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Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompati-
bility and biodegradability when compared with others natural polymers. For this reason, it has been explored for
the development of biologically instructive biomaterials with applications for tissue substitution and regeneration.
Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This
study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the
Sub-Antarctic squid Illex argentinus as potential collagen sources. In this study, collagen has been isolated from the
skins of the squids using acid-based and pepsin-based protocols, with the higher yield being obtained from I.
argentinus in the presence of pepsin. The produced collagen has been characterized in terms of physicochemical
properties, evidencing an amino acid profile similar to the one of calf collagen, but exhibiting a less preserved struc-
ture, with hydrolyzed portions and a lowermelting temperature. Pepsin-soluble collagen isolated from I. argentinus
was selected for further evaluation of biomedical potential, exploring its incorporation on poly-ε-caprolactone (PCL)
3D printed scaffolds for the development of hybrid scaffolds for tissue engineering, exhibiting hierarchical features.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Natural materials are the focus of extensive research on their appli-
cation in different areas addressing humanwell-being, from food sector
to cosmetics and medical field, increasing the pressure over natural re-
sources. This is calling the attention of scientists and engineers towards
the development ofmore sustainable processes and the recent exploita-
tion of marine organisms is much more oriented within a circular
economy context, in which valorization of byproducts gains a pivotal
role [1,2]. Additionally, the Antarctic resources initially studied within
the ideal of an unexplored zone of globe devoted to science and peace,
are being now the subject for evaluation of valorization strategies
with a clear sustainability pattern [3,4]. Indeed, various Parties of the
materials, Biodegradables and
de Ciência e Tecnologia, Zona
gal.
.

Antarctic Treaty have regularly proposed to assess regulations on
bioprospecting in the Antarctic (seewww.ats.aq). One of such strategies
addresses the isolation of compounds with high added value, to enter
the value chain abovementioned, in which collagen has a golden status,
due to its favorable properties of non-toxicity, low immunogenicity,
biodegradability and biocompatibility [5–8].

Collagen is inserted in the family of fibrous proteins present in
multicellular animals and is the most abundant protein in mammals.
The main function of collagen is focused on the support and mainte-
nance of structural integrity, providing texture, shape and resilience,
and it is also known for having a regulatory role in tissue development
[9,10]. About 25% of the human body is composed by this protein,
being identified up to today at least 28 genetically different types of
collagen, classified based on their organization and supramolecular
structures function and distribution in tissues [11–13]. Actually, an epi-
dermal collagen type XXIX has been proposed [14], but the coding gene
COL29A1 seems to be identical to COL6A5 and thus its acceptance is
under debate [15]. Within marine resources, collagen is commonly iso-
lated from fish skins [16,17] or jellyfish [18], but other sources have
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been also explored, such as sea sponges [19,20], echinoderms [21] and
cephalopods [22]. Within this latter group of animals, squids as source
of collagen are still poorly explored, but arise as an elegant model for
valorization of marine resources in the Antarctic/sub-Antarctic regions
due to recent studies on the ecology of squid species from this region
of the Globe [23]. Indeed, there are squid species, as Kondakovia
longimana distributed in Antarctic and sub-Antarctic waters [24], and
Illex argentinus distributed in sub-Antarctic waters [23,25], allowing a
direct comparison between materials obtained from organisms from
neighbor regions. Moreover, the latter squid species is largely explored
for food purposes [26] and the production of collagen from its skins
would represent an attractive way for valorization of by-products.

Collagen is usually obtained at a very low yield through the tradi-
tional process, based in acid treatment with organic acids, rendering
the designated acid soluble collagen (ASC). However, it is possible to in-
crease the extraction yield with the use of pepsin, which acts on the
edge of the polypeptide chains, cutting telopeptides and thus facilitating
their solubilization in acidic solutions, with the resulting collagen being
denoted as pepsin soluble collagen (PSC) [27].

Considering its favorable features and the central role that colla-
gen assumes in extracellular matrix, it has been widely proposed
for biomedical application, namely the types I to V [28,29], with
marine origin collagen being consistent with collagen type I (fish
skins, scales and bones), type II (jellyfish, fish cartilage) or type IV
(sea sponges) [27]. In particular, the use of collagen on the develop-
ment of biomaterials mimicking extracellular matrix in tissue
engineering approaches is a hot topic [30–32]. Collagen scaffolds
normally exhibit excellent biocompatibility and tuning of cellular
behavior, but lack adequate mechanical properties, from which the
combination with synthetic polymers has been proposed [33]. One
of the more elegant ways to achieve that combination of enhanced
features is the design of hybrid scaffolds, as a way of producing
multiscale structures for tissue engineering [34,35]. In this context,
the use of 3D printing technology has gained increasing prominence,
with the production of an oriented fibrillar structure further modi-
fied to achieve a hierarchical architecture [36]. Such modification is
intended to affect porosity, surface chemistry and roughness of the
scaffolds, together with an increase of cell anchorage points aiming
to increase cell seeding efficiency and enhance the performance of
the resultant construct [37–39].

In thiswork, collagen has been extracted fromK. longimana and from
I. argentinus and characterized by Fourier transform infrared spectrosco-
py (FTIR) and amino acid analysis to assess their chemical features,
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) to address their purity and identify collagen type and differential
scanning calorimetry (DSC) to evaluate melting temperature. Selected
collagen samples have been further incorporated into 3D printed poly-
ε-caprolactone (PCL) scaffolds, with evaluation of morphological and
mechanical properties, stability in aqueous media and in vitro compat-
ibility with L929 cells.
2. Material and methodologies

2.1. Materials

Individuals from K. longimana squid species were collected in the
Antarctic (Scotia Sea) during an expedition of the British Antarctic Sur-
vey in 2013 and kept frozen at−20 °C. After thawing, skins andmuscle
were separated and used as raw material for collagen isolation. Skins
from I. argentinus squid species, captured from the Patagonian shelf
(sub-Antarctic waters), resulting from processing of squids for food
products were kindly provided byDr. JulioMaroto (Fundación CETMAR,
Vigo, Spain). Poly-ε-caprolactone (with Mw 70,000 to 90,000), was
purchased to Sigma-Aldrich. All other reagents were of analytical
grade and used as received.
2.2. Extraction of ASC and PSC from K. longimana and I. argentinus squids
biomass

Collagenwas extracted from squidmaterials according to amethod-
ology adapted from [22,40]. All processeswere carried out at 4 °C. Squid
skins and muscles were soaked in 0.1 M NaOH (VWR International) so-
lution for 6 h (changed every 2 h), with magnetic stirring, to remove
non-collagenous proteins. When using skins, pigments were removed
by treatment with 1% H2O2 solution for 12 h. Skins and muscles were
then washed abundantly with distilled water to obtain a pH close to
neutral and further soaked in 0.5 M acetic acid (VWR International) so-
lution, for 72 h with magnetic stirring. The mixture was centrifuged at
9000g for 25 min and the supernatant (with ASC) was collected and
kept at 4 °C. The precipitate was re-extracted in 0.5 M acetic acid solu-
tion with 3.3 mg of pepsin A (Sigma-Aldrich) per gram of rawmaterial,
during 72 h, withmagnetic stirring, followed by centrifugation at 9000g
for 25 min. The supernatant (with PSC) was collected and kept at 4 °C.
The ASC and PSCwere further dialyzed against 0.1M acetic acid solution
for 12 h, with solution changed every 2 h, frozen at−80 °C and freeze-
dried.

The extraction of collagen was performed in triplicate for each squid
material for assessment of reproducibility regarding the extraction
yield.
2.3. Fourier transform infrared (FTIR) spectroscopy

The infrared spectra of collagen sampleswere obtained in KBr pellets
using a Shimadzu- IR Prestige 21 spectrometer in the spectral region of
4000–800 cm−1 with resolution of 2 cm−1 and taking the average of 32
scans.
2.4. Differential scanning calorimetry (DSC) analysis

Thermal profiles of ASC and PSC sampleswere assessed byDSC (Q100
Thermal Analysis), from 0 to 80 °C, at a heating rate of 1 °C min−1 to
assess melting temperature. An empty capsule was used as reference
and the presented values are an average of three independent measures.
Values of melting temperature were determined as the average of three
independent measurements for each sample.
2.5. Amino acid analysis

Amino acid analysis was performed at Centro de Investigaciones
Biológicas of the Spanish National Research Council (CSIC), in Madrid
(Spain). Collagen sampleswerefirstly completely hydrolyzed and further
separated using an ion exchange column. After post-column derivatiza-
tion by ninhydrin, the samples were analyzed at two wavelengths (440
and 570 nm), using a Biochrome 30 (Biochrome Ltd., Cambridge, U.K.).
An internal standard of norleucine was used for quantitative analysis.
Three independent measurements for each sample were made for the
quantification of the average amino acid contents.
2.6. Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

SDS-PAGE was performed using a 7.5% separating acrylamide gel
and a 3% stacking acrylamide gel, with a voltage of 60 V for 20 min
and for an hour with a constant voltage of 144 V. The samples were ap-
plied into the wells and electrophoresed in Bio-Rad Miniprotean 3 cell
vertical electrophoresis tank. Protein bands were stained for 35 min
with staining solution (0.1% Comassie Brilliant BlueR-250, fromBioRad)
and distained with two distaining solutions (containing distilled water,
methanol and acetic acid).
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2.7. Fabrication of PCL scaffolds and production of PCL/collagen scaffolds

Poly-ε-caprolactone (PCL) granules were inserted in the 3D
Bioplotter ™ (Envisiontec 4th Generation equipment) cartridge and
heated up to 90 °C. PCL was printed using an 18 G needle with a strand
distance of 1.4 mm, with struts aligned by 90° in 8 consecutive layers.
Scaffolds were cut into pieces with squared 0.50 × 0.50 cm base.

I. argentinus PSC was re-solubilized in 0.5 M acetic acid solution
(ratio 1:10 w/v) overnight under stirring, at 4 °C. Then collagen was
crosslinked with genipin (10 mM) (Commercial Rafer, S.L.), at 37 °C,
under stirring, during 5–6 h until collagen solution became light blue.

PCL scaffolds were modified by immersion in 10% ethylenediamine
(Sigma-Aldrich) in 2-propanol (VWR International) during 1 h, at
37 °C, to render less hydrophobic materials, followed by washing with
ultra-pure water. Modified 3D PCL scaffolds were then immersed in
0.5% or 1% collagen solution during 10 min, after which the resulting
systems were frozen at −80 °C overnight and freeze-dried.

2.8. Scanning electron microscopy (SEM)

Scanning electron microscopy was used to examine the fibrillar
structure formed by collagen inside the PCL scaffolds. The PCL/collagen
scaffolds were fixed to an adhesive carbon stub and covered with gold
using a sputter coater (Cressington 108 Auto) at 30 mA for 5 min.
SEM images were obtained at different magnifications, using a JEOL
JSM-6010LV equipment.

2.9. Micro computer tomography (micro-CT)

The inner structure, thickness, pore volume and porosity of the hy-
brid scaffolds were evaluated by micro-computerized tomography
using a Bruker SkyScan 1272 equipment (scanned under a 50 kV source
for a complete rotation of 360°). The X-ray scans were acquired in high-
resolution mode (7.4 μm). CT-An Software was used to visualize the 2D
X-ray sections images of the scaffolds and CT-Vol to visualize the 3D
structure.

2.10. Mechanical properties

Mechanical properties of scaffolds were assessed by compression
tests using an Instron 5543 universal testing machine and a loading
cell of 1kN. Compression testing was carried out until a maximum de-
formation of 60%. The elastic modulus was determined as the average
of the values obtained from the initial linear section of the stress/strain
curves of at least 5 samples.

2.11. Determination of water uptake (swelling tests)

The degree of swelling of collagen freeze-dried sponges was deter-
mined by water uptake upon incubation in PBS, at 37 °C with gentle
agitation. After each time point the sample was removed from the solu-
tion, the excess ofwater removedwith filter paper and thewater uptake
was calculated as the relative difference of the sample final and initial
weight. At least three samples per condition were analyzed.

2.12. Biological performance

2.12.1. Samples sterilization
ThePCL scaffolds andPCL/collagen scaffolds to be used for cytotoxicity

assays and pilot biological performance testswere sterilizedwith gamma
radiation, at room temperature for 24 h, with amaximumdose of 15 kGy
(Cobalt 60).

2.12.2. Evaluation of scaffolds cytotoxicity
L929 fibroblasts, a standard cell line for the evaluation of scaffolds

cytotoxicity according to ISO guidelines, were expanded in DMEM
(Dulbecco's modified Eagle's medium) supplemented with 10% fetal
bovine serum (Alfagene) and 1% antibiotic–antimycotic mixture
(Alfagene). When confluent, TrypLE Express (ThermoFisher) was used
and cells seeded in 48 well culture plates at a density of 30,000 cells/
0.95 cm2. After 24 h in culture, the different scaffolds formulations
were added to the corresponding wells, after being washed 3 times
with sterile PBS. Cell metabolic activity wasmeasured using a 3-(4,5-di-
methylthiazol-2-yl)-5-(3 carboxymethoxyphenyl) 2-(4-sulphofenyl)-
2H-tetrazolium, inner salt (MTS) (VWR International) assay at 1, 2
and 3 days after adding the scaffolds. This assay quantified themetabol-
ic activity of the cells by the reduction of tetrazolium salt reagent to
formazan (after 3 h of incubation at 37 °C). Absorbance intensity, direct-
ly proportional to the cell metabolic activity, was measured at 492 nm
using a microplate reader (Synergy HT, Bio-Tek). The results are the
mean of two independent experiments with n = 3 for each scaffold
formulation per experiment, calculated in relation to control (cells
cultured in the bottom of the well – polystyrene – without added
materials).

2.12.3. Live/dead cell assay
Cell viability and cells distribution through the scaffolds were evalu-

ated by Live/Dead (Calcein (AM)/Propidium iodide (PI) (Alfagene))
assay. L929 cells were seeded onto the different scaffolds (100,000 cell
per scaffold); at different time points – 1, 2 and 3 days after seeding –
culture medium was removed and replaced by a dilution of AM
(1:1200) and PI (1:300) in culturemedium for 30min at dark. The solu-
tion was removed from each well, followed by 3 washes with PBS and
immediately visualized by Confocal Laser Scanning Microscopy
(CLSM) (TCS SP8, Leica). Live cells were highlighted by green color
through a fluorescent filter (fluorescence excitation of 494 nm and
emission of 517 nm) after the internalization and hydrolysis of calcein
into cells membrane; dead cells were identified by red color through a
rhodamine filter (fluorescence excitation of 535 nm and emission of
617 nm), by their binding to DNA.

2.13. Statistical analysis

Statistical analysis of data was performed using GraphPad Prism
Version 6. Normality was verified by the Shapiro-Wilk test. Normal
distributed data were then analyzed using one-way analysis of vari-
ance (ANOVA) with Tukey's post hoc test or two-way ANOVA with
Bonferroni post hoc test. When normality was not verified, a non-
parametric t-test with Welch's correction was performed.

Differences between the groupswith a probability value higher than
95% (p b 0.05) were considered to be statistically significant.

3. Results and discussions

3.1. Collagen extraction

Two squid species were selected as raw-material for the isolation of
type I collagen: K. longimana that can reach large sizes (N1000 mm of
mantle length (ML)), highly abundant in Antarctic waters [41], and I.
argentinus, a species very common in sub-Antarctic waters (at the
Patagonian shelf; South Atlantic ocean) that can reach up to 350 mm
ML [23,42]. Ecologically, these two species are different: K. longimana
is from a different family (family Onychoteuthidae) that of I. argentinus
(family Ommastephidae), and live generally in different depths: I.
argentinus is known to occur seasonally at the Patagonian shelf (b250 m
deep) and is considered to be a muscular species; on the other hand,
although K. longimana is known to occur in deeper, colder waters than I.
argentinus and has been classified as a sinker, there are reports of floating
specimens. This is probably due to the high concentration of ammonia in
the flesh of K. longimana, meaning they are positively buoyant after death
[43–46].



Table 1
Yields of collagen extractions (n = 3).

Squid species and materials Collagen Yield (mean ± SD)

Kondakovia longimana Skin ASC 0.94% ± 0.07
PSC 1.18% ± 0.29

Muscle ASC 1.05% ± 0.58
PSC 0.88% ± 0.11

Illex argentinus Skin ASC 0.81% ± 0.08
PSC 3.26% ± 0.05
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ASC and PSC were extracted from both skin and muscle of K.
longimana and from skin of I. argentinus and the yields of extraction
were calculated as the ratio of the total weight of extracted collagen
and the initial wet weight of squid skin/muscle. The obtained values
are depicted in Table 1.

The yields observed from K. longimana skin and muscle were quite
low,with values around 1%,while from I. argentinus skinmore favorable
values where achieved, particularly for PSC where a higher (p b 0.05)
value of 3.26% was obtained. This is in agreement with literature,
where the yield of collagen extraction from other squid species is
proposed to be in the range 3–11% [47].

Nevertheless, the value is underestimated due to the high water
content of the initial biomass (about ¾ of its mass), but the extraction
of collagen from dried skins is not recommended since drying leads to
the entrainment of the pigments in the protein matrix, being then co-
extracted with collagen, thus requiring additional purification steps.

The extractedmaterials were characterized by FTIR to determine the
presence of collagen by the identification of the characteristic bands,
namely the peaks associated to amide groups at 1659 cm−1 (amide I),
1555 cm−1 (amide II) and 1240 cm−1 (amide III), aswell as a strong sig-
nal at 3281 cm−1, corresponding to the stretching of O\\H bonds [48,
49], pointing out therefore that the integrity and the composition of
the polypeptide chains have been kept. FTIR spectra of collagen extract-
ed from both species are illustrated in Fig. 1.

ASC obtained from both skin and muscle of K. longimana exhibited
spectra similar to type I collagen [48], while the PSC revealed a high con-
tent of impurities and probably a significant degradation, with poorly
defined bands. By its turn, FTIR spectra of collagen extracted from the
Fig. 1. FTIR spectra of collagen samples (in KBr discs); from top to bottom: ASC and PSC isolat
isolated from muscle of K. longimana.
skin of I. argentinus showed the presence of type I collagen with a high
degree of purity, with expected peaks well defined.

Thermal profile of ASC and PSC samples was also analyzed to assess
the melting temperature of the collagenous samples. The values pre-
sented in Table 2 show a similarity within the ASC and the PSC samples,
with the former having values around 24 °C and the latter around 34 °C.

Lower melting temperatures are commonly associated with a lower
content of amino acids proline and hydroxyproline (Ohpro) or with a
reduced hydroxylation degree [50–52]. However, the determination of
the amino acids profile, indicated in Table 3, revealed a similar content
of Ohpro in all samples. The explanation for significantly lower values
from ASC when comparing with PSC may thus be related to other fac-
tors, namely the moisture of the samples, which would affect melting
of samples upon temperature increase [53]. Apparently, the removal
of telopeptides by pepsin is leading to more stable samples after
freeze-drying, hindering their thermal structural change upon heating.
Indeed, not only the intermolecular interactions between collagen
molecules play a role on the thermal stability of samples, but also the
freeze and thaw of samples [54].

Besides thepresence ofOhpro, an amino acid characteristic of collag-
enous proteins and responsible for maintaining triple helix (secondary
collagen structure) [56], the amino acid profile revealed as well the
presence of a high amount of glycine (about 1/3 of total residues),
consistent with the model for collagen in which in every sequence of
3 amino acids one of them is glycine, observed on other marine origin
collagens and on calf collagen taken as reference [55].

The electrophoretic pattern of collagen samples was also examined
by SDS-PAGE, to better understand the results obtained by spectrosco-
py. The image in Fig. 2 illustrates the obtained results and it is possible
to verify that only ASC from K. longimana skin and both ASC and PSC
from I. argentinus skin contain clearlyα1,α2 andβ chains, characteristic
of type I collagen. In fact, the latter exhibited an intense band at about
150 kDa being attributed to the presence of polypeptide chains equiva-
lent to α1 (≈160 kDa) and α2 (≈130 kDa) and another band above
250 kDa attributed to β chain (260 ≈ kDa). PSC from K. longimana
skin and muscle showed only bands at significantly lower molecular
weight, which may indicate that the procedure was not leading to
the extraction of collagen, but other compounds, while ASC from K.
ed from skin of I. argentinus, ASC and PSC isolated from skin of K. longimana, ASC and PSC



Table 2
Melting temperatures of collagen samples, determined by DSC analysis (n = 3).

Squid species and materials Collagen Melting temperature (mean ± SD)

Kondakovia longimana Skin ASC 24.04 °C ± 0.51
PSC 34.17 °C ± 0.08

Muscle ASC 23.75 °C ± 0.01
PSC 33.74 °C ± 0.35

Illex argentinus Skin ASC 23.21 °C ± 0.91
PSC 31.49 °C ± 0.20

Table 3
Quantity of amino acids residues present in collagen samples isolated from K. longimana
skin and muscle and I. argentinus skin (presented values are an average of three indepen-
dent measurements), comparatively to calf collagen used as reference. ⁎Data from [55].

AA Kondakovia
longimana skin

Kondakovia
longimana
muscle

Illex argentinus
skin

Calf collagen⁎

Residues/1000 Residues/1000 Residues/1000 Residues/1000

ASC PSC ASC PSC ASC PSC ASC

Asp 66 77 70 97 71 71 45
Thr 18 20 22 29 20 24 18
Ser 56 68 61 83 51 59 33
Glu 78 86 84 87 82 77 75
Gly 303 323 315 278 315 327 330
Ala 79 94 81 90 96 97 119
Cys 7 4 4 7 5 5 0
Val 29 26 28 30 26 25 21
Met 13 22 13 23 22 22 8
Ile 12 13 15 18 14 13 11
Leu 25 36 31 44 33 33 58
Nleu 102 23 33 16 39 17 37
Tyr 4 4 6 11 4 5 3
Phe 12 20 15 29 22 23 14
OHlys 16 19 16 15 20 22 7
His 3 4 5 5 5 6 5
Lys 10 14 15 14 16 14 26
Arg 47 40 49 33 39 38 50
Ohpro 63 50 63 37 60 62 44
Pro 56 55 74 54 59 60 49
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longimanamuscle shows the blurred staining normally attributed to de-
graded or partially hydrolyzed materials [57]. The colder habitat ok K.
longimanamay be related to this behavior, leading to collagenmaterials
more sensible to degradation upon thermal or chemical procedures
used during extraction.
Fig. 2. Characteristic bands of samples after SDS-PAGE (A) ASC from K. longimana skin; (B) PS
muscle; (E) ASC from I. argentinus skin; (F) PSC from I. argentinus skin). Indication of α1, α2 an
From the above results concerning the characterization of the colla-
gen extracts, conjugatedwith the higher yield of extraction observed on
the process to produce PSC from skins of I. argentinus, this material was
selected to proceed with the study for evaluation of biomedical poten-
tial as component on the development of hybrid scaffolds for cell culture
in tissue engineering strategies.

Additionally, marine origin PSC is being recommended for biomedi-
cal applications, once telopeptides have been associated with potential
immune responses upon in-vivo implantation [58].

3.2. Production of PCL/collagen hybrid scaffolds

In order to create hierarchical and hybrid scaffolds, aiming to im-
prove biological performance as 3D cell culture matrix towards tissue
regeneration, 3D printed PCL structures were combined with 0.5% and
1% collagen (PSC from I. argentinus) solutions. The production of these
scaffolds was based on freeze-drying and effectiveness of the
crosslinking process, with the rational that the lyophilization process
would render microfibrillar structures within the struts composing the
original PCL 3D printed scaffolds. These microfibers would create addi-
tional places for cell adhesion, benefiting also from thewell-known bio-
compatibility of collagen. Such environment within the more inert PCL
structure could bring advantages in a biological point of view, as it can
be seen as an attempt to deconstruct relevant cues of the native cellular
organization [59].

The 3D printed architectures were characterized by SEM before and
after incorporation of collagen and the results depicted in Fig. 3 clearly
show the alignment of the PCL filaments produced by bioplotter. The
cubic design structure is suitable for the incorporation therein of anoth-
er material, allowing a good integration between both materials. After
incorporation of collagen, it is possible to observe the formation of a spi-
der-web-like collagen microfibrillar structure (Fig. 3B) within the PCL
struts, which became much denser when increasing the concentration
of collagen solution into 1%, resulting ultimately in a coating (Fig. 3C).

To support the observations made by electron microscopy, themor-
phological features of the 3D printed and hybrid scaffolds were also
characterized by micro-computerized tomography, which allows the
collection of three-dimensional information of produced scaffolds,
using NRecon software for the 3D reconstruction of the X-rays data –
see right column in Fig. 3.

The similarity of the density of PCL (1.14 g/cm3) and collagen
(ranges from 0.987 to 1.5 g/cm3) [60] makes the distinction between
these two materials a challenging task. Nevertheless, it is possible to
observe the orthogonal PCL struts (in red), to which collagen (in
C from K. longimana skin; (C) ASC from K. longimana muscle; (D) PSC from K. longimana
d β bands was made according to a calf reference.



Fig. 3. SEM micrographs and micro-computed tomography images of (A) 3D printed PCL scaffold; (B) PCL + 0.5% collagen scaffold; (C) PCL + 1% collagen scaffold.

Fig. 4. Cytotoxicity evaluation along 3 days of L929 cells culture in the presence of the PCL
and PCL/collagen hybrid scaffolds. * (95%), ** (99%) and *** (99.9%) account for statistically
significant differences observed between the metabolic activity of cells at different time
points, as determined by two-way ANOVA with Bonferroni post hoc test.
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green) adhered, forming a microfibrillar structure when using a 0.5%
collagen solution that turned more dense or even into a coating-like
structure when the concentration of collagen was increased to 1%.
Moreover, the images obtained by micro-CT analysis showed that
the collagen structures were uniformly distributed inside the
scaffolds.

One of the reasons for the development of hybrid scaffolds is to pro-
mote the synergy between the biocompatibility of the natural material
with the mechanical properties of the synthetic counterpart. Upon sub-
mitting the developed scaffolds to uniaxial compression tests, single
collagen structures demonstrated lowmechanical properties, as expect-
ed, even after collagen crosslinking with genipin: 0.5% collagen struc-
tures presented a Young's modulus of 0.17 ± 0.04 MPa and 1%
collagen structures exhibited a higher (p b 0.05) Young's modulus of
0.25 ± 0.05 MPa. When analyzing the hybrid scaffolds, the mechanical
properties are controlled by the PCL structure, with no statistically sig-
nificant differences (p b 0.05) being observed between PCL, PCL +
0.5% collagen or PCL+1% collagen scaffolds,with values of compression
modulus of around 74 MPa.

Thewater uptake capability of scaffolds gives an important and indi-
rect indication of the hydrophilicity/hydrophobicity of thematerial. The
ability to uptake water influences other major properties and functions
of the scaffolds, such as load and drug distribution, cell behavior, among
others [30,61,62]. Water uptake (swelling) tests were performed only
on collagen sponges obtained from freeze drying, since PCL is known
to be hydrophobic and its significant mass, compared to the collagen
one, would lead to biased results. It was observed that 0.5% collagen
scaffolds could uptake about 3 times its weight in water, while when
collagen concentration was increased to 1%, the water uptake capacity
was even higher, close to 400%, which shows clearly the hydrophilicity
of collagen. These results are in agreement with the ones reported by
[63] with 3D printed PCL structures combined with dense chitosan
and poly(glutamic acid) hydrogel, showing as well the improved per-
formance of the hybrid scaffold regarding mechanical properties (in
comparison to the hydrogel alone) and swelling (in comparison to PCL
alone).
To further evaluate the potential of squid collagen for the incorpora-
tion on biomaterials for tissue regeneration, the cytotoxicity of the de-
veloped hybrid scaffolds was evaluated by assessing the metabolic
activity of L929 fibroblast cell line in the presence of the materials. Ac-
cording to the results shown in the graph of Fig. 4, after 1 day in culture
the metabolic activity of the cells in the presence of the PCL and hybrid
scaffolds is about 80% of the control, with no significant differences
being observed between the different scaffolds. The decrease in meta-
bolic activity observed on the second day of culture for all types of scaf-
folds was probably due to physical constrains caused by the presence of
the scaffold on thewell, but it seems to start recovering on the third day,
in which no significant differences between scaffolds are observed as
well. It was concluded that the hybrid scaffolds are non-cytotoxic.

In addition, the performance of the scaffolds to support cell culture
was also briefly addressed by culturing L929 cells onto the structure.
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The representative images of confocal microscopy after up to 3 days in
culture, shown in Fig. 5, suggested the cytocompatibility of the mate-
rials, with no visible dead cells on the developed structures, both in
the absence and presence of collagen modification.

The scaffolds seededwith L929 cells were also observed by scanning
electron microscopy (Fig. 6), being possible to observe a significant
number of cells adhered on the constructs, particularly in the case of
the PCL + 0.5% collagen scaffold. Cell adhesion is demonstrated by the
actin fibers stretching to sustain the cells within the constructs.

During the washings steps, it was observed the partial loss of colla-
gen and cells, affecting negatively the results, fromwhich the efficiency
of the adhesion of collagen to the PCL struts needs to be improved. In
this regard, other functionalization strategies alternative or comple-
mentary to the modification of PCL scaffolds with ethylenediamine
will be pursued in future work. Nevertheless, it is possible to conclude
that the collagen incorporation into PCL scaffolds is an asset for the
cell seeding, taking into account the density of cells present in both con-
ditions (PCL + 0.5% collagen and PCL + 1% collagen) after 72 h and the
additional anchor points it provides for cell adhesion.

4. Conclusion

Collagen has rising in rank as a basic building block of biomedical
scientists and engineers, being considered today an integral part of the
future of tissue engineering. As alternative to themore common bovine
Fig. 5. Confocal microscopy of PCL and hybrid scaffolds seeded with L929 cells after 24 h, 48 h
iodide (PI) produces red fluorescence in dead cells). (For interpretation of the references to co
and porcine origins, collagen has been isolated and purified from an
Antarctic squid and Sub-Antarctic squid species by using conventional
collagen extraction methodologies. The PSC from I. argentinus revealed
to be the one obtained not only with higher yield (about 3%), but also
with more preserved structure and with higher purity, exhibiting an
amino acid profile and SDS-PAGE pattern consistent with type I
collagen.

The combination of PCL 3D printed architectures and collagen
microfibrillar structures into hybrid scaffolds gives the possibility to
produce new hierarchical biomaterials with potential applications in
tissue engineering. In fact, it was possible to overcome the limiting
weakmechanical properties of collagen by following this strategy of hy-
brid scaffolds, with no visible effect on biological performance.With the
improvement of the adhesion of collagen to PCL and adding its remark-
able biocompatibility and non-immunogenicity, the hybrid scaffolds
can be valuable biomaterials for tissue regeneration, with improved
mechanical properties and cell seeding efficiency.
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