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23.1 Introduction
A bioprocess can be described as a process in which a pure or mixed population of

microorganisms consumes various substrates and uses them to grow and produce

metabolites. In parallel with the improvement in the microorganisms’ strains and the

capability of assessing their viability and vitality during a bioprocess, it is also desirable

to optimize the bioprocess conditions, in particular the growth temperature and/or

production, the pH, and the composition of medium, aiming to increase the process

yields [1e3].

The capability of controlling bioprocesses automatically and accurately in their

optimal state is of paramount importance to most industries, enabling them to reduce or

contain production costs and increase yields while maintaining the products’ quality.

Because of increased competitiveness, strategies based only on empirical knowledge and

incorrect attempts are no longer sufficient or effective. The availability of advanced

sampling techniques coupled with automated measurement tools (e.g., traditional

analytical techniques; new sensor technologies, probes, and analyzers) may greatly

reduce the time required for strain selection, process development, and process control

by diminishing the number of steps in the production/cultivation process, especially

manual steps, and cutting down error propagation. This is highlighted by the Food and

Drug Administration, which advises the use of new monitoring and control strategies to

improve and ensure the quality of products, especially for the pharmaceutical industry

[4]. For instance, the implementation of process analytical technology (PAT) is viewed as

a practical tool for the ongoing monitoring and adjustment of production processes to

guarantee the consistent quality and specifications of biologically active pharmaceutical

ingredients [5]. Nevertheless, for bioprocesses the implementation of PAT is a chal-

lenging task owing to the great complexity of cell cultures and fermentation processes

and the variability of the raw materials. On the other hand, the successful of PAT
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implementation as well as any other monitoring and control strategy depends on: (1) the

availability of robust, reliable, low-cost, easy-to-use online/at-line sensors; (2) a com-

plete understanding of the variability inherent in the bioprocess and introduced by the

raw materials; and (3) the availability of sufficient time to develop a process that is

amenable to the application of any online monitoring or control procedure during

manufacturing [5]. However, it may be difficult to implement monitoring and control

strategies because they require the use of experimental design tools, which for some

industries such as biopharmaceuticals implies a high-cost, time-consuming procedure.

On the other hand, several studies showed the advantages of developing mathematical

models for the design, optimization, and bioprocess control. However, the vast majority of

industrial processes are still controlled and optimized without the explicit use of these

models. Nevertheless, the development of mathematical models that can describe bio-

processes has become essential because it is usually cheaper to model a system and

simulate its operating conditions than to perform laboratory experiments. In some cases,

apart from the economic point of view, there are other practical reasons, such as safety

and ethical questions that make experimentation impracticable in real systems [6,7].

Mathematical modeling, monitoring, and the real-time control of bioprocesses is a

major challenge for biotechnologists and control engineers, leaving them the task of

creating communication platforms among themselves and the industry so that the novel

techniques that are developed can be used on an industrial level.

The development of modeling strategies, real-time monitoring, control, and optimi-

zation is necessary to guarantee operational reproducibility, quality control, and run-to-

run consistency for both developmental and scale-up purposes [8].

However, the significant uncertainty of the models’ structure and parameters, and the

nonlinear and dynamic nature of these systems make bioprocesses modeling, moni-

toring, and control a difficult and challenging task. Also, implementation of the most

suitable type of automated analysis is a main difficulty.

Automated analysis canbe performed in twoways: by using ameasurement probe inside

the reactor, avoiding the need for sampling; or by automated sampling and subsequent

sample analysis. The main drawback to the first approach is the scarcity or even lack of

inexpensive and robust probes able to allow direct and in-line measurements of state var-

iables. For the latter, expensive, time-consuming, and mostly offline methodologies (e.g.,

chromatography, electrophoresis, andmass spectrometry) are usually applied that required

highly skilled technicians. Nevertheless, although it is rarely available, timely process in-

formation about fermentation biomass, substrates, intermediates, products, and nutrients

is required to make effective control decisions [9,10]. For instance, in a bioprocess it is

crucial to keep cells alive and productive, but unless they are the final product, cell density

should be kept at a desirable level. In many cases cell density is measurable using optical

in situprobes or intact cellmass spectrometry (ICMS) implementedonmatrix-assisted laser

desorptioneionization time-of-flight mass spectrometry (MALDIeTOFeMS) [11], near-

infrared spectroscopy (NIR), and Fourier-transformeinfrared spectroscopy (FTIR) [12,13]

coupledwith chemometric tools. Also, severalmethods based in particle and image analysis

680 CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING



and in micromechanical devices may provide quantitative morphological data. Krull et al.

[14] compiled a set of sophisticated techniques to characterize fungal growth on themicro-

andmacromorphological and process-scale levels; knowledge about thesemay allow better

bioprocess performance tobeobtainedwith filamentous fungi. Cell viability (i.e., the ratio of

the living cells over thewhole population)may bemeasured offline usingmicroscopy of the

stained cells [15] or using electrical or capacitance-based in situ probes. However, the direct

measurement of cell vitality [i.e., cells may be alive but not necessarily metabolically active

to perform the conversion from substrate(s) to product(s)] is not yet possible, although

some indications may be drawn indirectly from measuring biomarkers (e.g., intracellular

levels of energy precursors adenosine triphosphate, adenosine diphosphate, and adenosine

monophosphate). The measurement of substrates in the extracellular medium is also of

utmost importance, because by controlling the substrate feed, the substrate concentration

is kept at a certain level, which triggers several control and inhibitionmechanisms, allowing

the cell state to be controlled and thus selection between the products of primary growth-

related and secondary nongrowth-related metabolism. Measuring products (e.g., cells,

proteins, enzymes, antibodies, peptides, various nucleic acid molecules, large and small

metabolites) is essential to ensure that the production process is working properly. Indeed,

the possibility of rapidly assessing information about a fermentation progress may allow

secondary metabolite production to be optimized by influencing specific fermentation

parameters in a timely manner [11]. Besides being used as an indirect way to assess cell

vitality, in the case of by-products (that can also be considered a form of biomarkers), the

measurement of biomarkers may also give important information about a departure from

optimal conditions. Substrate, product, and by-product levels during a bioprocess may be

monitored using a diverse number of analytical techniques coupled or not to chemometric

tools, including in situ biosensors [16e18], optical sensors or photometry [19,20], electronic

noses [21], UV spectrophotometric methods [22,23], offline classical analytical techniques

such as liquid chromatography [24,25], dot blot methodology coupled with image-

processing algorithms [24], capillary electrophoresis [26], cyclic and square-wave voltam-

metry [27], or spectroscopicmethods such as Raman spectroscopy [28,29], electrochemical

impedance spectroscopy [27], FTIR [13,30], NIR [8,19,31e36], two-dimensional (2D) fluo-

rescence spectroscopy [37], or dielectric spectroscopy [38].

In the literature, different terms have been used to refer to timely measurements of

the fermentation broth media that could be used directly for bioprocesses monitoring

and control strategies, such as online, in-line, at-line, in situ, and real time, among

others, but their use is not always consistent. One possibility would be to name an

approach “in situ” without sampling and another approach “automated at-line” with

sampling and subsequent sample analysis. Both approaches have known pros and cons,

such as at sampling, sterilization, calibration, and multiplexing levels [39].

The monitoring step must include the acquisition and analysis of data collected by

either in situ physical sensors or automated at-line procedures. Soft sensors, which are

mathematical models coupled with a limited set of state variables that can easily be

measured, have been the focus of several studies, and represent an interesting
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alternative to the traditional automated analysis (in situ sensors or automated at-line

approaches), allowing the online monitoring of state variables that affect the

bioprocess but cannot be measured in real time [40e49]. In real time, soft sensors can

estimate process variables that are difficult to measure online or those whose mea-

surement by analytical procedures is tedious and time-consuming [46]. Despite the

complexity of the underlying theory, some soft sensors have been proposed, although

there are not many documented examples of applications to complex bioprocesses

described by dynamic models consisting of several balance equations and complex

kinetics. Thus, the development and experimental validation of these algorithms need

to be carried out because they may be helpful tools in controlling and optimizing in-

dustrial processes, overcoming the lack of physical sensors, and minimizing the

reluctance of the industry to use new physical sensors, such as for problems of

sterilization.

On the other hand, during bioprocess optimization, advanced sampling techniques,

new sensor technologies, and analyzers have been applied, resulting in large and com-

plex data sets with underlying multivariate interactions. Thus, multivariate data analysis

(MVDA) has emerged as a practical tool for dealing with these complexities and

extracting relevant information from these highly correlated multivariate data sets [50].

In the literature, several works highlight the use of MVDA tools in bioprocessing appli-

cations such as in cell culture operations [51e55].

23.2 Bioprocess Broth Characterization
In fermentation processes, a selected strain of a microorganism, plant, or animal cell line is

cultivated in an appropriate nutrient medium using a bioreactor whose operating condi-

tions are carefully controlled, allowing the desired product to be produced. The product can

be the cells themselves (e.g., baker’s yeast), some cellular component (e.g., DNA or protein),

or a metabolite synthesized by the cells (e.g., organic acids, vitamins, or recombinant hu-

man proteins) [9]. Most bioprocesses are three-phase systems. The cells are dispersed as a

solid phase in a liquidmedium phase which is aerated by a gas phase, which results in a set

of complex solideliquidevapor interactions. Assessment of these interactions is crucial

because biological components (i.e., microorganisms) are sensitive to any change in the

reaction’s environment (e.g., temperature, substrate or nutrient concentrations, pH, pO2),

which may affect the cells’ activity or the reproducibility of the process [46,56].

In most processes, multiple substrates are present to fulfill the microorganisms’ re-

quirements regarding the carbon source, the energy source, the nitrogen source for

protein synthesis, the phosphate source, growth factors, and mineral salts. In certain

fermentation processes, the media should also supply the required precursor to increase

the yields of the desired product. Indeed, bioprocesses are characterized by their com-

plex dynamics such as the inverse response, dead time, and strong nonlinearities, which

are crucial biochemical variables and/or parameters hard to measure online; if induced
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cultures are used, high variations may happen in the morphology, energy metabolism,

and macroscopic composition of the cells, and quantification is a hard task that is not

straightforward [46]. In large industrial-scale fermentations (e.g., 150 m3), nutrient

sources may even be undefined because different types of raw material are used, such as

crude nutritive sources, mainly owing to economic requirements. Saccharine-based

materials (such as sugar cane, sugar beets, molasses, and fruit juices), cheese whey,

starchy materials (such as cereals, roots, and tubers), cellulosic materials (sulfite waste

liquor, wood molasses, and rice straw), hydrocarbons (gas oil and n-paraffins), vegetable

oils, and nitrogenous materials (for example, corn steep liquor, soybean meal, or oils) are

used as carbon and nitrogen sources in fermentation industries. The chemical compo-

sition of those media can be highly variable from batch to batch and depends on the

quality and the intrinsic diversity of the raw material and on the processes involved in

manufacture, because they are usually by-products of other industries.

In fermentations for which the media are often chemically defined, such as animal

cell culture media, many individual nutrients are present and frequently complex sup-

plementation is needed (e.g., amino acids), which results in complex mixtures [9].

Indeed, regardless of the type of fermentation, the initial medium often contains high

levels of sugars such as glucose, fructose, or lactose (up to 60% in some cases) and other

nutrients including vitamins (such as biotin, pyridoxine, thiamine, pantothenic acid, and

inositol) and inorganic salts (such as calcium, iron, chloride, phosphorus, and sulfate).

Some precursors and inducers compounds can also exist which generally improve the

yield or quality of the product (for example, phenyl acetic acid and cobalt) [9]. It is also

usual to apply compounds which act as antifoams and are not metabolized by the mi-

croorganisms (e.g., stearyl alcohol and octyl decanol, esters, fatty acids, cotton seed oil,

linseed oil, castor oil, cod liver oil, etc., and silicones and sulfonates).

The chemical composition of the culture medium, the growth of microorganisms and

inherent morphology changes, and the related consumption and production processes

may result in changes in the culture broth’s rheological properties during a bioprocess

[33]. The viscosity of the culture medium may vary not only along the cultivation time

but also from batch to batch and with the reactor scale, which increases the need to

monitor the evolution of the fermentation, and which may turn out to be a difficult and

complex task. For example, if the fermentation medium contains a polymeric substrate

such as starch, the apparent viscosity will decrease during batch fermentation because of

its enzymatic degradation and consumption, and a change from non-Newtonian to

Newtonian behavior can occur. On the other hand, when a polymer is produced during

batch fermentation, the viscosity of the broth will increase with an increase in broth

concentration and in some cases non-Newtonian behaviors may appear, being the

apparent viscosity time-dependent. As described, the chemical complexity of the

fermentation broth varies considerably, which makes optimization of robust online

monitoring and analysis challenging [9].

Mixed-feed bioprocesses have been used to enhance bioprocesses productivity.

Typically, multiple carbon sources are co-fed: the primary substrate supplies energy for
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growth (e.g., glucose or glycerol) and an assimilable secondary substrate is administrated

to induce recombinant protein production (e.g., arabinose, lactose, or methanol). This

strategy raises novel process-technological challenges for bioprocessing monitoring

because the energy supply through the growth substrate and the energy drain through

recombinant protein production must be independently controlled via mixed-feed ap-

proaches [44]. Sensor probes may provide important real-time information for all unit

operations in a biological production facility. Although many types of online sensors and

analytical techniques are available, only a few are commonly used in the biotechnology

industry because the great majority have several practical shortcomings, such as that

they are complex, expensive, labor-intensive, time-consuming, and not compatible with

standard sterilization procedures. Therefore, noninvasive and versatile probes are still

needed [56]. Usually three kinds of parameters should be evaluated when online bio-

process monitoring is envisaged: physical variables (e.g., pressure, temperature, vis-

cosity, stirrer speed), chemical variables (e.g., pH, pO2, nutrients, metabolites), and

biological variables (e.g., biomass concentration, cell metabolism). For each variable,

different analytical sensing techniques may be found (Fig. 23.1) [56].

Sensor probes developed for the in-line monitoring of bioprocesses used in industrial

facilities are usually designed to be directly immersed in bioreactor medium broth, and

so they must be sterilizable (i.e., they should resist to steam or geradiation) and tem-

perature and pressure stable. Also, in-line sensor probes must be able to overcome

problems caused by fouling or medium interference. Considering these basic

requirements for industrial use of an in-line probe, it can be easily recognized that not

every laboratory analysis method can be used for in-line monitoring of bioprocesses in

an industrial setting [56]. On the other hand, any in-line or at-line analytical probe used

for online monitoring of a bioprocess must fulfill other technical attributes such as

accuracy (i.e., the degree of agreement between the measured and true values of the

analyte), selectivity (i.e., the capability of measuring a specific parameter in the medium

broth, overcoming possible interference from other parameters or background noise

effects), and sensitivity (i.e., the capability of detecting and quantifying small changes in

the desired parameter property if possible within a large dynamic range) [56]. Other

attributes must be also taken into account for any sensor probe to be used for online

monitoring, such as repeatability (i.e., agreement between different measurements of the

same parameters made by the same operator under the same conditions at different

times), robustness (i.e., the capability of a sensor to deliver a consistent signal, inde-

pendent of process conditions and the duration of the analysis), stability (i.e., the

capability of a sensor to provide reproducible results for a certain period of time,

retaining sensitivity and selectivity), and linearity (i.e., deviation from a linear response,

including detection and quantification limits). Finally, there is the response time of a

sensor probe (i.e., the monitoring time delay), which should be small enough to ensure

that it is possible to evaluate important process dynamics in real time; otherwise, the

efficient control of the process will not be possible. Thus, ideally a sensor probe must

provide high selectivity, sensitivity, robustness, repeatability, and stability and have a

684 CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING



low detection limit and linearity with short response times and a long lifetime. Therefore,

the development of online monitoring analytical techniques that could be implemented

at industry facilities is still a challenging task. In the next section, some of the most

common methods described in the literature for the simultaneous online monitoring of

several parameters of a fermentation medium broth are reviewed together with their

main advantages and shortcomings.

23.3 Online Techniques for Industrial Bioprocess
Broth Analysis

Online monitoring techniques are needed to assess cell growth, substrate consumption,

and product formation on a real-time basis, enabling effective control of the bioprocess,

which results in increased yield, productivity, and reproducibility [36]. Thus, the
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FIGURE 23.1 Schematic of bioprocess monitoring: variables and different analytical techniques. NIR, near-infrared
spectroscopy; DS, dielectric spectroscopy; FTIR, Fourier-transform infrared spectroscopy; FS, fluorescence spectros-
copy; HPLC, high-performance liquid chromatography; ELISA, enzyme-linked immunosorbent assay; GC, gas chro-
matography; MS, mass spectrometry; PTR-MS, proton transfer reactionemass spectrometry; MALDI-TOF-MS,
matrix-assisted laser desorptioneionization time-of-flight mass spectrometry; NMR, nuclear magnetic resonance;
FIA, flow-injection analysis.
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development of reliable analytical techniques capable of monitoring critical process

parameters in-line is essential [34]. These real-time analytical tools must fulfill re-

quirements such as being process-friendly, with minimal or no sample preparation and/

or pretreatments, having high-speed data acquisition and simultaneous detection and/

or quantification of multiple parameters, and having the possibility of being used for

in situ measurements. However, the intrinsic variability of each bioprocess, the

complexity of the biological systems, and the need, in many cases, to operate in a sterile

environment, together with the gas phase or vibrational effects caused by agitation pose

a number of difficulties and may partially explain the scarcity of real-time noninvasive

measuring analytical techniques or probes. On the other hand, upstream bioprocesses

usually used by industry are sensitive to several parameters such as the size and

configuration of the reactor, the composition of the growth media, pH, temperature,

dissolved oxygen level, agitation rates, and the chemicals used in growth and expression

processes. Thus, to increase production yields and ensure product consistency and

reproducibility, these parameters must be controlled, and therefore real-time moni-

toring is required [8]. Also, to automate large-scale microbial bioprocesses, a thorough

real-time estimation of the state of the process must be achieved and critical quality

attributes of the bioprocess must be monitored, preferentially in-line and in situ,

allowing an assessment of the process during running, enabling its feedback correction

toward the optimal quality profile, and minimizing perturbation of the process [32].

Indeed, in a great number of industrial fermentations the levels of some key

parameters (e.g., carbon sources and/or precursors, metabolites) must be strictly

controlled, which in some cases involves the integration of chemometric techniques and

the dynamics of the fermentation process [33]. Also, sensor-based techniques usually

generate a great amount of signals data that must be correlated to key variables of the bio-

process under study (e.g., substrate concentrations) through an appropriate mathematical

model which then can be used to evaluate variable profiles or the process status using

recorded online signals data. These correlations are usually established using multivariate

data analysis to identify relevant information hidden over the entire data set [56].

The establishment of reliable chemometric models requires the ability to select an

appropriate calibration procedure based on real-time sampling data, which must be able

to take into account the intrinsic variability of a batch-to-batch process and its impact

on complex system interactions [33].

However, real-time sensor technologies are mostly established for some critical

process parameters (e.g., temperature, pH, dissolved oxygen, stirring speed) and used in

process control, but for others parameters such as biomass and medium composition,

research is ongoing [32,34]. Owing to the complexity of the general cell metabolism

during growth and product formation, in situ data on the critical variables are not easily

estimated based on knowledge of the critical process parameters [32]. Because of the

scarcity or even lack of in-line sensor probes for online monitoring of critical variables,

several industrial microbial cultivation processes are still monitored mainly using offline

analysis of biomass, product, and carbon sources and require sampling procedures that
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increase the risk of contamination and delay the determination of target analyte con-

centrations [32]. On the other hand, most commercial techniques available for the real-

time analysis of biomass, product, and carbon sources are limited to cultures in which

media matrix and measurement conditions are relatively simple. Indeed, the high

complexity of microbial fermentations caused by the heterogeneity of the raw materials

and the different stirring and aeration needs, resulting in constant changes in the

growing microorganism morphology as well as the broth rheological properties, and

which may differ within cultivations, from batch to batch, and with each reactor size, are

difficult for developing real-time analysis strategies [33]. Nevertheless, several works

have been published reporting the successful application of real-time analytical tech-

niques. Among them, special attention has been paid to spectroscopy-based methods as

well as other techniques for the online monitoring of bioprocesses.

23.3.1 Spectroscopic-Based Methods

The application of non-invasive spectroscopic methods to bioprocess monitoring turn out

in a multitude of on-line signals indirectly related to either the cell population or com-

pounds in the medium. Signals and spectra data contain valuable but masked cell

physiology-relevant information which requires the use of chemometrics tools to establish

correlations with offline bioanalytical data. This procedure allowed successful data-driven

soft sensor systems to be developed for the online monitoring of complex variables such

as concentrations of some organic compounds in the medium, cell density, cell growth,

recombinant protein concentration, plasmid copy number, and metabolites [57].

Spectroscopic analysis is based on the interaction of electromagnetic waves and

molecule bonds, and thus the infrared (IR) spectrum of a compound reflects energy

absorption caused by the vibration of its chemical bonds over a wavelength range [58].

Bioprocess monitoring mainly uses spectroscopy methods in the IR region of the

infrared spectrum subregions (near, 780e2526 nm; mid, 2500e40,000 nm; and far,

>40,000 nm). With the use of spectroscopic sensors, no sampling is required (except for

calibration), there is no interaction between the sensor and analytes, and the simulta-

neous and instantaneously assessment of several different process variables can be

determined simultaneously [56].

Among spectroscopic-based techniques reported for the online monitoring of

microbiological processes, most interest has been paid to dielectric spectroscopy (DS),

NIR, FTIR, 2D-fluorescence spectroscopy, and Raman spectroscopy.

23.3.1.1 Dielectric Spectroscopy
DS has emerged as potential online, in situ, and in-line tool to monitor mammalian,

yeast, and bacterial processes, even in the presence of turbidity or biomass aggregates

[59,60]. This technique allows robust real-time, in-line measurements, simple linear

calibrations for biomass estimation, and measurement selectivity to viable biomass

[60,61]. Indeed, the recorded capacitance data may be related to the amount of living
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cells because they behave as small capacitors when exposed to an electric field [38]. DS

probes have also been applied to monitor lipid storage in yeast cells [62] and to monitor

in situ and in real time bacterial cell growth, product formation, and the optimum time

for harvesting polyhydroxyalkanoate from the cells as well as the consumption of volatile

fatty acids [38]. Ehgartner et al. [60] described a novel method that combines soft sensors

and dielectric measurements in dual-frequency mode to monitor in real time physio-

logical changes in recombinant Escherichia coli bioprocesses producing an inclusion

body product accumulating in the cell. Therefore, globally, studies carried out have

shown that this tool may improve process understanding and optimization by imple-

menting models and applying control strategies.

23.3.1.2 Near-Infrared Spectroscopy
NIR is a nondestructive analytical technique that requires minimal sample preparation

and/or pretreatments; it is fast (i.e., high speed of spectrum acquisition) and allows the

simultaneous detection and/or quantification of multicomponents to which it is possible

to couple fiber-optic probes that can be immersed directly into the culture broth and

steam sterilized with it, enabling the acquisition in situ of real-time information

[34,36,63]. Also, the low-absorption coefficient enables high penetration depths, and

therefore larger sample volumes can be analyzed [34]. To monitor complex industrial

cultures using NIR spectroscopy, a wide range of wave numbers (740e1300 nm) in the

NIR region of the electromagnetic spectrum is needed. In NIR analysis combinations

and overtones of molecular vibrations are used rather than specific fundamental vi-

brations, although the measurements cover the specific wave numbers that correspond

to the maxima absorbance of the typically bonds (i.e., the OeH bonds of alcohols, CeH

bonds of aliphatic and aromatic carbon compounds, and NeH bonds of proteins) found

in the multicomponent media broth [8,33,56,63]. In fact, the more different vibrational

modes that can be excited, the more information can be gained and the more specific

the determination of analytes can be [56]. NIR analysis may be carried out by trans-

mittance (e.g., lowecell density fermentation broths, transparent liquids and suspen-

sions), reflectance (e.g., highecell density fermentation broths, opaque liquids and/or

solids and powders) or transflectance (e.g., transparent and turbid liquids and semisolid

samples) [58,64]. The spectrum acquired during a fermentation run is a fingerprint of all

broth NIR active constituents, and because of its complexity and the overlapping bands,

which are hard to assign directly to a specific analytes in the sample, qualitative/

quantitative multivariate statistical tools must be used for spectral interpretation and

modeling [31,34,36]. Despite the recognized potential of NIR for bioprocesses moni-

toring and control, some drawbacks are usually pointed out [8], such as the need to carry

out frequent time-consuming model calibrations, and the failure to measure concen-

tration data accurately for significant postcalibration periods or during high aeration,

stirring, or temperature changes. Even so, several applications for NIR fiber-optic probes

have been reported for in-line and at-line measuring of analytes in biological processes,

such as monitoring of biomass growth of bacteria and mammalian cells, carbon source
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consumption, by-product formation and consumption, and their corresponding prod-

ucts (e.g., glucose, lactic and acetic acids, glycerol, methanol) [19,65e67]. However, few

of them report the implementation of NIR technique in situ, aiming for real-time

monitoring application [31,36,63]. Also, because high dynamic ranges of agitations,

air-flow rate, and biomass concentrations occur during the whole culture process of

microorganisms, only few works report the application of in situ NIR probes [32].

Furthermore, several NIR-based models described in the literature for measuring carbon

and nitrogen sources in microbial processes show high mean percentage errors, and so

they are unsuitable for fermentation processes in which the toxic feed components must

be kept at residual levels [33]. On the other hand, few works report the application of

in situ NIR probes along the whole culture process of microorganisms, which enable

coping with very high dynamic ranges of agitation, air-flow rate, and biomass concen-

trations. A novel soft NIR probe was proposed [33] to monitor critical nutrient ratios of

linoleic acid, oleic acid, and ammonia during lipstatin fermentation by Streptomyces

toxitricini. Goldfeld et al. [67] designed an innovative NIR spectroscopic method that

could successfully monitor, in real time and online, concentrations of glycerol, meth-

anol, and biomass during the production of a monoclonal antibody by a Pichia pastoris

highecell density process, with long-term stability. An in situ NIR fiber-optic probe

combined with chemometrics tools [e.g., partial least squares (PLS) models] was used by

Sampaio et al. [32] to monitor the cultivation of two recombinant Saccharomyces cer-

evisiae strains producing heterologous cyprosin B, enabling the real-time evaluation of

the main critical variables involved in the cultivation process (e.g., biomass, glucose,

galactose, acetate, and ethanol). Alves-Rausch et al. [34] described real-time multipa-

rameter monitoring during Bacillus spore production based on multivariate statistical

models established using NIR in-line spectroscopy data. The approach was successfully

applied to a large-scale industrial fermentation process. The NIR spectroscopy resisted

cleaning-in-place and sterilization-in-place of the harsh scale production environment

with low maintenance. Moreover, the fast diode array technology used enabled the

attenuation effect to be taken into account owing to the air bubbles, by applying a filter

during spectra acquisition. Lopes et al. [63] demonstrated the ability of in situ to monitor

E. coli cell cultures designed for plasmid bioproduction using an NIR fiber-optic trans-

flectance probe combined with PLS models. The methodology allows the real-time

acquisition of spectral information related to key process variables without the use of

reagents and no risk of contamination. Hakemeyer et al. [31] described the application of

at-line NIR transmittance spectroscopy on supernatant samples from Chinese hamster

ovary (CHO) cellebased monoclonal antibody cultivation processes. An online moni-

toring process was developed by Cruz et al. [36] to produce polyhydroxyalkanoate (PHA)

using cooking oil as the sole carbon source and Cupriavidus necator. NIR spectroscopy

and PLS models were used successfully to monitor the production of PHA, biomass

growth, and the consumption of used cooking oil, despite the intracellular nature of the

product and the immiscibility of the substrate. Kim et al. [8] used real-time online NIR

monitoring of glycerol concentration, methanol concentration, and relative cell density
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to characterize and optimize monoclonal antibody production in glycol-engineered

P. pastoris during highecell density fed-batch fermentation. The online NIR moni-

toring potential was proved over 1 year, which enabled an accurate estimation of

biomass, glycerol, and methanol concentrations without recalibration.

23.3.1.3 Fourier Transform Infrared Spectroscopy
Attenuated total reflection FTIR spectroscopy has become a powerful process analytical

tool for in-line and at-line monitoring of bioprocesses [19]. It is a fast, easy, and

nondestructive analytical technique showing the typical advantages of any spectroscopic

technique over classical analytical methods employed for bioprocess analysis, such as

the ability to quantify multiple target components simultaneously (e.g., substrates,

desirable and undesirable metabolites) by applying common chemometric tools [e.g.,

principal component analysis (PCA), PLS regression, and multivariate curve resolution

(MCR)] [30]. Experimental spectra data are acquired in situ without the need for sample

preparation and can be provided in real time, which makes it well-suited for process

monitoring. FTIR spectroscopy enables the identification of different functional groups

(e.g., lipids, proteins, and carbohydrates) and organic compounds (e.g., exopoly-

saccharides and phycoerythrin) by evaluating transitions between vibrational states of

the bonds contained within the molecule [13]. Although it is a promising technique, FTIR

has several shortcomings, such as the strong overlap of the bands owing to the high

similarity of the structure of the carbon sources, of the evolving species, or because of

the presence of interferences that hamper perfect elucidation of the analytes being

transformed [30]. Some works reported the successful application of FTIR-based

methods for online monitoring of bioprocesses. Scholz et al. [68] presented a method-

ology based on FTIR spectroscopy coupled to PLS regression to determine the main

variables of plasmid bioproduction with E. coli cultures: plasmid, carbon sources

(glucose and glycerol concentrations), and a by-product (acetic acid concentration). The

satisfactory results showed that FTIR spectroscopy was sufficiently sensitive to detect

changes in the bacteria metabolism induced by changes in the chemical environment.

Grassi et al. [30] showed that the combined use of FTIR spectroscopy and MCR alter-

nating least squares technique facilitates the study of complex beverage bioprocesses,

allowing beer fermentation to be monitored and full understanding of the evolution of

sugars (maltose, maltotriose, fructose, sucrose, and dextrins) and ethanol during the

biotransformation, independently of environmental conditions (i.e., different yeast

inocula and temperature). The proposed methodology was suitable for monitoring and

understanding the kinetics of the whole fermentation process, maximizing and stan-

dardizing the productivity of the batches. Fuentes-Grünewald et al. [13] used FTIR

technology to characterize macromolecule biomass composition and the quality of the

metabolites produced during microalgal production. The methodology enabled the

evolution of macromolecules composition to be followed and characterization of the

metabolites produced, such as phycoerythrin or exopolysaccharides in Porphyridium

purpureum cultures. These examples demonstrate the effectiveness of FTIR
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spectroscopy coupled with different chemometric tools for online monitoring of a wide

range of bioprocesses, and their main advantages as well as some shortcomings.

23.3.1.4 Raman Spectroscopy
Raman spectroscopy is a simple, fast, nondestructive, and noninvasive technique that

allows the analysis of molecular characteristics by evaluating vibrational modes in

molecules, for which the effect of water interference is insignificant [28]. Raman-based

techniques may be used to study transparent, translucent, opaque, and colored sam-

ples including solids, semisolids, suspensions, and solutions [69]. Raman techniques

have progressed from traditional laboratory spectrometers to several miniaturized and

tunable lasers, optical filters, spectrographs, interferometers, charge-coupled devices,

microprocessor controls and probes. These have improved mobile applications to be

noncontact and process-friendly and allow for remote analysis, enabling in-line analysis.

Moreover, because Raman spectroscopy is an inelastic scattering technique of mono-

chromatic light [29], the spectrum generated contains a large amount of chemical in-

formation that may be used to predict multiparameter concentrations [28,69]. Also,

because Raman spectroscopy does not require a reference light path (which is needed

for IR/NIR), it is amenable to fiber optics and allows for remote sampling. In many cases,

it enables a better sample characterization than FTIR spectroscopy. However, Raman

spectra can be affected by high fluorescence background signals, which distort the

spectrum shape but can be removed using adequate software and algorithms, and by

signal attenuation caused by the presence of light-scattering particulates, a drawback

that has not yet been totally overcome [28,29,69]. Although process monitoring using

Raman spectroscopy has not yet gained the same popularity as NIR, some studies have

shown the versatility and promising performance of in situ Raman probes coupled with

appropriate chemometric tools to monitor concentrations of substrates and products

during fermentation processes (e.g., yeast fermentations and mammalian cell culture

bioprocesses) [29]. Ashton et al. [70] showed that UV resonance Raman (UVRR) spec-

troscopy could monitor multicomponents in mammalian cell cultures, including re-

combinant protein titer. This specific Raman technique measures Raman spectra with

UV lasers, showing no fluorescent background; it creates a resonance Raman effect that

greatly increases the signal and is selective toward individual species in complex media

when appropriate UV wavelengths are selected, although no UVRR probe is available to

date. The potential of UVRR spectroscopy was further demonstrated by Ashton et al. [71].

These authors showed that UVRR could be used as a tool to monitor variations in re-

sidual DNA and RNA that may contaminate mammalian cell culture medium before and

after purification of valuable recombinant proteins from the same medium, without

interference from background fluorescence, which is often a major problem with con-

ventional Raman spectroscopy. Ávila et al. [72] used coupled Raman spectroscopy and

PLS regression models to establish an online monitoring system for glucose fermenta-

tion by S. cerevisiae yeast. The procedure allowed online monitoring of substrates

(glucose), fermentation products (ethanol and glycerol), and biomass growth. These
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authors also showed that multivariate control charts based on spectra data recorded

enabled the detection of fermentation fault batches. Gray et al. [73] employed in situ

Raman spectroscopy for the real-time monitoring of simultaneous saccharification and

fermentation of corn mash by an industrial strain of S. cerevisiae. Based on spectra ac-

quired during fermentation, these authors established PLS regression models to evaluate

total starch, dextrins, maltotriose, maltose, glucose, and ethanol concentration changes

during fermentation under typical industrial conditions. Iversen and Ahring [29] showed

the potential of Raman spectroscopy for in situ and real-time monitoring, of a

S. cerevisiae fermentation process. The instrument was equipped with a sapphire ball

probe designed to minimize interference by particulates and to withstand the harsh

environment during sterilization. The proposed Raman technique coupled with a simple

univariate calibration model (typical multivariate analysis was omitted) allowed

reasonable monitoring of concentration changes (e.g., glucose, ethanol, and acetic acid)

during pretreatment, hydrolysis, and fermentation processes during the production of

lignocellulosic bioethanol. Paudel et al. [69] presented an integrated framework that

allowed the real-time estimation of glucose concentration during microalgae cultivation

in a photobioreactor operated under mixotrophic conditions using Raman spectroscopy.

23.3.1.5 Fluorescence Spectroscopy
Attention has been focused on fluorescence spectroscopy, an optical and noninvasive

method for process monitoring, because it allows instantaneous data acquisition and in-

time evaluation of bioprocess variables. Independently of the known advantages of each

spectroscopy-based method, fluorescence spectroscopy seems to be an interesting

approach to bioprocess monitoring considering that NIR spectroscopy is not always

suited to analyzing aqueous broth samples because of strong water signals and Raman

spectroscopy. Although it is suitable for aqueous sample analysis, the Raman signals

recorded for some analytes are weak and could be affected by matrix fluorescence

interference [74]. The usefulness of the fluorescence technique relies on the fact that

many cellular substances and media components are biogenic fluorophores. Indeed,

fluorescence spectra contain valuable information concerning cells and process vari-

ables (e.g., biomass and cell density). Thus, fluorescence spectroscopy combined with

chemometric tools offers deeper insight into biological processes resulting in easier

bioprocess monitoring, optimization, and control [75]. In fact, multivariate statistical

methods are needed because, similar to other spectroscopic methods, fluorescence

spectra recorded during a fermentation process result in a high data volume, and so

chemometric methods are usually needed [e.g., PCA, PLS regression, and artificial neural

networks (ANN)] [37]. Rossi et al. [76] demonstrated that the metabolism of Klebsiella

pneumonia under aerobiosis and anaerobiosis could be monitored online and predicted

by the application of chemometric models and multiwavelength 2D-fluorescence

spectroscopy. Biomass, glycerol, and 1,3-propanediol content were predicted using

PLS and ANN models established using online fluorescence data, although the last two

are not fluorescent compounds. 2D-Fluorescence spectroscopy combined with
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multivariate linear (PLS) and nonlinear (ANN) models was also applied by Grote et al.

[37] to predict online process variables (e.g., pH) and acidity during sourdough

fermentation. Li et al. [74] showed that fluorescence excitation-emission matrix (EEM)

spectroscopy combined with chemometric methods could quantitatively predict re-

combinant glycoprotein production cultured in a CHO cell fed-batch process. The

feasibility of this technique relies on the fact that EEM spectra of complex solutions are

sensitive to compositional changes, and thus during the cultivation progress, changes in

the emission properties of several key fluorophores (tyrosine, tryptophan, and the

glycoprotein product) could be recorded to enable culture progress via MCR-ALS to be

followed. Overall, it was shown that the proposed approach could be successfully

implemented for monitoring, at-line or offline, the productivity of industrial fed-batch

mammalian cell culture processes from small to large scale. Ohadi et al. [77] also

described the accurate potential of multiwavelength fluorescence spectroscopy to

monitor viable and dead cells, recombinant protein, glucose, and ammonia concen-

trations for CHO cells during cultivation by means of PLS regression models based on

recorded fluorescence excitationeemission data. The satisfactory performance of the

proposed combined approach clearly shows that this methodology could be used for

in situ monitoring of mammalian cell culturing.

23.3.2 Mass Spectrometry-Based Methods

One major shortcoming of noninvasive spectroscopic methods for online monitoring of

bioprocesses is the time required to acquire accurate process data sets that will

constitute the basis for developing reliable, data-driven predictive models, which limits

the acceptance of this approach. Moreover, the practicability of validating and imple-

menting such complex approaches in a standard industrial process environment leads to

some skepticism in industrial fields. A possible alternative would be to apply online

analyzers for the direct detection of physiologically relevant process variables. This

approach should meet the high demands on sensor/analyzer systems in a bioprocess

environment and the need for real-time evaluation of metabolites that may be enclosed

in the cells without cell disruption and time-consuming sample preparation procedures

[57]. One possibility could be to use online mass spectroscopic techniques.

23.3.2.1 Proton Transfer ReactioneMass Spectrometry
Proton transfer reactionemass spectrometry (PTR-MS) can be used to monitor metab-

olites released through the cell membrane during cell interaction with their environ-

ment. Among these, volatile organic compounds (VOCs) may be used for real-time,

noninvasive bioprocess monitoring, because they are directly connected to physiologi-

cally relevant information and easily accessible via headspace sampling. PTR-MS is a

promising tool for the quantitative analysis of VOCs and so could be used as a nonin-

vasive technique with minimal requirements for sample preparation, which may guar-

antee sample authenticity. Moreover, the soft ionization of VOCs via this technique
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allows for a low degree of fragmentation that is especially useful for the analysis of

complex gas matrices of bioreactor headspace samples. Furthermore, VOC signals ac-

quired by PTR-MS are quantitative and can be assigned to specific compounds. When

they are coupled with multivariate statistical tools, they may be further used to predict

particular variables [57]. The potential of PTR-MS as an advanced upstream process

monitoring tool for noninvasive online headspace measurement of VOCs in recombi-

nant E. coli fed-batch fermentations was demonstrated by Luchner et al. [57].

23.3.2.2 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight
Mass Spectrometry

MALDIeTOFeMS is a prominent technique in biological mass spectrometry, especially

for analyzing intact cells (e.g., microorganisms). The technique has several advantages,

such as simple sample preparation, the possibility of automated analysis over a wide

mass range, and fast analysis. Helmel et al. [11] optimized and implemented an ICMS

approach on two MALDIeTOFeMS instruments in the linear positive ion mode,

allowing the growth stages of Penicillium chrysogenum to be monitored during batch or

fed-batch fermentations by means of hierarchical cluster analysis. ICMS gives a unique

mass spectral fingerprint of surface-associated proteins and/or peptides, enabling the

identification of microorganisms from different species or strains. The technique

proved to be a fast, nearly real-time screening method allowing biomass production

to be followed during batch fermentations and penicillin-producing fed-batch

processes. Steinhoff et al. [78] described a novel high-throughput method based on

MALDI-TOF-MS and multivariate analysis (PCA) to monitor intracellular metabolite

levels in fed-batch processes. The technique is based on a new microarray sample target

and allows the detection of phosphorylated nucleosides and other metabolites

(glutathione and nucleotide sugar) using stable isotope-labeled internal standards. The

proposed method requires short sample preparation steps and is suitable for monitoring

mammalian cell cultures such as antibody-producing hybridoma cell lines in industrial

environments.

23.3.3 Other Methods

Apart from the most common spectroscopy and mass spectrometryebased analytical

methods usually applied when online monitoring of fermentation broth is envisaged, a

wide range of other methods have been reported in the literature. In this section, some of

those methodologies are reviewed to cover novel and alternative methodologies.

23.3.3.1 Photometric Sensors
Photometric sensors have been reported as a promising low-cost alternative to spec-

trometers for the online monitoring of bioprocesses [19]. Photometric sensors have

optical bandpass filters in spectral regions that are specific to the respective components

to be analyzed. Also, these sensors have some advantages such as compactness, simple
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calibration, and robust operation, as they are easily fitted to bioreactors. Photometric

sensors are adequate for monitoring volatile compounds, such as ethanol; and because

of vaporeliquid equilibrium their contents in the fermentation broth may be indirectly

determined by photometric measurement of the concentrations in the exhaust stream.

Beuermann et al. [19] developed an online carbon balance of aerobic yeast fermentation

processes using a miniaturized optical photometric IR gas sensor to monitor ethanol and

CO2, and a fiber-optic backscatter setup for direct biomass evaluation. Dietzsch et al.

[20] developed a novel online sampling analysis device with an automatic photometric

robot for fast bioprocess monitoring of microbial cultures. The photometric device

monitored glucose, glycerol, ethanol, acetate, phosphate, and ammonium concentra-

tions during several batch cultivations of P. pastoris with no time-consuming recali-

bration or maintenance work.

23.3.3.2 Calorespirometric Methods
Calorimetry represents an additional method for the online monitoring and controlling

of bioprocesses. Noninvasive calorimetric measurements, both in pilot-scale and large-

scale bioreactors, may be made by determining the heat transfer coefficient and

temperature difference between the inside of the reactor and the representative cooling

liquid in the reactor jacket or by assessing the mass flow of the cooling liquid and the

temperature difference between the inlet and the outlet of the reactor jacket.

Calorimetry can be used to monitor both aerobic and anaerobic processes. A calo-

respirometric method was proposed [79] for the online detection of microbial lysine

formation in a pilot-scale stirred tank reactor by comparing the heat generation of the

bacterial strains with that calculated from the oxygen consumption of Corynebacterium

glutamicum for batch and fed-batch cultures. The results proven that calorespirometry

is a viable noninvasive technique to detect product formation during a fermentation

process.

23.3.3.3 Nuclear Magnetic Resonance Spectroscopy
Nuclear magnetic resonance (NMR) spectroscopy is a promising analytical tool. Its use

for online monitoring of biological systems has been frequently constrained by the high

complexity of custom-made NMR bioreactors, considerable costs for high-field NMR

instruments, and the undesirable effect of aeration in NMR spectra acquisition [80]. With

the aim of reducing instrumentation costs, low-field NMR instruments may provide a

cost-efficient alternative. Thus, the use of low-field 1H-NMR spectroscopy for nonin-

vasive online monitoring of two different microbial systems was investigated by

Kreyenschulte et al. [80]. For the yeast Hansenula polymorpha glycerol consumption

could be accurately assessed despite the presence of high amounts of complex con-

stituents in the medium. During cultivation of the fungal strain Ustilago maydis, which is

accompanied by the formation of several by-products, concentrations of glucose, ita-

conic acid, and the relative amount of glycolipids could be quantified. The compact

design combined with the high temporal resolution of spectra acquisition allowed online
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monitoring of the respective processes, which showed that low-field NMR spectroscopy

has a great potential for noninvasive online monitoring of biotechnological processes.

23.3.3.4 Biosensors
A biosensor is a self-contained integrated device that contains a biological recognition

element (i.e., a biochemical receptor) in direct spatial contact with a transducer element

(electrical or optical readout), and which provides through an amplification and signal

conversion unit a quantitative or semiquantitative analytical response. Some biosensors

can be sterilized by g-irradiation, which may be an advantage for some applications.

Some of these devices have been applied in monitoring strategies of fermentation pro-

cesses. Biosensor devices have been designed and applied for direct sense key nutrients

such as sugars and amino acids, to establish the limits of feasible operating parameters

and for the high-throughput design of media [18]. However, as reviewed by Biechele

et al. [56] few studies are described in the literature concerning the online monitoring of

bioprocesses. Moreover, most enzyme-based biosensors commercially available are

used as offline monitoring tools. Genetically encoded biosensors have been applied to

sense extrinsic and intrinsic cellular stress, which shows the need to change operating

parameters to improve cell health and productivity [18]. Bäcker et al. [16] developed a

silicon-based biosensor chip with an integrated microfluidic channel for the simulta-

neous amperometric detection of glucose, glutamate, and glutamine in a batch

hybridoma cell-culture medium. For that, glucose oxidase, glutamate oxidase, and a

two-enzyme system made of glutaminase and glutamate oxidase were immobilized in

platinum thin-film electrodes. Preliminary results showed the feasibility of the biosensor

chip for monitoring the nutrient concentration in fermentation processes, whose

performance was improved by coupling an optimized flow-injection analysis system.

Schenkmayerová et al. [17] developed a microbial biosensor for 2-phenylethanol based

on the bacteria Gluconobacter oxydans immobilized in a disposable polyelectrolyte

complex gel membrane attached to a miniaturized oxygen electrode. The biosensor was

successfully applied for bioprocess offline monitoring, but its application within an

online configuration could be foreseen after minor adaptations.

23.3.3.5 Soft Sensors
Sensor or probe technologies have been used extensively for in situ real-time, nearereal

time, or at-line noninvasive bioreactor monitoring. These methodologies are simple,

noninvasive, reusable, easy to maintain for sample source sterility, and stable in the long

term [81]. Alternatively, soft sensors have been used to estimate process variables that

are difficult to measure in real time or whose measurement by common analytical

procedures is tedious and time-consuming. Soft sensors include a measuring device and

a software-based estimation algorithm. Data recorded by the sensors from directly

measurable variables or more complex multivariable measurements are used by the

software algorithm to predict critical process variables that cannot be measured directly.

Data-driven or model-driven soft sensors have been described. The first are based on
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chemometric models (e.g., PCR, PLS, ANN) established using process data to predict

other process variables online. The latter are based on mass and energy balances that

describe physical and chemical process principles [44,46,56]. Software sensors based on

standard online data and simple mathematical models can be used to monitor different

state variables of fermentations processes (e.g., biomass concentration, substrates or

products concentrations, specific growth rates, metabolic state of cells, oxygen transfer

capacity, and the ratio between oxygen and energy substrate consumption). Model-

driven soft sensors may be more adequate than data-driven soft sensors because pro-

cess changes cannot always be balanced by multivariate data analysis. Moreover,

because model-driven soft sensors do not require a training data set, they seem to be

useful tools for the development of bioprocesses when no or few prior data are available

[45]. In some cases, data-driven and knowledge-based soft sensors may be further fused

using Kalman filter approaches [42,56]. Some works have demonstrated the applicability

of soft sensors for online monitoring of complex bioprocesses (Fig. 23.2).

Sagmeister et al. [44] proposed a method for the efficient acquisition of reliable in-

formation on the physiological boundaries of mixed-feed E. coli fed-batch fermentation

for the production of heterologous proteins. The methodology combined dynamic pulse

and ramp experimentations with soft sensoreassisted control of specific substrate up-

take rates based on real-time chemical data (residual substrate concentrations) obtained

through an in-line FTIR technique. This same research group [45] used a soft sensor on

the basis of a redundant equation system involving the degree of reduction and carbon

balance for estimating the biomass concentration in real time, which was further used

for closed-loop control of the specific uptake rates in a noninduced E. coli decellerostat

culture using a mass balanceebased control approach. Kana et al. [82] developed Web-

enabled software for online and real-time monitoring of anaerobic biogas fermentation

for biohydrogen, biomethane, pH, dissolved oxygen, temperature, and conductivity. The
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FIGURE 23.2 Schematic view of model-driven software sensor.
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soft sensor was further evaluated via the continuous monitoring of dark fermentations

for biohydrogen production using anaerobic sludge as inoculums and glucose as sub-

strate. Sharma and Tambe [46] introduced a novel and exclusively data-driven genetic

programming (GP) soft sensor approach to evaluate biochemical processes. The

GP-based soft sensors were successfully applied to evaluate the extracellular production

of lipase enzyme, allowing its prediction of time-dependent activity and the bacterial

production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer and enabling

determination of its accumulation. Krause et al. [48] presented a self-organizing sensor

network capable of overcoming over sensor failures based on the combination of process

knowledge and computational efforts. The strategy first uses multivariate linear and

nonlinear models to create a search space based on the multisensor data set, aiming to

establish simple correlations between raw data and several sensors, which are then

applied to extract multivariate statistical process control trajectories. The optimal

sensoremodel combination is defined by swarm intelligence. The swarm-sensing

method showed the ability to achieve robust online monitoring.

23.4 Conclusions and Future Prospects
Several methodologies have been described for monitoring different process variables in

several biotechnological processes. Although they fulfill the basic requirements of any

analytical tool (e.g., sensitivity, sensibility, repeatability, reproducibility, linearity),

offline or even at-line monitoring traditional techniques (e.g., chromatography, elec-

trophoresis, polymerase chain reaction, colorimetric methods) should be avoided

because of the inherent risk of contamination caused by any sampling system. Online

and in situ or in-line sensing probes should be then used as often as possible.

Spectroscopic methods and optical-based sensors have great potential, as described in

this chapter, for in situ and online monitoring of different yeast, bacteria, or fungi cul-

tivations in either batch or fed-batch fermentation processes; in some cases, they have

been successfully integrated using soft sensor approaches, in process control strategies,

increasing bioprocess productivity. Indeed, for many variables and analytes, it is already

possible to perform in situ measurements, but a wide range of technical equipment is

needed, sometimes involving great complexity and requiring skilled technicians.

Therefore, although some novel in-line approaches are reported almost on a daily basis

by the scientific community, their applicability in real industrial facilities is still limited.

For instance, for industrial in situ applications, the connectivity of the sensor to the

bioprocess has shortcomings for many sensor-based technologies. The modular con-

struction of sensor heads and detectors is envisaged by the industry, which require

inexpensive sensor heads that could be incorporated several times in high-throughput

screening systems or could even be disposable. In fact, innovation in this field is

always driven by the requirements of state-of-the-art reactor technologies, which are

expected in future to be more diverse than classical stainless-steel fermenters. Despite
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the lack of real-time sensors to measure some critical process variables, difficulties in

implementing sensor probes in situ/in-line in industrial facilities, or to avoid the time-

intensive and expensive reapproval of the process owing to the inclusion of a new

sensor technology, the use of soft sensors is seen as a promising and practical alternative

strategy. Soft sensors may combine data from different sensor techniques with process

knowledge, enabling an estimation of additional variables indirectly, which are hardly or

indirectly measurable, including the metabolic activity of cells or growth rates. The main

goal is to meet the need for a total process overview, aiming at steadily ongoing

improvement of processes by online monitoring.

The utmost benefit of sensor patches is their potential use in disposable bioreactors, a

new trend in modern bioprocessing that leads to the concept of single-use/disposable

systems. This novel approach will promote the development of new sensor systems or

adapter systems that enable the connection of “classical” sensors to single-use reactors.

Thus, a new paradigm in the field of in situ and real-time sensor probes for the online

monitoring of bioprocesses has emerged. Single-use bioreactors are presterilized,

avoiding laborious and time-intensive sterilization and cleaning procedures but

requiring a novel sensor philosophy. Conventional sensors are mainly reusable devices

for long-term operation and cannot be employed in single-use bioreactors because they

are closed and sterile systems. Also, the new single-use sensors for disposable reactor

systems must be g-irradiation sterilizable and precalibrated, may have a shorter lifetime,

and need to be installed by the single-use reactor manufacturer. Furthermore, these

sensors must be cheap, small, and modular, and if possible should include a stan-

dardized sensor port to facilitate the design, fabrication, and application for mechani-

cally stable integration. Alternatively, well-established classical sensors could still

be used if they include a novel sensor port or adapter that allows the connection to

single-use systems.

Overall, whatever the strategy used for the online analysis of a bioprocess, the

availability of in situ or automated at-line analytical techniques is of utmost importance

for describing key broth variables. Therefore, new challenges for process monitoring are

arising, including: (1) mining large amounts of data generated during a bioprocess to

uncover hidden information contained in online signals from different sensor systems

and offline data; (2) better models to describe relationships between intracellular

properties and extracellular parameters; and (3) the extension of a range of current

analytical techniques and the miniaturization of sensor systems.
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