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RESUMO 

 

Na última década, dada a evolução nas técnicas de sequenciação de nova geração, o número de 

genomas sequenciados tem vindo a crescer exponencialmente [1]. A ferramenta merlin, 

desenvolvida pelo grupo de investigação Biosystems (Universidade do Minho) é uma 

ferramenta capaz de gerar modelos metabólicos à escala genómica. A identificação de genes 

que codificam proteínas transportadoras e os metabolitos transportados por estas são tarefas 

essenciais para o desenvolvimento de modelos metabólicos à escala genómica mais robustos e 

precisos. 

Para este trabalho foram treinados e testados sete modelos de aprendizagem máquina diferentes, 

usando um processo validação cruzada repetido 5 vezes, em conjuntos de dados diferentes, para 

identificar e classificar proteínas transportadoras. Para provar o valor dos modelos 

desenvolvidos foram criados quatro conjuntos de dados diferentes compostos por proteínas 

curadas provenientes das bases de dados TCDB e SwissProt. 

Os conjuntos de modelos criados usando vários conjuntos de dados apresentaram um bom 

desempenho global, com o melhor a atingir 91% de acerto e desvio padrão baixo; o valor de 

F1-score atinge os 0.90 (+/- 0.00), fazendo destes modelos uma boa solução para a identificação 

e caracterização de proteínas transportadoras dado um genoma não anotado. 

Os modelos usados para identificar proteínas transportadoras apresentaram um maior número 

de falsos negativos comparado com o número de falsos positivos (quase três vezes maior) o que 

significa que os níveis de confiança para uma classificação em proteína transportadora são 

elevados, e que os modelos falham um número ainda significativo de proteínas transportadoras 

que são incorretamente ignoradas.  

 

Palavras chave: Linguagem máquina; Proteínas transportadoras; Modelos; Caracterização 
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ABSTRACT 

In the last decade, given the evolution of next-generation sequencing techniques, the number 

of sequenced genomes has grown exponentially [2]. The framework merlin [1], developed by 

the Biosystems research group (University of Minho) is a tool capable of generating genome-

scale metabolic models. The identification of genes encoding transport proteins and the 

metabolites transported by them are essential tasks for the development of more robust and 

accurate genome-scale metabolic models. 

For this work, seven different machine learning models were trained and tested, using a five-

fold cross validation process, on different datasets to identify and classify transport proteins. 

To prove the value of the developed models, four different datasets composed by well annotated 

proteins from TCDB and SwissProt were used.  

Ensembles of the models created using different datasets showed good overall performance 

with accuracy reaching 91% and low standard error; F1 scores reach 0.90 (+/- 0.00), making 

them a good solution for the identification and characterization of transport proteins given a 

new unannotated genome.  

The models used to identify transport proteins had a bigger number of false negatives compared 

to false positives (almost three times bigger) meaning that the confidence level of the 

classification of a protein as a transporter is high, and that these models miss a relevant number 

of transporter proteins that misclassified. 

 

Keywords: Machine Learning; Transport Proteins; Models; Characterization 
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1. INTRODUCTION 

1.1 Motivation 

Genome-scale metabolic models are mathematical representations of living organisms. These 

models are sets of reactions and constraints, which mimic the behaviour of the organisms when 

exposed to different environmental and genetic conditions [1]. The identification of genes 

encoding transport proteins and the metabolites they carry are important tasks for the 

development of more robust and accurate genome-scale metabolic models [3]. 

Transporter proteins are polypeptide chains, which promote the transport of several compounds 

across cell membranes [4]. For instance, carrier proteins control the uptake of nutrients to the 

cell, thus being important for growth, and provide resistance to drugs, which allow organisms 

to thrive in severe conditions. These transporters may use several mechanisms to move the 

compounds, including facilitated diffusion, symport and antiport. 

Manually annotated transporter proteins are described and stored in databases, such as the 

Transporter Classification Database (TCDB) [5]. TCDB is a curated repository for factual 

information compiled from literature references. It is available in a web-accessible relational 

database encompassing sequence, classification, structural, functional and evolutionary 

information for transport proteins from a variety of living organisms. 

These proteins have several specific characteristics. For instance, they are usually found in 

membranes, they contain specific motifs on their tail residues [4], and usually have one or more 

transmembrane domains (alpha helices or beta barrels) on their sequences. 

Transport proteins are usually annotated with reactions for metabolites known to be taken in 

from the medium, excreted from the cell or transported across intracellular compartments [6]. 

However, transport proteins are often poorly annotated [7] as this information is usually only 

retrieved from literature evidences. 

In genome-scale metabolic models, transport reactions are usually added manually based on 

experimental data or literature. Thus, new methods that can automate this task are required [8]. 

Recently, the Biosystems research group (University of Minho) has published a framework, 

merlin [1], fully written in Java and that uses a MySQL database, which includes a tool that 

provides a first approach for tackling this problem. The Transport Reactions Annotation and 

Generation (TRIAGE) [9] tool identifies the metabolites transported by each transmembrane 
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protein and its transporter family. The localization of the carriers is also predicted and, 

consequently, their action is confined to a given membrane. This thesis proposes a different 

approach to this problem through the development and implementation of several machine 

learning models that can be used to identify and characterize transport proteins. 

 

1.2 Objectives 

The main goal of this work is the development of a machine learning framework which is able 

to identify and annotate transporter proteins from their amino acid sequence.  

In detail, the technological objectives are: 

1) To review relevant bibliography about the state of the art techniques and existing tools 

for the annotation of proteins, in general, and, more specifically, transporters; 

assessment of the main features that characterize transporter proteins; 

2) Studying and testing available relevant software tools; 

3) To develop a machine learning tool to annotate transporter proteins, involving: 

a) Selection of available tools that can be helpful for transporter annotation; 

b) Development of machine learning methods for identifying transporter proteins, by 

developing classifiers and applying them to new sequences; 

c) Development of classifiers to identify proteins able to transport specific metabolites; 

4) Validation of the tool with gold standard corpora from previously manually annotated 

sources and if possible in real world scenarios. 

1.3 Structure of the document 

This document is organized in the following way: 

 

Chapter2 

State of the art 

Introduction to some machine learning concepts and models as well as some ensemble and 

feature selection methods and model evaluation processes. Brief presentation of useful 

bioinformatics tools and databases for the characterization of proteins.   

 

 



 

3 

Chapter3 

Methods 

Overview of the data collected to create the datasets. Description of the used dataset pre-

processing, feature selection, models, ensemble methods and statistics to evaluate the models.  

 

Chapter 4 

Development 

Brief description of the code developed in the thesis with pseudo code of the main scripts. 

 

Chapter 5 

Results and Discussion 

Presentation of the main results generated in the thesis followed by a discussion of the results. 

 

Chapter 6 

Conclusion and Future Work 

Main conclusion of the thesis taken from the results obtained, followed by a description of the 

possible improvements and future work.
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2. STATE OF THE ART 

2.1 Machine Learning concepts and definitions 

One of the differences between a computer and a human being is that, when facing a problem, 

humans tend to try to improve the way they solve it, while computers only execute procedures 

supplied to them. Although computers may be very effective in solving problems they lack the 

ability of self-improvement with experience [10]. Machine Learning (ML) is a branch of 

artificial intelligence/ computer science/ statistics that provides computers with the ability of 

predicting the outcome of an event or situation, and eventually improving its results with time, 

simulating the gain of experience [11].  

Tom Mitchell defines ML as “A computer program is said to learn from experience E with 

respect to some class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E” [12]. 

In order to help the reader to understand the concept of ML, the next paragraphs contain a 

summary of some ML concepts and definitions [11][13][14].  

 

Attribute. An attribute represents a feature that describes instances. Attributes can be 

categorical or continuous. Categorical attributes take values from a set with a finite number of 

discrete values and can either be nominal, indicating that there is no order between the values 

e.g. names and colours, or ordinal e.g. little, medium, big, where an order can be identified. 

Continuous attributes take values from a domain which is a subset of real numbers and can take 

any value within a range e.g. height, time [14].  

 

 Attribute values. For example, if “names” is an attribute, “John” is a value of the 

attribute “names”. 

 Input and output attributes. Input attributes are the attributes that are going to be 

used to make a prediction of the output attribute. 

Instance. Instance (or example) is an object composed by a set of input attributes (and possibly 

the respective output attribute). Instances represent individual cases of the concept to be 

learned. 
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Dataset. A matrix of data, where each column represents an attribute, and each row represents 

a different instance. Generally, the last column represents the output attribute, and the 

remaining represent the input attributes.  

 Training Dataset. Group of instances that are used to learn the best model for 

that specific data. 

 Test Dataset. Group of instances that are used to calculate different statistics on 

the generated model.  

Model. A model can be defined as a function that given an instance´s input attributes predicts 

its output attribute. 

Algorithm. An algorithm defines a process that, given a training data set and some pre-chosen 

criteria, chooses a specific model.  

 

Supervised learning is a method that uses a given input data (training data set) to generate a 

model function that infers the underlying relationship between that data. Using that model, the 

result of the class label (out-attribute) can be predicted. This method is really useful when it 

comes to predict the class label of a data set with hidden phenomena attached in unfamiliar or 

unobserved data instances [11]. The errors associated with the prediction can be minimized 

based on the quality of the data set (training data set) used. Small data sets (20-30 examples) 

are generally a poor choice for these algorithms. Data sets that contain many similar examples 

can be a bad choice as well, since they can cause overfitting of the model. The best choice for 

a data set would be a data set that is a good representation of all possible instances (generalized) 

in order for the model to have an example of each possible outcome [11].  

 

Development of ML algorithms. When developing a ML algorithm, 7 major steps should be 

considered (Figure 1). The first one is to collect the data, where a subset of all available data 

attributes that might help in resolving the problem are selected. The second step is to process 

the data, making it understandable. Then the data is transformed, by feature scaling, 

decomposition, or aggregation (combining multiple instances into a single feature). The next 

step is to train the algorithm, where the training and testing datasets from the data previously 

transformed is selected. The algorithm is then trained (fourth step) using the training dataset, 

extracting the knowledge or information on that dataset, yielding a model that is a 

representation of that information. This model can then be used to predict the output attribute 

of other similar data.  
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Step five is where the algorithm using the test dataset is evaluated. In this step, evaluation of 

the effectiveness and performance of the model is performed. Giving the input attributes of the 

test dataset to the model, and hiding the output attribute, it predicts the output attribute for each 

instance. Comparing the two results, the known and the predicted, calculating different statistics 

about the performance of the model can be achieved. In the next step, the model created can 

eventually improve by using a different dataset or improving the old one. The last step is to 

apply the validated model, making reliable predictions on new datasets with unknown out-

attributes. 

 

Machine learning models and algorithms. The next chapter will review some of the major 

models and algorithms used in ML, namely k-nearest neighbours (KNN), Naïve Bayes (NB), 

linear and logistic regression, decision trees, artificial neural networks (ANN), and SVMs 

(Support vector machines). 

K-nearest neighbours (KNNs) 

KNNs is an instance based learning method, meaning that it does not generate a model function. 

Instead, it stores the training set and uses it when a new prediction needs to be made, being 

called a lazy learning method for that reason, since it delays the learning process [13]. KNN 

has two simple ways of making predictions depending on the type of problem (classification or 

regression). In a classification problem, the algorithm will simply find the k training examples 

most similar to the new example to be predicted and the final prediction will be the most 

Collect the data

Process the data

Transform the data

Train the algorithm

Test the algorithm

Improve the model created

Apply the model

Figure 1- Seven step process for developing a machine learning algorithm 
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common class on those k training examples. In a regression problem, the algorithm will predict 

the final result as the mean of the nearest neighbour values.  

To calculate the nearest neighbours, a distance function must be used. For continuous (e.g. 

height) or linear discrete (e.g. number of children) features, Euclidean distance or Manhattan 

distance are usually used. For linear symbolic features (e.g. symptoms) the most common way 

of calculating their distances is to assume the value 1 for a different feature and the value 0 for 

an equal feature, and then calculate the examples distances using the Euclidean or Manhattan 

distance [13]. However, the previous method does not consider that some linear symbolic 

features may have an order, so a different distance function must be used. Value difference 

metric (VDM) considers two features to be closer if they have more similar classifications, thus 

ranking the features and providing a better calculation of the neighbours [15]. 

Naïve Bayes (NB) 

NB is a simple algorithm that uses relative frequencies to estimate the probability of an example 

to present a certain result [13][16], assuming (although naively) the attributes are independent 

and cannot be differentiated in terms of importance. To better understand this algorithm, the 

data in Table 1 will be used. 

 

Table 1-Table containing the number of times a class occurs given a certain feature 

Attribute X Attribute Y 

 Class-Yes Class-No  Class-Yes Class-No 

X1 0 3 Y1 1 3 

X2 5 1 Y2 4 1 

 

Example “X1,Y2” 

 

𝐿(𝑌𝑒𝑠) =
0

5
∗

4

5
∗

5

9
=  0 

 

𝐿(𝑁𝑜) =
3

4
∗

1

4
∗

4

9

=  0,08(3) 

Figure 2-Calculation of the probability of classifying as “Yes” or “No” in the example “X1, Y2” 
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This table has the number of times each attribute´s (X or Y) value (1 or 2) takes place in each 

possible class value (Yes or No). Given a new example “X1, Y2” one can classify the 

probability of resulting in a Yes or a No. This can be achieved calculating a function L 

(likelihood) by multiplying the relative frequencies of each of the examples attribute values 

with the relative frequency of the class. An example can be found in Figure 2. The final 

prediction will be the one that presents the highest L value. To get the probability of a given 

class to be predicted, its L value must be divided by the sum of all L values for all classes. 

Linear Regression 

Linear Regression is a method that tries to model the relationship between an independent 

variable and a set of dependent variables, generating a linear equation that fits the data [13][17]. 

Linear regression consists in finding a best-fitting set of coefficients minimizing the sum of 

squared errors (SQE) of prediction or gradient descent.  

Logistic Regression (LR) 

LR is used in classification problems, where it models the relationship between a set of 

independent variables and a dependent variable (binary class), predicting the probability of 

occurrence of the dependent variable [11][13][16]. In this process, a logistic function is 

calculated. With this function, estimating the probabilities of a given class can be performed. 

To minimize the error function, the minimization of a loss function is also conducted as in linear 

regression. Logistic regression can also be used in classification problems with more than 2 

classes by creating a model for each class. 

Decision Trees 

Decision Trees, used for classification problems, generate classifiers by synthesizing  a model 

based on a tree structure [13]. This tree is composed by n nodes and each node corresponds to 

an input attribute to be tested. On each node, n possible branches come out corresponding to 

the values or conditions the attribute can present, leading to n different nodes. If a leaf is 

reached, the information on that leaf corresponds to the output attribute´s value (or class). To 

make a prediction on a new example, each attribute is tested on its specific node, starting from 

the root. After the root´s specific attribute has been tested on the condition, it follows the branch 

that suits that condition, getting to another node. This process is repeated till a leaf is reached, 
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and the end prediction is obtained. Examples of decision trees training algorithms are the 

algorithms ID3 and C4.5 [13][11]. 

Regression Trees 

Regression Trees are a variation of decision trees that can be used in regression problems. They 

are adaptations of decision trees where the leafs instead of class values are composed of a 

numeric value. M5 is an algorithm that tackles one of the regression trees fundamental 

problems: the fact that it can only assign a constant value to its leafs. On this algorithm each 

leaf is composed by a linear model allowing the calculation of the out-attribute as a linear 

function of the in-attribute´s values [13]. 

Artificial Neural Networks (ANNs) 

ANNs represent attempts of simulating the human brain’s neurons [13][11]. These simulated 

neurons (nodes) like normal neurons, receive inputs and give outputs to other simulated 

neurons. There are two major types of ANN: Feedforward ANNs (no cycles) and Recurrent 

ANNs (with cycles) and both can be represented by a graph. In feedforward ANNs, this graph 

can be divided into an organized disposition with 3 layers: an input layer, a hidden layer, and 

an output layer. A node (y) has n nodes connected to it (xn) with different output values 

(X1,…,Xn) and each connecting has a weight associated (Wy1,…Wyn). A node´s output value is 

calculated by an activation function using the activation value. The activation value of a node 

“y” can be calculated through the sum of all the “x” nodes output values times the connection 

weight of the nodes (Av = ∑ Xn*Wyn). Additionally, a bias connection with value of +1 can also 

be added, adding to the activation value the value of that nodes weight. There are a variety of 

training algorithms that minimize the cost function for ANN, leading to modifications in the 

weights of the connections of the nodes, namely backpropagation, Rprop, Quickprop, etc [13]. 

Support Vector Machines (SVMs) 

SVMs are used for both classification and regression problems. These models are based on 

creating support vectors from the dataset, which are only a subset of the total dataset calculated 

by an optimization step that regularizes an objective function by an error term and a constraint 

[11][13][16]. For a classification problem, the support vectors are used to calculate a hyperplane 

that separates the data into two classes, always maximizing the margins of the hyperplane. For 

regression problems, the data will lie within a “tube” around the hyperplane. However, there 

are data that can’t be divided into the two classes by a linear hyperplane or don’t fit a linear 
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hyperplane tube, so a more complex polynomial function has to be applied. In that case kernel 

methods are used, like polynomial, Gaussian and spline kernels, and can be configured using 

different parameters.  

 

Other relevant algorithms. Hidden Markov models (HMMs),  are based on Markov chains 

that can be defined as a sequence of states over time (S1,…,Sn), where the change of a state to 

the next has a certain probability associated [11]. HMMs, like Markov chains, have a sequence 

of states S (S1,…,Sn) but they are hidden (latent variables) and each S state is associated with 

an observed variable X (X1,…,Xn). Transitions between hidden states (SnSn+1) and observed 

variables in a hidden state (SnXn) have a probability associated. The HMM can be defined by 

an initial distribution (P(S1)), the transitions probabilities (P(X|X-1)), and the emissions 

probabilities (P(X|S)). In a HMM by analysing the observed states, one cannot say exactly 

which sequence of hidden states generated the observed ones. However, it is possible to 

calculate the probability of a given sequence, of hidden states, attaining the observed states. For 

more information about HMMs consult [11].  

 

Ensemble methods. Ensemble methods are a way of developing learning algorithms that 

generate an ensemble of different models for a given problem [13]. The final result is obtained 

by a function that combines the individual models’ results and returns a single value. To 

generate a better final prediction than the individual models these have to respect two 

conditions: the individual models have to be precise, meaning that they have to present better 

results than a random model, and be diverse, meaning that they have to make errors in different 

spaces of the test dataset [13]. 

The most popular way of creating ensemble models for unstable induction algorithms (those 

that show considerable changes in the model when faced with changes in the training dataset) 

is to change the training dataset presented to the algorithm, thus generating different models 

that will form the ensemble [13]. In this category bagging, cross-validation and boosting are 

the most frequently used. Bagging is based on bootstrap, where the bootstrap sample (training 

dataset) will be generated by a sampling process with substitution [13]. Cross-validation 

consists in splitting the dataset into portions of the same size, where each model will be created 

using different sets of training and test data. Boosting is also based on bootstrap, but in this case 

after each boosting iteration a weight is applied to each training example, increasing the weight 

on the incorrectly predicted examples and decreasing the weight in the correctly predicted 

examples [13][19]. 



 

12 

Another approach to create ensemble methods is to introduce random choices in deterministic 

models, thus creating different models in each training. In the cases where the algorithm is 

already stochastic, ensemble models can be created by modifying some of the algorithm´s initial 

parameters, like varying the number of intermediate nodes in a neural network algorithm [13].  

Depending on whether it is a classification or regression problem, the functions that combine 

the results of the individual models can vary. When facing a classification problem, two 

approaches can be taken, a vote function or a winner-takes-all function. The former essentially 

chooses the result that was shown by most of the models, whilst the latter assumes the final 

result as the one shown by the model with the most confidence (assuming each model is capable 

of calculating the probability of the result to be correct). Regarding regression problems, a mean 

function that assumes the final result as the mean of the individual results or a weighted mean 

function that is similar to the previous but assigns a weight for each model can be used [13]. 

Besides creating ensemble methods that generate different models but use the same learning 

technique, creating hybrid systems that combine two or more learning techniques can obtain a 

more precise result [13].   

 

Evaluating machine learning models. To evaluate the quality of a model for a given task 

different error metrics must be calculated. These error metrics will depend on the type of 

problem, being it a classification or a regression problem. 

For classification problems, a confusion matrix is usually calculated. For a 2 classes problem, 

the confusion matrix (Table 2) is composed by 2 rows and 2 columns, where the rows represent 

the desired values (first row-negative values and second row-positive values) and the columns 

the predicted values (first column – negative values and second column-positive values). From 

the predicted values, if a value is predicted as negative and its real value is negative it is called 

a True negative (TN), but if its real value is positive it is called a False negative (FN). Similarly, 

if a value is predicted as positive and its real value is negative, it is called a False positive (FP), 

but if its real value is positive it is called a True positive (TP). 
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Table 2-Confusion matrix example 

Confusion matrix 
Predicted values 

Negative Positive 

Desired values 
Negative True negative (TN) False Positive (FP) 

Positive False negative (FN) True positive (TP) 

 

With this, the calculation of accuracy (known as PECC - Percentage of Examples Correctly 

Classified) can be calculated by summing the TN with the TP and dividing by the sum of the 

TN, TP, FP and FN as seen in ( 14  ), recall (also known as sensitivity) can be calculated by the 

TP  divided by the sum of the TP and FN as seen in ( 2 ), specificity (type error I) can be 

calculated by the TN divided by the sum of the TN with FP as seen in ( 3), precision (known as 

positive predicted value) can be calculated by the TP divided by the sum of the TP with FP as 

seen in ( 4 ), negative predictive value can be calculated by the TN divided by the sum of the 

TN with FN as seen in ( 5 ), and F score can be calculated by multiplying 2 to the multiplication 

of the precision and recall divided by the sum of the precision and recall as seen in ( 6 ) [13]. 

 

 
𝑃𝐸𝐶𝐶 =

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

( 1 ) 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

( 2 ) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

( 3 ) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

( 4 ) 

 
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

( 5 ) 

 
𝐹 𝑠𝑐𝑜𝑟𝑒 = 2 ∗

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

( 6 ) 

 

For a classification problem with more than 2 classes, the values are calculated as if a 2x2 

confusion matrix existed for each class, while the “negative” values are the elements of the 

other classes [13]. 
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The best model will be the one that presents higher numbers in the PECC, Recall, and 

Specificity values. However, sometimes one must find a balance between the Recall and 

Specificity value because an increase in the Recall value can cause Specificity to lower.  

ROC (Receiver Operating Characteristic) curves are also a good form to evaluate a model since 

they show the relationship between 1-Specificity and Recall. Calculating the area under the 

curve (AUC) of the ROC curve gives us information about the ability of the model to 

discriminate between the two classes. An AUC of 1 means that the model can distinguish the 

two classes perfectly and an AUC of 0.5 means that the model has a 50% chance of 

distinguishing the two classes correctly, no more efficiently than a coin toss. If the classification 

problem has more than 2 classes, ROC curves must be applied for each class, being the global 

AUC given by a weighed mean of the frequencies of each class [13]. 

In a regression problem, the error metrics are calculated based on the error presented by each 

example, this being the difference between the predicted value and the real value. Three 

different error metrics can be considered: SSE (sum of square errors) can be calculated by the 

summation of the squared subtraction of the desired value (yi) by the predicted value (�̂�𝑖) as 

seen in ( 7 ), RMSE (square root of the mean of SSE) as seen in ( 8 ), and MAD (mean of 

absolute deviation) as seen in ( 9 ) [13].  

 

𝑆𝑄𝐸 = ∑(𝑦𝑖 − �̂�𝑖)2

𝑁

𝑖=1

 

( 7 ) 

 

𝑅𝑀𝑄𝐸 = √
𝑆𝑄𝐸

𝑁
 

( 8 ) 

 
𝑀𝐷𝐴 =

∑ |𝑦𝑖 − �̂�𝑖|𝑁
𝑖=1

𝑁
 

( 9 ) 

 

For these error metrics, the model that shows lower values is more precise. A model that 

presents a value of 0 in this metrics is the ideal model. 

For regression problems a REC (Regression Error Characteristic) curve can also be used, since 

sometimes the other metrics are not sufficient to understand the behaviour of the model [13]. 

To achieve a more accurate evaluation of a model´s performance, a K-fold cross validation can 

be performed [20]. The data set will be divided into K subsets, where 1 subset will be used as 

a test dataset and the others as the training dataset [13]. Then the desired error metrics are 

computed by averaging them across all K trials. The advantage of this method is that every 
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subset is going to be used as a test dataset one time, and as a portion of the training dataset k-1 

times.  

Leave-one-out cross validation, can also be used. It is similar to K-fold cross validation, yet in 

this case K corresponds to the number of examples in the dataset, meaning that in each run has 

a training dataset of K-1 examples and a test dataset consisting in the 1 example that was left 

out [13]. The disadvantage of this process compared to the K-fold cross validation is that it 

requires a larger amount of time to compute. 

A Bootstrap method can also be executed on the dataset, achieving that way a more accurate 

evaluation of the model´s performance. The most used form of bootstrap considers a dataset of 

size n, where a bootstrap sample (training dataset) will be generated from that dataset by a 

sampling process with substitution [13][20]. The bootstrap sample created will have the same 

size as the original dataset, but will be composed by some repeated examples. The unused 

examples of the original dataset will compose the test dataset [4][6]. 

 

Overfitting and underfitting. Generating a model that is an excellent representation of the 

data is a difficult task. Since the dataset presented to the ML algorithm corresponds only to a 

fraction of the total data, the model generated will only be an approximation of the total data. 

ML is usually used to solve complex regression or classification problems, with many features 

and outcomes. Hence, choosing the dataset that is going to be used is a task of major importance. 

The best choice would be a dataset that is a good representation of all possible instances 

(generalized) for the model to have at least one example of each possible outcome.  

Two of the major problems associated with some ML algorithms are over- and under-fitting of 

the generated model, and how to reach a balance between them. An over-fit model is a model 

that represents the training data too well, being unable to make correct predictions on the data 

that is not identical to the training data. This happens when the algorithm tries to generate an 

excessively complicated model, and ends up capturing the noise of the data (high variance). On 

the other hand, an under-fit model is a model that badly represents the training data. This 

happens when the algorithm can´t capture the underlying trend of the data, and ends up 

generating an excessively simple model (high bias).  

Overfitting can be caused by a bad choice of training datasets. Datasets containing a high 

amount of similar examples, or datasets that are not a good generalization of the total data can 

cause overfitting. When facing overfitting, several strategies can be used to lower the variance, 

such as, adding new data to the training dataset (when the training dataset is small), performing 

feature or model selection, regularization of the training process, reduce the model complexity, 
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or all of them combined. To reduce the high bias caused by under-fitting, the model complexity 

must be increased. 

 

Model selection. Model selection is the process of choosing a model from a range of different 

models with different levels of complexity that were trained with the same dataset [13]. This 

process is conducted by evaluating the models on one or more error metrics and eventually 

choosing the one with the better scores. This can be difficult since all the scores must be 

considered (i.e. comparing two models, a model with a bit higher PECC score does not mean a 

better model if the F1 score is much lower). The main advantage of this process is to adjust the 

model to the complexity of the data, thus reducing the overfitting. 

Since during the training of the model some randomness is induced, either it being in the 

division of the dataset into training and test datasets or in the model itself (stochastic models), 

a single comparison of the error metrics is not enough to conclude which model is performing 

the best. To conduct a reliable comparison of the models, a high number of simulations most 

be executed, each using different training and test datasets (variations of the initial dataset). 

The higher the number of simulations the better, since it will generate a more precise mean of 

the error metrics, yet requiring a high demand of computational time [13]. Taking this into 

account, the most common number of simulations goes between 10 and 200.  

Besides the mean of each model, calculating the mean’s standard deviation and the respective 

confidence levels, allows making a more reliable choice between the models [13].  

If the comparison is between 2 models, a t-test can be performed. This t-test will access if the 

2 means are significantly different from each other. Given the p-value of the t-test, if it is lower 

than 0,05 (considering a confidence level of 95%) the means are significantly different, 

otherwise the means are not significantly different. In the case of comparing more than two 

models, an ANOVA test can be conducted. 

 

Feature selection. The curse of dimensionality is a problem that many models with high-

dimensional features space have to face, meaning that the more in-attributes the dataset has (x) 

the more learning examples it needs, in many cases growing exponentially [13]. This problem 

causes the need to have big datasets which are difficult to save, and often hard to get.  

The most obvious solution for this problem is to reduce the number of input attributes. This can 

be achieved by two ways: simply extracting features from the dataset (feature extraction), or 

selecting the most valuable features of the dataset by a process called feature selection [13]. 

One crucial aspect for feature selection is the way how the search for the best set of feature is 
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performed. For a ML classification problem, feature selection techniques can be grouped into 

3 categories: filter methods, wrapper methods or embedded methods [21]. Filter methods select 

the features based only on the intrinsic properties of the data. Examples of these are univariate 

filter methods like Chi-square and Euclidean distance or multivariate filter methods like 

Correlation-based feature selection (CFS) or Markov blanket filter (MBF). Wrapper methods 

can be divided into deterministic methods and randomized methods. Examples of the first are 

Forward Selection and Backward Selection and for randomized methods, simulated annealing 

and genetic algorithms [21]. 

Forward selection and backward selection are examples of hill-climbing methods, where in the 

first the model starts with only one feature and then starts adding more features in each iteration, 

and in the second the model starts with all the features and then removes a feature in each 

iteration [13]. Both are greedy methods, meaning that both will stop if they find a local 

minimum, which may not be equal to the global minimum (best solution). 

Examples of Embedded methods are decision trees, weighted naive Bayes and feature selection 

using the weight vector of SVM [21]. 

2.2 Sequence analysis algorithms and tools 

Homology searching algorithms and tools. Sequence similarity searching aims to identify 

homologous sequences in databases through a process that provides additional and very 

important information about new sequences. This process requires assessing if the match 

between a query sequence and other sequences from a database is statistically significant. Such 

results allow inferring homology between sequences and using the annotated data of the 

homologue sequences to know more about the query sequence (e.g. function, family) [22]. 

There are a lot of different homology searching tools (a variety of this tools can be accessed at: 

http://www.ebi.ac.uk/Tools/sss/), but by far the most used is the Basic Local Alignment Search 

Tool (BLAST) [23] that can be accessed at: “http://blast.ncbi.nlm.nih.gov/Blast.cgi”. A “How 

to BLAST” guide can be found in [24]. Different BLAST programs can then be chosen: 

nucleotide blast, protein blast, blastx, tblastn, and tblastx. 

Nucleotides BLAST allows searching a nucleotide database using a nucleotide query using the 

BLASTn (somewhat similar sequences), mega BLAST (highly similar sequences) or 

discontiguous mega BLAST (more dissimilar sequences) algorithms [24]. TBLASTx uses a 

translated nucleotide query to search a translated nucleotide database [24]. 
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Proteins BLAST allows searching a protein database using a protein query using BLASTp 

(protein-protein BLAST), psi-BLAST (Position-Specific Iterated BLAST), phi- BLAST 

(Pattern Hit Initiated BLAST), and delta-BLAST (Domain Enhanced Lookup Time 

Accelerated BLAST) algorithms [24]. BLASTx is used to search a protein database using a 

translated nucleotide query, and finally tBLASTn uses a protein query to search a translated 

nucleotide database [24].  

Many aspects of the search can be defined in BLAST, such as the database that is going to be 

used for the query homology search, being the Non-redundant protein sequences (nr) the most 

frequently used. Also, the BLAST search can be limited to a specific organism or taxonomic 

group, or using a key-word or query size using Entrez Query. Many parameters of the 

algorithms selected can also be changed by the user. 

The HMMER tool (available at: http://www.ebi.ac.uk/Tools/hmmer/) is a homology searching 

tool that can build a HMM profile using a multiple sequence alignment given from the user 

using the HMMER3 tool (available at: http://myhits.isb-sib.ch/cgi-bin/hmmer3_search) [25]. 

The HMM profile can then be used to search databases of protein sequences. 

 

Motif finding algorithms and tools. Motifs are widespread patterns within sequences of 

nucleotides or amino acids that usually have biological significance, making them useful for 

inferring a protein’s function or even to identify sequence homology [26]. Finding motifs can 

be achieved by different methods including simple heuristic algorithms, expectation-

maximization algorithms (E-M) like the one used in the MEME tool, Gibbs sampling and 

HMMs like the ones used in HMMER. 

Position weight matrices play a huge role in some motif finding algorithms. These matrices can 

be calculated through a conversion of a relative frequency matrix (P profile) using a formula 

[27][28]. In a multiple sequence alignment, the relative frequency matrix columns represent the 

positions of the sequence and the lines the possible alphabet character. The matrix shows the 

probability of a character to be in a certain position.  

The MEME tool (http://meme-suite.org/doc/meme.html?man_type=web) uses a MM (mixture 

model) algorithm that is an extension of the expectation-maximization (E-M) algorithm [29] 

for fitting finite mixture models to discover motifs in a dataset of sequences [30]. 

Gibbs sampling (available at: http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html) is a Markov 

Chain Monte Carlo (MCMC) approach, since like in Markov chains the results from every step 

depend only on the precedent step and the next step is calculated based on random sampling 

http://www.ebi.ac.uk/Tools/hmmer/
http://myhits.isb-sib.ch/cgi-bin/hmmer3_search
http://meme-suite.org/doc/meme.html?man_type=web
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[31]. Assuming n sequences (S1,…,Sn) are being used and the sought motif has size W, the 

algorithm can be characterized into 6 steps:  

1. Randomly chose an initial starting point for every sequence.  

2. Randomly chose a sequence (S).  

3. Create a P profile of the other sequences based on S.  

4. For every single position p in S, calculate the probability of the segment initiated in p 

with length W being generated by P.  

5. Chose p stochastically according to step 4.  

6. Repeat steps 2 to 5 till the score cannot be improved. 

 

The HMMER tool (available at: http://www.ebi.ac.uk/Tools/hmmer/) is a homology searching 

tool that can also find domains on a sequence using the hmmscan program [25]. This program 

uses the query given from the user and searches it against a HMM profile [32] library database 

e.g. Pfam (available at: http://pfam.xfam.org/) [33].  

 

Analysis of protein sequences. A protein sequence is a sequence of amino acids that resulted 

from the translation of a nucleotide sequence.  Analysing a protein sequence can thus help in 

the characterization of the protein (e.g. structure, function, localization). 

A protein structure can be analysed in different levels: the primary structure composed only by 

the protein´s linear amino acid sequence, the secondary structure where the interactions 

between amino acids using hydrogen bonds form alpha-helices, b-sheets, turns or coils, the 

tertiary structure in which the protein folds by attraction forces between the secondary 

structures, and finally, the quaternary structure formed by two or more different proteins 

interacting [34]. Information about the protein structure can be obtained by analysing its 

sequence, although the determination of the structure from the sequence is a very challenging 

task. 

A protein can be located in different areas or organelles of a cell. Information about the protein 

location may also be predicted by analysing its sequence (e.g. signal peptides). 

One huge problem in the analysis of protein sequences is that proteins usually undergo a process 

of modifications after being translated. Post-translation modifications (PTMs) usually take 

place after the translation of the mRNA and can induce changes in the protein´s physical or 

chemical properties, activity, localization, or stability. These PTMs cause an increasing 

complexity of the proteome in comparison to the genome. Some examples of PTMs are, 

according to [35] [36], described below. 

http://www.ebi.ac.uk/Tools/hmmer/
http://pfam.xfam.org/
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 Glycosylation involves the connection of sugar molecules to the protein and is very 

important to the subcellular localization of the protein (fixation to the extracellular 

matrix), cell-to-cell interactions, and ligand-to-protein interactions. 

 Phosphorylation involves the connection of a phosphate group to a protein and is very 

important in protein links, cellular cycles, signalization pathways, and enzyme 

regulation. 

 Hydroxylation involves the connection of a hydroxyl group to a protein. 

 Acetylation involves the introduction of an acetyl group to a protein and is very 

important in turning on or off proteins and degradation signalling.  

 Methylation involves the transfer of one-carbon methyl groups to nitrogen or oxygen 

and is very important in the increase of the hydrophobicity of the protein and epigenetic 

regulation. 

 

Integral membrane proteins (e.g. transport proteins) cross the lipid bilayer membrane at least 

once. In order to do so they present hydrophobic transmembrane segments that cross the highly 

hydrophobic core of the lipid bilayer [37]. 

Transport proteins have high numbers of transmembrane segments like alpha-helices and beta-

sheets (to a lesser extend) [37] compared to other proteins. When beta-sheets fold on themselves 

they form a beta-barrel that is present in some transport proteins. Identifying and characterizing 

these transmembrane domains can help in the classification of the transport proteins. 

2.3 Relevant bioinformatics tools and databases  

Protein localization tools. In this section, a quick overview of some protein localization tools 

is performed, namely PSORTb [38], TargetP [39], BaCello [40], ESLpred2 [41], WolfPSORT 

[42], SubLoc [43], LocTree3 [44], Cell-Ploc2 [45], Cello [46] and PSLPred [44][45]. 

These tools tackle the subcellular localization prediction problem in different ways, using 

different models (Table 3), algorithms and datasets for training and testing. The most frequently 

used models by the predictors are PSSMs, Homology, ANNs, SVMs, KNNs, Naïve Bayes, and 

Decision Trees. Some of the predictors use more than one model creating a hybrid algorithm.  

For prokaryotic proteins, the tools PSORTb [38], PSLpred [47], [48] can be used, while the 

tools TargetP [39], BaCello [40], ESLpred2 [41], Wolf-PSORT [42] can be used for eukaryotic 

proteins. LocTree3 [44], Cell-Ploc2 [45], Cello [46] and SubLoc [43] are capable of assessing 
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the subcellular localization of both eukaryotic and prokaryotic proteins. The PSORTb [38] and 

Loctree3 [44] tools are also capable of predicting the localization of archaea proteins.  

The same dataset should be used for comparing the performance of these tools.  

 

Table 3-Different Models used by some Localization prediction tools and their respective websites. 

Localiza

tion 

Tools 

PSSM  Homology  ANN SVM KNN Naïve 

Bayes 

Decision 

Tree 

Website 

PSORTb    X  X  http://www.psor

t.org/psortb/ 

TargetP   X     http://www.cbs.

dtu.dk/services/

TargetP/ 

BaCello    X   X http://gpcr.bioc

omp.unibo.it/ba

cello/ 

ESLpred

2 

X X  X    http://www.imt

ech.res.in/ragha

va/eslpred2/ 

WolfPS

ORT 

    X   http://www.gen

script.com/wolf

-psort.html 

SubLoc    X    http://www.bioi

nfo.tsinghua.ed

u.cn/SubLoc/ 

LocTree

3 

   X   X https://rostlab.o

rg/services/loctr

ee3/ 

Cell-

Ploc2 

    X   http://www.csbi

o.sjtu.edu.cn/bi

oinf/Cell-PLoc-

2/ 

Cello    X    http://cello.life.

nctu.edu.tw/ 

PSLPred  X  X    http://www.imt

ech.res.in/ragha

va/pslpred/ 

 

Membrane protein topology tools. In this section, a quick overview of some membrane 

protein topology tools is performed, namely DAS-TMfilter [49], HMMTOP [50], Phobius [51], 

Predict Protein [52], TMHMM [53], TMPred , BOMP tool [54] and the PRED-TMBB tool 

[55]. 

These tools use different models and algorithms to access the topology of membrane proteins 

(Table 4) and are of great help for identifying and classifying transport proteins. An evaluation 

http://www.psort.org/psortb/
http://www.psort.org/psortb/
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://www.cbs.dtu.dk/services/TargetP/
http://gpcr.biocomp.unibo.it/bacello/
http://gpcr.biocomp.unibo.it/bacello/
http://gpcr.biocomp.unibo.it/bacello/
http://www.imtech.res.in/raghava/eslpred2/
http://www.imtech.res.in/raghava/eslpred2/
http://www.imtech.res.in/raghava/eslpred2/
http://www.genscript.com/wolf-psort.html
http://www.genscript.com/wolf-psort.html
http://www.genscript.com/wolf-psort.html
http://www.bioinfo.tsinghua.edu.cn/SubLoc/
http://www.bioinfo.tsinghua.edu.cn/SubLoc/
http://www.bioinfo.tsinghua.edu.cn/SubLoc/
https://rostlab.org/services/loctree3/
https://rostlab.org/services/loctree3/
https://rostlab.org/services/loctree3/
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
http://cello.life.nctu.edu.tw/
http://cello.life.nctu.edu.tw/
http://www.imtech.res.in/raghava/pslpred/
http://www.imtech.res.in/raghava/pslpred/
http://www.imtech.res.in/raghava/pslpred/
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of some of  these methods performance can be accessed at [56]. More tools useful for predicting 

transmembrane domains are provided in http://www.psort.org/.  

  

http://www.psort.org/
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Table 4- Overview of the objective and models used in some Membrane protein topology tools and their respective websites. 

Membrane 

protein 

Topology 

tool 

Objective Model/algorithm Website 

DAS-

TMfilter 

Identify 

transmembrane helices 

Das algorithm 

(hydrophobicity 

profile based) 

http://www.enzim.hu/DAS/DAS.html 

Phobius Predict 

transmembrane 

protein topology and 

signal peptides 

HMM http://phobius.sbc.su.se/ 

HMMTOP Predict helical 

transmembrane 

segments and topology 

of transmembrane 

proteins 

HMM http://www.enzim.hu/hmmtop/ 

PredictProtein Predicts alpha-helical 

transmembrane 

proteins 

topology(TMSEG) 

and coiled-coil regions 

(COILS) 

ANN https://www.predictprotein.org/ 

TMHMM Predicts 

transmembrane alpha-

helices 

HMM http://www.cbs.dtu.dk/services/TMHMM/ 

TMPred Predicts 

transmembrane alpha-

helices 

WSM http://www.ch.embnet.org/software/TMPRED_form.html 

BOMP Predicts 

transmembrane beta-

barrels 

C-terminal pattern 

recognition 

and integral 

beta-barrel 

score 

http://services.cbu.uib.no/tools/bomp 

PRED-TMBB Predicts outer 

membrane beta-barrel 

proteins 

HMM http://biophysics.biol.uoa.gr/PRED-TMBB/ 

 

 

http://www.cbs.dtu.dk/services/TMHMM/
http://www.ch.embnet.org/software/TMPRED_form.html
http://services.cbu.uib.no/tools/bomp
http://biophysics.biol.uoa.gr/PRED-TMBB/


 

24 

Transport protein substrate specificity tools. TrSSP (available at: 

http://bioinfo.noble.org/TrSSP/) is a tool that is able to predict the substrate of a transport 

protein, using a SVM model based on biochemical composition and evolutionary information 

(i.e. PSSM profile). This tool is able to classify the transport proteins into seven different 

classes, namely amino acid transporters/oligopeptides, anion transporters, cation transporters, 

electron transporters, protein/mRNA transporters, sugar transporters, and other transporters 

[57]. 

 

FASTA format. Most of the previously described tools use as input FASTA formatted files 

containing more than one sequence or simply a sequence in the FASTA format. The FASTA 

format as described in [58] is a text based format that represents the nucleotide sequence or 

peptide sequence. This format always begins with “>” followed by the sequence´s description 

on the first line of text and the sequence in the next line, or lines, in order to separate the 

description from the sequence. 

 

Databases of transporter proteins. Databases of transporter proteins are essential for the 

creation of a dataset suitable for a machine learning approach in regard to transporter proteins 

prediction and annotation. The Transporter Classification Database (TCDB) available at 

http://www.tcdb.org/ contains examples of all currently known families (over 800) of 

transmembrane molecular transport systems [5]. TCDB contains 13788 non-redundant proteins 

(April, 2016) organized into five levels (TC system), dividing the transporter proteins into class, 

subclass, family, subfamily, and the transport system [59], [60], [61]. The first division of the 

TC system divides the proteins into the following categories: 1-Channels/Pores; 2-

Electrochemical Potential-driven Transporters; 3-Primary Active Transporters; 4-Group 

Translocators; 5-Transmembrane Electron Carriers; 8-Accessory Factors Involved in 

Transport; 9-Incompletely Characterized Transport Systems. The TCDB is recognized by the 

International Union of Biochemistry and Molecular Biology, making it a good source for 

extraction of the transport proteins.  

The TransportDB (available at: http://www.membranetransport.org) [62] has annotations of 

transport proteins in organisms with fully sequenced genomes. Each organism has its complete 

set of membrane transport systems identified and classified into different types and families. 

TransAAP [63] is a tool that can be accessed through the TransportDB website for genome 

wide transport protein identification and annotation. This tool receives a query genome from 

the user and then proceeds to identify transporter proteins by searching the query sequence 

http://www.tcdb.org/
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against different databases and by using the tmhmm tool. The result is a list of predicted 

transporters annotated automatically that can be curated by the user. 

 

Other relevant Databases. The Universal Protein Resource (Uniprot) is a database that 

contains reviewed annotations (Swiss-Prot) and automatically generated annotations 

(TrEMBL) of protein data [64].  

Developed by the European Bioinformatics Institute (EMBL-EBI), the SIB Swiss Institute of 

Bioinformatics and the Protein Information Resource (PIR), Uniprot, and more specifically 

Swiss-Prot is a great source of reviewed protein data. 

The Pfam database [37] is composed by a collection of protein families that are represented by 

multiple sequence alignments and HMMs. Since proteins are composed by one or more 

functional domains, identification of these domains within the protein´s sequence can lead to 

the functional characterization of the protein. 

2.4 Relevant development environments 

Biopython library. In this section a quick review is performed on what the Biopython (web 

site: http://biopython.org/wiki/Main_Page) libraries can provide. 

Biopython has great functionalities that make working with sequences an easier process using 

the “Seq” object. This is a sequence object containing the sequence´s string and the sequence´s 

alphabet. The “Seq” object supports different methods including finding that sequence´s 

complement or reverse complement. A class called “SeqRecord” holds a sequence as a “Seq” 

object but with additional information, including an identifier, name and description. The 

“SeqRecord” object can easily be annotated changing his attributes (seq, id, name, description, 

letter_annotations, annotations, features, and dbxrefs). 

The Biopython libraries have a good set of parsers that are able to parse different files in 

different formats including FASTA, GenBank, PubMed, SwissProt, Unigene and SCOP. These 

parsers allow access to the information contained in the records of the file.  

Biopython can also do sequence alignments using the module “AlignIO”.  

Extracting information from different biological databases is feasible with Biopython, making 

it easier to retrieve information from databases as Entrez, PubMed, SwissProt, Prosite, etc. 

Biopython also allows conducting a BLAST search locally or remotely. 

More information and examples about the Biopython functionalities is available at the 

Biopython Tutorial and Cookbook [65]. 
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Scikit-learn and other scientific computing libraries in python. Scikit-learn (http://scikit-

learn.org/stable/) is a library containing many resources useful to solve machine learning 

problems using Python [66]. The scikit-learn uses the numpy, scipy and matplotib libraries 

available at http://www.scipy.org/. In this section, a quick review on some of the scikit-learn 

functionalities useful for solving supervised learning problems will be presented. 

First, for a dataset to be used in the scikit-learn package it has to be composed by input attribute 

values (numpy array with n*m dimensions, where n are the examples and m are the in-

attributes) and output attribute values (numpy array with 1 dimension of size n). A file 

containing the dataset can be easily loaded using the “genfromtxt” function from the “numpy” 

library.  

The datasets can be divided into training and test dataset importing the “cross_validation” 

function. A parameter can be changed to define the proportion of the division 

The scikit-learn library has a variety of models for supervised learning problems including 

KNNs, decision trees, naïve bayes, linear and logistic regression and SVMs. 

After creating the model, it can be easily trained by fitting the dataset to the model by the “fit” 

function after providing the training dataset to the model. 

The scikit-learn libraries also have a variety of models for unsupervised learning problems 

including clustering, principal component analysis (PCA), etc. 

Evaluation of the model performance using cross validation can be easily calculated, and other 

performance estimators like leave-one-out or Kfold cross validation can be created. The scoring 

parameter is the error metric used by the validation function, if omitted it considers the default 

method´s estimator as the error metric, but other error metrics like the f1 error metric can be 

chosen. For regression problems, the scoring parameter can be changed for the R2 error metric, 

mean squared error and mean absolute error. 

Ensemble methods like bagging, random forests and boosting can be applied as other regular 

models. Feature selection is also possible. A variance filter can be implemented, while 

univariate filters using Chi squared and linear regression are also available. Scikit learn can also 

implement Recursive feature elimination (RFE) as a wrapper method for feature selection. The 

process of model selection can be implemented using an exhaustive grid search or a randomized 

parameter optimization. 

Scikit learn has many other utilities, including dataset transformations and dataset loading 

utilities. For more information about the scikit learn functionalities you can access the scikit 

learn user guide [67]. 

http://www.scipy.org/
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3. METHODS 

3.1 Data 

Creating a model capable of separating transport proteins (positive cases) from non-transport 

proteins (negative cases) using their amino acid sequence as the basis for generating features, 

requires the usage of well annotated and reviewed proteins. 

The positive cases (transport proteins) were obtained by downloading a FASTA file from 

TCDB containing all the TCDB´s proteins, therefore obtaining 13788 positive cases. 

The negative cases (non-transport proteins) were obtained by filtering the Swiss-Prot database 

(total of 551,987 proteins) with the query <NOT "transporter protein", NOT “transmembrane”, 

NOT "transport activity">, getting a total of 467,680 proteins in a FASTA formatted file. The 

query <NOT “transmembrane”> was used to guarantee that a better elimination of transport 

proteins from the Swiss-Prot database was achieved. Note that the use of <NOT 

“transmembrane”> might cause some difficulties for the models generated in this thesis when 

trying to predict if a transmembrane protein is a transporter protein or not.  

3.2 Input attributes and output attributes  

For the development of a good model, a good set of input attributes (features) is necessary. In 

this thesis, 11 different types of features are generated for each protein. A brief description of 

each feature is provided next. 

1. Amino acid occurrence is an array of 20 columns where each column contains the 

number of times a specific amino acid is present (ni) in the protein´s sequence ( 10 ).  

2. Amino acid composition is an array of 20 columns where each column contains the 

amino occurrence of a specific amino acid divided by the total number of amino acids 

of the sequence (N) ( 11 ). 

 𝐴. 𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝑖) = 𝑛𝑖 ( 10 ) 

 
𝐴. 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑖) =

𝑛𝑖

𝑁
 

( 11 ) 
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In order to try to obtain more information from the amino acid sequence a division based on 

their physicochemical properties was created. 

3. Amino acid physicochemical occurrence is an array of 11 columns containing the 

sum of the times each amino acid (i) from a specific group (nj) occurs ( 12 ). The 

groups are as follows: the first one is the amount of charged amino acids (D, E, K, H, 

and R), followed by Aliphatic amino acids (I, L, and V), Aromatic amino acids (F, H, 

W, and Y), Polar amino acids (D, E, R, K, Q, and N), Neutral amino acids (A, G, H, P, 

S, T, and Y), Hydrophobic amino acids (C, F, I, L, M, V, and W), positively charged 

amino acids (K, R, and H), negatively charged amino acids (D and E), tiny amino 

acids (A, C, D, G, S, and T), Small amino acids (E, H, I, L, K, M, N, P, Q, and V), and 

finally, large amino acids (F, R, W, and Y). 

4. Amino acid physicochemical composition is an array of 11 columns where each 

column contains the amino acid physicochemical occurrence previously showed 

divided by the total number of amino acids in the sequence ( 13 ). 

 

 
𝐴. 𝑃𝑄. 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝑗) =  ∑ 𝑛𝑗𝑖 

( 12 ) 

 
𝐴. 𝑃𝑄. 𝑐𝑜𝑚𝑝𝑜𝑠𝑡𝑖𝑜𝑛 (𝑗) =

∑ 𝑛𝑗𝑖

𝑁
 

( 13 ) 

 
𝐷. 𝑐𝑜𝑚𝑝(𝑖) =

𝑑𝑖

𝑁 − 1
 

( 14 ) 

 

5. Dipeptide composition is an array of 400 columns containing the number of times a 

specific dipeptide occurs (di) divided by the total number of dipeptides (N-1)( 14 ). 

6. The Alpha helices feature is an array with only one column containing the number of 

alpha helices estimated by the Phobius tool [51] [68]. 

7. The Signal peptides feature is an array with only one column where proteins with an 

estimated signal peptide by the Phobius tool have a “1” and proteins with no estimated 

signal peptide have a “0”. 

8. The Beta barrel feature is an array with only one column with “1” or “0” depending if 

the tool BOMP has predicted a beta barrel formation or not [54], [69]. 
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9. Subcellular location feature is an array with one column containing numbers between 

0 and 24 depending on the subcellular location predicted by the LocTree3 tool [44], 

[70]. The numbers represent the following locations: 0 is given when an error occurs; 1 

- “chloroplast”; 2 - “chloroplast membrane”; 3 - “cytosol”; 4 – “endoplasmic 

reticulum”; 5- “endoplasmic reticulum membrane”; 6- “extra-cellular”; 7- “fimbrium”; 

8- “golgi apparatus”; 9- “golgi apparatus membrane”; 10- “mitochondrion”; 11- 

“mitochondrion membrane”; 12- “nucleus”; 13- “nucleus membrane”; 14- “outer 

membrane”; 15- “periplasmic space”; 16- “peroxisome”; 17- “peroxisome membrane”; 

18- “plasma membrane”; 19- “plastid”; 20- “vacuole”; 21- “vacuole membrane”; 22- 

“secreted”; 23- “cytoplasm”; 24- “inner membrane”. 

10. Number of transporter related Pfam domains is an array with one column that 

contains the number of transporter related Pfam domains presented by the proteins. The 

transporter related Pfam domains were obtained by filtering the Pfam website 

(http://pfam.xfam.org/) with the keywords “transporter”, “channel”, “pump”, and 

“permease”, obtaining a total of 4042 transporter related Pfam domains. 

11. Single transporter related Pfam domains is an array with 4042 columns, each 

representing one of the transporter related Pfam domains obtained. The “1” represents 

that the protein has that specific Pfam whether “0” represents that the protein does not 

have that Pfam. 

 

The main purpose of this thesis is to create a model capable of identifying transporter proteins. 

Creating an output attribute called “Is transporter” that assigns “1” or “0” given the features, 

the model will classify the proteins into “transporter” or “non-transporter” respectively. 

As mentioned previously the TCDB divides the transporter proteins into 5 different levels, 

classifying the proteins based on their TC system classification (Transporter Classification). 

The TC system incorporates functional and phylogenetic information; hence each level of the 

TC system is less ambiguous and more specific.  

After accessing if a protein is a transporter protein, a more detailed classification can be 

achieved by trying to classify the protein based on the TCDB TC system.  

The “TCDB1” output attribute was created to classify the transporter proteins based on the first 

five categories (see TCDB description in section 2.3) of the first level of the TC system. The 

“8” category was ignored, as its proteins are accessory factors involved in the transport and not 

http://pfam.xfam.org/
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transporter proteins. Likewise, the “9” category was also disregarded, since such proteins have 

yet to be reviewed by the TCDB expert staff. 

3.3 Data sets 

A total of four different datasets were developed to create and evaluate different models. 

The first dataset (Table 5) was composed by the features and output attribute (“Is Transporter”) 

of the total 27576 proteins, half of which were the proteins extracted from the TCDB containing 

the positive cases (13788), and the other half was a set of randomly chosen 13788 proteins from 

the negative cases extracted from Swiss-Prot. This dataset is an array with 4510 columns (4509 

features and 1 class) and 27576 rows (13788 instances of positive cases and 13788 instances of 

negative cases). 

The second dataset (Table 6) was equal to the first dataset only differing in the negative 

instances since they are randomly extracted from the negative cases generated using Swiss-

Prot. This dataset was created to determine if the negative cases randomly generated had 

influence in the performance of the model. 

The third dataset (Table 7) was created by only selecting the proteins with the first level of the 

TC system between 1 and 5, eliminating the 8 and 9 categories. Again, the negative instances 

were extracted by randomly selecting proteins from the negative cases generated by Swiss-Prot. 

This dataset was composed by a total of 23435 instances (11717 positive cases and 11717 

negative cases), each with 4509 features and one output attribute (“Is Transporter”). 

The fourth dataset (Table 8) was created by eliminating all instances of the first dataset that 

were not in the categories 1, 2, 3, 4, and 5 of the TC system. This dataset was composed by 

11717 instances, with all the 4509 features and one output attribute (“TCDB1”) and its main 

purpose was to create and measure the performance of the model created to classify the 

transporter proteins into the 5 categories of the first level of the TC system. 
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Table 5- Dataset1 content 

Dataset1 (27576x4510) Features (x4509) Is Transporter (x1) 

Positive cases (13788) … 1 

Negative cases (13788) … 0 

 

Table 6- Dataset2 content 

Dataset2 (27576x4510) Features (x4509) Is Transporter (x1) 

Positive cases (13788) … 1 

Negative cases (13788) … 0 

 

Table 7- Dataset3 content 

Dataset3 (23434x4510) Features (x4509) Is Transporter (x1) 

Positive cases (11717) … 1 

Negative cases (11717) … 0 

 

Table 8- Dataset4 content 

Dataset4 (11717x4510) Features (x4509) TCDB1 (x1) 

 

 

Positive cases (11717) 

 

 

 

… 

 

 

1 

2 

3 

4 

5 

 

 

After being created, the instances of all datasets were mixed randomly, providing a better 

sample of the dataset after performing cross-validation. 

3.4 Dataset pre-processing 

The datasets used to train machine learning models are sometimes not optimal, either containing 

missing values (NaN), not being standardized, or not being scaled. Indeed, before developing 

the machine learning model, the dataset should be pre-processed and transformed.  

The pre-processing of the datasets was achieved using the “scikitlearn” pre-processing features. 
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All missing values on the datasets were taken off by utilizing the feature “Imputer” that replaces 

“Nan” values by column mean, Standardization of the datasets was achieved by removing the 

mean and scaling to unit variance utilizing the feature “StandardScaler”, while the scaling of 

the dataset was done by setting the maximal absolute value of a feature to 1.0 without shifting 

or centring the data utilizing the feature “MaxAbsScaler”.  

3.5 Feature selection 

The larger the number of features in the dataset, the more time it will take for a model to fit the 

data, and sometimes, some features might lower the performance of a model. Features that 

present the same value for every single instance are therefore useless for the training of the 

model and should be eliminated from the dataset. This can be achieved by applying a variance 

threshold filter to the dataset. Using “sklearn´s” feature selection utilities, namely 

“VarianceThreshold”, all features with zero variance (i.e. features presenting the same value in 

every instance) are eliminated.  

A recursive feature elimination can be performed to obtain a smaller dataset. Once again, using 

“sklearn´s” feature selection utilities, namely “RFE”, this can be achieved. Recursive feature 

elimination uses an external estimator given by the user that will be trained using the initial set 

of features. The estimator then assigns weights to each feature, and eliminates the ones with the 

smallest weights, repeating the process, as the name suggests, until the desired number of 

features set by the user are achieved.  

In this thesis, two different RFE filters were created using the external estimators 

LogisticRegression and SVM, and the number of features to be held was set to 1000 in both 

cases.  

Before training the model, the user can choose the filters to be applied in the dataset. The use 

of the “VarianceThreshold” filter is recommended before the use of the “RFE” filter since it 

decreases the time spent in the process. 

3.6 Models 

Using the training dataset seven different models were developed: Naïve Bayes (NB) model 

using “sklearn´s” “GaussianNB” function; K-nearest neighbours (KNN) model using 

“sklearn´s” “KNeighborsClassifier” function; Decision tree model using “sklearn´s” 

“ExtraTreesClassifier” (ET) function; Logistic regression (LR) model using “sklearn´s” 
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“linear_model.LogisticRegression” function; Support vector machine (SVM) model using 

“sklearn´s” “svm” function; Gradient Boosting (GB) using “sklearn´s” 

“GradientBoostingClassifier” function; Random Forest (RF) using “sklearn´s” 

“RandomForestClassifier” function. 

3.7 Ensemble Methods 

With the objective of improving the model´s performance, some ensemble methods were 

implemented. A bagging classifier was used in each model using the “sklearn´s” 

“BaggingClassifier” function. 

Two voting classifiers were implemented using the “sklearn´s” “VotingClassifier” function. 

The first one used a majority voting, meaning that the final prediction for each protein was the 

class most predicted by all the classifiers, while the second one used a weighted majority voting 

process where each of the classifiers have prediction weights given by the user (Figure 3). 

 

 

 

Training dataset 

T
estin

g
 d

ataset 

M1 M2 … MiModels 

Predictions 
P1 P2 … Pi 

Voting Classifier (weighted/non weighted) 

Final Prediction Pf 

Figure 3- Voting classifier prediction method (Hard Vote classifier´s final prediction is the class predicted by most of the 

models, while weighted voting classifiers considers that each model has a weight given by the user. When making the final 

prediction, models with bigger weight have more influence in the final result. 
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3.8 Cross-validation 

To determine the performance of a model, the dataset used for training must be different from 

the dataset used for testing. Using “sklearn´s” cross validation utilities, namely 

“cross_val_score”, a five-fold cross validation test can be performed for each model, 

guaranteeing that the dataset will be divided into 5 equal parts, where 4 parts of the dataset will 

be used to train the model and the other one for testing the model.  

3.9 Performance evaluation 

Evaluation of the model´s performance was accessed by a five-fold cross validation process, 

where the models were trained and tested using five different datasets generated from the 

original dataset. The results of the performance evaluation were calculated by the mean of the 

PECC, F1 and ROC-AUC scores for each fold of the cross-validation process. Confusion matrix 

scores were calculated through the division of the original dataset into training and testing 

datasets with a proportion of 0.80, meaning that the training dataset will be composed by 80% 

of the data while the test dataset will be composed by the last 20%.
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4. DEVELOPMENT 

4.1 Code Developed 

The code developed in this thesis was created with Python 3.5 using the Python IDE PyDev for 

Eclipse. It is divided into different scripts that try to mimic the process for the creation of a 

machine learning algorithm as exemplified in Figure 1.  

Collecting the Data was done by simply downloading the files containing the positive and 

negative cases as specified in 3.1.  

After that, Data processing was implemented with several different scripts. Organization of 

the positive cases was performed in two different ways using two scripts 

“TCDB_ProteinType_Division.py” and “TCDB_ProteinType_Division2.py”. 

“TCDB_ProteinType_Division” purpose was to divide the FASTA records of the positive cases 

into seven different files according to the first level of the TC system as seen in Figure 4, while 

“TCDB_ProteinType_Division2” divided the positive cases into the fourth level of the TC 

system as shown in the example of Figure 5. 

Secondly, 13788 random sequences were extracted from the negative cases file using the script 

“Negative_cases.py” saving the random sequences into a new file. 

Figure 4- "TCDB_ProteinType_Division" generated files 

Figure 5- "TCDB_ProteinType_Division2" example of the generated files 
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From these files (positive and negative cases) a file containing the data necessary to generate 

the features and classes was created using the script “Data_creation.py”. This file is nothing 

more than an array where the columns are “Fasta ID”, Uniprot Accession number”, “Sequence”, 

“Is Transporter”, “TCDB ID”, “Taxonomy Domain”. The “Is Transporter” column contains 

“1” for transporter proteins and “0” for non-transporter proteins, the others are self-explanatory. 

Utilizing the functionalities of the Biopython library the “Fasta ID” and “Sequence” from each 

protein were easily obtained using the “SeqIO” parser of FASTA files. “SeqIO” creates a 

record, and the information on the FASTA file can be extracted from that record. The “Uniprot 

Acession number” and “TCDB ID” were obtained by a simple division of the “Fasta ID”. 

Protein Domains were acquired with Biopython´s “Entrez.efetch”, which accesses NCBI using 

the protein Accession number. From there a record is created using “SeqIO”, and the 

information about the protein domain on that record can be extracted. For some proteins the 

“Entrez.efetch” module could not access the proteins information on NCBI, in those cases the 

protein domain was obtained by accessing remotely to the Uniprot. 

 

From the script “Features_creation.py” all the input attributes were created, while the output 

attributes were created by “Out_attribute_creation.py”.  

The features “Amino acid occurrence”, “Amino acid composition”, “Amino acid 

physicochemical occurrence”, “Amino acid physicochemical composition” and “Dipeptide 

composition”, were created by taking the sequence of each protein from the “datafile”, and the 

respective equation for the calculation of the feature was applied as seen in the pseudo code in  

Figure 6, Figure 7 and Figure 8. 
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Feature: Amino acid occurrence  

def create_aminoacid_occurrence(datafile): 

 for each protein sequence in datafile: 

  feature= create array ((count AA x in sequence, …)) 

  FEATURES= stack the feature array vertically ((FEATURES, feature)) 

 return FEATURES 

Feature: Amino acid composition 

def create_aminoacid_composition(datafile): 

 for each protein sequence in datafile: 

  feature=create array ((count AA x in sequence/len(sequence), …)) 

  FEATURES= stack the feature array vertically ((FEATURES, feature)) 

 return FEATURES 

Figure 6- Pseudo code for the creation of the amino acid occurrence and composition features 
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For the feature “Number of Transporter related Pfam domains” a file containing many 

filtered transported related Pfam domains was used. In this feature, for each protein the NCBI 

or Uniprot (if the previous fails) are accessed to retrieve all the protein´s Pfam domains. The 

final result is an array with the number of transporter related Pfam domains the protein has. 

This is obtained by incrementing 1 for each Pfam domain that is equal to a Pfam domain present 

in the file containing the transporter related Pfam domains as seen in the pseudo code in Figure 

9.  

 

 

Feature: Amino acid physicochemical occurrence 

def create_aminoacid_physico_chemical_occurrence(datafile): 

 for each protein sequence in datafile: 

  feature=create array ((count AAs of group x in sequence, …)) 

  FEATURES= stack the feature array vertically ((FEATURES, feature)) 

 return FEATURES 

Feature: amino acid physicochemical composition 

def create_aminoacid_physico_chemical_composition(datafile): 

 for each protein sequence in datafile: 

  feature=creat array ((count AAs of group x in sequence/len(sequence),)) 

  FEATURES= stack the feature array vertically ((FEATURES, feature)) 

 return FEATURES 

Feature: Dipeptide composition 

def create_dipeptide_composition(datafile): 

 for each protein sequence in datafile: 

  feature=create array ((count dipeptide x in sequence/len(sequence), …)) 

  FEATURES= stack the feature array vertically ((FEATURES, feature)) 

 return FEATURES 

Figure 7-Pseudo code for the creation of the amino acid physicochemical occurrence and composition features 

Figure 8- Pseudo code for the creation of the dipeptide composition feature 



 

39 

The feature “Single transporter related Pfam domains” is an array of the size of the number 

of transporter related Pfam domains. As in the feature “Number of Transporter related Pfam 

domains” the Pfams of each protein are accessed by the NCBI or Uniprot. For each protein an 

array of zeros (size of the number of transporter related Pfam domains) is then created and the 

Feature: Number of Transporter related Pfam domains 

def create_transporter_related_pfam_domains(datafile, file with the transporter pfam´s): 

 for each protein in datafile: 

  nºProteinPfams=0 

  try: 

   handle=Access NCBI by Entrez.efetch using protein Accession nº 

record=SeqIO.read(handle, format=”genbank”) 

ProteinAnnotations= record.annotations 

database_source= (ProteinAnnotations.get(“db_source”)) 

ProteinPfams= re.findall(“(Pfam:.+?),”,database_source ) 

   for pfam in ProteinPfams: 

    if pfam in file with the transporter pfam´s: 

     nºProteinPfams+=1 

   feature=create array ((nºProteinPfams)) 

   FEATURES= stack feature array vertically ((FEATURES, feature)) 

  except: 

   source_code= Protein´s UniProt html page  

   links= all links in the source_code 

   PfamLinks= re.findall("(http://pfam.xfam.org/family/.{7})",links) 

   ProteinPfams= extract Pfams from PfamLinks 

   for pfam in ProteinPfams: 

    if pfam in file with the transporter pfam´s: 

     nºProteinPfams+=1 

   feature=create array ((nºProteinPfams)) 

   FEATURES= stack feature array vertically ((FEATURES, feature)) 

 Saves a file with each protein transport related pfam´s 

return FEATURES 

Figure 9-Pseudo code for the creation of the number of transporter related pfam domains feature 
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“0s” are replaced by “1” if the protein has that specific transporter related Pfam domain as 

represented in the pseudo code on the Figure 10. 

 

The features “Number of alpha helices” and “Signal peptide” are both achieved using a 

Phobius rest API. As seen in the pseudo code in Figure 11, first the sequence of each protein is 

posted to the Phobius web site and the response URL of each post is retrieved. The response 

URLs contain the results for each protein. After filtering the results, the number of alpha helices 

and the presence of signal peptide are obtained. 

Using a BOMP rest API the feature “Beta Barrel” is created as seen in the pseudo code in 

Figure 12. First the sequence of each protein is posted to the BOMP website, retrieving the 

Feature: Single transporter related Pfam domains 

def create_single_pfam_features(datafile, file with each protein´s transport related pfam´s): 

 FEATURES=create array((0s array(size:nºprot in datafile x nº transporter pfam))) 

for each protein in datafile: 

  replace “0” for “1” for each transporter related pfam in its respective place 

 return FEATURES  

Features: Number of alpha helices and signal peptide 

def create_PhobiusJobIds(datafile): 

for each protein in datafile: 

 use created Phobius RESTful API to post data (email, format, stype, seq) 

return PhobiusJobIds 

def create_num_alphahelices_signalpeptide(datafile, PhobiusJobIds): 

for each protein in datafile: 

 get results from PhobiusJobIds 

 feature=create array ((nºalphahelices, signalpeptide)) 

 FEATURES= stack feature array vertically ((FEATURES, feature)) 

return FEATURES 

Figure 10- Pseudo code for the creation of the single transporter related Pfam domains feature 

Figure 11-Pseudo code for the creation of the number of alpha helices and signal peptide features 
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response URLs that contain the results. Then the result of each protein is filtered to see if the 

protein has a beta barrel conformation. 

To create the feature “Location Prediction” a LocTree3 rest API was used as seen in the 

pseudo code in Figure 13. First the sequence and domain of each protein are posted to the 

LocTree3 website, retrieving the response URLs that contain the results. Then the result of each 

protein is filtered from the response URL to see the protein´s subcellular location. 

 

Feature: Beta Barrel 

def create_BOMPJobIds(datafile): 

for each protein in datafile: 

 use created BOMP RESTful API to post data (seq) 

return BOMPJobIds 

def create_betabarrel(datafile, BOMPJobIds): 

for each protein in datafile: 

 get results from BOMPJobIds 

 feature=create array ((betabarrel)) 

 FEATURES=np.vstack((FEATURES, feature)) 

return FEATURES 

Feature: Location Prediction 

def create_LocTree3JobIds(datafile): 

for each protein in datafile: 

 use created LocTree3 RESTful API to post data (domain, email, seq) 

return LocTree3JobIds 

def create_location_prediction(datafile, LocTree3JobIds): 

for each protein in datafile: 

 get results from Loctree3JobIds 

 feature=create array ((location)) 

 FEATURES= stack feature array vertically ((FEATURES, feature)) 

return FEATURES 

Figure 12-Pseudo code for the creation of the beta barrel feature 

Figure 13- Pseudo code for the location prediction feature 
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To create the out-attribute “Is transporter” a simple access to the data file containing the 

proteins information was sufficient as seen in the pseudo code in Figure 14.  “TCDB TC system 

IDs” out attribute is created by splitting the TC system IDs into the first 4 levels if the protein 

is a transporter protein as seen in the pseudo code in Figure 14. 

 

The final dataset to be used in the training and testing of the models was generated by the script 

“Dataset_creation.py”. In this script, the features and out attribute are joined in one dataset. 

The instances in the dataset are then mixed and the features and out attribute are divided again 

into two different datasets. 

Out attribute: Is Transporter 

def create_isTransporter(datafile): 

for each protein in datafile: 

 check if it’s a transporter or not in the datafile 

 feature=create array ((1 if transporter, 0 if not)) 

 FEATURES= stack feature array vertically ((FEATURES,feature)) 

return FEATURES 

Out attribute: TCDB TC system IDs 

def create_TCDB_ID(datafile): 

for each protein in datafile: 

  if transporter check the protein´s TC ID  

  outattribute=create array (lvl1, lvl2, lvl3, lvl4)) 

 OUTATTRIBUTES=stack array vertically((OUTATTRIBUTES, outattribute)) 

Figure 14-Pseudo code for the creation of the out attributes “Is Transporter” and “TCDB_ID” 
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Data Transformation, Model training and testing were performed in the 

“Model_creation_and_evaluation.py” script. As seen in the pseudo code in Figure 17, first 

the in and out attributes are loaded as Input and Output, then the missing values (NaN) in the 

Input are removed, followed by a feature selection method that reduces the Input size. The Input 

can then be standardized, scaled or both, before being used to train and test the models. 

Script: Dataset_creation.py 

def insert_features_outattribute(features,outattribute): 

 finalDataset=create array ((features,)) 

 finalDataset= stack outattribute array horizontally((finalDataset,outattribute)) 

 return finalDataset 

def mix_Dataset(finalDataset): 

 mixedDataset=finalDataset.iloc[np.random.permutation(len(finalDataset))] 

 return mixedDataset 

def split_mixedDataset(mixedDataset): 

 mixedFeaturesDataset=mixedDataset.delete(outattribute) 

 mixedOutattributeDataset=mixedDataset.delete(features) 

 return mixedFeaturesDataset, mixedOutattributeDataset 

Figure 15-Pseudo code used for mixing the final dataset and splitting it´s in and out attributes 
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After evaluating the results obtained, Improving the models can be achieved by selecting the 

best transformed data for each model and implementing ensemble methods like Voting 

classifiers as seen in the pseudo code in Figure 16.  

Script: Model_creation_and_evaluation 

Data Transformation: 

 Input,Output = mixedFeaturesDataset, mixedOutattributeDataset 

 Input = Imputer().fit_transform(Input) 

 if filtro == ”y”: 

  Filter = VarianceThreshold (Input) or VarianceThreshold+RFE(Input) 

 else: Filter = Input 

 if StandarScaler == “y”: 

  use preprocessing.StandarScaler() 

 if MaxAbsScaler ==”y”: 

  use preprocessing.MaxAbsScaler() 

Model Training and testing: 

 if BaggingClassifier ==”y”: 

  use BaggingClassifier() 

 create models (NB, ET, KNN, LR, GB, RF, SVM) 

 PECC=cross_validation.cross_val_score(model, Filter, Output, cv=5) 

 F1= cross_validation.cross_val_score(model, Filter, Output, cv=5, scoring=”f1”) 

 AUC=cross_validation.cross_val_score(model,Filter,Output,cv=5,scoring=”roc_auc”) 

 

 Saves all models created and respective statistical analysis files 

HardVoteModel=VoteClassifier(estimator[models], voting=”hard”) 

PECC=cross_validation.cross_val_score(HardVoteModel, Filter, Output, cv=5) 

F1= cross_validation.cross_val_score(HardVoteModel,Filter,Output,cv=5,scoring=”f1”) 

SoftVoteModel=VoteClassifier(estimator[models], voting=”hard”, weights=[weight of each model]) 

PECC=cross_validation.cross_val_score(HardVoteModel, Filter, Output, cv=5) 

F1= cross_validation.cross_val_score(HardVoteModel,Filter,Output,cv=5,scoring=”f1”) 

 

Figure 17-Pseudo code for the data transformation, feature selection and model training and testing 

Figure 16-Pseudo code for the ensemble methods “VoteClassifier” with hard voting and weighted hard voting 
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Applying the model 

After creating the models, they can be used to predict if a protein is or not a transporter protein. 

This can be done with the script “MakePrediction.py”. If the protein is a transporter protein a 

new model can be used to access the first level of the TCDB´s TC system as seen in the pseudo 

code in Figure 18. 

 

4.2 Workflow 

The process of creating the datasets to the development of the final models used to make the 

predictions must follow the workflow presented in Figure 19. 

  

Script: MakePrediction.py 

 Given the sequence and domain of a protein 

 Generates the features for that protein 

 Loads the models 

 Predicts if protein is transporter protein (1) or not a transporter protein (0) 

 If 1: 

  Load TC system level 1 models 

  Predicts the first level of the TC system (1,2,3,4 or 5) 

Figure 18-Pseudo code for the prediction method. Predicts if a protein is a transporter protein and if it is, predicts the first 

level of the TC system from 1 to 5. 

Negative_cases.py Data_creation.py Feature_creation.py 

Out_attribute_creation.py Dataset_creation.py 

Model_creation_and_evaluation.py 

Create_Best_Model_and_evaluate.py 

Results 

MakePrediction.py 

Figure 19- Workflow of the developed algorithm 
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5. RESULTS AND DISCUSSION 

5.1 Case studies 

Four different datasets were used (Dataset1, Dataset2, Dataset12345 and Transporter Dataset) 

to evaluate the developed models. 

As detailed before, the first two datasets were used to create models capable of distinguishing 

transporter proteins and other transport related proteins from non-transporter related proteins 

and evaluate the performance of the models. The first dataset was used to evaluate the 

performance of the models when using all the TCDB´s proteins. The second dataset was used 

to determine if the negative cases selected for this study would influence in the performance of 

the models. The Dataset12345 was used to create models capable of distinguishing transporter 

from non-transporter proteins and evaluate the performance of the models when using only 

well-known and curated transporter proteins from the TCDB (categories 8 and 9 of first level 

of the TC system removed). Finally, the Transporter Dataset was used to create and evaluate 

models capable of determining the TC system ID of a transporter protein, and eventually 

characterize the protein. 

Before performing the training and testing of the models with the 5-fold cross-validation, the 

instances of all datasets were randomly mixed to ensure that the training and testing datasets 

were composed by, nearly, half positive and half negative cases. Thus, the folds were balanced. 

5.1.1 Case study: Transport and Transport related protein models performance 

To evaluate and improve the models performance, several different tests were performed, using 

different feature filters and pre-processing methods on Dataset1. 

First, the dataset was used with all its 4510 input features and for the pre-processing of the 

dataset, only the “Imputer” function was used. The results of the five-fold cross validation test 

are shown in Table 9, in which the Naïve Bayes model was the lowest performing model 

(bellow 0.80) in both PECC and F1 scores while all the others were above. 
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Table 9- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using Dataset1 without filters. 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.76 (+/- 0.00) 0.70 (+/- 0.01) 0.92 (+/- 0.00) 

ExtraTreeClassifier 0.86 (+/- 0.00) 0.85 (+/- 0.00) 0.94 (+/- 0.00) 

K nearest Neighbours 0.84 (+/- 0.01) 0.83 (+/- 0.01) 0.92 (+/- 0.00) 

Logistic Regression 0.90 (+/- 0.00) 0.89 (+/- 0.01) 0.95 (+/- 0.00) 

GradientBoosting 0.90 (+/- 0.00) 0.90 (+/- 0.01) 0.96 (+/- 0.00) 

RandomForest 0.86 (+/- 0.00) 0.86 (+/- 0.01) 0.94 (+/- 0.00) 

SVM 0.85 (+/- 0.01) 0.84 (+/- 0.01) 0.92 (+/- 0.00) 

Dataset characteristics: Features- All; Pre-Processing- Imputer(); Filters- None; Using Dataset1 of  size (27576,4510). 

 

The second test using dataset1 used a variance threshold filter and the only pre-processing 

method used was the “Imputer”. The mean of the five-fold cross validation test results on the 

dataset is presented in Table 10. 

Removing the features that had the same value for every protein (zero variance features) 

returned almost the same results as using the entire dataset1, but the process of creating and 

evaluating the models was much faster. This was expected since redundant features with the 

same result for every instance do not contribute to a better discrimination of the classes and will 

only slow the process. The Logistic Regression and Gradient Boosting models obtained the best 

results.  
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Table 10- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using a variant of Dataset1 with 

variance threshold filter. 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.77 (+/- 0.01) 0.71 (+/- 0.01) 0.93 (+/- 0.00) 

ExtraTreeClassifier 0.86 (+/- 0.01) 0.85 (+/- 0.00) 0.94 (+/- 0.00) 

K nearest Neighbours 0.84 (+/- 0.01) 0.83 (+/- 0.01) 0.92 (+/- 0.00) 

Logistic Regression 0.89 (+/- 0.00) 0.89 (+/- 0.01) 0.95 (+/- 0.00) 

GradientBoosting 0.90 (+/- 0.00) 0.90 (+/- 0.00) 0.96 (+/- 0.00) 

RandomForest 0.87 (+/- 0.00) 0.86 (+/- 0.00) 0.94 (+/- 0.00) 

SVM 0.85 (+/- 0.00) 0.84 (+/- 0.00) 0.93 (+/- 0.00) 

Dataset characteristics: Features- All; Pre-Processing- Imputer(); Filters- Variance threshold; Using Dataset1 of  size 

(27576,2873). 

 

To test the influence of a standardization of the values of the features on the performance of the 

models the “StandardScaler” function was included, maintaining the other pre-processing 

function “Imputer” and using the filter “Variance threshold”. The results of the five-fold cross-

validation process are shown in Table 11, in which improvements signalled in green were 

obtained in the KNN, LR, and SVM models, while worse results were obtained in the NB model 

signalled in red. 

These results show that the LR, the KNN and SVM (mainly the latter two), benefit greatly with 

a standardization of the features (e.g. Gaussian with 0 mean and unit variance), while the NB 

model does not. 

 

Table 11- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using a variant of Dataset1 with 

StandardScaler(). 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.73 (+/- 0.00) 0.63 (+/- 0.01) 0.75 (+/- 0.00) 

ExtraTreeClassifier 0.86 (+/- 0.00) 0.85 (+/- 0.01) 0.94 (+/- 0.00) 

K nearest Neighbours 0.88 (+/- 0.00) 0.87 (+/- 0.00) 0.95 (+/- 0.00) 

Logistic Regression 0.90 (+/- 0.00) 0.90 (+/- 0.00) 0.96 (+/- 0.00) 

GradientBoosting 0.90 (+/- 0.00) 0.90 (+/- 0.01) 0.96 (+/- 0.00) 

RandomForest 0.87 (+/- 0.00) 0.86 (+/- 0.00) 0.94 (+/- 0.00) 

SVM 0.89 (+/- 0.00) 0.88 (+/- 0.01) 0.95 (+/- 0.00) 

Dataset characteristics: Features- All; Pre-Processing- Imputer() and StandardScaler(); Filters- Variance threshold; Using Dataset1 of size 

(27576,2873). 
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The influence of scaling the values of the features on the performance of the models was 

assessed by the “MaxAbsScaler” function, keeping the other pre-processing function “Imputer” 

and using the filter “Variance threshold”. The results of the five-fold cross-validation process 

are presented in Table 12 where improvements in the KNN model were signalled in green while 

worse results in the NB, LR, and SVM models were signalled in red. The performance of the 

LR and SVM models reported an overall better performance when using the pre-processing 

function “StandardScaler” compared to the use of “MaxAbsScaler”. The only model that 

benefited from scaling the dataset with “MaxAbsScaler” was the KNN model reaching the same 

performance as when using the “StandardScaler” function. 

 
Table 12- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using a variant of Dataset1 with 

MaxAbsScaler(). 

 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.73 (+/- 0.00) 0.64 (+/- 0.01) 0.75 (+/- 0.00) 

ExtraTreeClassifier 0.86 (+/- 0.00) 0.85 (+/- 0.01) 0.94 (+/- 0.00) 

K nearest Neighbours 0.88 (+/- 0.00) 0.87 (+/- 0.00) 0.95 (+/- 0.00) 

Logistic Regression 0.89 (+/- 0.00) 0.88 (+/- 0.01) 0.95 (+/- 0.00) 

GradientBoosting 0.90 (+/- 0.00) 0.90 (+/- 0.00) 0.96 (+/- 0.00) 

RandomForest 0.87 (+/- 0.00) 0.86 (+/- 0.01) 0.94 (+/- 0.00) 

SVM 0.82 (+/- 0.01) 0.79 (+/- 0.01) 0.89 (+/- 0.00) 

Dataset characteristics: Features- All; Pre-Processing- Imputer() and MaxAbsScaler(); Filters- Variance threshold; Using 

Dataset1 of  size (27576,2873). 

 

Even though all features with zero variance were eliminated the number of features is still quite 

high (2873). Thus, a smaller dataset was used to reduce the computation time, to train and test 

the models, using an RFE filter after the “VarianceThreshold” filter that retained the best 1000 

features using a LR model as base. 

Again, the pre-processing function “Imputer” was employed and the results of this test are 

shown in Table 13. This time every single model got worse results when compared to the first 

test. This means that a lot of information about the proteins is lost when removing so many 

features.  
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Table 13- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using a variant of Dataset1 with a 

Variance threshold followed by a RFE filter. 

 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.61 (+/- 0.00) 0.38 (+/- 0.01) 0.88 (+/- 0.00) 

ExtraTreeClassifier 0.84 (+/- 0.01) 0.85 (+/- 0.00) 0.92 (+/- 0.00) 

K nearest Neighbours 0.84 (+/- 0.00) 0.84 (+/- 0.00) 0.92 (+/- 0.00) 

Logistic Regression 0.83 (+/- 0.00) 0.82 (+/- 0.00) 0.90 (+/- 0.00) 

GradientBoosting 0.83 (+/- 0.01) 0.82 (+/- 0.01) 0.91 (+/- 0.00) 

RandomForest 0.83 (+/- 0.01) 0.81 (+/- 0.01) 0.91 (+/- 0.00) 

SVM 0.75 (+/- 0.01) 0.68 (+/- 0.01) 0.85 (+/- 0.00) 

Dataset characteristics: Features- All; Pre-Processing- Imputer(); Filters- Variance threshold and RFE with 

LogisticRegression; Using Dataset1 of size (27576,1000). 

 

As shown in Table 14,  the analysis of all the previous tests’ results demonstrates that the best 

outcomes are obtained when using the “Imputer” pre-processing function and the filter 

“Variance Threshold” for the models NB, ET, GB and RF and using the “Imputer” and 

“StandardScaler” pre-processing functions and the filter “Variance Threshold” for the models 

KNN, LR and SVM. 

 
Table 14- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using a variant of Dataset1 with 

the best pre-processing parameters. 

 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.77 (+/- 0.00) 0.71 (+/- 0.01) 0.93 (+/- 0.00) 

ExtraTreeClassifier 0.86 (+/- 0.00) 0.85 (+/- 0.01) 0.94 (+/- 0.00) 

K nearest Neighbours 0.88 (+/- 0.00) 0.87 (+/- 0.00) 0.95 (+/- 0.00) 

Logistic Regression 0.90 (+/- 0.00) 0.90 (+/- 0.00) 0.96 (+/- 0.00) 

GradientBoosting 0.90 (+/- 0.00) 0.90 (+/- 0.01) 0.96 (+/- 0.00) 

RandomForest 0.87 (+/- 0.00) 0.86 (+/- 0.00) 0.94 (+/- 0.00) 

SVM 0.89 (+/- 0.00) 0.88 (+/- 0.01) 0.95 (+/- 0.00) 

Dataset characteristics for NB, ET, GB and RF models: Features- All; Pre-Processing- Imputer(); Filters- Variance 

threshold. Dataset characteristics for KNN, LR and SVM models: Features- All; Pre-Processing- Imputer() and 

StandardScaler; Filters- Variance threshold. Using Dataset1 of size (27576, 2873). 

 

After obtaining the best results for each model, an ensemble method was implemented on them. 

The purpose of the implementation of an ensemble of the models was to combine their 

prediction capabilities into a better suited model. Two hard voting classifiers and two weighted 
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voting classifiers were tested on a five-fold cross validation process and the results are shown 

in Table 15. The ensemble method that used a hard vote process with only the three best 

performing models obtained the best scores with PECC score of 0.91(0/- 0.00) and F1 scores 

of 0.90 (+/- 0.00).  

The fact that the best performing ensemble model (ensemble of the LR, GB and SVM models) 

showed little improvement compared to the performance of the best models (LR, GB and SVM) 

indicates that these models are not that diverse [13], meaning that they make errors in the same 

spaces of the test dataset. Identifying this “error space” is key to understanding why the models 

show nearly 10% of erroneous predictions. 

 
Table 15- Mean performance of the ensemble methods: “VotingClassifier” with and without weights on the models using a 

variant of Dataset1. 

Ensemble Models used PECC scores F1 scores 

Hard Vote All 0.90 (+/- 0.00) 0.89 (+/- 0.00) 

Weighted Vote 

[1,2,2,3,3,2,3] 

All 0.90 (+/- 0.00) 0.89 (+/- 0.00) 

Weighted Vote 

[1,3,3,10,10,3,10] 

All 0.90 (+/- 0.00) 0.90 (+/- 0.00) 

Hard Vote LR, GB, SVM 0.91 (+/- 0.00) 0.90 (+/- 0.00) 

Dataset characteristics for NB, ET, GB and RF models: Features- All; Pre-Processing- Imputer(); Filters- Variance 

threshold. Dataset characteristics for KNN, LR and SVM models: Features- All; Pre-Processing- Imputer() and 

StandarScaler; Filters- Variance threshold. Using Dataset1 of size (27576, 2873). Weights are according to the following 

order: NB, ET, KNN, LR, GB, RF, SVM. 

 

Although some models reach 0.90 in accuracy and F1 scores and have a ROC-AUC score of 

more than 0.95, meaning they can easily differentiate negative from positive cases, they still 

wrongly predict 10% of the data. In order to try to evaluate where these 10% fit in the dataset, 

confusion matrices were created using a 5-fold cross validation process. The results for the first 

fold are shown below (Table 16) while the results for the other folds can be seen in Attachment 

I. 
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Table 16-Confusion Matrix for all models after a cross-validation process with training dataset representing 80% of the 

dataset1 and the test dataset the other 20%. 

Predicted 
NB 

model 
0 1 __all__ Predicted 

ET 

model 
0 1 __all__ 

Actual     Actual     

0  
TN 

(2758) 

FP 

(38) 
2796 0  

TN 

(2624) 

FP 

(172) 
2796 

1  
FN 

(1240) 

TP 

(1479) 
2719 1  

FN 

(617) 

TP 

(2102) 
2719 

__all__  3998 1517 5515 __all__  3241 2274 5515 

Predicted 
KNN 

model 
0 1 __all__ Predicted 

LR 

model 
0 1 __all__ 

Actual     Actual     

0  
TN 

(2591) 

FP 

(205) 
2796 0  

TN 

(2638) 

FP 

(158) 
2796 

1  
FN 

(456) 

TP 

(2263) 
2719 1  

FN 

(396) 

TP 

(2323) 
2719 

__all__  3047 2468 5515 __all__  3034 2481 5515 

Predicted 
GB 

model 
0 1 __all__ Predicted 

RF 

model 
0 1 __all__ 

Actual     Actual     

0  
TN 

(2663) 

FP 

(133) 
2796 0  

TN 

(2615) 

FP 

(181) 
2796 

1  
FN 

(425) 

TP 

(2294) 
2719 1  

FN 

(534) 

TP 

(2185) 
2719 

__all__  3088 2427 5515 __all__  3149 2366 5515 

Predicted 
SVM 

model 
0 1 __all__ Predicted 

Actual     Actual 

0  
TN 

(2648) 

FP 

(148) 
2796 0 

1  
FN 

(490) 

TP 

(2229) 
2719 1 

__all__  3138 2377 5515 __all__ 

 

After a 5-fold cross validation process the results of each fold were identical to the results of 

the first fold observed in Table 16. Every model shows a higher number of FNs when compared 

to the number of FP, meaning that the models are misclassifying transport proteins as negative 

cases. The classification errors can be divided in about 7% of FNs and 3% FP. 

 

Changing the UniProt queries used to create the negative cases might also help in the 

improvement of the models overall performance and decreasing the FN cases since there might 
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be some transporter proteins in the negative cases that cause the model to predict a non-

transporter protein when the protein is a transporter protein. 

Errors in the creation of the features might also be the cause of the high error value. When using 

the REST APIs for the creation of the features, errors thrown by the server lead to a 

classification of the feature as “0”. Also, if the script fails to get the Pfams for a positive case, 

all the features for the transport related Pfam domains will be considered “0” and the protein 

might be mistaken by a negative case increasing the FN error. This could be possibly solved by 

using all existing Pfams as a feature, marking “1” if the protein had that Pfam domain or “0” if 

it did not. The problem with the latter approach was the computation time involved in the 

process due to the size of the dataset. 

5.1.2 Case study: Influence of negative cases in model performance 

As previously mentioned, Dataset2 was created to assess whether the randomly chosen negative 

cases had impact in the performance of the models. The models were created using the pre-

processing function “Imputer” and the filter “Variance Threshold”, evaluated using a five-fold 

cross-validation and the results are presented in Table 17. This results allow assuming, that 

although there are some improvements and some impairments in models when compared to the 

usage of both datasets, these differences are not significant thus suggesting that the randomly 

chosen negative cases have no influence in the models performance. 
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Table 17- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using a variant of Dataset2. 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.77 (+/- 0.01) 0.71 (+/- 0.01) 0.92 (+/- 0.00) 

ExtraTreeClassifier 0.86 (+/- 0.01) 0.85 (+/- 0.01) 0.94 (+/- 0.00) 

K nearest Neighbours 0.84 (+/- 0.01) 0.82 (+/- 0.01) 0.91 (+/- 0.00) 

Logistic Regression 0.90 (+/- 0.00) 0.89 (+/- 0.00) 0.96 (+/- 0.00) 

GradientBoosting 0.90 (+/- 0.01) 0.90 (+/- 0.01) 0.96 (+/- 0.00) 

RandomForest 0.87 (+/- 0.01) 0.86 (+/- 0.01) 0.94 (+/- 0.00) 

SVM 0.85 (+/- 0.01) 0.84 (+/- 0.01) 0.92 (+/- 0.00) 

Dataset characteristics: Features- All; Pre-Processing- Imputer(); Filters- Variance threshold; Using Dataset2 of  size 

(27576,2873). Red- worse results when comparing with dataset1; Green- better results when comparing with dataset1 

 

5.1.3 Case study: Transport protein models performance 

Using the best method to pre-process and filter the features determined in the case study 

Dataset1, the models were created and evaluated by a 5-fold cross validation process and the 

results are shown in Table 18. Once again the LR and GB models obtained the best results. 

Table 18- Mean of PECC, F1 and ROC-AUC scores after a 5-fold cross validation process using a variant of dataset12345. 

Models PECC scores F1 scores ROC AUC 

Naïve Bayes 0.79 (+/- 0.01) 0.74 (+/- 0.02) 0.92 (+/- 0.00) 

ExtraTreeClassifier 0.86 (+/- 0.00) 0.85 (+/- 0.00) 0.94 (+/- 0.00) 

K nearest Neighbours 0.84 (+/- 0.00) 0.83 (+/- 0.00) 0.91 (+/- 0.00) 

Logistic Regression 0.89 (+/- 0.01) 0.88 (+/- 0.00) 0.95 (+/- 0.00) 

GradientBoosting 0.90 (+/- 0.01) 0.90 (+/- 0.01) 0.95 (+/- 0.00) 

RandomForest 0.87 (+/- 0.00) 0.86 (+/- 0.01) 0.94 (+/- 0.00) 

SVM 0.85 (+/- 0.00) 0.84 (+/- 0.00) 0.92 (+/- 0.00) 

Dataset characteristics for NB, ET, GB and RF models: Features- All; Pre-Processing- Imputer(); Filters- Variance 

threshold. Dataset characteristics for KNN, LR and SVM models: Features- All; Pre-Processing- Imputer() and 

StandarScaler; Filters- Variance threshold. Using Dataset12345 of size (23434, 2873).  

 

The creation and evaluation of different ensemble voting classifiers returned the following 

results (Table 19). 
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Table 19- Mean performance of the ensemble methods: “VotingClassifier” with and without weights on the models. 

Ensemble Models used PECC scores F1 scores 

Hard Vote All 0.90 (+/- 0.00) 0.89 (+/- 0.00) 

Hard Vote LR, GB, SVM 0.91 (+/- 0.00) 0.90 (+/- 0.00) 

Hard Vote LR, GB, RF 0.90 (+/- 0.01) 0.90 (+/- 0.00) 

Weighted Hard Vote 

[1,2,2,3,3,2,3] 
All 0.90 (+/- 0.00) 0.90 (+/- 0.00) 

Weighted Hard Vote 

[1,3,3,10,10,3,10] 
All 0.91 (+/- 0.00) 0.90 (+/- 0.00) 

Weighted Hard Vote 

[1,6,3,10,10,7,4] 
All 0.90 (+/- 0.00) 0.89 (+/- 0.00) 

Dataset characteristics for NB, ET, GB and RF models: Features- All; Pre-Processing- Imputer(); Filters- Variance 

threshold. Dataset characteristics for KNN, LR and SVM models: Features- All; Pre-Processing- Imputer() and 

StandarScaler; Filters- Variance threshold. Using Dataset12345 of size (23434, 2873). Weights are according to the 

following order: NB, ET, KNN, LR, GB, RF, SVM. 

 

The best ensemble of the models used with Dataset12345 showed the same PECC and F1 scores 

as the best ensemble using Dataset1. These results suggest that adding proteins from classes 8 

and 9 of the first level of the TC system does not improve the overall performance of the final 

ensemble model, although having some impact in the performance of some individual models 

(NB, KNN and SVM). 

5.1.4 Case study: Transport proteins characterization models performance 

To characterize the transport proteins the best method to pre-process and filter the features 

determined in the case study Dataset1 was used, and the models were created and evaluated by 

a 5-fold cross validation process and the results are presented in Table 20, where the LR showed 

the best performance out of all the other models with a PECC score of 0.84 (+/- 0.01).  
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Table 20-- Mean of PECC scores after a 5-fold cross validation process using a variation of the transporter dataset. 

Models PECC scores 

Naïve Bayes 0.55 (+/- 0.00) 

ExtraTreeClassifier 0.81 (+/- 0.00) 

K nearest Neighbours 0.74 (+/- 0.00) 

Logistic Regression 0.84 (+/- 0.01) 

GradientBoosting 0.82 (+/- 0.01) 

RandomForest 0.79 (+/- 0.00) 

SVM 0.74 (+/- 0.01) 

Dataset characteristics for NB, ET, GB and RF models: Features- All; Pre-Processing- Imputer(); Filters- Variance 

threshold. Dataset characteristics for KNN, LR and SVM models: Features- All; Pre-Processing- Imputer() and 

StandarScaler; Filters- Variance threshold. Using Dataset12345 of size (11717, 2873). 

 

Creating and evaluating different ensemble voting classifiers returned the following results 

(Table 21), in which the hard vote with all the models and the weighted hard vote with weights 

[1,3,3,10,10,3,10] showed the best performance with PECC score of 0.87 (+/- 0.01). 

Table 21-- Mean performance of the ensemble methods: “VotingClassifier” with and without weights on the models. 

 

Ensemble Models used PECC scores 

Hard Vote All 0.87 (+/- 0.01) 

Hard Vote LR, GB, SVM 0.86 (+/- 0.01) 

Hard Vote LR, GB, ET 0.84 (+/- 0.01) 

Weighted Vote 

[1,2,2,3,3,2,3] 
All 0.87 (+/- 0.01) 

Weighted Vote 

[1,3,3,10,10,3,10] 
All 0.86 (+/- 0.01) 

Weighted Vote 

[1,8,3,10,9,6,3] 
All 0.85 (+/- 0.01) 

Dataset characteristics for NB, ET, GB and RF models: Features- All; Pre-Processing- Imputer(); Filters- Variance threshold. 

Dataset characteristics for KNN, LR and SVM models: Features- All; Pre-Processing- Imputer() and StandarScaler; Filters- 

Variance threshold. Using Dataset12345 of size (11717, 2873). Weights are according to the following order: NB, ET, KNN, 

LR, GB, RF, SVM. 

 

Confusion matrices were created, using a five-fold cross validation process, to evaluate the 

wrong classifications in the dataset. The results for the first fold are presented in Table 22, 
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Table 23, Table 24, Table 25, Table 26, Table 27 and Table 28 while the results for the other 

folds are shown in Attachment II. 

 
Table 22- Confusion Matrix for the NB model after a cross-validation process with training dataset representing 80% of the 

transporter dataset and the test dataset the other 20%. 

NB 

model 
Predicted 1 2 3 4 5 __all__ 

Actual        

1  320 7 0 0 480 807 

2  1 471 3 1 223 699 

3  10 9 425 1 299 744 

4  0 0 0 29 22 51 

5  0 0 1 0 41 42 

__all_  331 487 429 31 1065 2343 

 

 

Table 23- Confusion Matrix for the ET model after a cross-validation process with training dataset representing 80% of the 

transporter dataset and the test dataset the other 20%. 

ET 

model 
Predicted 1 2 3 4 5 __all__ 

Actual        

1  737 38 32 0 0 807 

2  65 623 11 0 0 699 

3  166 78 499 1 0 744 

4  10 16 6 19 0 51 

5  22 14 3 0 3 42 

__all_  1000 769 551 20 3 2343 
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Table 24- Confusion Matrix for the KNN model after a cross-validation process with training dataset representing 80% of the 

transporter dataset and the test dataset the other 20%. 

KNN 

model 
Predicted 1 2 3 4 5 __all__ 

Actual        

1  708 43 54 1 1 807 

2  30 645 23 1 0 699 

3  98 49 591 2 4 744 

4  4 5 9 33 0 51 

5  8 10 6 0 18 42 

__all_  848 752 683 37 23 2343 

 

Table 25- Confusion Matrix for the LR model after a cross-validation process with training dataset representing 80% of the 

transporter dataset and the test dataset the other 20%. 

LR 

model 
Predicted 1 2 3 4 5 __all__ 

Actual        

1  729 31 45 1 1 807 

2  47 630 21 1 0 699 

3  132 39 567 1 5 744 

4  5 8 8 30 0 51 

5  16 5 4 1 16 42 

__all_  929 713 645 34 22 2343 
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Table 26- Confusion Matrix for the GB model after a cross-validation process with training dataset representing 80% of the 

transporter dataset and the test dataset the other 20%. 

GB 

model 
Predicted 1 2 3 4 5 __all__ 

Actual        

1  701 43 62 0 1 807 

2  53 616 30 0 0 699 

3  143 56 539 1 5 744 

4  6 4 12 29 0 51 

5  16 7 4 0 15 42 

__all_  919 729 647 30 21 2343 

 

Table 27-Confusion Matrix for the RF model after a cross-validation process with training dataset representing 80% of the 

transporter dataset and the test dataset the other 20%. 

RF 

model 
Predicted 1 2 3 4 5 __all__ 

Actual        

1  711 44 52 0 0 807 

2  85 592 22 0 0 699 

3  173 66 505 0 0 744 

4  11 15 15 10 0 51 

5  24 11 6 0 1 42 

__all__  1004 728 600 10 1 2343 
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Table 28- Confusion Matrix for the SVM model after a cross-validation process with training dataset representing 80% of the 

transporter dataset and the test dataset the other 20%. 

SVM 

model 
Predicted 1 2 3 4 5 __all__ 

Actual        

1  761 43 3 0 0 807 

2  55 639 4 1 0 699 

3  232 60 446 1 5 744 

4  12 8 2 29 0 51 

5  17 7 4 0 14 42 

__all__  1077 757 459 31 19 2343 

 

To better evaluate the models a table containing the sensitivity (recall) and specificity for each 

class was created (Table 29). Maximum (green) and minimum values (red) of sensibility and 

specificity are marked for each class. 

 As seen in Table 29 for class 1, the model with highest sensibility (0.943) was the SVM model 

but it also had the lowest specificity (0.794). On the contrary, the NB model showed the lowest 

sensitivity (0.396) while having the highest specificity (0.993). 

For class 2 the KNN model showed the highest sensitivity (0.923) and the NB model the lowest 

(0,674). The NB model reached the highest specificity (0,990) while the ET model had the 

lowest (0,911). 

For class 3 the KNN model showed the highest sensitivity (0,794) and the NB model the lowest 

(0,571). The NB model had the highest specificity (0,997) and the GB model the lowest (0,932). 

For class 4 the KNN showed the highest sensitivity (0,647) and the RF model the lowest 

(0,196). The RF model had the highest specificity (1) and the KNN and LR had the lowest 

(0,998). 

For class 5 the NB model had the highest sensitivity (0,976) and the RF model the lowest 

(0,024). The ET and RF models had the highest specificity (1) and the NB model the lowest 

(0,555). 

 

 

  



 

62 

Table 29-Table of sensibility and Specificity for each class predicted by every model 

NB model Sensitivity Specificity ET model Sensitivity Specificity 

1 0,39653036 0,99283854 1 0,91325898 0,828776 

2 0,67381974 0,99026764 2 0,89127325 0,9111922 

3 0,57123656 0,99749844 3 0,67069892 0,9674797 

4 0,56862745 0,9991274 4 0,37254902 0,9995637 

5 0,97619048 0,5549761 5 0,07142857 1 

KNN model Sensitivity Specificity LR model Sensitivity Specificity 

1 0,87732342 0,90885417 1 0,90334572 0,8697917 

2 0,92274678 0,93491484 2 0,90128755 0,9495134 

3 0,79435484 0,94246404 3 0,76209677 0,9512195 

4 0,64705882 0,9982548 4 0,58823529 0,9982548 

5 0,42857143 0,99782703 5 0,38095238 0,9973924 

GB model Sensitivity Specificity RF model Sensitivity Specificity 

1 0,86864932 0,85807292 1 0,88104089 0,8092448 

2 0,88125894 0,93309002 2 0,84692418 0,9172749 

3 0,72446237 0,93245779 3 0,67876344 0,9405879 

4 0,56862745 0,9995637 4 0,19607843 1 

5 0,35714286 0,99739244 5 0,02380952 1 

SVM model Sensitivity Specificity 

1 0,94299876 0,79427083 

2 0,91416309 0,92822384 

3 0,59946237 0,99186992 

4 0,56862745 0,9991274 

5 0,33333333 0,99782703 

 

 

High sensitivity and specificity values are representative of few FN and FP respectively. 

Although some models in Table 29 showed high specificity for some classes (NB model for 

classes 1,2,3 and 4; RF model for classes 4 and 5; ET model for class 5) they also showed low 
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sensitivity for the same class, meaning that when they classify a protein to be in that class the 

number of FP is almost 0, but the number of FN for that class is high too.  

Preferring classifications from models with high specificity for a specific class might lower 

the number of FP.  
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65 

6. CONCLUSIONS AND FURTHER WORK 

For this work, seven different machine learning models as well as ensembles of the models 

were trained and tested, using a five-fold cross validation process, on different datasets to 

identify and classify transport proteins. 

 

The results for the performance of the models using datasets with different selections of 

negative cases showed little variance meaning that the chosen negative cases have little 

influence in the ability of the models to distinguish between transporter and non-transporter 

proteins. 

Evaluation of the results for the Dataset1 shows that, to obtain the best performance, the pre-

processing functions “Imputer” and “StandardScaler” and the filter “Variance Threshold” must 

be used for models KNN, LR and SVM. “StandardScaler” only worsened the performance of 

the NB model. Hence, for models NB, ET, GB and RF the best performance is achieved with 

the pre-processing function “Imputer” and the “Variance Threshold” filter. Using an ensemble 

of the best performing models, namely LR, GB and SVM, a hard voting classifier was 

implemented achieving a PECC score of 0.91 (+/- 0.00) and a F1score of 0.90 (+/- 0.00). 

Creating confusion matrices in a 5-fold cross-validation process of the dataset, the models show 

a high number of FNs compared to the FPs (almost 3 times bigger), meaning that the models 

are having more trouble correctly identifying transporter proteins than correctly identifying 

non-transporter proteins but the confidence level of the classification of a protein as transporter 

is higher than the confidence level associated with the classification of the protein as non-

transporter. Proteins classified as non-transporters should be further analysed. 

 The NB model presented the lowest FP value, meaning that whenever this model predicts a 

protein to be a transporter protein the error associated with that prediction is low, when 

compared to the other models. 

The best performance using the Dataset12345 was obtained with the ensemble method hard 

voting classifier, using the models LR, GB and SVM achieving a PECC score of 0.91 (+/- 0.00) 

and a F1score of 0.90 (+/- 0.00). Although this model obtained the same performance scores as 

the best performing model for Dataset1, this model only contains transport proteins as positive 

cases (TCDB’s classes 8 and 9 were removed) and is thus better suited for the classification of 

transport proteins, whilst Dataset1 (which contains all TCDB records) should be used for 

classifying all proteins associated to the transport phenomena.  
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Although these models show an error of 9%, due to the low number of FP when the model 

predicts a protein to be transporter protein the error is much lower and the level of confidence 

of the prediction much higher. In the case where the model predicts a protein to be a negative 

case the error associated with that prediction is higher because of the number of FN presented 

by the models. 

For the transporter Dataset, although the models obtained lower PECC scores than the other 

datasets (which was expected since this model has five different classes) the ensemble of all 

the models created with a hard voting classifier obtained a PECC score of 0.87 (+/- 0.01).  

Therefore, after a protein is classified as transporter protein, with the previous dataset’s models, 

it can be characterized in the first level of the TC system with an accuracy of 87% using the 

voting classifier model developed with the Transporter Dataset. 

Although some models showed almost 100% specificity for a class they also had low sensitivity 

values for that class.  

Implementing algorithms that combine the best performing models for each case can greatly 

reduce the error associated with the classifications. 

Finally, the models developed in this thesis allowed for the identification of transport and 

transport related proteins with an accuracy of 91% and the following characterization into the 

first level of the TC system with an accuracy of 87% given only the protein´s sequence making 

them a quick and good solution for the identification and characterization of transport proteins 

given a new unannotated genome.  

 

The code of the algorithm developed in this work is freely available in GitHub at 

“https://github.com/DanielVarzim/Master-s-Thesis-“. 

 

Although most goals proposed in this thesis were accomplished, there is always room for 

improvement. These points can be divided into improvement of the work done and integration 

of the tool with merlin software: 

 Optimize the code for a faster creation of the features. 

 Search for new protein features to improve the overall performance of the models. 

 Test new filters and wrapper methods for the dataset as well as more pre-processing 

utilities. 

 Test the models with different sets of parameters using “sklearn´s” “GridSearch” 

method to improve their performances. 
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 Create models to further characterize the transporter proteins into the several levels of 

the TC system. 

 Integrate the tool with the open-source software framework merlin: Create wrappers 

between these models and merlin structures; Create operations for applying classifiers 

to new sequences, enriching genome scale metabolic models. 
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ATTACHMENT I 

AI1- Confusion Matrix for all models after the second fold of the cross-validation process. 
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AI2- Confusion Matrix for all models after the third fold of the cross-validation process. 
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AI3- Confusion Matrix for all models after the fourth fold of the cross-validation process. 
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AI4- Confusion Matrix for all models after the fifth fold of the cross-validation process. 
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ATTACHMENT II 

AII1- Confusion Matrix for all models after the second fold of the cross-validation process. 

Confusion Matrix: NB model 
Predicted  1.0  2.0  3.0  4.0   5.0  __all__ 
Actual                                       
1.0        320    7    0    0   480      807 
2.0          1  471    3    1   223      699 
3.0         10    9  425    1   299      744 
4.0          0    0    0   29    22       51 
5.0          0    0    1    0    41       42 
__all__    331  487  429   31  1065     2343 
----------------------------------------------------- 
Confusion Matrix: ExtraTree model 
Predicted   1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                       
1.0         737   38   32    0    0      807 
2.0          65  623   11    0    0      699 
3.0         166   78  499    1    0      744 
4.0          10   16    6   19    0       51 
5.0          22   14    3    0    3       42 
__all__    1000  769  551   20    3     2343 
----------------------------------------------------- 
Confusion Matrix: KNN model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        708   43   54    1    1      807 
2.0         30  645   23    1    0      699 
3.0         98   49  591    2    4      744 
4.0          4    5    9   33    0       51 
5.0          8   10    6    0   18       42 
__all__    848  752  683   37   23     2343 
----------------------------------------------------- 
Confusion Matrix: Logistic Regression model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        729   31   45    1    1      807 
2.0         47  630   21    1    0      699 
3.0        132   39  567    1    5      744 
4.0          5    8    8   30    0       51 
5.0         16    5    4    1   16       42 
__all__    929  713  645   34   22     2343 
----------------------------------------------------- 
Confusion Matrix: GradientBoosting model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        701   43   62    0    1      807 
2.0         53  616   30    0    0      699 
3.0        143   56  539    1    5      744 
4.0          6    4   12   29    0       51 
5.0         16    7    4    0   15       42 
__all__    919  726  647   30   21     2343 
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----------------------------------------------------- 
Confusion Matrix: RandomForest model 
Predicted   1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                       
1.0         711   44   52    0    0      807 
2.0          85  592   22    0    0      699 
3.0         173   66  505    0    0      744 
4.0          11   15   15   10    0       51 
5.0          24   11    6    0    1       42 
__all__    1004  728  600   10    1     2343 
----------------------------------------------------- 
Confusion Matrix: SVM model 
Predicted   1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                       
1.0         761   43    3    0    0      807 
2.0          55  639    4    1    0      699 
3.0         232   60  446    1    5      744 
4.0          12    8    2   29    0       51 
5.0          17    7    4    0   14       42 
__all__    1077  757  459   31   19     2343 
----------------------------------------------------- 

 

AII2- Confusion Matrix for all models after the third fold of the cross-validation process. 

Confusion Matrix: NB model 
Predicted  1.0  2.0  3.0  4.0   5.0  __all__ 
Actual                                       
1.0        325    6    3    0   501      835 
2.0          8  484    9    0   233      734 
3.0          6    6  402    1   267      682 
4.0          0    0    0   58     8       66 
5.0          1    0    1    0    24       26 
__all__    340  496  415   59  1033     2343 
----------------------------------------------------- 
Confusion Matrix: ExtraTree model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        737   38   60    0    0      835 
2.0         56  655   23    0    0      734 
3.0        130   59  493    0    0      682 
4.0         13   13    7   33    0       66 
5.0          5   11    5    0    5       26 
__all__    941  776  588   33    5     2343 
----------------------------------------------------- 
Confusion Matrix: KNN model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        711   50   73    1    0      835 
2.0         26  676   32    0    0      734 
3.0         62   51  563    3    3      682 
4.0          3    4    1   58    0       66 
5.0          1    6    4    0   15       26 
__all__    803  787  673   62   18     2343 
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----------------------------------------------------- 
Confusion Matrix: Logistic Regression model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        744   26   64    0    1      835 
2.0         34  677   23    0    0      734 
3.0         94   46  539    0    3      682 
4.0          2    3    3   58    0       66 
5.0          5    4    1    0   16       26 
__all__    879  756  630   58   20     2343 
----------------------------------------------------- 
Confusion Matrix: GradientBoosting model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        716   33   86    0    0      835 
2.0         42  655   37    0    0      734 
3.0        113   64  502    1    2      682 
4.0          6    5    2   53    0       66 
5.0          1    5    6    0   14       26 
__all__    878  762  633   54   16     2343 
----------------------------------------------------- 
Confusion Matrix: RandomForest model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        730   37   68    0    0      835 
2.0         65  628   41    0    0      734 
3.0        143   46  493    0    0      682 
4.0         20   14   13   19    0       66 
5.0          7   11    5    0    3       26 
__all__    965  736  620   19    3     2343 
----------------------------------------------------- 
Confusion Matrix: SVM model 
Predicted   1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                       
1.0         795   28   12    0    0      835 
2.0          41  677   16    0    0      734 
3.0         186   66  428    0    2      682 
4.0           6    4    3   53    0       66 
5.0           5    5    2    1   13       26 
__all__    1033  780  461   54   15     2343 
----------------------------------------------------- 
 

AII3- Confusion Matrix for all models after the fourth fold of the cross-validation process. 

Confusion Matrix: NB model 
Predicted  1.0  2.0  3.0  4.0   5.0  __all__ 
Actual                                       
1.0        287    2    3    0   502      794 
2.0          1  494    4    3   226      728 
3.0          8    5  441    0   267      721 
4.0          0    0    1   49    17       67 
5.0          0    0    3    0    30       33 
__all__    296  501  452   52  1042     2343 
----------------------------------------------------- 
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Confusion Matrix: ExtraTree model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        730   21   43    0    0      794 
2.0         70  643   15    0    0      728 
3.0        141   83  497    0    0      721 
4.0         14   13    9   31    0       67 
5.0         10    9   10    0    4       33 
__all__    965  769  574   31    4     2343 
----------------------------------------------------- 
Confusion Matrix: KNN model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        688   28   76    2    0      794 
2.0         34  660   29    5    0      728 
3.0         80   32  602    4    3      721 
4.0          6    4    5   52    0       67 
5.0          3    9    7    0   14       33 
__all__    811  733  719   63   17     2343 
----------------------------------------------------- 
Confusion Matrix: Logistic Regression model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        715   26   53    0    0      794 
2.0         49  652   23    4    0      728 
3.0        110   41  570    0    0      721 
4.0          9    4    4   49    1       67 
5.0          6    4    2    0   21       33 
__all__    889  727  652   53   22     2343 
----------------------------------------------------- 
Confusion Matrix: GradientBoosting model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        700   21   73    0    0      794 
2.0         55  633   39    1    0      728 
3.0        119   77  525    0    0      721 
4.0          5    5    7   49    1       67 
5.0          4    5    6    0   18       33 
__all__    883  741  650   50   19     2343 
----------------------------------------------------- 
Confusion Matrix: RandomForest model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        720   22   52    0    0      794 
2.0         88  614   26    0    0      728 
3.0        153   83  485    0    0      721 
4.0         20   19   14   14    0       67 
5.0         15    9    9    0    0       33 
__all__    996  747  586   14    0     2343 
----------------------------------------------------- 
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Confusion Matrix: SVM model 
Predicted   1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                       
1.0         761   26    7    0    0      794 
2.0          65  651    8    4    0      728 
3.0         199   55  467    0    0      721 
4.0          12    4    1   49    1       67 
5.0           9    5    7    0   12       33 
__all__    1046  741  490   53   13     2343 
----------------------------------------------------- 
 

AII4- Confusion Matrix for all models after the fifth fold of the cross-validation process. 

 

Confusion Matrix: NB model 
Predicted  1.0  2.0  3.0  4.0   5.0  __all__ 
Actual                                       
1.0        327   10    4    0   513      854 
2.0          1  499    3    1   215      719 
3.0          6   11  408    0   254      679 
4.0          0    0    0   47    18       65 
5.0          0    0    0    0    26       26 
__all__    334  520  415   48  1026     2343 
----------------------------------------------------- 
Confusion Matrix: ExtraTree model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        758   34   62    0    0      854 
2.0         61  643   15    0    0      719 
3.0        114   82  483    0    0      679 
4.0         17   19    3   26    0       65 
5.0          9    8    7    0    2       26 
__all__    959  786  570   26    2     2343 
----------------------------------------------------- 
Confusion Matrix: KNN model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        738   48   68    0    0      854 
2.0         26  671   22    0    0      719 
3.0         66   47  563    2    1      679 
4.0          4    5    4   52    0       65 
5.0          4    3    9    0   10       26 
__all__    838  774  666   54   11     2343 
----------------------------------------------------- 
Confusion Matrix: Logistic Regression model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        768   25   59    1    1      854 
2.0         41  661   16    1    0      719 
3.0        104   47  527    0    1      679 
4.0          8    6    5   45    1       65 
5.0          6    4    7    0    9       26 
__all__    927  743  614   47   12     2343 
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----------------------------------------------------- 
Confusion Matrix: GradientBoosting model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        723   32   96    0    3      854 
2.0         45  637   37    0    0      719 
3.0        111   66  502    0    0      679 
4.0          6    8    7   44    0       65 
5.0          4    5    6    0   11       26 
__all__    889  748  648   44   14     2343 
----------------------------------------------------- 
Confusion Matrix: RandomForest model 
Predicted  1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                      
1.0        749   36   69    0    0      854 
2.0         73  617   29    0    0      719 
3.0        132   70  477    0    0      679 
4.0         25   19   11   10    0       65 
5.0         11    5    9    0    1       26 
__all__    990  747  595   10    1     2343 
----------------------------------------------------- 
Confusion Matrix: SVM model 
Predicted   1.0  2.0  3.0  4.0  5.0  __all__ 
Actual                                       
1.0         798   41   15    0    0      854 
2.0          50  662    6    0    1      719 
3.0         159   67  452    0    1      679 
4.0           9    8    3   45    0       65 
5.0           9    4    5    0    8       26 
__all__    1025  782  481   45   10     2343 
----------------------------------------------------- 
 


