Electrospun polymeric dressings with tuned Col I and AMP activities for enhanced wound healing

Helena P. Felgueiras* and M. Teresa P. Amorim
2C2T, Campus de Azurém, 4800-058 Guimarães, Portugal
*helena.felgueiras@2c2t.uminho.pt

Introduction
Acute wound therapies target specific phases of wound-healing but do not consider possible disrupts on the usual conduct of each phase (hemostasis, inflammation, proliferation and maturation). Due to a number of potential stimuli, ischemia, bioburden, necrotic tissue, trauma, etc., wounds can stall in one phase of healing, typically inflammation, contributing to the wound chronicity [1]. Chronic wounds are often characterized by a defective matrix and cell debris impair healing, high bacteria counts, prolonged inflammation and moisture imbalance. Conventional therapies identify and remove these barriers to wound-healing by applying individualized treatments[1,2]. Our goal is to engineer polymeric wound dressings by electrospinning for acute to chronic wound care that actively stimulate all phases of healing and prevent bacterial colonization. Our strategy is target-directed by tuning the activity of different antimicrobial peptides (AMPs) immobilized onto the electrospun polymeric wound dressing (Fig 1).

Electrospun Polymeric Wound Dressings
Synthetic biodegradable polymeric matrices with versatile physical and mechanical properties and demonstrated wound-healing abilities [3] are processed in the form of single- or multi-polymer mats by electrospinning.

Poly(e-caprolactone) Polyurethane Poly(vinyl alcohol)**

AMPs with Immunoregulatory Activities

LL37 Human innate immune response and inflammation

Tiger 17 Act on different phases of wound-healing

Pexiganan Reduces microbial burden

Collagen Type I (Col I) in Wound Healing
In the form of wound dressings, Col stimulates the wound healing cellular and molecular cascades, development of new tissues and wound debridement. Col I has been highlighted as uniquely suited for wound dressing therapies because of its involvement in all phases of wound-healing. Platelets aggregate around exposed collagen and secrete factors that stimulate the intrinsic clotting cascade responsible for a stable hemostatic "plug". Collagen dressings are capable of absorbing wound exudates to maintain a moist environment [4].

Functionlization

Physical Bonding
Co-Spinning: All in one solution (polymer + AMP in one blend).
Layer-by-Layer: AMPs are sandwiched between two polyionic polymeric layers.

Covaletal Bonding
“Graft to”: involves the covalent coupling of the intact AMPs to an electrospin surface previously activated.
“Surface Initiated”: the AMPs are synthesized from initiators/spacers bearing reactive groups covalently linked to the electrospun surface.

Future Perspectives
At the moment, we are in the first stage of our research, optimizing the processing conditions to produce flexible and resistant single and multi-polymer mats by electrospinning. The AMPs’ immobilization will be the second stage.

References