CONTRIBUTOS E LIMITAÇÕES DA TEORIA DE PIAGET PARA A EDUCAÇÃO EM CIÊNCIAS

Manuel Joaquim Cuiça Sequeira
Universidade do Minho, Portugal

Resumo - Todas as tentativas para aplicar a teoria piagetiana à resolução de problemas educativos ou a utilização de princípios para a orientação da prática pedagógica podem criar problemas de legitimidade e validade. Será a aplicação da teoria legítima? No caso da teoria de Piaget e a sua aplicação à educação em geral e à educação em ciências em particular, as questões levantadas revestem-se de crucial importância, uma vez que essa mesma aplicação tem efeitos concretos nas vidas de muitos alunos e por outro lado tornou-se uma espécie de moda. O objectivo deste trabalho é apresentar e discutir os contributos e limitações da teoria de Piaget para a educação em ciências. Para isso, serão analisadas sucessivamente as aplicações ao desenvolvimento curricular, às metodologias de ensino, e ainda as áreas em que a teoria apresenta limitações fundamentais quanto à sua aplicação em educação em ciências, nomeadamente as diferenças individuais e a estrutura das disciplinas de ciências.

Quer se adopte uma perspectiva piagetiana ou não, é indubitável que a teoria de Piaget captou a atenção dos educadores em todo o mundo. Parece que as razões para este interesse residem na atracção intrínseca da teoria para o processo educativo. Piaget não só descreve o desenvolvimento intelectual através de estádios mas também relativamente a áreas específicas do saber (aquisição de conceitos como número, espaço, tempo, etc.) que são importantes em educação. Por outro lado, Piaget sugere um modelo de pensamento que se coaduna com o pensamento científico - o raciocínio logico-matemático. De facto, quando consideramos o estudo desenvolvido por Piaget sobre a aquisição de conceitos científicos e no processo de raciocínio logico-matemático, facilmente compreendemos como a sua teoria despertou o interesse na comunidade dos educadores. Por isso, tem-se notado na última década um crescente interesse na aplicação da teoria de Piaget à formação de professores, ao desenvolvimento curricular e às metodologias de ensino. Contudo, é inevitável que a adaptação de uma tão complexa teoria à educação conduza a problemas de adaptação e/ou interpretação, por parte dos educadores. Urge, pois, que estes estejam

Toda a correspondência relativa a este artigo deve ser enviada para: Manuel Sequeira, Instituto de Educação, Rua Abade da Loureira, 4700 BRAGA, PORTUGAL.
sensibilizados não só para as potencialidades da teoria mas também para as suas limitações, de modo a evitarem aplicações pedagógicas erradas da mesma.

Pretende-se, pois, com este trabalho, rever os principais contributos e limitações da teoria de Piaget para a prática educativa, identificar deficiências aplicações da teoria e indicar importantes problemas educativos que permanecem sem solução.

Para atingir estes objectivos, pareceu-nos útil começar por considerar, numa breve síntese, a teoria do desenvolvimento cognitivo de Piaget com ênfase na distinção entre desenvolvimento cognitivo e aprendizagem. Numa segunda parte, consideraremos as aplicações da teoria piagetiana à educação em ciências nomeadamente ao desenvolvimento curricular e metodologias de ensino, e os resultados obtidos pela investigação nesta área. Finalmente analisaremos as limitações da teoria às aplicações educativas apresentadas no trabalho.

A teoria do desenvolvimento cognitivo de Piaget

Kohlberg (1968) estudou várias teorias da aprendizagem, entre as quais as de Locke, Rousseau, Freud, Dewey, Lorenz e dos "behavioristas", e agrupou as suas teorias em três categorias de acordo com a contribuição do ambiente e o organismo para o desenvolvimento cognitivo.

A teoria maturacionista realça o contributo do organismo, a teoria do ambiente interpreta o comportamento humano como uma extensão do ambiente, e a teoria interaccionista define a interacção complexa entre o organismo e o ambiente.

O interaccionismo de Piaget difere de todas as teorias interaccionistas porque contem o conceito-chave de estrutura mental que a criança constroi em interacção constante com o ambiente, desde o nascimento até à fase adulta. Esta construção de estruturas mentais é o processo fundamental no desenvolvimento cognitivo e determina o comportamento humano assim como o conhecimento que temos do mundo físico e de nós próprios.

Desenvolvimento Cognitivo.

Para compreender o desenvolvimento cognitivo é importante entender o conceito fundamental de estrutura mental. Lawson e Renner (1975) definiram as estruturas mentais como esquemas mentais (mental blueprints) que determinam o comportamento do organismo. Não conhecemos a sua natureza e a sua existência apenas pode ser inferida a partir do comportamento observável. Mas qual a sua origem? Como são formadas? Piaget admitiu que algumas estruturas primárias são inatas e o desenvolvimento destas estruturas constitui uma interacção dinâmica entre o organismo e o ambiente, a que ele chamou equilibração ou auto-regulação. Assim, o conhecimento é adquirido por um processo de construção, em vez de absorção e acumulação de informação do mundo exterior.

Quatro factores contribuem para o desenvolvimento cognitivo: auto-regulação, a que Piaget chamou equilibração (processo mental interno pelo qual novas
experiências se combinam com as estruturas existentes para originar novas operações lógicas) maturação (do sistema nervoso central e de todo o corpo), experiência (física e lógico-matemática) e transmissão social (aquisição de conhecimento através de livros, professores, pais, colegas, etc.). Através da dinâmica destes quatro factores (equilibração, maturação, experiência e transmissão social) tem lugar o desenvolvimento cognitivo de cada indivíduo, ao longo do tempo.

A modificação das estruturas dá origem a novas estruturas e assim aumenta a capacidade de processar informação. Esta modificação origina a necessária sequência de comportamentos (estágios) que se relacionam com a idade mas que não são determinados por ela. Cada estádio é um período em que cada indivíduo exibe certos comportamentos e padrões de raciocínio (operações lógicas), tais como raciocínio proporcional e controle de variáveis, para resolver um problema. A transição de um estádio para outro é gradual e não abrupta. Além disso, o novo conjunto de estruturas não aparece expontaneamente numa idade particular e é possível, portanto, que indivíduos da mesma idade possam funcionar intelectualmente em diferentes estádios de desenvolvimento.

São bastante conhecidos os estádios de desenvolvimento cognitivo descritos por Piaget e por essa razão apenas referiremos aqui as suas características principais, pela sua importância para a educação em ciências.

No estádio sensório-motor, desde o nascimento até cerca dos 18 meses, a criança adquire a coordenação olho - mão e apercebe-se da permanência dos objectos.

No estádio pré-operacional, entre os 2 e os 7 anos de idade, a criança começa a desenvolver a linguagem, é egocéntrica, não demonstra conservação do raciocínio ao longo do tempo e apenas pode centrar a sua atenção numa variável de cada vez. O seu pensamento intuitivo é caracterizado por rigidez e irreversibilidade.

No estádio concreto, entre os 7 e os 11 anos começam a aparecer as primeiras operações mentais baseadas em objectos concretos. A criança já pode quantificar o seu raciocínio e resolver problemas mentalmente embora estes problemas ainda tenham de estar relacionados com objectos. Já pode centrar a sua atenção em mais do que uma variável mas ainda não formula hipóteses.

No estádio formal, que se desenvolve entre os 11 e os 15 anos, já utiliza o seu raciocínio em hipóteses e não só em objectos. Já pode controlar e separar variáveis numa experiência. Em suma, o indivíduo já demonstra o tipo de raciocínio que é indispensável para a investigação científica e experimentação.

Aprendizagem

Piaget distinguiu duas formas de aprendizagem (Ginsburg e Opper, 1978). Aprendizagem no sentido restrito que consiste na aquisição ao longo do tempo de conhecimento restrito a uma situação específica. O indivíduo não constrói novas estruturas e, como resultado, este conhecimento é instável e não pode ser generalizado a outras situações com outros objectos. Este conhecimento tende a ser esquecido com o tempo. O processo de equilibração não é incluído.

A segunda forma de aprendizagem, aprendizagem no sentido mais amplo, ou verdadeira aprendizagem, resulta do processo de equilibração ou auto-regulação e
conduz à construção de novas estruturas mentais. O conhecimento adquirido através deste tipo de aprendizagem é estavel, duradouro e pode generalizar-se a outras situações. Para que este tipo de aprendizagem tenha lugar, o indivíduo deve já ter atingido um nível de estruturas cognitivas compatível com a experiência que lhe é apresentada. De outro modo, transformará a experiência de tal forma a poder assimilá-la embora com uma distorção da realidade; ou apenas aprende uma resposta específica (memorização) sem correspondência com quaisquer estruturas mentais e, portanto, instável, não generalizável e provavelmente condenada a desaparecer num futuro próximo. Esta é a razão por que a aprendizagem individual não pode ser acelerada para além do nível cognitivo (estádio) do indivíduo. Portanto, o desenvolvimento não ocorre como resultado da aprendizagem em sentido restrito (memorização ou distorção da realidade). A verdadeira aprendizagem ocorre quando o indivíduo se envolve no processo dinâmico da assimilação-acomodação (com auto-regulação). E esta é a relação fundamental com implicações pedagógicas e didáticas.

A teoria do desenvolvimento cognitivo e a educação em ciências

Uma das primeiras aplicações da teoria de Piaget em educação foi a utilização das suas tarefas cognitivas para determinar a ordem hierárquica dos conceitos a ensinar às crianças. Muitos especialistas do currículo entenderam que os alunos não podem adquirir conceitos que estão para além das suas capacidades intelectuais ou estádios de desenvolvimento cognitivo. Como resultado, vários programas de educação em ciências foram criados tendo em conta os estádios cognitivos dos alunos. Contudo, alguns educadores vieram a tornar-se mais preocupados com os estádios de desenvolvimento cognitivo do que com o processo de aprendizagem. Apenas na última década os professores concentraram a sua atenção no próprio processo de aprendizagem, como os alunos aprendem e nos factores que influenciam o crescimento cognitivo.

Desenvolvimento cognitivo dos adolescentes

Os resultados do trabalho de Jean Piaget e seus colaboradores indicam que a maior parte dos indivíduos de 15 ou 16 anos de idade funcionam ao nível formal. Contudo, como é sabido, muitos estudos têm indicado que cerca de 50% dos alunos da escola secundária não atingiram ainda o nível de raciocínio formal (Karplus e Karplus, 1970; Karplus e Peterson, 1970; Friot, 1970; Mckinnon e Renner, 1971, Renner e Stafford, 1976; Lawson e Renner, 1975; Chiapetta, 1976; Sequeira, 1980).

O próprio Piaget (1972) reconheceu que o desenvolvimento do raciocínio formal não é o mesmo em todos os casos e não aparece ao mesmo tempo em todos os indivíduos. De facto, sugeriu que "todos os sujeitos atingem o estádio das operações formais, em princípio entre os 11-12 e os 14-15 anos, ou então entre os 15 e os 20 anos. No entanto, atingem o estádio formal em áreas diferentes de acordo com as suas aptidões e as suas especializações profissionais: o modo como são usadas estas estruturas formais não é necessariamente o mesmo em todos os casos" (Piaget, 1972, p.9).
A grande variedade de estudos efectuados sobre desenvolvimento cognitivo das crianças e dos adolescentes não só permitiu ter uma ideia do seu desenvolvimento mas também concentrar a atenção dos investigadores nos factores que influenciam esse mesmo desenvolvimento e na necessidade de identificar os padrões de raciocínio dos alunos de modo a melhor compreender como se processa a aprendizagem.

Curricula de ciências e desenvolvimento cognitivo

Nos últimos 50 anos o desenvolvimento curricular dos programas de ciências tem evoluído de tal modo que os podemos agrupar em três estádios. O primeiro, foi caracterizado pelo uso do livro de texto, exames, memorização de factos científicos e metodologia expositiva (leitura-demonstração) por parte do professor. A era do Sputnik iniciou o segundo estádio e durante mais de 20 anos foram elaborados muitos programas com a preocupação de actualizar os conteúdos de acordo com o avanço em certas áreas do saber, nomeadamente a tecnologia dos computadores, as viagens espaciais e as ciências do ambiente. Ao mesmo tempo, muitos destes programas preconizaram novas estratégias de ensino baseadas na investigação sobre o processo de aprendizagem e realizada por Piaget e muitos dos seus colaboradores. Assim surgiram programas, sobretudo nos Estados Unidos, tais como: "Elementary Science Study" (ESS), com ênfase nos fenomenos naturais; "Science - A Process Approach" (SAPA) com ênfase nos processos das ciências; "Science Curriculum Improvement Study" (SCIS) com ênfase na estrutura conceptual das ciências; o programa inglês "Science 5-13", o programa australiano "ASEP" (Early Secondary School), etc. Todos estes programas salientam a importância da manipulação de materiais, e o método de inquérito, incentivando a descoberta.

Na década de 80 entrou-se no terceiro estádio evolutivo da organização curricular dos programas de educação em ciências. Embora o método de inquérito ainda seja largamente recomendado, a tendência actual é para os novos programas de ciência, quer para o nível elementar quer para o secundário, serem individualizados em termos metodológicos e interdisciplinares em termos de conteúdo. O modelo para um curriculum de ciências do terceiro estádio terá em consideração a educação científica e o desenvolvimento cognitivo como metas principais; o conteúdo será determinado pela ênfase no processo-estrutura da disciplina e a sequência determinada pelos estádios de desenvolvimento cognitivo de Piaget. Finalmente a individualização do ensino e a existência da interacção social parecem ser as estratégias de ensino mais apropriadas para atingir a educação científica e o desenvolvimento cognitivo.

Todas as investigações sugerem que os programas de ciências devem focar-se numa metodologia concreta (hands-on) e atender ao ritmo individual (Levine e Linn, 1977; Lawson e Renner, 1975; Lawson et al., 1976; Karplus et al., 1976; Karplus, 1977).

Metodologia de ensino e desenvolvimento cognitivo

Para desenvolver qualquer programa de ciências temos de considerar três componentes: as metas do programa, o conteúdo científico (o que ensinar) e as
estratégias de ensino consistentes com as metas e com o conteúdo (como ensinar).

Consideremos o desenvolvimento de um programa de ciências. Definimos as metas do programa como sendo a educação em ciências e o desenvolvimento cognitivo dos alunos; o conteúdo põe ênfase tanto no processo como na estrutura da disciplina. Quais seriam as metodologias de ensino mais adequadas para se atingirem as metas definidas e ao mesmo tempo de acordo com o conteúdo?

O modelo de aprendizagem interaccionista e construtivista de Piaget põe ênfase no conceito de estrutura cognitiva, que a criança constrói em interacção com o ambiente. Esta teoria é a base para o método de inquérito para ensinar ciências que é consistente com as metas da educação em ciências (principalmente o desenvolvimento da capacidade de raciocinar), a estrutura do conhecimento científico, a natureza do aprendiz e o processo de aprendizagem.

Um exemplo da metodologia de inquérito é a estratégia de ensino desenvolvida por Atkin e Karplus (1962) e melhorada por Karplus e outros autores do Science Curriculum Improvement (SCIS, 1974; Karplus, 1977). Esta metodologia, conhecida como o ciclo de aprendizagem, consiste numa exploração extensiva e uma invenção e descoberta activas. É de facto uma metodologia profundamente enraizada no interaccionismo e construtivismo de Piaget. Esta estratégia de ensino consiste em três fases: exploração, introdução do conceito e aplicação do conceito. O ciclo de aprendizagem contribui com factores importantes para a construção do conhecimento: experiência (exploração), transmissão social (introdução do conceito) e oportunidade para realização de experiências para facilitar a auto-regulação (aplicação do conceito).

O papel do professor no modelo de inquérito não é principalmente transmitir processos e produtos da grande aventura científica, discutir com os alunos tópicos científicos ou realizar demonstrações para os alunos. Pelo contrário, deve estabelecer e manter um ambiente em que os alunos possam interrogar-se; fornecer tópicos e materiais para explorar; fazer perguntas que obriguem os alunos a reflectir; resistir a dar as respostas aos alunos e em vez disso dar-lhes apenas pistas.

Em vários estudos levados a efeito para comparar duas metodologias de ensino - leitura/demonstração e método de inquérito, os resultados conduziram à conclusão de que o método de inquérito, como metodologia de ensino, é mais eficiente na promoção do desenvolvimento cognitivo dos alunos do que a tradicional metodologia de ensino leitura/demonstração (Stafford e Renner, 1976; Friot, 1976; Mckinnon, 1976; Marek e Renner, 1979).

Limitações da teoria de Piaget na educação em ciências

A aplicação de princípios teóricos de um determinado domínio a problemas práticos de outro domínio levanta sempre questões de legitimidade e validade. No caso da teoria de Piaget, muitos dos seus princípios teóricos têm sido aplicados a problemas educativos. Por isso, também aqui, urge investigar da legitimidade e validade desta aplicação, porquanto os seus efeitos fazem sentir-se a grande número de crianças.
Vimos anteriormente alguns contributos importantes da teoria à educação em ciências, nomeadamente ao desenvolvimento de programas curriculares e metodologias de ensino. Convirá agora determo-nos um pouco sobre possíveis limitações na aplicação da teoria à prática educativa e tentarmos identificar alguns excessos cometidos, tomando precauções para evitar práticas pedagógicas com consequências indesejáveis. Na realidade, os princípios derivados da teoria piagetiana são de natureza geral, podem ser mal aplicados e não são facilmente transferíveis para a sala de aula. Por outro lado, a teoria pouco diz sobre conhecimento cultural, as diferenças individuais, o contexto social da educação e a variedade de estilos cognitivos existentes na sala de aula. O facto de a teoria piagetiana tratar de uma enorme gama de fenómenos não quer dizer que não tenha os seus limites. Uma atitude mais cautelosa e necessária será desenvolver mais investigação sobre a aplicação da teoria à educação, para além da epistemologia genética. Neste sentido, será extremamente útil a análise de Ginsburg (1981) às aplicações da teoria de Piaget à prática pedagógica.

Limitações no desenvolvimento curricular

Uma das mais importantes aplicações da teoria piagetiana à educação em ciências tem sido sem dúvida no âmbito do desenvolvimento curricular, tendo por base os estádios desenvolvimento cognitivo. Para alguns autores (Kohlberg e Mayer, 1972) o objectivo da educação seria mesmo promover o desenvolvimento cognitivo através do ensino dos estádios piagetianos. Esta perspectiva apresenta algumas dúvidas por várias razões. Primeiro, a maior parte das crianças de culturas ocidentais atingem os estádios pré-operacional e concreto de uma maneira expontânea e portanto não se vê a necessidade de esses mesmos estádios serem ensinados. Por outro lado, os objectivos da educação não deveriam limitar-se apenas a promover o desenvolvimento cognitivo, mas também a transmissão dos valores culturais e sociais. Será talvez mais adequado tentar ajustar o ensino à compreensão do aluno e ao conhecimento informal que ele já possui. Para isso será necessário desenvolver mais investigação centrada no conhecimento das ciências que os alunos possuem antes de ser ensinados e ao mesmo tempo conhecer as suas dificuldades de aprendizagem. Quanto melhor conhecemos o que os alunos já sabem antes de ser ensinados, melhor poderemos organizar programas curriculares eficientes.

Há razões empíricas e teóricas para encarar com algum cepticismo a relação entre os estádios em que se encontram os alunos e os resultados que obtêm em ciências. É cada vez mais aceite que os alunos não operam ao mesmo nível de pensamento em diferentes situações. Enquanto Inhelder e Piaget (1958) originariamente admitiram que as operações formais eram independentes do conteúdo da área em que eram avaliadas, hoje admite-se a importância do contexto e do conteúdo no desenvolvimento e uso das operações formais e sugere-se precaução ao classificar os alunos por estádios cognitivos com o objectivo de prescrever ou limitar o modo como devem ser ensinados (Driver e Easley, 1983).

Em resumo, tentar organizar programas de ciências com o objectivo de ensinar os estádios piagetianos, isto é, os conteúdos passíveis de ser aprendidos em cada
estádio, parece ser menos eficiente e útil do que organizar o currículo tendo em conta esses mesmo estádios e o conhecimento informal dos alunos.

Limitações na metodologia de ensino

De acordo com Piaget, Rousseau, Pestalozzi e outros, o acto de aprender não é apenas determinado por forças do exterior. A criança tem um papel activo na sua aprendizagem, ao assimilar os acontecimentos do meio nas suas estruturas cognitivas. Daqui surgiu a posição de que para se conhecer algo profundamente é necessário redescobri-lo. Então, se o conhecimento é uma reconstrução activa, são necessários métodos activos de ensino.

Existem fortes possibilidades para que estas ideias de Piaget sejam mal interpretadas e portanto aplicadas. De facto, a noção de aprendizagem activa de Piaget tem sido interpretada por alguns autores como sendo actividade concreta, intervindo a manipulação. A importante ideia piagetiana é actividade, não necessariamente física, concreta. O que é importante é o envolvimento e enpenhamento da criança e não necessariamente a manipulação das coisas. Conforme Piaget afirmou: "...foi finalmente entendido que uma escola activa não é necessariamente uma escola de trabalhos manuais... A actividade de investigação mais autêntica pode ter lugar nas esferas da reflexão, da abstracção mais elevada e das manipulações verbais" (Piaget, 1970, citado por Ginsburg, 1981).

Mas, se por um lado o conceito piagetiano de aprendizagem activa pode ser mal interpretado, também se verifica uma limitação na própria teoria porquanto não explica a aprendizagem receptiva que tem o seu lugar em educação. Na verdade, Piaget (1970) acrescentou: "A memória, a obediência passiva, a imitação do adulto e os factores receptivos em geral são todos tão naturais para a criança como a actividade expontânea" (pp.137-138). Parece que promover a aprendizagem receptiva é também um legítimo objectivo da educação. É sabido como é necessário que os alunos memorizem nomes de estados, elementos químicos, vocabulário de línguas estrangeiras, etc. Piaget acrescentou ainda que para aprendizagem deste tipo, as máquinas de ensinar e várias formas de instrução programada podem ser extremamente eficientes e úteis. Contudo, enquanto a aprendizagem receptiva é fundamental em educação, a teoria de Piaget não lhe dedica muita atenção, talvez porque o próprio Piaget não estava interessado neste tipo de aprendizagem (Ginsburg, 1981).

Outro aspecto importante da teoria de Piaget para a metodologia do ensino das ciências é a aprendizagem auto-dirigida. Para Piaget as crianças podem aprender por si próprias. A coordenação de esquemas não é ensinada; as crianças de todas as culturas aprendem a falar sem ser ensinadas. É com base nesta perspectiva que muitos autores apoiaram a sala de aula aberta (open classroom) tão popularizada na Inglaterra.

Embora a teoria de Piaget demonstre que a auto-aprendizagem pode ter lugar no ambiente natural, levanta-se também aqui a questão de saber se o princípio psicológico se pode aplicar no contexto educativo. De facto, observações efectuadas em salas de aula abertas sugerem que a auto-aprendizagem pode ter lugar e ser até
predominante, mas nem sempre ocorre e por vezes outras formas de aprendizagem são melhor sucedidas. Por exemplo, algumas formas de aprendizagem receptiva poderão ter de ser impostas às crianças antes de estas poderem dirigir a sua própria aprendizagem. É o caso bem conhecido de crianças que depois de terem insucesso escolar numa determinada escola, conseguem recuperar dramaticamente numa escola bastante estruturada e autoritária (Ginsburg, 1981).

Os factores que, segundo Piaget, influenciam o desenvolvimento (maturação, experiência, transmissão social e equilibracação) representam o fulcro de uma metodologia de ensino construtivista. No caso da experiência física, Piaget salienta que, por vezes, os indivíduos adquirem o conhecimento do mundo que os rodeia através de experiência perceptual directa, partindo daí para a abstração das suas propriedades, conforme acontece nas ciências físicas e na matemática. No entanto, embora a aprendizagem perceptiva seja importante em Educação, a teoria de Piaget não só não explica os seus mecanismos como também não explica como os indivíduos conseguem o conhecimento abstracto directamente a partir do mundo real. Por isto, a teoria de Piaget pouco oferece neste sentido à metodologia de ensino.

Quanto ao factor experiência social, Piaget refere o efeito da linguagem, o papel dos pares e o efeito dos adultos. Para Piaget a linguagem desempenha um papel secundário no pensamento, o que pode levar professores a não ensinar com excessivo verbalismo.

Piaget, nos seus primeiros trabalhos referiu que a interacção com os pares desempenha um papel importante no desenvolvimento. Neste aspecto é necessário tomar algumas precauções porquanto os alunos interacuam uns com os outros de maneiras diferentes e por vezes esta interacção envolve a transmissão de valores que são contrários à actividade intelectual e à aprendizagem escolar. Em determinadas circunstâncias, para promover aprendizagem entre adolescentes é necessária menos interacção entre pares do que com adultos. Também aqui a teoria de Piaget não esclarece muitos aspectos no contexto educativo.

Relativamente ao papel do adulto na aprendizagem, Piaget entende que tem um papel importante. Embora o princípio da influência do adulto seja bastante útil para o professor, a teoria de Piaget não chega a definir o papel de professor, não chegando a formular uma teoria de instrução. Na verdade, Piaget concentrou a sua atenção praticamente só na criança e por isso a sua teoria reflecte uma limitação neste aspecto.

Um outro princípio derivado da teoria de Piaget afirma que a criança está limitada na sua aprendizagem devido à natureza do estádio de desenvolvimento em que se encontra. No entanto, embora este princípio seja aceite, representa um perigo quando interpretado no sentido restrito. De facto, muitas vezes se ouve dizer que a criança pré-operacional não pode raciocinar de um modo abstracto ou que não pode desenvolver qualquer actividade científica. Estas afirmações parecem constituir um exagero, na medida em que a criança, desde muito cedo, demonstra utilizar o raciocínio abstracto como, por exemplo, quando generaliza o significado das palavras. Além disso, algumas investigações têm demonstrado que a criança pode manipular conceitos científicos que não estejam no âmbito do raciocínio hipotético-dedutivo atribuído por Piaget apenas a adolescentes. Assim, embora seja válido o
princípio de que a natureza do pensamento da criança limita a sua aprendizagem, este princípio tem sido muito seguido à letra, com o efeito desastroso de impedir que a criança seja exposta a um maior número de experiências educativas. Na verdade, a afirmação de Piaget de que a criança desenvolve expontaneamente as estruturas mentais em cada estádio, torna possível que a criança assimile vários aspectos dos temas científicos incluídos nos programas. Para isso, torna-se necessário que o professor faça as ligações entre as intuições da criança e o ensino formal da escola.

A posição de utilizar as intuições científicas expontâneas da criança como ponto de partida para a educação em ciências constitui hoje a ideia chave para a investigação que se tem vindo a desenvolver nos últimos anos sobre concepções alternativas (Driver & Easley, 1978; Osborne, 1980; Hewson, 1981; Gilbert, Osborne & Fensham, 1982; Gilbert & Watts, 1983; Driver & Erickson, 1983; McClelland, 1984; Driver, Guesne & Tiberghien, 1985; Osborne & Freyberg, 1985; Hashweh, 1986; Duarte, 1987; Faria, 1987; Freitas, 1987; Sequeira & Freitas, 1987a; Sequeira & Freitas, 1987b; Pozo, 1987; Sequeira & Leite, 1988a; Sequeira & Leite, 1988b; Sequeira & Leite, 1988c; Sequeira & Leite, 1989a; Sequeira & Leite, 1989b; Sequeira & Leite, 1989c; Sequeira & Duarte, 1989; Sequeira & Faria, 1989; Sequeira, Leite & Duarte, 1989a; Sequeira, Leite & Duarte, 1989b;]). Só depois de entendermos as causas destas "concepções erradas" ou ideias alternativas das crianças (e dos adultos), poderemos fazer um progresso significativo no sentido de estabelecer a ponte entre o conhecimento expontâneo e o conhecimento científico. Neste aspecto, também a teoria piagetiana não contribui significativamente, porquanto não trata convenientemente dois temas fundamentais: as diferenças individuais e a estrutura das disciplinas de ciências.

Diferenças individuais e o conhecimento académico

Embora a teoria piagetiana admita diferenças individuais no modo como são atingidos os diversos estádios de desenvolvimento cognitivo, atribuindo essas diferenças às variações dos factores do desenvolvimento como maturação, experiência física, aspectos culturais, a teoria não tem sido convincente quanto ao modo e rapidez com que as crianças passam de um estádio a outro porquanto as suas afirmações não têm sido verificadas na prática (Friot, 1970; Mckinnon e Renner, 1971; Karplus e Karplus, 1970; Karplus et al., 1975; Renner e Stafford, 1976; Sequeira, 1980). Além disso a teoria não se debraça sobre variáveis como a impulsividade, persistência, dedicação e criatividade, que estão no centro da actividade intelectual. Este vácuo na teoria de Piaget limita a sua importância para a sala de aula. As diferenças individuais constituem o problema fundamental em educação e é certamente um dos seus objectivos principais desenvolver programas e estratégias de ensino adequadas para suprir essas diferenças, nomeadamente a rapidez com que se atingem os estádios piagetianos. Na verdade, é urgente entender um determinado número de fenómenos que se passam na sala de aula, para que tenhamos um processo educativo eficiente. É o caso da criatividade, inteligência, estilo cognitivo e motivação, relativamente aos quais a teoria piagetiana pouco diz (Ginsburg, 1981).

Um outro problema que não é convenientemente tratado na teoria de Piaget é a
natureza do conhecimento académico. Até que ponto podem, por exemplo, as operações concretas explicar o comportamento da criança ao aprender ciências? No caso dos adolescentes, a teoria piagetiana explica o seu comportamento em detalhe com o raciocínio hipotético-dedutivo e este é apenas uma parte do empreendimento científico. A teoria de Piaget explica algumas estruturas fundamentais do pensamento, embora não se tenha preocupado demasiado com elas, e daí a dificuldade em aplicar directamente a teoria ao conhecimento académico em geral e à educação em ciências em particular. Por outro lado, Piaget não dedicou demasiada atenção a formas culturais do conhecimento, tendo considerado a educação como um processo dialéctico que inclui a interacção entre a criança e a sociedade. "Educar é adaptar a criança ao ambiente social do adulto, em outras palavras, é mudar a constituição psico-biológica do indivíduo nos termos das realidades colectivas em relação às quais a comunidade conscientemente atribui um certo valor" (Piaget, 1970, p.137). Embora a teoria de Piaget reconheça o papel das "realidades colectivas", não contribui convenientemente para a sua compreensão. Piaget, como epistemólogo, preocupou-se mais com o desenvolvimento das formas não culturais do conhecimento.

Sumário e implicações

Em resumo, poderemos concluir que a teoria de Piaget encerra princípios que têm ajudado a compreender o comportamento da criança e, ao mesmo tempo, servir de orientação para o processo educativo. Verificamos, contudo, que a teoria tem sido por vezes mal interpretada, resultando uma aplicação muito literal e rígida à educação. Esquece-se muitas vezes que a teoria de Piaget é uma teoria que se centra no desenvolvimento das categorias biológicas básicas do pensamento humano e pouco diz acerca da aquisição e a natureza das formas de conhecimento cultural, que são as que são transmitidas pela escola.

Tendo considerado algumas limitações na teoria de Piaget, parece razoável considerar que não se deve exigir demasiado desta teoria, sob pena de prejudicarmos a investigação e a prática educativa. Assim, sugere-se que o quadro teórico piagetiano constitua o referencial da investigação em educação em ciências, mas urge avançar para além dele. É necessário tentar compreender a aprendizagem auto-dirigida no contexto social da sala de aula e na malha da sociedade em geral. Precisamos de conhecer melhor as estruturas do conhecimento académico em particular e do conhecimento cultural em geral, nunca esquecendo a individualidade da aprendizagem.

Para terminar, resta-nos afirmar que, pesem embora as limitações apontadas à teoria de Piaget, ela continua a constituir a pedra fundamental para a construção do estatuto próprio da educação em geral e da educação em ciências em particular.
REFERÊNCIAS

Regents of the University of California.

science. Comunicação apresentada na 13ª Conferência da ATEE (Association for Teacher Education in Europe), Universidade de Barcelona, Setembro de 1988.

CONTRIBUTIONS ET LIMITATIONS DE LA THEORIE DE PIAGET POUR L’EDUCATION EN SCIENCES

Résumé - Toutes les tentatives pour appliquer la théorie de Piaget à la résolution de problèmes éducatifs ou l’utilisation de principes pour l’orientation de la pratique pédagogique peuvent créer des problèmes de légitimité et de validité. L’application de la théorie est-elle légitime? Dans le cas de la théorie de Piaget et de son application à l’éducation en général et à l’éducation en sciences en particulier, les questions soulevées ont une importance cruciale, puisque cette même application a des effets concrets dans la vie de bien des élèves et est devenu une espèce de mode. L’objectif de ce travail est de présenter et de discuter les contributions et les limitations de la théorie de Piaget en ce qui concerne l’éducation en sciences. On y analyse successivement ses applications dans les domaines du développement curriculaire et des méthodologies d’enseignement et aussi dans ceux où la théorie présente des limitations fondamentales quant à son application en éducation en sciences, notamment les différences individuelles et la structure des disciplines de sciences.
CONTRIBUTION AND LIMITATIONS OF PIAGET'S THEORY WITHIN SCIENCE EDUCATION

Abstract - Problems of legitimacy and validity can be raised by efforts to apply Piaget's theory to problem solving in education, or to use principles as a guide to pedagogical practice. Is the application of the theory legitimate? In the case of Piaget's theory and its application to education in general, and to science education in particular, problems are of crucial importance given the large amount of pupils affected, as well as the dangers of regarding it as a fashion. It is the aim of the present work to present and discuss the contributions and limitations of Piaget's theory within science education. Its applications to curriculum and teaching methodologies are analysed, along with the areas where the theory shows its main weaknesses within science education, namely individual differences and the structure of science subjects.