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Abstract. In this work the evolution of visco-elastic systems under external stress is addressed. An approach as a mixed
complementary eigenvalue problem to model the geological folding and asymmetric boudinage in the same direction is
considered. A matricial dynamics equation that comprehends elasticity and viscosity matrices is presented. An algorithm
to connect material points and to build the adjacency matrix has been developed. Numerical results for a set of 16 nodes are
shown.
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INTRODUCTION

The study of instabilities and bifurcations in systems with viscosity has been motivated by many experimental
observations related to technological problems or industrial processes. In [1] the mathematical problem of the mixed
complementary eigenproblem (MEiCP) is motivated by the study of divergence instabilities of static equilibrium states
of finite dimensional mechanical systems with unilateral frictional contact.

This kind of approach is suitable to tackle geological problems, namely the prediction of the evolution less ductile
layers embedded in a more ductile matrix under simple progressive shear, i.e. rotation and non-coaxial strain. Under
these conditions it is expected that only one kind of geological structure (e.g. in compressive field) happens in the
same direction and strain field [2]. However, the observation of simultaneous occurrence of folding and asymmetric
boudinage in the same direction opens a new trend [3] that opposes the current state of the art in structural geology.

An attempt to formulate this type of problem has been started earlier in [4]. In this work we briefly address the
problem of MEiCP by stating the dynamics equation. A 2D model is proposed for a visco-elastic system, for which
we show the adjacency matrix for a reduced set of points with connections, followed by final remarks on future work.

DYNAMICS EQUATION FOR VISCO-ELASTIC SYSTEMS

Under constant applied forces F0 the dynamics of the system is governed by the momentum balance equation (Newton
second law), considering elasticity and viscosity

Mü(t) = F0 +R(t)−Ku(t)−Bu̇(t) (1)

where M is the mass matrix (symmetric and positive definite), K is the elasticity matrix (positive definite), B is the
viscosity matrix (symmetric), R is the reaction force at time t (t ≥ 0), and u(t) and u̇(t) stand for the individual point
masses displacements and velocities, respectively.

In [5] and [6] a particular type of dynamic instability of an equilibrium state of the system is considered. Under
the same applied forces F0 for a constant displacement rate (ü = 0), and in the absence of viscosity B, equation (1)
assumes the form Ku0 = F0 +R0.

It is shown that for some t there are dynamic solutions of the form

u(t) = u0 +α(t)v
R(t) = R0 +β (t)w
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if and only if there exists a number λ ≥ 0, and two vectors v and w (v ̸= 0), are such that

(λ 2M+K)v = w
w j = 0
vd = 0

which can be treated as mixed complementary eigenproblem (MEiCP).

2D PHYSICAL MODEL

In geological processes (e.g. layering, folding and boudinage) materials with contrasting physical properties are often
in contact. The understanding of the inter and intra layer contact dynamics is the first step to solve relevant and more
complex geological problems.

We propose to model a physical material by a 2D domain of points, each characterised by its mass (preserving
material density), viscosity, and elasticity, defining a mesh of nodes.

At first, each node is linked to every other within a predefined range (Figure 1A). Afterwards, by defining the
relevant bonds among the material points, such links are reduced so that each node becomes connected to no more
than 8 adjacent nodes (Figure 1B). In average, each node is apart from its nearest neighbour by a distance a, and to
each one is assigned a fraction of the total mass (density×a3).

(A) Complete set of one-to-one material points bonding. (B) Post-reduction set of one-to-one material points bonding.

FIGURE 1. Bidimensional domain of 16 material points randomly distributed.

In Figure 2A two layers of point masses are shown: round dots for material A and squares for material B. Dashed
lines depict the interactions amid them. The particular connections between neighbouring point masses belonging to
either one or the other material are coloured in black. A 4-mass cell is outlined in Figure 2B with nodal displacements
and the forces applied therein.

(A) A model for materials A and B in contact. (B) Applied forces and displacements at each node.

FIGURE 2. 2D model for two materials in contact.
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Considering the elastic binding between every two point masses, the elastic force Fe acting on each individual point
mass related to its respective displacement u is given by the Hooke’s law

Fe =−ku, (2)

where k is the elastic constant.
For the frictional contact between two point masses, assuming Coulomb friction (proportional to the velocity u̇), the

viscous force is given by

Fb =−µ u̇, (3)

where µ is the viscosity coefficient.

THE ADJACENCY MATRIX

The formulation of equation (1) as a complementarity eigenproblem (EiCP) requires the construction of elasticity and
viscosity matrices, K and B.

Starting by the simplest case of 4 nodes forming a quadrilateral, equations (2) and (3) may be written in matricial
form for two dimensions

Fe 1x
Fe 1y
Fe 2x
Fe 2y
Fe 3x
Fe 3y
Fe 4x
Fe 4y


= K



u1x
u1y
u2x
u2y
u3x
u3y
u4x
u4y


and



Fb 1x
Fb 1y
Fb 2x
Fb 2y
Fb 3x
Fb 3y
Fb 4x
Fb 4y


= B



u̇1x
u̇1y
u̇2x
u̇2y
u̇3x
u̇3y
u̇4x
u̇4y


.

Both K and B matrices are obtained from the projections of the forces and either the displacements or velocities
along the directions X and Y, according to the angles α,β ,γ , θ , φ and δ (Figure 3).

FIGURE 3. Angles defined by the lines linking two nodes relative to the X axis.

Underlying these matrices there is the adjacency matrix A8×8 locally defined by

A8×8 =


P Oα Oγ Oδ

Oα Q Oβ Oθ
Oγ Oβ R Oφ
Oδ Oθ Oφ S

 ,

where sub-matrices P, Q, R and S traduce the geometrical relations between each node with its neighbors, such that:
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P =

 c2
α + c2

δ + c2
γ cα sα + cδ sδ + cγ sγ

cα sα + cδ sδ + cγ sγ s2
α + s2

δ + s2
γ

 , Q =

 c2
α + c2

β + c2
θ cα sα + cβ sβ + cθ sθ

cα sα + cβ sβ + cθ sθ s2
α + s2

β + s2
θ



R =

 c2
φ + c2

β + c2
γ cφ sφ + cβ sβ + cγ sγ

cφ sφ + cβ sβ + cγ sγ s2
φ + s2

β + s2
γ

, S =

 c2
φ + c2

δ + c2
θ cφ sφ + cδ sδ + cθ sθ

cφ sφ + cδ sδ + cθ sθ s2
φ + s2

δ + s2
θ


and the non-diagonal sub-matrices Oi =

(
c2

i cisi
cisi s2

i

)
reproduce the linkage between two bonded nodes. (It is used the

short notation ci = cos i, si = sin i, cisi = cos isin i.)

For the set of 16 nodes, depicted in Figure 1, we obtain the A32×32 matrix from the cartesian coordinates (not shown).
Due to its dimension it is only shown in (4) the first 8×8 block matrix.

A32×32 =



(
2.06 −0.30
−0.30 2.94

)
0.99 −0.10
−0.10 0.01

0 0
0 0

0 0
0 0

. . .

. . .
0.99 −0.10
−0.10 0.01

(
4.09 0.10
0.10 3.91

)
0.5 0.5
0.5 0.5

0 0
0 0

. . .

. . .
0 0
0 0

0.5 0.5
0.5 0.5

(
3.08 0

0 1.92

)
0 0
0 0

. . .

. . .
0 0
0 0

0 0
0 0

0 0
0 0

(
2.88 0.01
0.01 2.12

)
. . .
. . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .


(4)

As expected the A32×32 matrix is symmetric. Along the diagonal, subsets of matrix elements (equivalent to P, Q, R
and S, referred above) are highlighted. The trace of each subset equals the number of bonds for the respective node.
For unconnected nodes the respective matrix elements are equal to zero. As can be seen in Figure 1B, the nodes 1 and
3 are not connected so the respective matrix elements a15, a16, a25 and a26 are null.

Generalizing for a 2D domain of n mass points, the adjacency matrix A, and consequently B and K matrices, will
have 2n×2n dimension.

The algorithms for designing the mesh, for the calculation of the A matrix and for the graphical plots have been
developed under MATLAB [7].

FUTURE WORK

The application of the algorithm developed to obtain the A matrix to an arbitrary large number of points is trivial.
It is necessary to evolve from the A matrix to obtain K and B matrices comprehending the elastic constant and the

viscosity coefficient for domains comprising one or two kinds of materials.
To apply this model in systems with high viscosity material embedded in a low viscosity medium, equation (1) must

be fully formulated as a MEiCP problem.
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