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Abstract

The governing equations of plastic torsion of, arbitrarily shaped, frictional interfaces are established and a general
solution is proposed. The case of rectangular interfaces is used to study the interactions of torsion strength with bending
moments and shear forces. In order to solve limit analysis problems, a piecewise linear approximation of the yield func-
tion for rectangular interfaces is proposed. A model for the limit analysis of three-dimensional block assemblages inter-
acting through no-tension frictional interfaces is presented including the proposal for the torsion failure mode. This
model takes into account non-associated flow rules and limited compressive stresses at the interfaces.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Masonry has a low tensile strength and this failure mode is quasi-brittle; therefore, unreinforced and
unconfined masonry elements, as those of ancient buildings, are prone to extensive cracking. At failure, these
cracks render the structure as a set of rigid blocks rocking and sliding between them. The cracks represent the
rocking and sliding interfaces between blocks. For this reason, limit analysis of rigid block assemblages inter-
acting through no-tension, frictional interfaces is a valuable model for ancient masonry structures.
Concepts directly related with the modern limit analysis theory were used centuries ago by renown think-

ers as Hooke, Coulomb or Poleni in the assessment of masonry structures. Heyman (1966) established the
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hypotheses upon which limit analysis is applicable to masonry structures. These hypotheses can now be re-
stated as follows: (1) The limit load occurs at small overall displacements. This hypothesis is generally rea-
sonable; nevertheless, it must be revised for each particular case. (2) Masonry has no tensile strength. The
low tensile strength and the quasi-brittle tensile failure of masonry justify this assumption. (3) The shear
failure at the interfaces is perfectly plastic, which is confirmed by experimental results (Lourenço and
Ramos, 2004). (4) Hinging at an interface occurs for a compressive force independent from the rotation.
This assumption might be questioned if crushing occurs, but crushing behaviour seems to have minor
significance in the response of historical masonry structures.
The fact that sliding in dry interfaces occurs with almost zero dilatancy (in this paper the dilatancy is as-

sumed equal to zero) renders it as a non-associated flow mode. This violates one of the hypotheses of classic
limit analysis theory and requires the use of a mixed formulation, i.e. the static and kinematic approaches
cannot be separated. A more fundamental result is that under non-associated flow rules, a multiplicity of
solutions can exist for limit analysis problems. Previous authors addressed this issue, namely Begg and Fish-
wick (1995), which presented a formulation for non-associated limit analysis of two-dimensional voussoir
arches with infinite compressive strength. Latter, Baggio and Trovalusci (1998) presented a formulation
for three-dimensional, non-associated limit analysis of rigid block assemblages, which is general in the sense
that it does not imply assumptions about the arrangement of blocks and interfaces. Nevertheless, the three-
dimensional examples in the cited paper are solved for associated flow rules only and the authors recognise
the difficulties of solving the non-associated version of the problem. These authors proposed to minimise the
load factor as a way to obtain the safest solution. Recent developments in the non-linear mathematical pro-
gramming field have permitted to solve efficiently the Mixed Complementarity Problem (MCP) arising from
the non-associated flow limit analysis problem (Ferris and Tin-Loi, 2001). Nevertheless, it is found that mini-
mising the load factor can conduct to severe underestimations of the collapse load.
Orduña and Lourenço (2003) presented a general, two-dimensional formulation of the rigid blocks limit

analysis problem where it is possible to limit the compressive stresses at the interfaces and a tie element is
included for strengthening design. Extending the compatibility and equilibrium requirements from two to
three dimensions is relatively straightforward. Nevertheless, in the extension of the yield conditions and
flow rules, apart from the hinging and sliding failure modes, also the twisting mode must be included. This
mode presents strong interactions between the torsion strength and the other generalised stresses. The tor-
sion failure on arbitrarily shaped frictional interfaces is a topic poorly studied. In fact, only the work of
Goyal et al. (1991) was found in the literature. In the work previously referenced of Baggio and Trovalusci
(1998) a very simple torsion model was included in the three-dimensional limit analysis formulation, where
the interactions of the torsion strength with the other generalised stresses were neglected.
In this paper, the equations governing the plastic torsion of frictional interfaces are presented and a gen-

eral solution for arbitrarily shaped interfaces is proposed. The particular case of rectangular interfaces is
studied in detail, aiming at assessing the interactions of the torsion strength with the shear forces and bend-
ing moments acting on the interface. A piecewise linear approximation to the yield function and flow rule of
rectangular interfaces is proposed in order to be included in a limit analysis formulation. A complement to
this proposal is the hinging yield function, which takes into account a limited compressive stress at the
interface. The complete limit analysis formulation for rigid block assemblages is then presented. In the sec-
ond part of this paper (Orduña and Lourenço, 2005), a novel solution procedure is proposed and validation
examples are presented and discussed.
2. Plastic torsion on frictional interfaces

Consider an arbitrary shaped interface S between two bodies with infinite strength, as the illustrated in
Fig. 1. This interface has boundary B. The cohesion-less Coulomb�s law governs the interface failure,
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Fig. 1. Interface subject to torsion.
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although the inclusion of non-zero cohesion is straightforward. The interface is supposed to represent a dry
masonry joint, therefore, it has no tensile strength. The interface is subjected to a compressive force and to a
torsion moment. The origin of the coordinate system is located at the centre of plastic torsion, O, of the
interface. This coordinate system has axes x1 and x2 on the interface plane, and xn in the normal direction,
forming a right-handed system (the axis xn points outwards the plane shown in Fig. 1). The unitary vectors
along the coordinate axes x1, x2 and xn are~s1,~s2 and~n, respectively. The shear stress component~s at a point
P has components s1 and s2 along the axes x1 and x2, respectively. Under these conditions, equilibrium is
guaranteed by Eq. (1).
os1
ox1

þ os2
ox2

¼ 0 ð1Þ
The cohesion-less Coulomb yield function is given by Eq. (2), where kÆk stands for the Euclidian norm, l is
the friction coefficient and rn is the normal stress component. The stress component rn is positive in tension,
thus it only takes non-positive values.
k~sk þ lrn 6 0 ð2Þ

In the plastic torsion of continuous beams, a boundary condition must be included to force the shear stress
being parallel to the cross section at the edge (Nadai, 1950). Nevertheless, in the case of an interface be-
tween infinitely strong blocks, it is possible to think that there exists a narrow strip near the edge where
the stress directions modify in such a way that they are parallel to the boundary at the very edge. At the
limit, when the strip is narrow enough, its influence can be neglected in the calculations. This is possible
due to the fact that the infinitely strong adjacent blocks can transmit the resultant stress concentrations.
The solution to the problem can be obtained by a kinematic approach. The flow rule is non-associated

because the normal component is zero dn = 0, but the tangential component is associated with the yield
function, Eq. (2). In this way Eq. (3) provides the corresponding tangential flow. Here dc1 and dc2 are
the relative displacement rates along the reference axes x1 and x2, respectively, and dk is the torsion flow
multiplier. It is observed that the flow vector is parallel to the tangential stress vector; see also Fig. 2.
dc1
dc2

� �
¼ 1

j~sk
s1
s2

� �
dk ð3Þ
For a relative rotation rate in the normal direction between the two sides of the interface equal to dhn, Eq.
(4) gives the relative displacement rate of a point P with coordinates (x1,x2). The shear stress in this same
point is given by Eq. (5). Here h ¼ tan�1ðx2=x1Þ is the angular polar coordinate and s0 = �lrn is the shear



τ
1

τ

γ

, γ
1

τ
2, γ

2
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Fig. 3. Proposed torsion failure model: (a) flow vector at point P and (b) stress vector field.
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stress that produces sliding. The relative displacement rate and shear stress have the same direction but dif-
ferent magnitudes, Fig. 3.
dc1
dc2

� �
¼

�x2
x1

� �
dhn ð4Þ

s1
s2

� �
¼

� sinðhÞ
cosðhÞ

� �
s0 ð5Þ
Under the stress distribution proposed, Eq. (6) gives the torsion moment strength, T, of an interface. Here,
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

p
is the radial polar coordinate and dA = rdhdr is the differential of area. If the centre of twist-

ing (the centre of the stress distribution) is not at the centre of plastic torsion, a shear force resultant exists
whose components along the axes x1 and x2, respectively V1 and V2, are given by Eqs. (7) and (8). Although
the approach presented here was developed independently, in Goyal et al. (1991) an equivalent proposal
can be found.
T ¼
Z
S

s0rdA ð6Þ

V 1 ¼
Z
S

�s0 sinðhÞdA ð7Þ

V 2 ¼
Z
S

s0 cosðhÞdA ð8Þ
In order to perform numerical calculations, Eqs. (6)–(8) must be integrated over the particular interface
area. Nevertheless, the integrals are hard to solve analytically on shapes other than the circular one. It
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was found that the best way to calculate torsion strengths under constant normal stress was to obtain the
exact formulae for those equations over a right-angled triangle with a vertex on the origin, Fig. 4. Here, a
new reference system is defined with axes xa, along the adjacent to the origin leg (with length a), and xb,
parallel to the other leg (with length b). The choice of this integration triangle obeys to the fact that it is
possible to find exact solutions for the above mentioned integrals and then, the torsion and shear strengths
can be calculated for any polygonal section just by addition or subtraction of integrals over right-angled
triangular areas. Furthermore, the centre of twisting can be placed anywhere, inside or outside the
interface.
Two other integrals are useful when the shear force resultant must be calculated. These integrals repre-

sent the torsion moments, T1 and T2, produced independently by the s1 stress, Eq. (9), and by the s2 stress,
Eq. (10), respectively.
T 1 ¼
Z
S

�s1x2 dA ð9Þ

T 2 ¼
Z
S

s2x1 dA ð10Þ
With the notation of Fig. 4, the integrals over the triangular area are presented in Eqs. (11)–(15). Evidently

the hypotenuse is c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
, and it is straightforward to verify that T1 + T2 = T.
T ¼ �lrn

6
abcþ a3 ln

bþ c
a

� �� �
ð11Þ

V 1 ¼
�lrn

2
ðac� a2Þ ð12Þ

V 2 ¼
�lrn

2
a2 ln

bþ c
a

� �� �
ð13Þ

T 1 ¼
�lrna
6c

b3 þ a2 bþ c ln
bþ c
a

� �� �� �
ð14Þ

T 2 ¼
�lrn

3
a3 ln

bþ c
a

� �� �
ð15Þ
No relevant experimental evidence was found in the literature about the strength of cohesion-less frictional
interfaces. A comparison presented in Orduña (2003) shows that the above formulae agrees exactly with the
results from simulations using finite element analysis.
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3. Plastic torsion on rectangular interfaces

It is possible to study the plastic torsion on rectangular interfaces with the help of the equations obtained
before for right-angled triangles. In particular, it is interesting to analyse the interaction of the torsion
strength with the shear forces and bending moments acting on the interface.
First, it is important to establish the torsion strength of a rectangular interface in absence of shear forces

or bending moments. Fig. 5 shows a rectangular interface with the notation used, l1 and l2 are half the
lengths of the rectangle sides parallel to the axes x1 and x2, respectively. In frictional interfaces it is useful
to have the torsion strength in absence of shear forces or bending moments, T0, in terms of the non-positive
normal force N, as in Eq. (16). The torsion constant, cT, given by Eq. (17), is obtained applying Eq. (11) to

the eight right-angled triangles with legs l1 and l2, and hypotenuse c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 þ l22

q
in which the interface is

divided, Fig. 5.
T 0 ¼ cTlð�NÞ ð16Þ

cT ¼ 1

3
cþ l21

2l2
ln

l2 þ c
l1

� �
þ l22
2l1

ln
l1 þ c
l2

� �� �
ð17Þ
3.1. Torsion–shear interaction

Both shear force and torsion moment strengths of an interface are provided by shear stresses. Moving
the centre of twisting away from the centroid of a rectangular interface, it is possible to obtain shear force
resultants together with torsion moment. Fig. 6 shows how the shear (and flow) lines modify as the centre of
twisting is moved to the left in a particular rectangular interface. As the twisting centre moves away, the
torsion resultant with respect to the interface centre decreases and the shear force resultant increases. At
the limit, when the twisting centre is at an infinite distance from the interface, the shear lines are straight,
the torsion is zero and the shear force attains its maximum value, V0, given by Eq. (18).
V 0 ¼ lð�NÞ ð18Þ

Fig. 7 presents some elements of the family of interaction curves that can be obtained for rectangular inter-
faces with different aspect ratios using Eqs. (11)–(15). The aspect ratio is defined as l2/l1 for a twisting centre
moving as in Fig. 6. It is evident that the curves for zero and infinite aspect ratios are the lower and upper
bounds for the family. The fact that pure torsion strength needs a zero shear force, and pure shear strength
requires a zero torsion moment, is a consequence from the fact that both strengths depend on the available
shear stress strength.
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Fig. 5. Rectangular interface.



Fig. 6. Stress lines for different locations of the twisting centre.
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Evidently, the flow for this type of stress states is a relative rotation about the twisting centre. In terms of
generalised strains (or relative displacement rates) related to the interface centre, the flow consists of the
relative normal rotation and relative displacements along the tangential directions. These flow components
can be obtained through the associated flow condition, as the only reason of non-associativity is that the
normal relative displacement component must be zero.

3.2. Torsion–bending moment interaction

Bending moments in the interface affect the torsion strength by modifying the normal stress distribution.
If the interface is supposed to behave linearly elastic on compression and tension stresses are not allowed,
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when the normal force is outside the middle third, the effective area of the interface is reduced and its shape
is modified. This model is rather complex to study and, in ancient masonry structures, there is no guarantee
about the linear distribution of stresses in the contact area. Therefore, a simplified model is proposed in-
stead. Hereafter, the bending moment on the interface is described by its components M1 and M2 along
the reference axes x1 and x2, respectively, and follow the right hand rule.
The simplification, which seems rather obvious in design approaches, e.g. for the dimensioning of rein-

forced concrete structures, consists of assuming that the normal force on the interface is equilibrated by a
uniform normal stress distribution on a rectangular area. Casapulla and D�Ayala (2001) used this simpli-
fication in the study of a particular limit analysis problem on arches, which involved torsion failure. The
equilibrium of moments is assured by shaping the effective area in such a way that its centroid is located
at the point (e1,e2), where e1 and e2 are the eccentricities of the normal force along the reference axes,
Fig. 8(a). The half-sides of the effective rectangle, l1e and l2e, are given by Eqs. (19) and (20), respectively
and the normal stress, fc, is given by Eq. (21). Here it is noted again that N has a negative value. Fig. 8(b)
shows the interaction curves obtained for a particular case of a given geometry, friction angle and normal
stress.
l1e ¼ l1 � e1 ¼ l1 þ
M2

N
ð19Þ

l2e ¼ l2 � e2 ¼ l2 �
M1

N
ð20Þ

fc ¼
N 2

4ð�l1N �M2Þð�l2N þM1Þ
ð21Þ
As shown in Fig. 8(b), the torsion strength reduces as the bending moments increase. Nevertheless, when
one of the moments takes its maximum value, i.e. when a hinge forms, the torsion strength has not fallen to
zero. This is easy to explain: for instance, starting with both bending moments equal to zero, and steadily
increasingM2, the effective half-side l1e decreases proportionally. When l1e reaches the zero value (under the
infinite compression strength assumption), the effective area has been reduced to a line, a hinge forms, and
the normal force is transmitted through that line. A tangential force distribution, half in the direction of x1
and half in the opposite direction, can be associated to the previous linear normal force distribution; Fig. 9.
This tangential force distribution produces a torsion moment Th2; Eq. (22) gives its magnitude, and point C
in Fig. 8(b) represents this situation graphically. Of course, on the presence of a moment in the x1 direction,
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the half-side l2 must be replaced by its effective value l2e in Eq. (22). If both moments reach their maximum
values, hinges form in both directions, and the effective area reduces to a contact point, in this case the tor-
sion strength is zero as the model correctly reflects; point B in Fig. 8(b). It is observed that the vertical line,
from point A to point B in Fig. 8(b), and the lower line, from point C to point B in the same graph, rep-
resent the intersections with the hinging criteria. In the case of using limited compressive stresses, the hinge
yield conditions will automatically limit the minimum size of the effective area and, therefore, will move the
line A–B to the left and the line C–B upwards.
T h2 ¼ � 1
2

lNl2 ð22Þ
The flow corresponding to this yield mode consists only of a relative rotation in the normal direction about
the centroid of the effective area. The only role of the bending moment is to reduce the effective interface
area, and otherwise, pure torsion failure continues to be assumed so, no bending rotations occur unless a
hinging criterion is also active. Related to the centre of the interface, the flow will consist, apart of this nor-
mal rotation, of relative displacements in the tangential directions. Observe that the yield function,
although not explicitly stated here, depends on the torsion moment, normal force and bending moments,
but no flow components exist in the direction of the bending rotations. Besides, the flow rule has compo-
nents in the tangential displacement rates but the yield function does not depend on the shear forces. This is
another source of non-associativity of the flow rule for this yield mode.
The study of torsion strength considering interactions with both bending moments and shear forces

seems straightforward. Once determined the effective interface area and the availability of shear stress
strength through the bending moments and normal force, the torsion–shear interaction is treated on this
effective area. Experimental validation of the proposed yield surface is outside the scope of the present
paper, as no test results are available from the literature. Nevertheless, it is stressed that: (a) the simplifi-
cations seem reasonable; (b) several failure surfaces used for non-linear material models, used in the liter-
ature for simulations, provide a solution close to experimental results only in few selected load-paths (e.g.
uniaxial tension or compression), being comprehensive experimental data absent for the full multi-stress
envelop. This is similar to the process followed by the authors; (c) there is no experimental evidence to
assess the validity of the proposed simplifications at the failure surface level and (d) validation of the
assumptions at structural level is provided from the analysis carried out in Orduña and Lourenço (2005).
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4. Proposed yield surface

Mathematical programming routines work better as the expressions used for defining the problem are
simpler. In this section, a simplified yield function is proposed. The proposal includes a piecewise linear
approximation to the torsion yield function for rectangular interfaces outlined above, which includes the
pure shear failure. The yield function is complemented with a hinging failure model for quadrilateral inter-
faces capable to take into account limited compressive stresses. The interactions of torsion strength with
shear forces and bending moments are considered independently. As mentioned above, the combined inter-
action was not studied due to the lack of experimental evidence to validate the model.
In order to work already within the three-dimensional limit analysis framework, it is convenient to make

the following definitions. Two reference system types exist: the global reference system with coordinates
(X,Y,Z), and the local reference system associated to each interface. The local system for the interface
k, which is the interface between the blocks i and j, is defined by the unitary vectors~s1k,~s2k, and ~nk along
the x1, x2 and xn axes of that particular interface. These vectors are normal to each other and form a right-
handed system, such that~nk is normal to the interface and points to the outside of block i, as in Fig. 10. The
matrix ~T

g

k transforms a vector in the global system to the interface k local system.
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Fig. 10. Static variables at an interface and adjacent blocks.

Table 1
Interface k variable vectors

Vector Components Description

V1k Shear force along~s1k
~Q

t
k V2k Shear force along~s2k

Nk Normal force along ~nk

M1k Bending moment along~s1k
~Q

r
k M2k Bending moment along~s2k

Tk Torsion moment along ~nk

ds1k Relative translation displacement rate along~s1k
d~qtk ds2k Relative translation displacement rate along~s2k

dnk Relative translation displacement rate along ~nk

dh1k Relative angular displacement rate along~s1k
d~qrk dh2k Relative angular displacement rate along~s2k

dhnk Relative angular displacement rate along ~nk



Table 2
Block i variable vectors

Vector Components Description

dui Translation displacement rate in X direction
d~uti dvi Translation displacement rate in Y direction

dwi Translation displacement rate in Z direction

dxXi Angular displacement rate in X direction
~uri dxYi Angular displacement rate in Y direction

dxZi Angular displacement rate in Z direction

fXi Force in X direction
~F
t
i fYi Force in Y direction

fZi Force in Z direction

mXi Moment in X direction
~F
r
i mYi Moment in Y direction

mZi Moment in Z direction

5150 A. Orduña, P.B. Lourenço / International Journal of Solids and Structures 42 (2005) 5140–5160
The static variables, or generalised stresses at an interface k, are split into the force vector ~Q
t

k and the
moment vector ~Q

r

k, both in local coordinates and being the force vector applied at the interface centroid.
Table 1 contains the description of the components of the static variables vectors. The vector ~Q gathers
the generalised stresses for all the interfaces in the model. Correspondingly, the kinematic variables, or gen-
eralised strains for the same interface k are the relative translation displacement rates d~qtk and the relative
angular displacement rates d~qrk. Table 1 also describes the components of these vectors. Again, the vector d~q
gathers the generalised strains for all the interfaces in the model.
The degrees of freedom for the generic block i are the displacement rates at the block centroid d~uti and

the angular displacement rates d~uri . These vectors are referred to the global system and their description is
given in Table 2. The vector d~u gathers the displacement rates for all the blocks in the model. The loads
applied to the block i are the force vector ~F

t

i at the block centroid, and the moment vector ~F
r

i , see also Table
2 and Fig. 10. These load vectors have a constant part ~F

t

ic, ~F
r

ic and a variable part ~F
t

iv, ~F
r

iv. The vectors ~F c

and ~F v gather the constant and variable loads over all the blocks in the model, respectively.
Once defined the notation, the piecewise linear approximation to the torsion yield function is presented

in the following subsections.

4.1. Pure torsion

The first part of the piecewise linear approximation for the torsion yield function corresponds to the pure
torsion condition. The maximum torsion moment is upper and lower bounded by the Eq. (23). This follows
directly from Eq. (16).
utwist1;2 �
jT j
cT

þ lN 6 0 ð23Þ
4.2. Torsion–shear interaction

Fig. 11(a) presents the bounding curves of the torsion–shear interaction corresponding to interface as-
pect ratios of zero and infinity addressed above. The broken line in the graph represents the proposed
approximation. This approximated function does not take into account the interface aspect ratio, firstly
because its influence is not so large, and secondly, because its consideration would unnecessarily complicate
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the expressions. The complete yield function is symmetric with respect to the V/V0 axis. This axis repre-
sents, in principle, any shear direction because the approximated yield function would be axisymmetric with
respect to the T/T0 axis. Nevertheless, also the pure shear criterion is linearly approximated by eight func-
tions. Fig. 11(b) shows the cohesion-less Coulomb criterion in doted line and the proposed approximation
in continuous line. The horizontal branch in Fig. 11(a) represents Eq. (23). The vertical branch is the pure
shear criterion, represented by the eight planes of Eqs. (24)–(26), also represented in Fig. 11(b). The inclined
branch corresponds approximately to the side of an octagon inscribed in a unitary radius circle. The math-
ematical representation of this branch in the four quadrants of the T–V1 plane conducts to Eq. (27). Those
corresponding to the T–V2 plane are in Eq. (28). Finally, there are eight more functions, Eq. (29), for planes
at 45� from the V1 and V2 axes. Fig. 11(c) is a three-dimensional representation of the set of proposed yield
functions.
uslip1;2 � jV 1j þ lN 6 0 ð24Þ

uslip3;4 � jV 2j þ lN 6 0 ð25Þ

uslip5�8 �
jV 1j þ jV 2jffiffiffi

2
p þ lN 6 0 ð26Þ



Table 3
Flow directions for torsion–shear interaction

Flow multiplier ds1 ds2 dn dh1 dh2 dhn

dkslip1,2
V 1

jV 1 j 0 0 0 0 0

dkslip3,4 0 V 2

jV 2 j 0 0 0 0

dkslip5�8
V 1

jV 1 j
ffiffi
2

p V 2

jV 2 j
ffiffi
2

p 0 0 0 0

dkV 1T 1�4
V 1

jV 1 j 0 0 0 0 T
jT jcT

dkV 2T 1�4 0 V 2

jV 2 j 0 0 0 T
jT jcT

dkV 12T 1�8
V 1

jV 1 j
ffiffi
2

p V 2

jV 2 j
ffiffi
2

p 0 0 0 T
jT jcT

Fig. 1
rn = �
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uV 1T1�4 �
jT j
cT

þ jV 1j þ 1:3lN 6 0 ð27Þ

uV 2T1�4 �
jT j
cT

þ jV 2j þ 1:3lN 6 0 ð28Þ

uV 12T1�8 �
jT j
cT

þ jV 1j þ jV 2jffiffiffi
2

p þ 1:3lN 6 0 ð29Þ
The rows of Table 3 have the flow directions for the flow multipliers corresponding to the yield functions in
Eqs. (24)–(29). All these directions have a zero normal component, but otherwise are obtained by the nor-
mality condition.

4.3. Torsion–bending moment interaction

The approximation chosen for the torsion–bending moment interaction is a series of planes. Fig. 12 pre-
sents a graph with the interaction curves for three values of M2 on the same interface as Fig. 8(b). The
approximation plane on the first octant of the M1–M2–T space contains the points A, B and C of these
graphs. This plane overestimates in general the torsion strength. Only on the straight lines A–B and C–
B the approximation coincides with the effective area model. The pure torsion condition, Eq. (23), limits
the maximum value of the torsion moment. This condition is represented in Fig. 12 by the horizontal line
at T = 16.3 N m. The lines A–B and C–B correspond to the intersection of the torsion-moment surface with
the hinging surfaces and it has been observed that very often the stresses lie on these lines at failure. In fact,
T
(N.m)

0
0

2
4
6
8

10
12
14
16
18

5 10 15 20 25 30
(N.m)M1

(N.m)M2

0.0

18.0

36.0

A

B

C Approximation

Effective area
model

2. Graph of torsion–bending moment interaction on a rectangular interface for l1 = 0.15 m, l2 = 0.10 m, l = 0.7 and
4.0 · 10�3 N/mm2.



Table 4
Key stress states for torsion–bending moment interaction

M1 M2 T

Point A �l2N 0 � 1
2lNl1

Point B �l2N �l1N 0
Point C 0 �l1N � 1

2lNl2
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it is a well-known aspect of plastic analysis dealing with multi-surface yield functions that the intersections
of the yield surfaces ‘‘attract’’ the stress states. Therefore, even if the approximated model can overestimate
the torsion moment strength, it is considered appropriate in general.
Points A, B and C in Fig. 8(b) have the stress states given in Table 4. Eq. (30) is the yield function cor-

responding to the plane defined by these three points, as well as for the planes in the remaining octants of
the M1–M2–T space. In the bending moments directions, the stress space is limited by the hinging yield
functions. Finally, the torsion moment is also limited by Eq. (23), as already mentioned. Fig. 13 is a
three-dimensional representation of the complete yield function for the interface considered. The points
A, B and C are identified for reference.
uM12T1�8 �
jT j

l1 þ l2
þ l
2

jM1j þ jM2j
l1 þ l2

þ N
� �

6 0 ð30Þ
The flow directions consist of a rotation about the (e1,e2) point with the same direction as the torsion mo-
ment; Fig. 14. As the generalised strains are referred to the interface centroid, tangential relative displace-
ments accompany the rotation. The first and second rows of Table 5 present the flow directions for positive
and negative torsion moments, respectively. Here e is a small positive number introduced in order to avoid
divisions by zero when N = 0, and remember that e1 = �M2/N and e2 =M1/N.
In practice, it is useful to dispose of an interface model for more general shapes than rectangular ones.

Hereafter, a quadrilateral shape is considered. Fig. 15 shows the naming convention used for the vertices
and sides of a generic quadrilateral interface. In order to use the previous model for an interface of this
shape, it is transformed into an approximated rectangular shape with mid-sides l1 and l2 given by Eqs.
(31) and (32).
l1 ¼
1

4
ðx11 þ x21 � x31 � x41Þ ð31Þ

l2 ¼
1

4
ðx22 þ x32 � x12 � x42Þ ð32Þ
T

M1 M2

A

B

C

Fig. 13. Torsion–bending moment interaction.
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2

e2
δθn =1

δs1 =e
2

δs 1
=-e

2 x1

Fig. 14. Flow due to twisting with non-zero bending moments.

Table 5
Flow directions for torsion–bending moment interaction

ds1 ds2 dn dh1 dh2 dhn

dkM12T1�4 M1/(N�e) M2/(N�e) 0 0 0 1
dkM12T5�8 �M1/(N�e) �M2/(N�e) 0 0 0 �1

x 1

x 2

p1

p2
p3

p4

L1

L2

L3

L4

e 2

e 1

p

Fig. 15. Interface naming convention.
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4.4. Hinging

Under the infinite compressive strength hypothesis, if the normal stress resultant is inside the interface,
then it is safe against hinging. Consider the side L1 in Fig. 15 and consider that the resultant of the normal
stresses is applied at the point p, with local coordinates given by the eccentricities (e1,e2). If this point is inside
the interface (to the left of L1), the normal component of the vector~h1, defined in Eq. (33), must be grater
than zero. Here ~p1;~p2 and ~p are the position vectors of the points p1, p2 and p, respectively. The previous
condition is expressed by Eq. (34), where the superscripts refer to the interface vertex. Taking into account
that e1 = �M2/N and e2 =M1/N it is possible to obtain Eq. (35), in terms of the generalised stresses.



Table
Hingin

Flow m

dkhinge
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~h1 � ð~p2 �~p1Þ ^ ð~p �~p1Þ ð33Þ

e1
x12 � x22

x11x
2
2 � x21x

1
2

� �
þ e2

x21 � x11
x11x

2
2 � x21x

1
2

� �
þ 1 P 0 ð34Þ

M1

x21 � x11
x11x

2
2 � x21x

1
2

� �
þM2

x22 � x12
x11x

2
2 � x21x

1
2

� �
þ N 6 0 ð35Þ
Other three similar equations must be defined for the remaining sides of the interface. Eq. (36) is the generic
expression of the four hinging yield functions. The constants c1 and c2 are defined in Eq. (37), where the
node coordinates index obeys a cyclic convention such that for i = 4, then i + 1 = 1 holds.
uhinge i � ci1M1 þ ci2M2 þ N 6 0 ð36Þ

ci1 ¼
xiþ11 � xi1

xi1x
iþ1
2 � xiþ11 xi2

ð37Þ

ci2 ¼
xiþ12 � xi2

xi1x
iþ1
2 � xiþ11 xi2

ð38Þ
In order to include the limit to the compressive stress in an approximate but simplified way, an additional
quadratic term on N can be included, similarly to the two-dimensional case (Orduña and Lourenço, 2003).
This term reduces to zero the moment strength provided by the normal force when the normal stress
reaches its limit value. In such a way, Eq. (39) expresses the yield functions for limited compressive stresses,
and Eq. (40) provides the value of the constant c3. Here, Ar is the interface area and fcef is the effective com-
pressive stress. It is observed that this approach can be generalised to polygonal interfaces with any number
of sides provided they are convex. Table 6 presents the associate flow components corresponding to the
hinging yield mode.
uhinge i � ci1M1 þ ci2M2 þ N þ c3N 2
6 0 ð39Þ

c3 ¼
1

Arfcef
ð40Þ
The effective stress value fcef is calculated by means of Eq. (41). This expression has been borrowed from
reinforced concrete limit analysis theory (Nielsen, 1999). Here, fc is the uniaxial compressive strength of the
material, and me is an effectiveness factor that takes into account reductions in the compressive strength due
to transverse cracking, as well as to the fact that limit analysis assumes a rigid-plastic behaviour, while, in
fact, softening occurs. Eq. (42) is an expression for the effectiveness factor commonly used for concrete
(Nielsen, 1999), where fc is expressed in N/mm

2.
fcef ¼ mefc ð41Þ

me ¼ 0:7� fc
200

ð42Þ
6
g flow direction

ultiplier ds1 ds2 dn dh1 dh2 dhn

i 0 0 1 + 2c3N ci1 ci2 0
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5. Limit analysis formulation of three-dimensional rigid block assemblages

In the present section, the limit analysis formulation for three-dimensional rigid blocks assemblages
is presented. It is noted that this formulation assumes that full contact exists at all interfaces before the
load application. In mortared masonries, this assumption can be regarded as appropriate because, at
least at construction time, the mortar allowed for full contact between masonry pieces. In dry jointed
masonries, or if mortar is highly deteriorated, the full contact assumption is more questionable. Since in
these cases the real contact conditions are difficult to asses, the full contact hypothesis can be regarded
as a statistically mean condition, i.e. if the contact consists on a number of points, lines or limited area
contacts, the mean condition is that these contact issues are uniformly distributed within the interface.
Therefore, it seems that the full contact assumption is appropriate in general, particularly when non-
associated flow is adopted, which implies that block interlocking upon sliding does not occur. It is
noted that experiments on dry jointed shear walls (Oliveira, 2003; Vasconcelos and Lourenço, 2004)
show that poor construction tolerances, which in turn affect the initial contact conditions, produce lar-
ger variability of the results than tighter tolerances. Therefore, the initial contact conditions affect the
overall behaviour of the structure. This issue can not be taken into account by direct solution methods,
but can be included in the load-path following solution procedure proposed by Orduña and Lourenço
(2005).
The interface and block variables were defined in Section 4. Generally, for limit analysis and non-linear

analysis, a load factor is defined as the ratio of the applied load with respect to a reference set of loads.
Here, the load factor, a, is the amount of the variable load vector applied to the structure. The ultimate
load factor is the value of the load factor that the analyst wants to determine for safety and analysis pur-
poses, and is associated with the collapse mechanism obtained for the structure. The total load vector, ~F , is
given by Eq. (43).
~F ¼ ~F c þ a~F v ð43Þ
5.1. Compatibility

The compatibility between the interface k generalised strains and the displacement rates of the
adjacent blocks i and j is guaranteed by Eq. (44). Here ~ck is the position vector of the interface k cen-
troid, while~ci and~cj are the position vectors of blocks i and j centroids, respectively. Further manipulation
of this equation gives Eq. (45), where the elemental compatibility matrix ~Ck=j is given in Eq. (46).
Here again, (X,Y,Z) refer to the global reference system and indicate the centroid coordinates of
each block, i and j, and interface, k, according to the subscripts. The assemblage of the equations for all
the interfaces in the structure conducts to Eq. (47), where ~C is, evidently, the compatibility matrix of the
model.
d~qtk

d~qrk

2
4

3
5 ¼

~T
g

kðd~u
t
j � d~uti þ d~urj ^ ð~ck �~cjÞ � d~uri ^ ð~ck �~ciÞÞ

~T
g

kðd~u
r
j � d~uri Þ

2
64

3
75 ð44Þ
d~qk ¼ ~Ck=jd~uj � ~Ck=id~ui ð45Þ
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ð46Þ

d~q ¼ ~Cd~u ð47Þ
5.2. Equilibrium

Applying the contragredience principle, the equilibrium requirement is expressed by Eq. (48) (Grierson,
1977).
~F ¼ ~C
T~Q ð48Þ
5.3. Yield function

All the yield functions for the generic interface k are gathered in the vector ~uk. For a rigid blocks model,
the vector ~u contains the yield functions for all the interfaces. In this way, the yield condition for the whole
structure is expressed by Eq. (49).
~u 6~0 ð49Þ
5.4. Flow rule

The generalised strains for the interface k calculated by the flow rule are given by Eq. (50). The columns
of the matrix ~N 0k are the flow directions for each yield mode in the interface, addressed in Section 4. The
vector d~kk contains the flow multipliers corresponding to each yield function in the interface. For the whole
structure the flow rule can be written as Eq. (51). Here the matrix ~N 0 and the vectors d~q and d~k are assem-
bled for all the interfaces in the structure.
d~qk ¼ ~N 0kd~kk ð50Þ

d~q ¼ ~N 0d~k ð51Þ
Two additional conditions must be included in order to completely describe the plastic behaviour in math-
ematical terms. The first one refers to the fact that flow must involve energy dissipation i.e. the flow mul-
tipliers must be non-negative, Eq. (52). Secondly, flow can not occur unless the stresses have reached the



5158 A. Orduña, P.B. Lourenço / International Journal of Solids and Structures 42 (2005) 5140–5160
yield function. Eq. (53) guarantees this, and is usually referred as consistency condition. Besides, in the
mathematical programming literature, this expression is referred as complementarity condition.
d~k P~0 ð52Þ

~uT � d~k ¼ 0 ð53Þ
5.5. The mathematical problem

Eqs. (54)–(59) are the conditions that a limit analysis solution with non-associated flow rule must fulfil.
Eq. (54) combines the compatibility and flow rule conditions. Eq. (55) is a scaling condition for the dis-
placement rates that ensures the existence of non-zero and finite values. Eq. (56) is the equilibrium condi-
tion. Eq. (57) guaranties that the yield functions are not violated and Eq. (58) ensures that plastic flow
implies energy dissipation. Finally, Eq. (59) guaranties that plastic flow cannot occur unless the stresses
have reached the yield surface.
~N 0d~k � ~Cd~u ¼~0 ð54Þ

~F
T

v � d~u� 1 ¼ 0 ð55Þ

~F c þ a~F v � ~C
T~Q ¼~0 ð56Þ

~u 6~0 ð57Þ

d~k P~0 ð58Þ

~uT � d~k ¼ 0 ð59Þ
This set of equations corresponds to the mixed limit analysis formulation (Kamenjarzh, 1996) and repre-
sents a case known in the mathematical programming literature as a Mixed Complementarity Problem
(MCP) (Ferris and Tin-Loi, 2001). In general, there is no unique solution for this problem in the presence
of non-associated flow rules. If the load factor is minimised, as proposed by Baggio and Trovalusci (1998),
the solution can severely underestimate the ultimate load factor, as shown in Orduña and Lourenço (2005).
This affirmation refers to the fact that, minimising the load factor conducts, in some cases, to a significantly
lower value of the ultimate load factor than the one computed by non-linear finite element analyses with
linear-elastic blocks and elastic-perfectly plastic interfaces. It seems that the lack of taking into account
the loading history in the limit analysis approach (included for this reason in the direct methods class)
can have a significant impact on the result in the presence of non-associated flow rules. The safety assess-
ment of structures is generally based on the maximum reliable strength that the structure can develop,
regardless after the peak load, the strength could reduce to a residual value. Therefore, it is important
to know, not only the solution with the minimum load factor, but whether this solution is reachable or
not from the set of stress states that are possible under permanent loads only and satisfying the equilibrium
and yield conditions, through a continuous stress path with the same requirements, and without having to
apply larger load factors than the ultimate load factor. In fact, it would be possible to obtain all the solu-
tions to the MCP, Eqs. (54)–(59), with a procedure similar to that proposed by Tin-Loi and Tseng (2003)
for linear complementarity problems; nevertheless, the choice of the most reliable solution must involve the
selection of which of them are directly reachable from the permanent loads only stress states set. In the
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companion paper (Part 2), Orduña and Lourenço (2005), a new solution technique is proposed that is capa-
ble to take the solution from a permanent loads stress state to a failure state under the variable loads action.
6. Conclusions

A three-dimensional limit analysis formulation for rigid block assemblages was presented. This formu-
lation features limited compressive stresses, non-associated frictional sliding and torsion failures at the
interfaces. The lack of theoretical work about the plastic torsion on frictional interfaces was faced and it
was necessary to address theoretical developments in this subject, particularly focused on rectangular cohe-
sionless interfaces. Also the interactions of the torsion strength with the shear forces and bending moments
on the interface was addressed and a piecewise linear approximation proposed. This proposal permits to
reduce a possible source of error in the three-dimensional limit analysis of structures modelled as rigid
block assemblages.
The multiplicity of solutions to the limit analysis problem in presence of non-associated flow rules rep-

resents a challenge from a theoretical point of view. In the second part of this paper (Orduña and Lourenço,
2005) a novel solution procedure is proposed and a series of examples are given, aiming at validation of the
proposed limit analysis model and solution procedure. The solution procedure follows, in an approximated
way, the history of loading over the structure, for that reason has been named the load-path following pro-
cedure. This procedure provides better solutions than minimising the load factor and, moreover, it provides
an insight into the structural behaviour along the loading history until failure with the same limited amount
of information required by classic limit analysis.
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