled transcript is 

calculated, dividing the alignment length by the size of the respective reference transcript. If the 

coverage for, at least, two reference transcripts aligning in distinct regions (without overlap) are higher 

than 80%, the counter for chimerism sums 1. 

 The counters for non-match and chimerism metrics are divided by the number of expressed 

assembled transcripts. 

 As an example, the reference-based and de novo reconstructions for Saccharomyces cerevisiae 

can be evaluated by the following commands, with the default coverage thresholds: 

 

$ python seqQIrefmetrics.py - -strategy reference-based - -blast_output_rf_as results.xml - -

blast_output_as_rf results.xml - -expression_file isoforms.fpkm_tracking 
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Figure 21 - Metrics results for the reference-based assembled transcriptome of Saccharomyces cerevisiae 
(100% of the data). The number of reference, assembled and expressed transcripts are initially reported, with the 

coverage thresholds. The metrics results and the number of assembled transcripts used are then reported, with the time 
required for the calculations (in hours, minutes and seconds). 

$ python seqQIrefmetrics.py - -strategy denovo - -blast_output_rf_as results.xml - -blast_output_as_rf 

results.xml - -expression_file RSEM.isoforms.results 

 

   

Figure 22 - Metrics results for the de novo assembled transcriptome of Saccharomyces cerevisiae (100% 
of the data). The number of reference, assembled and expressed transcripts are initially reported, with the coverage 
thresholds. The metrics results and the number of assembled transcripts used are then reported, with the time required for 

the calculations (in hours, minutes and seconds). 
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The results are reported in the command-line as illustrated in Figures 21 and 22, for the reference-

based and de novo reconstructions, respectively. Nine text files are provided: one contains the metrics 

results, called reports.txt, while the remaining contain information about the assembled transcripts 

used during the calculation of contiguity, fragmentation(1) to fragmentation(5+), chimerism and non-

match metrics. This information concerns the assembled transcripts IDs, length, FPKM and expected 

counts (it is not possible to obtain the expected counts from the Cufflinks expression file for the 

reference-based assemblies, and, therefore, it is not reported for this strategy). These files have the 

metric name to which they apply. 

 

6.2. seqQIidentifyCEGs 

 

6.2.1.  Overview 

 

 In order to evaluate the relationship between the reference-based quality metrics and the 

CEGs, seqQIidentifyCEGs was developed. This program identifies the CEGs that are present amongst 

the proteins reported by a RNA-Seq experiment, and reports their number. 

 The CEGs consist of 248 multiple alignments of six orthologous proteins, with the 

corresponding profile HMMs. Additionally, the 248 CEGs are subdivided into four groups, based on 

their degree of sequence conservation: group 1 contains the most divergent CEG proteins and group 4 

contains the most highly conserved. 

 

6.2.2.  Input files and procedures 

 

 To search each profile HMM against the putative proteins obtained from a RNA-Seq 

experiment, the HMMER utility hmmsearch (version 3.1b2) was used, and its output (in a per-domain 

tabular format, using the - -domtblout parameter) will be one of the inputs to seqQIidentifyCEGs. Two 

more input files are needed, RSEM.isoforms.results and RSEM.genes.results from RSEM, containing 

the transcripts expression levels, per isoform and gene for the de novo assemblies, or 
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isoforms.fpkm_tracking and genes.fpkm_tracking from Cufflinks, containing the same information for 

the reference-based assemblies. seqQIidentifyCEGs also provides a command-line interface to the user, 

which is represented in Figure 23. 

 

 

Figure 23 - Command-line interface for seqQIidentifyCEGs.py. This interface explains how to execute 

seqQIidentifyCEGs.py and shows the parameters that are available to the user. 

 

There are seven parameters available: 

 

o -s / - -strategy: to indicate the strategy used for the transcriptome reconstruction, “reference-

based” or “denovo”. 

o -H / - - hmmsearch_output: to input the hmmsearch domtblout output. 

o -i / - - expression_iso: to input the file containing the expression levels per isoform, from RSEM or 

Cufflinks. 

o -g / - - expression_gene: to input the file containing the expression levels per gene, from RSEM or 

Cufflinks. 

o -p / - -ceg_min_cov: minimum coverage for profile HMMs (80% by default). 

o -P / - -prot_min_cov: minimum coverage for protein sequences (80% by default). 

o -h / - -help: to raise the command-line interface. 

 

 The program run as follows. Initially a function reads the text file from hmmsearch, which 

contains, for each CEG, the information about alignments against the matched proteins, as well as the 

multiple domains of similarity, and saves it in a dictionary where the keys is the CEG IDs and the 

values corresponding to arrays. Each array includes multiple arrays, each one for each protein 

matched against a given CEG. The domains of homology reported from each protein (at least one) are 

saved in tuples, containing the following information: ID of the matched protein, CEG and protein 

length, initial and final position of the alignment in the CEG and protein, and i-Evalue of the match 

(according to the authors (Eddy and Wheeler, 2015), the i-Evalue is a good measure for evaluating the 

homology significance of a given domain, and it corresponds to its significance in the whole searching 



 61  

database, if this was the only domain identified). Two functions are used to read the expression files 

per isoform and gene. One parses the expression file per isoform and returns a dictionary containing 

the transcript IDs as keys and the respective gene IDs as values, and the other function parses the 

expression file per gene, and returns a dictionary containing the expressed gene IDs (FPKM > 0) as 

keys and the respective values as 0. Accordingly, for each CEG with the respective ID present in the 

dictionary from the hmmsearch output, the transcript ID from each matched protein is checked in the 

dictionary containing the isoforms IDs, in order to obtain the respective gene ID. If the gene ID exists in 

the dictionary containing the genes IDs of the expressed genes (FPKM > 0), the best domain for that 

protein is selected by the lowest i-Evalue, if that protein comprised several homology domains. The 

protein and CEG coverage were calculated by first subtracting the final and initial positions of the 

alignment in their sequences, and then dividing by their respective length. If the coverage was higher 

than 80% for the CEG and the protein, this CEG will be labeled as identified. The minimum coverage of 

80% tries to ensure that the protein corresponds to the CEG. Then, the CEG will be labeled by 

conservation group, using a array that contains the CEG ID and conservation group. Next, depending 

on the conservation group, the respective counter sums 1 and a global counter also sums 1. The 

global counter is used to sum all CEGs identified, independently of the conservation level, on the other 

hand, the counters for each conservation level are used to count the number of CEGs belonging to 

each of them. The genes for the matched proteins that identified the CEGs were saved in a dictionary 

(keys: genes IDs; values: 0), to avoid analyze the same gene more than once. 

 The number of CEGs identified in the reference-based and de novo reconstructions for the 

Saccharomyces cerevisiae transcriptome (with 100% of the data) can be calculated by the following 

commands, with the default coverage thresholds: 

 

$ python seqQIidentifyCEGs.py - -strategy reference-based - - hmmsearch_output results.txt - -

expression_iso RSEM.isoforms.results - -expression_gene RSEM.genes.results 

 

$ python seqQIidentifyCEGs.py - -strategy denovo - - hmmsearch_output results.txt - -expression_iso 

isoforms.fpkm_tracking - -expression_gene genes.fpkm_tracking 

 

In the command-line, the total number of CEGs identified is reported with the respective number by the 

conservation group, as illustrated in Figures 24 and 25, for the reference-based and de novo 

reconstructions, respectively. 
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Figure 24 - Number of CEGs identified for the reference-based assembled transcriptome of Saccharomyces 
cerevisiae (100% of the data). Total number of CEGs identified with the respective number by conservation group (1-
4). 

A second outcome consists of a tab delimited text file, called cegs_identified.txt, containing additional 

information for each CEG (conservation group, length and percentage of coverage and matched protein 

ID). 

 

 

Figure 25 - Number of CEGs identified for the de novo assembled transcriptome of Saccharomyces 
cerevisiae (100% of the data). Total number of CEGs identified with the respective number by conservation group (1-

4). 
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7. Results and discussion 

 

7.1. Data sets 

 

The data used in this work was publicly available in the context of research about the 

transcriptional landscape of these organisms. Due to the taxonomic and morphologic differences 

between them, it was not possible to obtain RNA-Seq data from the same tissue or growth conditions 

for all organisms. 

 

Table 3 - Information of the data sets for each organism. Accession number, read length, sequencing technology, 
genome version and number of reference transcripts for each organism. 

Organism 
Accession 
number 

Read Length 
(bp) 

Sequencing 
technology 

Genome 
version 

Reference 
transcripts 

Arabidopsis thaliana ERX546049 100 
Illumina HiSeq 

2500 
TAIR10.27 41,671 

Aspergillus nidulans SRX1162950 101 
Illumina HiSeq 

2500 
ASM1142v1.3

0 
9,977 

Caenorhabditis 
elegans 

SRX707292 100 
Illumina HiSeq 

2000 
WBcel235 57,834 

Drosophila 
melanogaster 

ENCSR620XFV 100 
Illumina HiSeq 

2000 
BDGP6 34,718 

Homo sapiens ENCSR236OON 101 
Illumina HiSeq 

2000 
GRCh38 198,457 

Mus musculus ENCSR288TLO 101 
Illumina HiSeq 

2000 
GRCm38 107,937 

Oryza sativa SRX1267306 101 
Illumina HiSeq 

2000 
IRGSP-1.0.29 97,751 

Saccharomyces 
cerevisiae 

SRX336177 101 
Illumina HiSeq 

2000 
R64-1-1 7,126 

Xenopus tropicalis SRX143555 100 
Illumina HiSeq 

2000 
JGI_4.2 24,197 

 

Therefore, RNA was extracted from Arabidopsis thaliana Landsberg erecta line siliques without 

seeds (Ler wild-type, grown at 22 degree Celsius); Aspergillus nidulans strain FGSC4 (wild-type, 12h 

post-developmental induction) mycelium; whole organisms extracts of Caenorhabditis elegans (N2 
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control strain in the development stage L4), Saccharomyces cerevisiae (strain BY4741 wild-type) and 

Drosophila melanogaster (adult, more than 30 days after eclosion); Oryza sativa (subspecies japonica 

14 days old, wild-type) shoots; Xenopus tropicalis embryos in the development stage 44-45 (96 hours 

after fertilization); and finally, Homo sapiens (adult, 63 years old) and Mus musculus (adult, 10 weeks 

old) adipose tissue. The adipose tissue was selected because it expresses more housekeeping genes, 

in comparison to other tissues such as testis and brain (Lin et al., 2014). Furthermore, besides the 

selection criteria defined in Chapter 5 for data consistency, all data sets were randomly selected. 

 The accession number of each data set, the length and the sequencing technology used, are 

described in Table 3. The RNA-Seq libraries were sequenced using Illumina HiSeq 2000/2500 

instruments. All data sets together in the FASTQ format yielded approximately 82.5 gigabytes of data, 

and 244 million reads. In addition, the number of reference transcripts for each organism is 

represented, and more complex organisms tend to have more annotated transcripts in their genomes. 

In fact, the highest number belongs to Homo sapiens, which has 198,457 reference transcripts. 

 

7.2. Quality control checks 

 

 The FASTQC was used to assess the reads quality. Despite the raw data sets from A. nidulans, 

M. musculus and X. tropicalis had satisfactory quality calls, the same was not observed for the other 

raw data sets (Appendix A). Still, the quality filters were applied to all raw data sets, including A. 

nidulans, M. musculus and X. tropicalis. In Table 4 the number of raw and filtered reads is indicated 

for all organisms. For C. elegans, D. melanogaster, O. sativa and S. cerevisiae the quality filtering 

removed more than half of the reads. This decrease was the result of removing a high number of 

duplicates and reducing the length of some reads to less than 90 bp, by the trimming steps, causing 

their removal. 
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Table 4 - Number of raw and filtered reads for each organism. Number of filtered reads, using PRINSEQ, from the 

raw data sets downloaded from NCBI SRA (for A. thaliana, A. nidulans, C. elegans, O. sativa, S. cerevisiae and X. tropicalis) 
and ENCODE (for D. melanogaster, H.sapiens and M. musculus). 

Organism Number of raw reads Number of filtered reads 
Arabidopsis thaliana 14,739,593 10,355,577 
Aspergillus nidulans 23,266,386 16,923,548 

Caenorhabditis elegans 43,331,188 19,291,774 
Drosophila melanogaster 53,053,735 19,700,524 

Homo sapiens 21,851,075 12,872,690 
Mus musculus 28,938,530 18,437,240 
Oryza sativa 14,114,277 6,899,884 

Saccharomyces cerevisiae 35,203,753 13,053,436 
Xenopus tropicalis 10,424,194 7,760,574 

 

7.3. Assemblies 

 

Two new libraries were created for each organism filtered data set: one with 50% and a second 

with 25% of the reads, randomly selected. Therefore, three libraries were established for each 

organism. Library 100% comprises all filtered reads, while libraries 50% and 25% comprise 50% and 

25% of the filtered reads, respectively. These libraries were created to observe how the assembly 

programs behave with different library sizes, and also to evaluate the impact in CEGs identification. All 

libraries (100%, 50% and 25%) for each organism were assembled with two different strategies, 

reference-based and de novo, and the results are represented in Table 5. 

For the reference-based assemblies, the number of assembled transcripts corresponds to all 

transcripts that are initially reported from the RABT assembly, including the annotated transcripts 

without mapped reads (without expression). The expressed transcripts comprise both the annotated 

transcripts with mapped reads (expressed) and novel isoforms that were assembled. The N50 was 

calculated over the last number. For the de novo assemblies, the assembled transcripts correspond to 

all contigs that were built from the input reads. The expressed transcripts are the contigs that report 

expression (FPKM > 0). In this case, the N50 was calculated using all assembled contigs. 
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Table 5 - Number of assembled and expressed transcripts for both assembly strategies across the three 
sequencing libraries. The N50 length is also indicated. A.t – assembled transcripts; E.t. - expressed transcripts 
(FPKM > 0). 

Organism Library 
Reference-based de novo 

A.t. E.t. N50 A.t. E.t. N50 

Arabidopsis thaliana 
100% 48,631 28,488 1,970 68,520 62,789 1,027 
50% 47,126 26,290 1,972 53,053 49,086 911 
25% 45,671 23,849 1,972 40,378 37,566 766 

Aspergillus nidulans 
100% 18,470 13,988 2,300 44,954 43,113 2,256 
50% 18,647 14,403 2,189 41,223 40,117 1,811 
25% 18,114 14,052 2,079 41,109 40,369 1,268 

Caenorhabditis elegans 
100% 71,502 29,956 1,976 68,977 65,780 1,561 
50% 69,638 27,926 1,942 57,220 55,198 1,300 
25% 67,158 24,858 1,930 49,801 48,619 960 

Drosophila melanogaster 
100% 42,984 24,061 3,495 98,597 93,850 2,030 
50% 41,199 22,643 3,558 77,559 74,332 1,644 
25% 39,314 20,760 3,649 58,587 56,383 1,217 

Homo sapiens 
100% 216,233 42,030 4,181 128,859 123,200 1,139 
50% 211,406 36,015 4,241 89,129 85,638 960 
25% 207,995 31,484 4,299 61,472 59,496 751 

Mus musculus 
100% 139,875 54,299 3,411 183,238 176,174 686 
50% 129,405 42,899 3,574 123,733 118,838 673 
25% 121,804 34,540 3,705 81,891 79,002 640 

Oryza sativa 
100% 104,512 37,974 1,969 113,060 99,870 774 
50% 100,121 33,104 1,976 73,882 67,202 659 
25% 96,109 28,254 1,993 46,809 43,450 538 

Saccharomyces cerevisiae 
100% 8,939 6,282 2,105 19,788 17,875 799 
50% 8,329 5,945 2,025 15,822 14,653 681 
25% 7,726 5,570 1,986 12,022 11,315 569 

Xenopus tropicalis 
100% 45,772 32,098 2,691 58,151 49,700 1,306 
50% 40,761 27,063 2,678 43,652 38,071 1,120 
25% 35,765 22,297 2,715 32,963 29,085 900 

 

The number of reported and expressed transcripts decreased for all organisms along the three 

sequencing libraries, reflecting the decrease in the number of reads available for the assembly process. 

A greater difference between the number of reported and expressed transcripts can be noticed for the 

reference-based strategies, mainly due to the removal of the non-expressed reference transcripts that 

result from the RABT assembly. As the de novo assemblies contain less non-expressed transcripts (the 

existing ones probably arose from misassemblies), a minor difference is observed. Besides that, the de 

novo assemblies of almost organisms reported more than twice of the expressed transcripts, 

comparatively with the respective reference-based strategies, along the three sequencing libraries. In 

particular, the number of expressed transcripts for the de novo assemblies of D. melanogaster and M. 

musculus with 100% of the data is three times higher than that for the reference-based strategies. This 

is a consequence of the de novo assembled transcripts fragmented state, which will be demonstrated 
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by the quality metrics further on. The N50 also indicates that, being, in average, 1,072 for the de novo 

assemblies and 2,688 for the reference-based assemblies. The N50 also decreases more sharply for 

de novo assemblies across the three sequencing libraries, also suggesting a fragmentation of the 

transcripts with the decrease in the number of reads. The number of reported transcripts for both 

strategies and the N50 length are in accordance with the literature (Lulin et al., 2012; Pang et al., 

2013; Marchant et al., 2015). 

 

7.4. Reference-based quality metrics results 

 

 The quality of each assembled transcriptome was assessed by seqQIrefmetrics, using the 

following metrics: identification, contiguity, fragmentation(1,2,3,4,5+), coverage, accuracy, non-match 

and chimerism. 

 During seqQIrefmetrics development metrics reported in the literature were selected, including, 

completeness, contiguity, accuracy, chimerism and variant resolution. Contiguity, accuracy and 

chimerism were implemented in the software as described in (Martin and Wang, 2011). The variant 

resolution was not implemented in the software because it would be very difficult to implement for de 

novo assembled transcriptomes, since the main goal of this thesis is to evaluate their quality. The 

chimerism was implemented in a simpler manner that described in (Martin and Wang, 2011). The 

identification metric was implemented to provide the set of expressed reference transcripts, which is 

required for the metrics calculation, as referred in (Martin and Wang, 2011). As previously described in 

Chapter 3, completeness provides the percentage of expressed reference transcripts covered in higher 

than 80% of their size, by more than one assembled transcripts. Based on this metric two novel metrics 

were created: one to calculate the mean coverage, coverage metric, and the other to calculate the 

fragmentation degree of the assembled transcripts, fragmentation(1,2,3,4,5+). Since completeness 

only detects the number of complete reference transcripts, a coverage metric was implemented to 

calculate the average coverage of all expressed reference transcripts (provided by identification metric). 

Furthermore, completeness does not provide fragmentation levels because a coverage higher than 80% 

of the reference transcripts size is required, missing all the reference transcripts covered below 80% of 

its size. Obviously, the total fragmentation correspond to the opposite of contiguity, yet the program will 

report total fragmentation mainly for quality purposes, namely to compare total fragmentation with the 

sum of all fragmentation levels, which were also calculated by seqQIrefmetrics. The fragmentation 
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metric comprises therefore five fragmentation levels (fragmentation(1,2,3,4,5+)), by calculating the 

number of reference transcripts covered by one, two, three, four and five or more assembled 

transcripts, but not covered by a single assembled transcript in more than 80% of the reference 

transcript size (contiguity). Finally, it was also implemented in seqQIrefmetrics the metric non-match, 

allowing to count the number of assembled transcripts that did not match against the reference 

transcripts. 

 These metrics will now be discussed, first for the reference-based and then for the de novo 

assembled transcriptomes. The results of the accuracy metric will not be showed, because it remains 

quite stable, with values above the 98% for both assembly strategies, across all sequencing libraries, 

suggesting a high level of similarity between the assembled and reference transcripts. Still, it can be 

consulted in Appendix B of the supplementary materials. 

 

7.4.1.  Reference-based assembled transcriptomes 

 

 Table 6 contains the quality metrics results for the reference-based assembled transcriptomes, 

which acted as a control in this study. The percentage of reference transcripts identified (identification 

metric) tends to decrease across the three sequencing libraries, except for the transcriptomes of A. 

nidulans, D. melanogaster and S. cerevisiae. An increase from 62.91% to 67.46% and from 64.20% to 

70.05% were observed in A. nidulans and S. cerevisiae (Table 6), respectively, probably due to the 

compact genomes of these lower eukaryotes, where overlapping genes are recurrent. The higher 

sequencing depth in the 100% data set might have misled the assembly process to join neighboring 

genes into single contigs, owing to the excessive number of reads spanning the border regions of 

adjacent genes. seqQIrefmetrics compare the assembled transcripts against the reference transcript by 

the best local alignment (BLAST). To ensure that the reference and assembled transcripts sequences 

are the same, the alignment length must be higher than 80% of the assembled transcript size. If the 

assembled transcript comprises two reference transcripts fused, due to erroneous assemblies, the 

program will not identify the two or more reference transcripts fused in the assembled transcript. 

Nevertheless, seqQIrefmetrics manages this issue, by assigning these fused assembled transcripts as 

chimaeras. This can be reflected in the high percentage of chimerism in both organisms and the 

respective decrease from 2.65% to 1.49% in A. nidulans and from 4.57% to 1.01% in S. cerevisiae 
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(Table 6): lower sequencing depths enabled to correctly assemble overlapping genes, reducing the 

number of chimaeras containing two or more reference transcripts assembled into a single transcript. 

 

Table 6 - Metrics results for the reference-based assembled transcriptomes across the three sequencing 
libraries. Id. - identification; Cov. - coverage; Cont. - contiguity; N.m. - non-match; Ch. - chimerism. 

Organism Library Id. (%) Cov. (%) Cont. (%) N.m. (%) Ch. (%) 

Arabidopsis thaliana 
100% 54.48 97.97 96.37 19.44 0.41 
50% 52.47 98.11 96.70 16.06 0.38 
25% 49.81 98.19 96.95 12.39 0.26 

Aspergillus nidulans 
100% 62.91 99.36 98.97 48.61 2.65 
50% 65.49 99.25 98.80 48.55 2.17 
25% 67.46 99.27 98.81 46.47 1.49 

Caenorhabditis elegans 
100% 29.40 96.54 94.44 41.48 1.05 
50% 29.35 96.03 93.58 37.58 0.81 
25% 28.32 95.73 93.08 32.41 0.76 

Drosophila melanogaster 
100% 46.11 96.89 94.45 31.89 0.89 
50% 47.85 96.64 94.07 25.06 0.79 
25% 47.99 96.55 93.85 18.18 0.71 

Homo sapiens 
100% 13.83 91.90 85.11 28.31 3.23 
50% 13.18 91.71 84.47 20.68 3.28 
25% 12.53 91.39 83.96 14.52 2.94 

Mus musculus 
100% 23.28 92.90 86.92 48.88 1.67 
50% 22.35 93.15 87.32 38.96 1.66 
25% 21.43 93.21 87.29 28.19 1.64 

Oryza sativa 
100% 25.83 97.00 94.68 31.57 1.10 
50% 24.96 97.19 95.12 24.72 0.89 
25% 23.52 97.68 95.86 17.40 0.65 

Saccharomyces cerevisiae 
100% 64.20 99.69 99.39 22.54 4.57 
50% 67.92 99.73 99.52 16.27 2.25 
25% 70.05 99.83 99.72 9.35 1.01 

Xenopus tropicalis 
100% 56.25 97.49 95.75 57.12 0.08 
50% 55.55 97.78 96.18 49.81 0.08 
25% 55.03 98.24 97.12 39.85 0.06 

 

A slight increase in the identification metric for D. melanogaster from 46.11% to 47.99% (Table 6) is 

observed, suggesting that the minimum sequencing depth required by the reference-based strategy, for 

all organisms, is achieved even in the data set with 25% of the total reads. Furthermore, modest 

declines were observed for the remaining organisms, supporting this statement (A. thaliana 

experienced the most pronounced decline, from 54.48% to 49.81%) (Table 6). This means that despite 

the decrease in the number of reads available for the assembly process, the assembled transcripts that 

were effectively contributing to the reference transcripts identification (the more highly expressed) 

remained in the assembly. Conversely, there were assembled transcripts that were not identifying any 

reference transcript, as indicated by the non-match metric. These transcripts were the results of 
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misassemblies or novel transcripts not included in the reference genome. The non-match decrease 

across the three sequencing libraries also suggests that these transcripts are less expressed because 

they are more sensitive to the decrease in the number of reads. 

 The coverage remained high and stable across the three sequencing libraries (always above 

the 91%) (Table 6), undergoing only slight variations. The high percentages of coverage were 

complemented by high percentages of contiguity (also stable across the sequencing libraries), 

reflecting the high integrity degree of these transcripts, or, in other words, the capacity of this approach 

to assemble full-length transcripts. Moreover, the high integrity degree of these transcripts was 

supported by the low percentages of fragmentation(1,2,3,4,5+) (Table 7) across all libraries, except the 

most complex organisms, H. sapiens and M. musculus. Furthermore, the highest fragmentation degree 

was observed for fragmentation(1), meaning that only a single assembled transcript aligned partially 

with the reference transcripts identified. Finally, it is important to highlight the low percentages of 

chimerism. The utilization of strand-specific libraries probably contributed to the low quantity of 

chimaeras in the assembled transcriptomes, because they enabled to resolve and correctly assemble 

overlapping sense and antisense transcripts (Sigurgeirsson et al., 2014). Nevertheless, it is worth 

noting the higher percentages of chimerism for A. nidulans and S. cerevisiae (comparatively with the 

remaining organisms), which are curiously the two lower eukaryotes in the organisms set. 
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Table 7 - Fragmentation results for the reference-based assembled transcriptomes across the three 
sequencing libraries. Frag(1) - Frag(4): reference transcripts aligning with one to four assembled transcripts; Frag(5+): 
reference transcripts aligning with five or more assembled transcripts. 

Organism Library 
Frag(1) 

(%) 
Frag(2) 

(%) 
Frag(3) 

(%) 
Frag(4) 

(%) 
Frag(5+) 

(%) 

Arabidopsis thaliana 
100% 3.16 0.40 0.05 0.01 0.01 
50% 2.90 0.34 0.05 0.01 0.00 
25% 2.74 0.28 0.02 0.00 0.01 

Aspergillus nidulans 
100% 2.33 0.18 0.00 0.00 0.04 
50% 2.53 0.34 0.03 0.00 0.02 
25% 2.86 0.40 0.00 0.00 0.00 

Caenorhabditis elegans 
100% 4.77 0.65 0.09 0.01 0.03 
50% 5.50 0.78 0.10 0.01 0.02 
25% 5.92 0.88 0.09 0.02 0.02 

Drosophila melanogaster 
100% 4.69 0.75 0.07 0.03 0.01 
50% 5.06 0.76 0.08 0.02 0.01 
25% 5.26 0.74 0.10 0.03 0.01 

Homo sapiens 
100% 11.65 2.45 0.52 0.13 0.12 
50% 12.19 2.54 0.57 0.13 0.10 
25% 12.75 2.57 0.53 0.10 0.08 

Mus musculus 
100% 10.32 1.93 0.45 0.15 0.22 
50% 9.99 2.01 0.38 0.12 0.18 
25% 10.07 2.03 0.32 0.14 0.16 

Oryza sativa 
100% 4.33 0.76 0.18 0.04 0.01 
50% 4.12 0.60 0.12 0.02 0.01 
25% 3.54 0.50 0.08 0.02 0.00 

Saccharomyces cerevisiae 
100% 0.55 0.04 0.02 0.00 0.00 
50% 0.39 0.08 0.00 0.00 0.00 
25% 0.26 0.02 0.00 0.00 0.00 

Xenopus tropicalis 
100% 3.55 0.54 0.13 0.02 0.01 
50% 3.23 0.46 0.08 0.03 0.01 
25% 2.46 0.35 0.05 0.02 0.02 

 

7.4.2.  de novo assembled transcriptomes 

 

 The quality metrics results for the de novo assembled transcriptomes are represented in the 

following Table 8. When the metrics result for the de novo assembled transcriptomes were compared 

to the reference-based strategy metrics, the identification, coverage, contiguity and chimerism were 

lower, and fragmentation and non-matched were higher, reflecting the lower quality assemblies for the 

de novo strategy. The identification percentage decreased more sharply for all organisms in the de 

novo strategy, especially for H. sapiens, decreasing from 13.29% to 9.14% (Table 8). Besides fewer 

reads had led to a lower number of assembled transcripts (as in the reference-based assemblies), the 
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number of reference transcripts identified also decreased, a consequence of the disappearance of the 

assembled transcripts that were contributing to that occurrence. 

 

Table 8 - Metrics results for the de novo assembled transcriptomes across the three sequencing libraries. 
Id. - Identification; Cov. - coverage; Cont. - contiguity; N.m. - non-match; Ch. - chimerism. 

Organism Library Id. (%) Cov. (%) Cont. (%) N.m. (%) Ch. (%) 

Arabidopsis thaliana 
100% 50.62 72.53 40.53 34.30 0.15 
50% 45.20 67.49 31.13 24.91 0.10 
25% 38.75 60.92 21.24 16.84 0.07 

Aspergillus nidulans 
100% 55.81 59.79 28.07 77.39 0.96 
50% 53.20 61.55 29.90 77.79 0.53 
25% 50.33 63.36 30.23 78.94 0.18 

Caenorhabditis elegans 
100% 32.18 84.86 66.38 49.05 0.49 
50% 29.78 81.60 57.33 34.54 0.20 
25% 26.15 76.53 44.06 21.59 0.09 

Drosophila melanogaster 
100% 49.02 76.26 51.01 68.34 0.45 
50% 47.62 73.47 43.93 58.15 0.27 
25% 43.99 67.78 34.06 44.11 0.16 

Homo sapiens 
100% 13.29 51.90 13.98 48.33 0.47 
50% 11.23 48.35 10.89 35.33 0.28 
25% 9.14 43.55 7.47 22.88 0.15 

Mus musculus 
100% 21.04 49.70 9.41 66.52 0.09 
50% 18.52 47.50 8.08 56.11 0.09 
25% 15.74 44.56 6.34 43.74 0.08 

Oryza sativa 
100% 20.37 58.57 17.09 46.85 0.31 
50% 17.46 53.24 12.73 38.98 0.27 
25% 14.11 46.92 8.71 31.70 0.21 

Saccharomyces cerevisiae 
100% 63.75 73.86 32.16 43.93 0.40 
50% 59.98 67.97 24.05 35.68 0.29 
25% 52.54 60.96 17.17 27.91 0.26 

Xenopus tropicalis 
100% 40.90 60.67 24.37 65.49 0.06 
50% 38.85 55.98 19.75 58.43 0.05 
25% 35.15 51.20 14.99 51.35 0.05 

 

The de novo assembled transcriptomes also have lower percentages of coverage comparatively 

to the reference-based strategy (achieving a maximum of 84.86% for C. elegans with 100% of the reads 

and a minimum of 43.55% for H. sapiens with 25% of the reads), which still tended to decrease across 

the three sequencing libraries (Table 8). These results suggest therefore a lower integrity for the 

assembled transcripts, due to the lower coverage degree of the reference transcripts identified. The 

lower integrity of the assembled transcripts is supported by the percentages of contiguity, which are 

also much lower in comparison with the reference-based strategy. In fact, the highest percentage of 

contiguity corresponded to 66.38% (C. elegans with 100% of the reads) while the lowest is only 6.34% 

(M. musculus with 25% of the reads) (Table 8). The percentages of contiguity also decreased along the 
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three sequencing libraries, while the opposite was observed for the fragmentation(1,2,3,4,5+) metric 

(Table 9). All fragmentation degrees, from (1) to (5+), had higher percentages comparatively with the 

reference-based assembled transcriptomes. In fact, most of the fragmentation degrees increased as 

the number of reads in the libraries decreased. These findings demonstrate the requirement of the de 

novo strategy for higher sequencing depths in order to assemble full-length transcripts, and its 

susceptibility to assemble and report transcripts in a fragmented state. 

 

Table 9 - Fragmentation results for the de novo assembled transcriptomes across the three sequencing 
libraries. Frag(1) - Frag(4): reference transcripts aligning with one to four assembled transcripts; Frag(5+): reference 
transcripts aligning with five or more assembled transcripts. 

Organism Library 
Frag(1) 

(%) 
Frag(2) 

(%) 
Frag(3) 

(%) 
Frag(4) 

(%) 
Frag(5+) 

(%) 

Arabidopsis thaliana 
100% 19.89 15.02 10.54 6.47 7.54 
50% 25.10 18.69 12.08 6.56 6.44 
25% 31.71 22.88 12.42 6.36 5.39 

Aspergillus nidulans 
100% 36.49 19.34 8.46 3.59 4.04 
50% 37.25 16.97 8.03 4.16 3.69 
25% 33.82 19.22 8.52 4.30 3.90 

Caenorhabditis elegans 
100% 10.07 7.62 4.42 3.73 7.79 
50% 11.48 9.47 5.70 5.13 10.89 
25% 14.04 11.73 7.89 6.94 15.35 

Drosophila melanogaster 
100% 20.86 11.89 6.47 3.50 6.26 
50% 22.00 14.21 7.89 4.78 7.19 
25% 25.67 16.21 9.46 5.67 8.94 

Homo sapiens 
100% 39.59 16.77 10.06 6.72 12.88 
50% 40.00 17.68 10.65 6.56 14.22 
25% 41.50 17.85 11.41 6.85 14.93 

Mus musculus 
100% 36.60 19.27 12.00 7.89 14.82 
50% 37.22 19.48 12.19 8.07 14.95 
25% 37.86 20.14 12.58 7.73 15.35 

Oryza sativa 
100% 26.21 18.02 13.04 9.03 16.61 
50% 32.10 20.52 13.81 8.86 11.99 
25% 39.24 22.85 13.41 7.40 8.39 

Saccharomyces cerevisiae 
100% 21.59 17.19 11.56 7.44 10.06 
50% 25.60 21.50 12.26 7.58 9.01 
25% 32.05 23.13 12.85 5.85 8.95 

Xenopus tropicalis 
100% 36.58 21.19 9.96 4.24 3.65 
50% 41.18 23.11 9.24 3.65 3.06 
25% 45.97 23.62 9.03 3.74 2.65 

 

The percentages of transcripts that failed in identifying the reference transcripts (non-match 

metric) are also higher for the de novo assembled transcriptomes. A possible explanation for this is the 

occurrence of high numbers of misassembled transcripts in this strategy, resulting from erroneous 

reconstructions. The similarity of these transcripts with the reference transcripts might be so little, that 
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did not match against the reference transcripts, or, even if they had matched, the extension of the 

alignment was so insignificant that did not achieve the minimum coverage threshold of 80%. Another 

hypothesis is the assembling of novel transcripts that are missed in the current genome sequences or 

in the structural annotations, not matching therefore with the set of reference transcripts. As expected, 

the non-match percentages decreased across the three sequencing libraries, directly reflecting the 

decrease in the number of reads available for the assembly process. Conversely, the occurrence of 

chimerism is lower in comparison to the reference-based assemblies, always remaining below 1%. 

Such as in the reference-based assemblies, the utilization of strand-specific libraries might have helped 

to assemble correctly overlapping transcripts (Haas et al., 2013). Besides that, the lower percentages 

of chimerism may also be a consequence of the high fragmentation degree of the de novo assembled 

transcripts. 

 Despite most of the de novo assembled transcriptomes followed the same pattern, A. nidulans 

showed an opposite behavior. Its coverage percentage increased from 59.79% to 63.36%, as well as 

the percentage of contiguity (increased from 28.07% to 30.23%) and non-match (increased from 

77.39% to 78.94%) (Table 8), while the different degrees of fragmentation tended to decrease (Table 

9). The metrics results suggest that the decrease in the number of reads did not negatively affect the 

structure of the assembled transcripts, even though their number has declined, as well as the 

percentage of reference transcripts identified (decreased from 55.81% to 50.33%). A possible 

explanation for this happening is that a lower number of reads led to the disappearance of factors that 

could be introducing errors in the assembly process, increasing the integrity of the assembled 

transcripts. 

 

7.5. Quality metrics and CEGs: models establishment 

 

 The reference-based quality metrics indicated a higher integrity for the reference-based 

assembled transcriptomes, demonstrated by the higher percentages of coverage and contiguity, and 

lower percentages of fragmentation(1,2,3,4,5+), comparatively with the de novo assemblies, meaning 

that nearly all reference transcripts identified were full-covered by a single assembled transcript. The 

number of total CEGs identified, represented in Table 10, also demonstrated this higher integrity. 

Overall, the number of CEGs present in the reference-based assembled transcriptomes was higher and 
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stable in comparison to the de novo assembled transcriptomes, where the number of CEGs identified 

decreased across the three sequencing libraries. 

 

Table 10 - Number of CEGs identified for both assembly strategies across the three sequencing libraries. 
Total - total number of CEGs identified; Group A - number of CEGs identified of conservation levels 1 and 2; Group B - 
number of CEGs identified of conservation levels 3 and 4. 

Organism Library 
Reference-based de novo 

Total Total Group A Group B 

Arabidopsis thaliana 
100% 227 190 92 98 
50% 227 162 69 93 
25% 227 132 54 78 

Aspergillus nidulans 
100% 165 182 82 100 
50% 170 177 78 99 
25% 169 164 69 95 

Caenorhabditis 
elegans 

100% 230 230 117 113 
50% 230 218 109 109 
25% 231 196 91 105 

Drosophila 
melanogaster 

100% 210 207 106 101 
50% 216 191 93 98 
25% 220 158 70 88 

Homo sapiens 
100% 225 178 76 102 
50% 222 157 64 93 
25% 223 124 47 77 

Mus musculus 
100% 225 106 52 54 
50% 223 91 43 48 
25% 225 83 37 46 

Oryza sativa 
100% 195 103 42 61 
50% 187 85 37 48 
25% 185 47 11 36 

Saccharomyces 
cerevisiae 

100% 226 160 75 85 
50% 226 123 51 72 
25% 230 90 32 58 

Xenopus tropicalis 
100% 195 172 74 98 
50% 196 156 62 94 
25% 195 129 53 76 

 

Linear regressions were used to describe how the reference-based quality metrics related to 

the number of CEGs identified. These analyzes were only conducted for the de novo assemblies, to 

create models to de novo assembled transcriptomes from non-model species. Hence, it was not 

performed for the reference-based assembled transcriptomes, since the underlying reference genome 

can also be used for quality assessment (e.g., directly applying the reference-based quality metrics). 

Besides of conducting linear regressions with the total number of CEGs identified, the impact of the 

most divergent and conserved CEGs was also evaluated on the quality metrics. For that, the CEGs were 
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divided into two groups: group A containing the most divergent CEGs (conservation levels 1 and 2) and 

group B containing the most conserved CEGs (conservation levels 3 and 4).  

An assumption to conduct linear regressions was the normality of the data. Table 11 shows the 

P-values of the Lilliefors Kolmogorov-Smirnov test (n > 25), a version of the Kolmogorov-Smirnov test 

specific for normality, for all data sets. 

 

Table 11 - Lilliefors Kolmogorov-Smirnov test. P-values of the Lilliefors Kolmogorov-Smirnov test, used to test the 

normality of the data. 

Variable P-value 

CEGs (total) 0.089 

CEGs (group A) 0.821 

CEGs (group B) 0.006 

Identification 0.205 

Coverage 0.790 

Contiguity 0.442 

Fragmentation(1) 0.031 

Fragmentation(2) 0.318 

Fragmentation(3) 0.240 

Fragmentation(4) 0.207 

Fragmentation(5+) 0.299 

Non-match 0.694 

Chimerism 0.050 

 

The P-values showed that only the CEGs of group B and fragmentation(1) did not follow a 

normal distribution (P-value < 0.05). Nevertheless, the linear regressions were conducted between all 

CEGs groups and all metrics, because numerous simulation studies had shown that regression and 

correlation were quite robust to deviations from normality, this meaning that even if one or both of the 

variables are non-normal, the P-value will be less than 0.05 about 5% of the time if the null hypothesis 

(H0) is true (Edgell and Noon, 1984). Therefore, the linear regressions were conducted with the total 

number of CEGs and with groups A and B, separately. As the objective is to infer the quality metrics 

from the CEGs, the response (dependent or Y) and predictor (independent or X) variables correspond 

to the quality metrics and to the number of CEGs, respectively. 
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Table 12 – Summary statistics for each linear regression. r - Pearson correlation coefficient, R2 - coefficient of 

determination and P-value of the T-test. 

Metric Statistic CEGs (total) CEGs (group A) CEGs (group B) 

Identification 

r 0.395 0.373 0.399 

R2 0.156 0.139 0.159 

P-value 0.042 0.055 0.039 

Coverage 

r 0.758 0.800 0.671 

R2 0.575 0.640 0.450 

P-value 4.65E-06 5.52E-07 1.28E-04 

Contiguity 

r 0.841 0.887 0.745 

R2 0.708 0.787 0.555 

P-value 3.88E-08 7.00E-10 8.24E-06 

Fragmentation(1) 

r -0.576 -0.662 -0.448 

R2 0.333 0.438 0.201 

P-value 0.001 1.69E-04 0.019 

Fragmentation(2) 

r -0.749 -0.824 -0.623 

R2 0.561 0.68 0.388 

P-value 7.03E-06 1.23E-07 5.18E-04 

Fragmentation(3) 

r -0.872 -0.878 -0.82 

R2 0.760 0.771 0.673 

P-value 3.18E-09 1.81E-09 1.62E-07 

Fragmentation(4) 

r -0.643 -0.585 -0.678 

R2 0.414 0.342 0.46 

P-value 2.92E-04 0.001 1.01E-04 

Fragmentation(5+) 

r -0.342 -0.268 -0.409 

R2 0.117 0.072 0.167 

P-value 0.081 0.176 0.034 

Non-match 

r 0.237 0.255 0.205 

R2 0.056 0.065 0.042 

P-value 0.234 0.200 0.306 

Chimerism 

r 0.338 0.339 0.319 

R2 0.114 0.115 0.101 

P-value 0.085 0.083 0.105 

 

 Accordingly, Table 12 contains the Pearson correlation coefficients (r) that measure the linear 

relationship between the two random variables, the coefficient of determination (R2), providing the 

percentage of the variability in Y (response) that can be explained by the variability in X (predictor), 

through their linear relationship, and also the P-value of the corresponding T-test. Concerning the 
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statistical hypothesis testing, H0 is that the slope of the best-fit line is 0, or, in other words, as the 

number of CEGs gets larger (predictor variable), the respective quality metric (response variable) gets 

neither higher nor lower. On the other hand, the alternative hypothesis (H1) that is supposed to prove is 

that the quality metric changes linearly with the number of CEGs identified (slope ≠ 0) (Zou et al., 

2003). Therefore, the fact of the slope of the regression line being significantly different from zero 

enables to conclude that there is a significant relationship between the CEGs and the quality metrics. 

 Starting by the identification metric, despite the P-values being statically significant at a 

significance level of 0.05 (P-values < 0.05, allowing to reject H0) with the total and group B CEGs sets, 

the r coefficients indicated a weak linearity between these variables, corresponding to only 0.395 and 

0.399, respectively. Furthermore, the R2 suggested that, approximately, only 16% of the variability of 

identification could be explained by the both sets of CEGs (0.156 and 0.159, respectively). In relation 

to the CEGs of group A, besides of the weak relationship also indicated by r and R2 (0.373 and 0.139, 

respectively), the P-value was higher than 0.05, and so H0 cannot be rejected. Moreover, the non-match 

and chimerism metrics show the lowest r and R2, with the three sets of CEGs, suggesting a weak 

association between their results and the CEGs. The P-values were also higher than 0.05, indicating 

that the slope of the regression line is not significantly different from zero (H0 cannot be rejected).  

 For coverage and contiguity metrics stronger correlations were observed, given the higher 

values of the Pearson correlation coefficients, especially with the CEGs included in group A (higher than 

0.8 in the two metrics). The R2 of 64% for coverage (0.640) and 79% for contiguity (0.787) also 

indicated that much of the variability of these metrics could be explained by the most divergent CEGs 

(group A). Furthermore, the two P-values (5.52E-07 for coverage and 7.00E-10 for contiguity) were 

statistically highly significant (P-values < 0.001), enabling to reject H0 and conclude that there is a 

significant relationship between the CEGs of group A and these metrics.  

 Concerning the fragmentation(1,2,3,4,5+) metric, all fragmentation degrees showed significant 

relationships with the three CEGs groups (total, group A and B), except for fragmentation(5+) with the 

total and group A CEGs (P-value > 0.05). The stronger relationships were reached with the linear 

regressions conducted with the CEGs of group A and the fragmentation(2,3), with the r and R2 of -

0.824 and 0.680 for fragmentation(2) and -0.878 and 0.771, for fragmentation(3). Given the better 

results for CEGs of group A, a deeper analysis with this set is presented the Figure 26, with the 

respective trend line for each fragmentation degree. The different fragmentation degrees tend to 

decrease across the CEGs axis. In addition, as the fragmentation degree increases, from 

fragmentation(1) to fragmentation(5+), the slope of the regression line decreases (approaching to 0), 
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indicating that lower fragmentation levels (fragmentation(1,2,3)) change more highly with the increase 

of the number of CEGs (group A), in contrast with higher fragmentation levels (fragmentation(4,5+)). In 

conclusion, fragmentation(4,5) showed constant values and did not report a strong relationship with 

the number of CEGs (group A). Conversely, fragmentation(2,3) had strong linear relationships with the 

CEGs (group A) (Table 12) and could be selected to create prediction models. Although, 

fragmentation(1) did not report a higher correlation with the CEGs of group A (r: -0.662; R2: 0.438). For 

the sake of coherence, it was decided not go forward with the prediction models for fragmentation 

metrics. 

 

 

Figure 26 - Scatterplot of the percentage of fragmentation(1,2,3,4,5+) vs the number of CEGs (group A). 
Blue – fragmentation(1); red - fragmentation(2); green - fragmentation(3); purple - fragmentation(4); yellow - 
fragmentation(5+). 

 

 Overall, the correlation sign (r – Pearson correlation coefficient) is positive for coverage and 

contiguity and negative for fragmentation(1,2,3,4,5+). The negative sign indicates a negative correlation 

between the CEGs and fragmentation(1,2,3,4,5+), this is, as the number of CEGs increases the 

number of reference transcripts covered by one or multiple assembled transcripts decreases. 

Therefore, the positive correlation between CEGs and coverage/contiguity and the negative correlation 

between CEGs and fragmentation(1,2,3,4,5+) suggests that a higher number of CEGs identified 

(particularly the CEGs of group A) is related to a higher number of transcripts assembled in a correct 

manner.  
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 Given the results, only coverage and contiguity metrics report significant relationships with the 

CEGs, particularly with the most divergent, included in group A. Thus, a detailed description of these 

models is presented below. 

 

7.5.1.  Coverage model 

 

It is illustrated bellow a scatterplot for coverage, with the number of CEGs (group A) on the x-

axis and the percentage of coverage on the y-axis, with the respective trend line. 

 

 

 

Figure 27 - Scatterplot of the percentage of coverage vs. the number of CEGs identified (group A). The 
intercept and slope of the regression line correspond to 37.151 and 0.368, respectively. 

 

 The estimated regression parameters are the intercept (the value of Y when X = 0) and the 

slope of the regression line, corresponding to 37.151 and 0.368, respectively. The regression line can 

be interpreted as follows: for every one-unit increase in X (CEGs of group A), the value of Y (coverage) 

will increase on average by 0.368. The equation of the regression line (equation (14)) can be therefore 

used to predict the percentage of coverage. 
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Coverage = 37.151 + 0.368! (14) 

 

For example, if a given non-model organism reports 60 CEGs the mean coverage of the reference 

transcripts (for that organism) that may actually being expressed can be calculated by 37.151 + 0.368 

× 60, which is roughly 59.26%. The difference between the observed values of Y and the predicted 

values is also called the residuals. They are commonly analyzed in a scatterplot that shows the 

residuals on the y-axis and the predictor variable on the x-axis. This scatterplot is extremely useful to 

evaluate the random dispersion of the data around the x-axis, which is an indicator that the model is 

suitable for that data (otherwise the model is not the most appropriated). The scatterplot of the 

residuals for coverage model is shown below. From this plot, it can be observed that the residuals have 

a random dispersion. The residuals should also follow a normal distribution, which is confirmed by the 

P-value of 0.456 from the Lilliefors Kolmogorov-Smirnov test. 

 

 

Figure 28 - Scatterplot of the residuals vs. the predicted percentages of coverage. The residuals of the 
coverage prediction model show a random pattern, indicating a good fit for a linear model. 

 

The standard deviation of the errors, also called the root mean square error (RMSE), is a 

measure of the spread of the data around the regression line, or, in other words, of how accurate the 

regression estimates are. The better the regression estimates, the smaller the size of the errors. The 
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RMSE for coverage prediction model is 6.90, meaning that, for the previous example, the coverage 

correspond to 59.26% ± 6.90.  

 

7.5.2.  Contiguity model 

 

 

Figure 29 - Scatterplot of the percentage of contiguity vs. the number of CEGs identified (group A). The 
intercept and slope of the regression line correspond to -11.135 and 0.563, respectively. 

 

 For the contiguity model the regression line intercepts the y-axis in the point -11.135 and has a 

slope of 0.563, meaning that for every one-unit increase in the CEGs of group A, contiguity increases, 

on average, by 0.563. The RMSE is 7.31. 

 

Contiguity = -11.135 + 0.563! (15) 

 

From equation (15), if a given non-model organism reports 60 CEGs the percentage of reference 

transcripts identified (for that organism) that would be covered by a single assembled transcript, above 

80% of their size, would be approximately 22.65% ± 7.31. The scatterplot of the residuals of contiguity 

prediction model is shown below. 
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Figure 30 - Scatterplot of the residuals vs. the predicted percentages of contiguity. The residuals of the 
contiguity prediction model do not show a random pattern (U-shaped), indicating a better fit for a non-linear model. 

 

In contrast to the coverage prediction model, the residuals plot, in this case, indicates a non-

random dispersion of the data (U-shaped), suggesting that a non-linear model is more appropriated for 

the data. The transformation of the data in these cases is usually done to make it more linear, in order 

to use linear regressions with non-linear data. There are many ways of transforming variables to 

achieve linearity. A common non-linear transformation is to use exponential models, which was applied 

in this work. This method involves the log transformation of the dependent variable, which, in this case, 

corresponds to the contiguity metric. Therefore, after the log transformation of the contiguity data, the 

regression analysis was conducted once more. The scatterplot for the transformed contiguity 

(log(contiguity)) against the number of CEGs (group A) is presented below.  
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Figure 31 - Scatterplot of the log transformed contiguity vs. the number of CEGs identified (group A). The 
intercept and slope of the regression line correspond to 0.694 and 0.009, respectively. 

 

The slope of the regression line corresponds to 0.009 and intercepts the y-axis at the point 0.694. The 

r and R2 correspond to 0.849 and 0.720, respectively, demonstrating a strong correlation between 

contiguity and CEGs of group A, even after the transformation. Moreover, the P-value is statically highly 

significant, corresponding to 2.257E-08. Since the transformation was based on an exponential model 

(log(contiguity)), the original units of contiguity can be obtained by equation (16). 

 

Contiguity = 100.694+0.009x (16) 

 

 The residuals scatterplot presented in Figure 32 suggests that the log transformation enabled 

to achieve linearity because the dispersion pattern of the data is random. In fact, the randomness 

indicates that the relationship between the CEGs of group A and the log-transformed contiguity is 

linear, allowing thereby to establish a better prediction model. 
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Figure 32 - Scatterplot of the residuals vs. the predicted contiguity (log). The residuals of the log transformed 
contiguity model show a random pattern, suggesting that the transformation to achieve linearity was successful. 

 

 In order to compare the RMSE of the non-transformed prediction model with the log-

transformed prediction model, the RMSE was calculated by the root square of the sum of the difference 

between the predicted contiguity (calculated using equation (16)) by the original contiguity (without log 

transformation). The RSEM for the transformed model is 5.86, which is lower than that for the non-

transformed model, which is 7.31, implying that this model is more accurate in the prediction of 

contiguity. 

 The linear regressions with the log-transformed data were also performed for the remaining 

metrics. The results can be consulted in Appendix C of the supplementary materials. Overall, the 

results did not show considerable differences in comparison with the linear regressions for the original 

data. 
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8. Conclusions and future work 

 

8.1. Summary 

 

 The aim of this work was to assess whether a group of conserved genes in all eukaryotes, 

known as CEGs, can be used as a quality control tool in RNA-Seq experiments of non-model species. 

The main problem of these organisms is the lack of reference sequences and structural annotations 

(i.e., reference genome and transcript sequences) that enabled the application of reference-based 

metrics. To accomplish this objective, two software’s were developed. seqQIrefmetrics to calculate a 

set of reference-based quality metrics, including identification, chimerism, accuracy and contiguity, 

based on the literature, and, as far as known, three new metrics, comprising 

fragmentation(1,2,3,4,5+), coverage and non-match, increasing the number of metrics available for 

transcriptome quality assessment. seqQIidentifyCEGs was developed to identify and report the total 

number of CEGs, and also by the conservation group, present in each transcriptome assembly.  

 RNA-Seq data from nine model organisms was used to develop linear prediction models 

between the quality metrics, and the total number of CEGs identified, group A CEGs (most divergent) 

and group B CEGs (most conserved). Each data set was processed using two transcriptome 

reconstruction strategies: reference-based and de novo. The quality metrics results indicated that the 

reference-based strategy is more sensitive and has the capacity of recover full-length transcripts in 

comparison to the de novo assembly. 

 The identification, coverage, contiguity, fragmentation(1,2,3,4,5+), accuracy, chimerism and 

non-match metrics were associated with the three groups of CEGs (total, group A and group B). Despite 

all quality metrics had some degree of correlation with the CEGs, only coverage, contiguity and 

fragmentation(2,3) showed strong linear relationships to the CEGs of group A. Taking into account the 

variability in the data sets used in this work, from S. cerevisiae to H. sapiens, the expectations to 

produce predictive models were low, due to the variable nature of the transcriptomes coming from 
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different species. Even though, coverage and contiguity metrics correlated linearly with the CEGs of 

group A and were analyzed in more detail. Coverage reported an r, R2, P-value and RSEM of 0.800, 

0.640, 5.52E-07 and 6.90, respectively. Contiguity required a log transformation of the data to suit the 

data to a linear relationship and report an r, R2, P-value and RSEM of 0.887, 0.787, 7.00E-10 and 

5.86, respectively. Even though only two predictive models were established in this study, they are 

quite relevant and useful to assess the de novo assembly of transcriptomes from non-model species, 

by predicting the mean coverage of the expressed transcripts - coverage - as well as the percentage of 

expressed transcripts nearly complete – contiguity. Furthermore, based on scientific literature search, a 

study of this kind was never reported. In addition, the scientific community can use the software here 

developed to create their predictive models. 

 

8.2. Future work 

 

 The results enabled to conclude that the main objective of this work was accomplished. 

However, there are improvements that can be made: 

 

o Introduce RNA-Seq samples from other eukaryotes into the analysis: More organisms 

would increase the reliability and robustness of the regression models. Besides that, more data 

could increase the range of prediction, making the models even more powerful. 

o Use of other de novo and reference-based assemblers: The de novo and reference-based 

reconstructions were performed using Trinity and TopHat/Cufflinks. It would be interesting to 

evaluate the performance of other de novo assemblers, using both the models and the reference-

based metrics here developed. The reference-based reconstructions were performed in the context 

of reference annotations (RABT assembly), and so it would also be interesting to address whether 

the results obtained are achieved without the reference annotations. 

o Implementation of variant resolution metric: The variant resolution metric provides the 

mean percentage of isoforms assembled for each expressed reference transcript. This metric was 

not developed, but it can be an improvement for the reference-based quality metrics set here 

implemented since this metric is particularly helpful to evaluate complex transcriptomes with deep 

alternative splicing. The variant resolution results could also be associated with the CEGs, to 

assess if there is any relationship. 
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Figure 33 - Per base sequence quality overview of the raw reads of A. thaliana, A. nidulans and C. elegans 
extracted from FASTQC. Overview of the range of quality values, across all bases at each read position, for the left (left 
graphs) and right (right graphs) reads of the pairs. The blue and red lines are the mean and median values, respectively. 

The background is divided into very good quality calls (green), calls of reasonable quality (orange) and calls of poor quality 
(red). 
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Figure 34 - Per base sequence quality overview of the raw reads of D. melanogaster, H. sapiens and M. 
musculus extracted from FASTQC. Overview of the range of quality values, across all bases at each read position, for 
the left (left graphs) and right (right graphs) reads of the pairs. The blue and red lines are the mean and median values, 

respectively. The background is divided into very good quality calls (green), calls of reasonable quality (orange) and calls of 
poor quality (red). 
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Figure 35 - Per base sequence quality overview of the raw reads of O. sativa, S. cerevisiae and X. tropicalis 
extracted from FASTQC. Overview of the range of quality values, across all bases at each read position, for the left (left 
graphs) and right (right graphs) reads of the pairs. The blue and red lines are the mean and median values, respectively. 

The background is divided into very good quality calls (green), calls of reasonable quality (orange) and calls of poor quality 
(red). 
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Filtered reads 

 

 

Figure 36 - Per base sequence quality overview of the filtered reads of A. thaliana, A. nidulans and C. 
elegans extracted from FASTQC. Overview of the range of quality values, across all bases at each read position, for the 
left (left graphs) and right (right graphs) reads of the pairs. The blue and red lines are the mean and median values, 

respectively. The background is divided into very good quality calls (green), calls of reasonable quality (orange) and calls of 
poor quality (red). 
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Figure 37 - Per base sequence quality overview of the filtered reads of D. melanogaster, H. sapiens and M. 
musculus extracted from FASTQC. Overview of the range of quality values, across all bases at each read position, for 
the left (left graphs) and right (right graphs) reads of the pairs. The blue and red lines are the mean and median values, 

respectively. The background is divided into very good quality calls (green), calls of reasonable quality (orange) and calls of 
poor quality (red). 
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Figure 38 - Per base sequence quality overview of the filtered reads of O. sativa, S. cerevisiae and X. 
tropicalis extracted from FASTQC. Overview of the range of quality values, across all bases at each read position, for 
the left (left graphs) and right (right graphs) reads of the pairs. The blue and red lines are the mean and median values, 

respectively. The background is divided into very good quality calls (green), calls of reasonable quality (orange) and calls of 
poor quality (red). 
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Appendix B 

 
Table 13 - Accuracy results for the reference-based and de novo assembled transcriptomes across the 
three sequencing libraries. Percentage of correct bases in the assembled transcripts comparatively with the reference 

transcripts. 

Organism Library 
Reference-based 

(%) 
de novo  

(%) 

Arabidopsis thaliana 
100% 99.63 98.54 
50% 99.64 98.46 
25% 99.63 98.43 

Aspergillus nidulans 
100% 99.98 99.82 
50% 99.99 99.84 
25% 99.99 99.84 

Caenorhabditis elegans 
100% 99.78 99.62 
50% 99.82 99.61 
25% 99.81 99.58 

Drosophila melanogaster 
100% 99.96 99.88 
50% 99.96 99.88 
25% 99.96 99.87 

Homo sapiens 
100% 99.78 99.46 
50% 99.80 99.45 
25% 99.81 99.44 

Mus musculus 
100% 99.69 99.52 
50% 99.74 99.55 
25% 99.76 99.56 

Oryza sativa 
100% 99.68 98.85 
50% 99.69 98.86 
25% 99.71 98.85 

Saccharomyces cerevisiae 
100% 99.95 99.76 
50% 99.97 99.70 
25% 99.97 99.69 

Xenopus tropicalis 
100% 99.76 99.23 
50% 99.78 99.27 
25% 99.81 99.24 
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Appendix C 

 
Table 14 - Summary statistics for each linear regression with the log transformation of each metric. r - 
Pearson correlation coefficient, R2 - coefficient of determination and P-value of the T-test. 

Metric Statistic CEGs (total) CEGs (group A) CEGs (group B) 

Identification 

r 0.426 0.418 0.414 

R2 0.182 0.175 0.172 

P-value 0.027 0.030 0.032 

Coverage 

r 0.750 0.783 0.673 

R2 0.562 0.613 0.452 

P-value 6.807E-06 1.384E-06 1.215E-04 

Fragmentation(1) 

r -0.618 -0.701 -0.480 

R2 0.382 0.492 0.240 

P-value 5.957E-04 4.591E-05 9.514E-03 

Fragmentation(2) 

r -0.740 -0.818 -0.612 

R2 0.548 0.670 0.375 

P-value 1.014E-05 1.842E-07 6.869E-04 

Fragmentation(3) 

r -0.839 -0.862 -0.769 

R2 0.704 0.743 0.591 

P-value 4.643E-08 7.487E-09 2.793E-06 

Fragmentation(4) 

r -0.618 -0.568 -0.644 

R2 0.382 0.323 0.414 

P-value 5.943E-04 0.002 2.908E-04 

Fragmentation(5+) 

r -0.295 -0.210 -0.379 

R2 0.087 0.044 0.143 

P-value 0.135 0.292 0.052 

Non-match 

r 0.204 0.236 0.157 

R2 0.042 0.056 0.025 

P-value 0.307 0.236 0.434 

Chimerism 

r 0.286 0.304 0.250 

R2 0.082 0.092 0.062 

P-value 0.149 0.123 0.209 

 


