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Theta oscillations within  the hippocampus-amygdala-medial prefrontal cortex
(HPC-AMY-mPFC) circuit have been consistently implicated in the regulation of anxiety
behaviors, including risk-assessment. To study if theta activity during risk-assessment
was correlated with exploratory behavior in an approach/avoidance paradigm we
recorded simultaneous local field potentials from this circuit in rats exploring the
elevated-plus maze (EPM). Opposing patterns of power variations in the ventral
hippocampus (VHPC), basolateral amygdala (BLA), and prelimbic (PrL) mPFC, but not in
the dorsal hippocampus (dHPC), during exploratory risk-assessment of the open arms
preceded further exploration of the open arms or retreat back to the safer closed arms.
The same patterns of theta power variations in the HPC-BLA-mPFC(PrL) circuit were
also displayed by animals submitted to chronic unpredictable stress protocol known
to induce an anxious state. Diverging patterns of vVHPC-mPFC(PrL) theta coherence
were also significantly correlated with forthcoming approach or avoidance behavior in
the conflict situation in both controls and stressed animals; interestingly, vHPC-BLA,
and BLA-mPFC(PrL) theta coherence correlated with future behavior only in stressed
animals, underlying the pivotal role of the amygdala on the stress response.

Keywords: anxiety, stress, local field potentials, ventral hippocampus, amygdala, prefrontal cortex

INTRODUCTION

Emotional disorders are prevalent in western societies. WHO data shows that disorders within the
anxiety spectrum target over 15% of the western population (Kessler et al., 2001). State anxiety
arises from unexpected features in the environment and is classically viewed as an evolutional
survival response. This transitory state prepares the individual to eventual harmful encounters in
contexts where the presence of any immediate discrete threat is uncertain. It is usually characterized
by heightened arousal and vigilance (Blanchard et al., 1991; Rodgers et al., 1997; Davis et al., 2010).
However, anxiety can also arise from competing motivations when a decision has to be made in
an environment perceived as potentially aversive and/or where reward is uncertain (Gray and
McNaughton, 2003; Bailey and Crawley, 2009). This view attributes a critical role to decision-
making in the anxiety response and also explains why the most commonly used anxiety tests for
animals rely on unconditioned responses to competing innate appetitive and aversive motivations
(Davis et al., 2010). Central to the process of resolving the conflict of competing motivations
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in an anxiogenic context is the concept of risk assessment. This
defensive behavior is part of the constellation of anxiety-like
behaviors and is the process through which a potentially aversive
environment/stimulus can be cautiously explored/approached
allowing the gathering of information while heightened arousal
is still maintained (Blanchard et al., 1991, 2011; Rodgers et al.,
1997; Blanchard, 2003; Cryan and Holmes, 2005). For some
authors, this is precisely what defines anxiety and what separates
it from a fear response usually involving a flight or fight
response to a clearly present threat (Gray and McNaughton,
2003; Blanchard et al., 2011). Risk assessment is therefore one
of the most important behaviors of the anxiety response as it
allows contextual information encoding/processing and guides
decision-making in an anxiety-provoking environment toward
approach or avoidance of the potentially aversive stimuli/context,
ultimately leading a return to basal behavior (Blanchard et al.,
1991; Rodgers et al., 1997; Blanchard, 2003; Cryan and Holmes,
2005; Blanchard et al., 2011).

The circuit formed by the ventral hippocampus (vHPC), the
medial prefrontal cortex (mPFC), and the amygdala (AMY)
has a preponderant role in emotional behavior. In recent years,
several studies, including from our lab, have shown that activity
within this circuit is critical for the expression of anxiety-related
behavior (Adhikari et al., 2010; Jacinto et al., 2013). Anatomically,
the vHPC is strongly connected with the mPFC and AMY,
usually in a reciprocal way (Pitkdnen et al., 2000; Ishikawa and
Nakamura, 2003; Orsini et al., 2011), further reinforcing the
idea of a unified circuit with a preponderant role in emotional
responses. Theta oscillations, in particular, can provide temporal
synchronization within the vVHPC-AMY-mPEFC circuit (Lesting
et al., 2011) and, thus, have been implicated in the modulation
of emotional behaviors, including anxiety (Adhikari et al., 2010;
Jacinto et al., 2013) and fear (Seidenbecher et al., 2003; Popa et al.,
2010; Lesting et al., 2011).

Chronic exposure to stress can impact trait anxiety by
increasing the sensitivity to aversive stimuli (Pégo et al., 2008;
Sousa, 2016). For example, individuals with post-traumatic stress
disorder tend to show a persistently higher sensitivity to anxiety-
provoking stimuli and therefore display disproportionate and
long-sustained anxiety responses to those stimuli (Gorman,
2002). Chronically stressed animals also display increased
aversion across various contexts (Sousa, 2016). Interestingly,
stress exposure is known to impact the activity of the vHPC
and BLA (Rainnie et al., 2004; Kavushansky and Richter-Levin,
2006; Maggio and Segal, 2009; Oliveira et al, 2013; Pinto
et al.,, 2015) including in an anxiogenic context (Jacinto et al.,
2013).

Surprisingly, no previous study has assessed the neural
computations that occur during conflict decision-making. Thus,
herein, we recorded local field potentials (LFP) in the vHPC,
dorsal hippocampus (dHPC), basolateral amygdala (BLA), and
pre-limbic (PL) region of the mPFC in rats freely behaving in
the EPM; in particular, our analysis focused on theta power
and theta coherence variations in the initiation of exploration
of the open arms, the so called exploratory risk-assessment, as
this is the critical point of decision in the exploration/avoidance
conflict posed by the EPM. In addition, we assessed whether

the same readouts would be of value in rats exposed to a
chronic unpredictable stress (CUS) protocol known to induce
anxious behavior. Our goal was to observe if differential activity
or synchronization routes within the vHPC-BLA-mPFC(PrL)
circuit could underlie the different behaviors of controls and
stressed animals in the EPM.

RESULTS
Behavior in the EPM

When entering the open arms (mean number of entries:
10.50 =+ 2.11), control animals displayed risk-assessment
behavior (head dips and front paws’ entries; mean time spent on
risk-assessment entries: 5.33 4 0.51s). In 20% of the cases, this
behavior was followed by a complete entry into the open arm
(approach action), and on the remainder (80% of the cases) it
resulted in a retreat to the closed arms (avoidance action). In
contrast, the majority of closed arm entries were fast full body
transitions without any preceding risk-assessment activity (mean
number of closed arm entries: 10.66 £ 2.16). Time spent in the
open arms was on average ~30% of the total time of the test
(mean open arm exploration time: 101.00 % 15.30).

Theta Activity in the vHPC-BLA-mPFC(PrL)
Circuit Predicts Exploratory Outcome of

Risk-Assessment Behavior

Local field potentials were recorded by electrodes positioned in
the dHPC, vHPC, BLA and mPFC(PrL) (Figure S1) in freely
behaving rats during EPM performance. As expected, during
exploratory behavior robust theta oscillations (5-12Hz) were
observed in LFPs recorded from the dHPC (McFarland et al.,
1975; Hinman et al., 2011) and, with equal robustness, but
lower magnitude, in the vHPC, mPFC, and BLA (Adhikari
et al,, 2010; Royer et al,, 2010; Lesting et al., 2011; Patel et al.,
2012; Schmidt et al., 2013). Figure 1 shows representative traces
of simultaneously recorded local field potentials during risk-
assessment from the dHPC, vHPC, BLA and mPFC(PrL) and
respective power spectra, with theta activity being visible in all
brain areas.

Variation of theta power between the period immediately
preceding the risk-assessment period (0.5 s; baseline)—when the
animal is in the center region of the EPM—and the first 1.5s
of risk-assessment behavior in the open arms was calculated as
described in the methods section. This period was chosen because
we were especially interested in observing the changes during the
period in which the animals displayed risk-assessment behavior
that preceded the actions to either fully enter (approach) or
retreat (avoid) from the open arm. Of notice, all risk-assessment
behaviors lasted at least 1.5s (more than half of them lasting
between 1.5 and 2.0s). The remaining time windows (in the
cases that the exploratory period lasted more than 1.5s) were
also analyzed. The same theta activity trends described below
for the 1.5 s windows were generally maintained throughout that
period (data not shown) which leads us to believe that the state
anxiety signal is set in this initial period and is of relevance to
the exploratory behavior in this context. Risk-assessment periods
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FIGURE 1 | (A) Representative traces from local field potentials simultaneously recorded from the medial prefrontal cortex (mPFC(PrL)), dorsal hippocampus (dHPC),
ventral hippocampus (vHPC) and basolateral amygdala (BLA) in one rat performing the Elevated-Plus Maze (EPM) test. Raw traces are plotted in blue and filtered theta
traces (5-12 Hz) are overlayed in red. Presented segment duration is 2 s. Voltage scale (bottom right) is —0.2 to 0.2 mV for mPFC(PrL), vHPC and BLA; and —0.4 to
0.4 mV for dHPC. (B) Power spectra for mPFC(PrL), dHPC, vHPC, and BLA. Spectra are average of multitaper spectrum estimates for all animals (n = 10) during
EPM exploration. Dotted lines are + s.e.m.

were then divided into future approach or avoidance actions, as
previously described. Baseline theta power, which corresponded
to activity in the center of the EPM before open arm entry,
also did not differ when the baseline of future approach
and avoidance actions were compared, for all brain areas
(Figure S2).

The variation of vHPC theta power during initial 1.5s of
risk-assessment exploration in respect to the 0.5s preceding
the risk-assessment period was remarkably different between
subsequent approach and avoidance actions. While approach
behaviors were preceded by a decrease in VHPC theta power
following the risk-assessment period, the opposite was observed
before avoidance behaviors (p < 0.05 for each significant
post-hoc pairwise comparison between approach and avoid at
1.0 and 1.5 s; Figures 2A,B). In the BLA, theta power variation
presented a similar, although slightly delayed, profile, with
a clear difference between risk-assessment periods previous
to approach and avoidance actions (p < 0.05 for post-hoc
pairwise comparison at 1.5 s; Figures 2A,B). These results show
that vHPC and BLA theta power increases during exploratory
risk-assessment of the open arms that precede the action of
withdrawing from them (avoidance), whereas fully entering the

open arms (approach) is preceded by theta power decreases
in the same regions. Figure2C also shows an example of
average spectrograms for vHPC and BLA of all risk-assessment
periods preceding both approach and avoidance actions of one
rat.

Interestingly, in the mPFC(PrL), theta power during the
initial open arm exploration seemed to vary in the opposite
direction, with a significant increase preceding approach
behaviors (p < 0.05 for post-hoc pairwise comparison at 1.5 s;
Figures 2A,B). dHPC theta power did not present any significant
variation in respect to the baseline period nor between risk-
assessment periods preceding approach or avoidance behaviors
(Figures 2A,B).

Although, there were no apparent risk-assessment behaviors
proceeding closed arm entries (all of which were fast full body
transitions) we analyzed theta power variation following full
closed arm entries in respect to the 0.5s period immediately
preceding them (baseline). Curiously, vHPC theta power
variation from baseline during the first 1.5 s of closed arm entries
was similar to that occurring before avoidance entries in the open
arms, albeit with lower mean magnitude (Figure 2D). On the
contrary, BLA and mPFC(PrL) theta power did not vary during
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closed arm entry (Figure 2D), while dHPC theta power steadily
increased in respect to baseline (Figure 2D).

We then analyzed theta coherence between the regions that
displayed differences in theta power during risk-assessment
of the open arms preceding approach and avoidance actions.
vHPC-mPFC(PrL) theta coherence varied in opposite directions
immediately before approach and avoidance actions (p < 0.05
for each significant post-hoc pairwise comparison at 0.5 and
1.0's; Figure 3), mimicking theta power variation in the vHPC.
In contrast, vHPC-BLA and BLA-mPFC(PrL) theta coherence
variations during risk-assessment were similar when preceding
both approach and avoidance actions (Figure 3).

Relevance of Theta Power Activity in An
Animal Model of Hyperanxiety

To verify whether the above-described variations in theta
power were also observed in a validated animal model of
anxiety, we exposed an additional group of animals to a 21-
day chronic unpredictable stress (CUS) protocol previous to
the EPM test (see methods). Stressed animals, when compared
with controls, presented higher serum corticosterone levels
(control: 48.00 £ 9.17 ng/mL vs. stress: 126.40 + 19.85
ng/mL; p < 0.05; Figure 4A) and reduced body weight gain
between the beginning and ending of the stress protocol
(control: 36.40 + 5.20¢g vs. stress: 10.40 £ 8.13g; p < 0.05;
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unpaired Wilcoxon rank sum test comparison of average theta coherence variation between activity preceding approach and avoidance subsequent actions. Error
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Figure 4B), thus confirming the biological efficacy of stress
exposure.

In the EPM, stressed animals tended to enter the open
arms less frequently than controls spending significantly less
time exploring them when compared with controls (mean
number of open arm entries: control 10.50 £ 2.10 vs. stress
6.8 £ 1.80, p = 0.22; mean time exploring open arms: control
101.00 £ 15.30 vs. stress 66.00 £ 13.60, p < 0.05, Figures 4C,D
respectively).

Since we had previously shown (Jacinto et al., 2013) that
higher theta power in the VHPC and BLA were correlated
with avoidance of aversive locations of an environment,
herein we first compared theta power immediately before

bars, &+ sem.
- - (baseline; 0.5s before risk-assessment period) and immediately
A Corticosterone B Weight . .
20 o after the start of open arm risk-assessment behavior (first
£ - 0.5s). Stressed animals entering the open arms showed a
g 3w much higher increase of mean VHPC and BLA theta power
§ 0 5 immediately following the start of the risk-assessment period
é s = than control animals, regardless of subsequent approach or
3 avoidance actions (control vs. stress; VHPC: p < 0.05; BLA:
CONTROL STRESS CONTROL  (STRESS p < 0.05; Figure5A). dHPC theta power variation was of
EPM D EPM a similar nature, but lower magnitude (control vs. stress;
. . p < 0.05, Figure5A), whereas mPFC(PrL) theta power
é Y T'é'm increased during the start of the risk-assessment period and
2 : such variation was similar in stress and control groups
g . g 5 (Figure 5A).
2 £ Despite these differences, theta power variations in the vHPC
T B e e and BLA of stressed animals during the risk-assessment period
(up to 1.5 in respect to the 0.5 s baseline that preceded the risk-
FIGURE 4 | Efficacy of the stress protocol and EPM behavior of assessment) mimicked those of controls: while a maintenance of
strgssed lanimals. Compari§on. of serum cgrticosterone levels (A) and body high theta power preceded avoidance actions, approach actions
weight gain between the beginning and ending of the stress protocol (B) were preceded by a significant decrease in power in both brain
between control and stressed animals. Comparison of anxiety-like measures in o . .
the EPM between control and stressed animals: (C) number of open arm areas (p < 0.05 for each significant post-hoc pairwise comparison
risk-assessment entries and (D) time spent exploring the open arms. *p < between approach and avoidance at 1.5 s; Figure 5B). There was
0.05 for unpaired Wilcoxon rank sum test comparison of serum corticosterone also no significant difference between baseline theta power before
levels, body wgight gain, time spent exploring the open arms and number of approach or avoid actions; nor when the baseline of control
open arm entries between control and stressed animals. Error bars, + sem. and stressed animals was compared for approach and avoidance

actions for all brain regions (Figure S2).

When analyzing theta power immediately following closed
arm entry in respect to the baseline (the 0.5 s period immediately
preceding the entry), there were no significant differences
between controls and stressed animals in any of the recorded
regions despite a clear trend for mPFC(PrL) theta power increase
in both groups (Figure5A). We also observed a decrease in
mPFC(PrL) theta power before closed arm exit, as previously
described (Adhikari et al., 2010), that was present in both
control and stressed animals and occurred 1.0 to 1.5s before
the animal actually exited the closed arms (Figure S2). Despite
a sharp transitory increase always observed during the exit or
immediately after, overall mPFC(PrL) theta power was reduced
outside the closed arms when compared with the power inside the
arms previous to the described reduction anticipating the exit.
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entries. (B) Comparative time evolution of mean average theta power variation from baseline during open arms risk-assessment preceding approach and avoidance
actions for all stressed animals in vVHPC, BLA, mPFC(PrL), and dHPC. Data was averaged across animals for each time point according to the subsequent action
(approach or avoid). *p < 0.05 for unpaired Wilcoxon rank sum test comparison of average theta power variation between control and stress groups and average

theta power variation between activity preceding approach and avoidance actions. Error bars, 4+ sem.

Increased Theta Coherence in BLA Neuronal Links Is pairwise comparison at 1.0s; Figure 6). More importantly, in
Increased in Stressed Rats and Relevant for Anxiety these animals, and contrary to controls, vHPC-BLA, and BLA-
Similarly to controls, VHPC-mPFC(PrL) theta coherence mPFC(PrL) theta coherence variations during risk-assessment
variation during the risk-assessment period in stressed animals ~ were also correlated with the action of further exploring the
separated subsequent approach and avoidance actions (vHPC-  open arms: while a decrease of vVHPC-BLA coherence preceded
mPFC(PrL) theta coherence variation: p < 0.05 for post-hoc  approach actions, an increase of BLA-mPFC(PrL) coherence
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FIGURE 6 | Comparative time evolution of mean theta coherence variation from baseline during open arms risk-assessment preceding approach and
avoidance actions for all stressed animals in brain areas’ pairs vVHPC-mPFC(PrL) (left), vHPC-BLA (middle), and BLA-mPFC(PrL) (right) brain areas’
pairs. Data was averaged across animals for each time point according to the subsequent action (approach or avoid *p < 0.05 for unpaired Wilcoxon rank sum test
comparison of average theta coherence variation between activity preceding approach and avoidance actions. Error bars, 4+ sem.

Theta coherence variation from baseline

was correlated with subsequent avoidance actions (VHPC-BLA
theta coherence variation: p < 0.05 at 1.0 and 1.5s; Figure 6;
BLA-mPFC(PrL) theta coherence variation: p < 0.05 at 1.5s;
Figure 6).

Locomotor Activity Cannot Account for Observed
Variations in Theta Power

While theta power has been seen to increase with running
speed, most prominently in the septal pole of the HPC, theta
frequency is usually more strongly related to speed (McFarland
et al., 1975; Hinman et al,, 2011). Thus, in the present study,
a small, but significant, correlation of dHPC theta power with
speed was observed (average r = 0.11 = 0.03), but not of vHPC,
BLA or mPFC(PrL) theta power (VHPC: —0.02 + 0.01; BLA:
0.02 £ 0.01 mPFC(PrL): 0.01 = 0.02). The absence of significant
speed modulation, especially in the vHPC, BLA, and mPFC(PrL),
reinforces the relevance of the above-described findings in the
context of anxious behavior.

DISCUSSION

This study shows that theta power and coherence variations
within the vHPC-AMY-mPFC(PrL) circuit are correlated with
the outcome of risk-assessment behavior in the aversive region of
the EPM, the open arms. In particular, variations of vHPC, BLA,
and mPFC(PrL) theta power presented opposing patterns during
the risk-assessment period before an approach or avoidance
action took place. This was true for both control and stressed
rats. Additionally, theta synchronization between the vHPC
and mPFC(PrL), a connection critically involved in the anxiety
response in the EPM (Adhikari et al, 2010), also presented
opposing patterns during risk-assessment whether the future
action was to approach or avoid the open arms. Opposing
patterns correlated with the future action were also observed for
vHPC-BLA and BLA-mPFC(PrL) theta synchronization but only
for stressed rats.

The role of the hippocampus (HPC) in anxiety is not novel. In
fact, in conflict contexts it has been claimed that the hippocampus
can stop the motor program so that a risk-assessment period can

take place. This period allows the gathering of more information
from the environment so that the conflict can be resolved by
re-directing behavior away from the most negative outcome
(Gray and McNaughton, 2003). The present observations lend
further support to this hypothesis by showing that when assessing
the risk of entering the open arms of the EPM, where the
animal faces a conflict between exploring the unknown and
elevated arm or retreating to the “safer” closed arm, vHPC’s
theta power is correlated with state anxiety and discriminates
between subsequent exploration of (approach) and retreat
from (avoidance) the open arms. Interestingly, a recent fMRI
study in humans also identified a causal role for the anterior
hippocampus, the human homolog of the rodent VHPC, in
the approach-avoidance conflict resolution (Bach et al., 2014).
These observations are in line with, and extend, our previous
findings that theta activity of the ventral portion of the HPC
is correlated with exploratory behavior in an anxiety context
(Jacinto et al., 2013) in a link which may be mediated by
downstream brain areas to which the HPC is strongly connected.
Indeed, we also reveal that the strong connectivity of the vHPC,
especially in the theta oscillations range, with other brain areas
like the AMY and the mPFC(PrL) may also provide clues
on how the observed vHPC activity may contribute to the
decision of further exploring or abandoning the open arms
of the EPM.

The AMY, in particular the BLA, is strongly interconnected
with the vHPC (Pitkdnen et al, 2000) and is profoundly
implicated in the processing of threatening stimulus and
defensive behaviors including in an anxiogenic context (Phelps
and LeDoux, 2005; Tye et al, 2011; Wang et al., 2011; Felix-
Ortiz et al, 2013). As a result, co-activation of the vHPC
and BLA in an anxiogenic situation can be expected (Felix-
Ortiz et al,, 2013) as anxious exploration modulated by the
hippocampus also requires increased arousal and readiness of
the fight-flight system in case any potential threat materializes
(Gray and McNaughton, 2003; Jacinto et al., 2013). It is, thus,
plausible that an overactivation of the HPC and AMY may signal
the negative valence of a possible threat stimulus and that the
outcome of the animals’ decision to fully enter or avoid the open
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arms depends in part on the modulation of activity in this limbic
link, as supported by the present data. Our results suggest that
the modulation of synchronous activation of the vHPC-BLA, in
the theta range, occurring within the open arms’ risk-assessment
period correlates with the subsequent action of further exploring
(if activity decreases) or abandoning (if activity increases) the
open arm. Whether these variations are only neuronal hallmarks
of the anxiety-driven risk-assessment in the brain areas that
modulate anxiety or are themselves regulating behavior is an
open question; theta disruption studies are needed to clarify this
issue. Nevertheless, theta changes have been previously shown
to be causally related with changes in behavior (Turnbull et al.,
1994; McNaughton et al., 2007; Shirvalkar et al., 2010). Moreover,
inactivating or lesioning the vHPC or BLA reduces anxious-like
behavior (Adamec et al., 1999; Pentkowski et al., 2006) and an
optogenetic study attributed a causal role to the vHPC-BLA link
in the modulation of anxiety behavior (Felix-Ortiz et al., 2013).

The mPFC, and its interplay with the HPC, has also been
implicated in anxiety (Lacroix et al., 2000). Communication via
theta oscillations between vHPC and mPFC have been implicated
not only in learning actions (Benchenane et al., 2010) but also
in the modulation of anxiety-like behavior (Adhikari et al,
2010; Padilla-Coreano et al., 2016). More precisely, increased
vHPC-mPFC theta synchrony has been correlated with increased
avoidance of the EPM’s open arms (Adhikari et al., 2010; Padilla-
Coreano et al., 2016). In accordance with this finding, we have
also observed that the decision to abandon the open arms
after risk-assessment was correlated with an increase in vHPC-
mPFC(PrL) theta coherence while the decision to further explore
them was correlated with the opposite modulation. Thus, the
present observation of distinct power variation in the vHPC
during risk-assessment is likely to be signaled to the mPFC
(Padilla-Coreano et al., 2016). It is possible that the vHPC signals
state anxiety and communicates this state to other brain regions
(e.g, AMY and mPFC) to re-direct behavior accordingly—
although inputs from the BLA to the vHPC and from the mPFC
to the AMY have also been shown to be important in the
modulation of anxiety in certain contexts (Felix-Ortiz et al., 2013;
Adhikari et al., 2015).

The decision to further explore or abandon the open
arms was correlated with mean vHPC, but not dHPC, theta
activity. This intra-hippocampal specificity is not surprising,
given the functional dissociation attributed to the region, namely
concerning anxiety-like behavior (Bannerman et al., 2003). Yet,
it should be noted that the dorsal and ventral regions of the
HPC are interconnected and theta waves may travel along its axis
(Patel et al., 2012); in fact, there is at least one study reporting
that the magnitude of theta oscillations recorded from the dHPC
in serotonin 1A receptor-deficient mice, a strain which displays
increased anxiety-like behavior, increased in the EPM in respect
to a familiar environment (Gordon et al., 2005).

Stressed animals tend to display increased anxiety-like
behavior in the EPM, avoiding the open arms more frequently
than controls (Pégo et al, 2008), as confirmed herein.
Interestingly, this stress-induced anxiety status was associated
with increased theta power in the vHPC and BLA during risk-
assessment of the open arms. Overactivation of the vHPC and

BLA by stress has been previously described in studies on brain
slices (Rainnie et al., 2004; Maggio and Segal, 2009), anesthetized
rats (Kavushansky and Richter-Levin, 2006; Oliveira et al., 2013;
Pinto et al., 2015) and freely moving rats (Jacinto et al., 2013); this
correlation may either be an expression of increased anxiety or,
more appealingly, the precise signaling that leads stressed animals
to attribute a higher negative valence to the open arms than
controls. Interestingly, and similar to the observed variations
in controls, theta power variations in the vHPC and BLA of
stressed animals during open arm risk-assessment were also a
predictor of subsequent actions in the EPM. This observation
confirms that the modulation of theta power in these brain
regions is strongly correlated with the subsequent decision of
further exploration of the most anxiogenic portion of the EPM,
the open arms, and may in fact be a relevant signal for the
decision-making process in this conflict context. Taking it one
step further, this also suggests that theta modulation in these
brain areas may be a relevant therapeutic target for anxiety
(and indeed anxiolytic drugs of all know classes affect theta
oscillations in the hippocampus (McNaughton et al., 2007).
vHPC-mPFC(PrL) synchrony during risk-assessment was also
correlated with the subsequent approach or avoidance decision
in stressed animals further reinforcing the role of this link in
anxiety-like behavior. However, unlike in control animals, vHPC-
BLA and BLA-mPFC(PrL) theta coherence variations during
the same period were also able to differentiate subsequent
approach or avoidance actions, with the absence of decrease in
BLA-vHPC and BLA-mPFC(PrL) theta coherence during open
arm risk-assessment correlating with the decision to abandon
the open arms. This observation is in accordance with the
well-known pivotal role of stress upon AMY activity (Vyas
et al,, 2002; Roozendaal et al, 2009) and suggests that the
overactivation of this area, and the ensuing increased activity in
its connections with the vHPC and the mPFC(PrL), might be a
critical factor in the manifestation of stress-induced anxiety-like
behavior. This also re-enforces previous studies reporting that the
functional connectivity, including in the theta range, between the
hippocampus and amygdala is enhanced by stress (Maggio and
Segal, 2012; Ghosh et al., 2013; Jacinto et al., 2013) and that BLA-
mPFC(PrL) theta synchrony increases with anxiety (Jacinto et al.,
2013; Likhtik et al., 2014).

In conclusion, we show for the first time that power variations
in the vHPC-BLA-mPFC(PrL) circuit during the risk-assessment
exploration of the EPM open arms are correlated with the
animal’s subsequent action to approach or avoid the open arm.
We show that theta power decreases in the vHPC and BLA
and increases in the mPFC(PrL) during risk assessment when
an approach action follows; while the opposite variations occur
preceding a retreat action. In addition, we also reveal that
the networks involved in the resolution of this conflict are
different in control animals and in a model of stress-induced
anxiety: while in controls the further exploration of the open
arms appears to be correlated with vHPC-mPFC(PrL) coherence
only, stressed animals’ decisions seems to be modulated by an
increased BLA activation, with the consequent enhancement
of BLA-vHPC and BLA-mPFC(PrL) links besides the vHPC-
mPFC(PrL) connection. These observations reinforce the view
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of the vHPC-BLA-mPFC(PrL) network as a critical circuit in
physiological and pathological conditions.

METHODS

Animals

A total of 10 Male Wistar-Han rats (Charles River laboratories,
Barcelona, Spain), weighing 300-350g and aged 12 weeks (at
the time of surgery) were used in this study. Animals were
single-housed under the following laboratory conditions: room
temperature 22°C, relative humidity of 55%, 12 h light cycle
beginning at 8 a. m., food and water ad libitum. Experiments
were conducted in accordance with European Union Directive
2016/63/EU and the Portuguese regulations and laws on the
protection of animals used for scientific purposes of the Ministry
for Agriculture, Rural Development and Fishing. This study
was approved by the Portuguese Veterinary General Direction,
Direc¢ido Geral de Alimentagio e Veterinaria (DGAV).

Surgery
Following a period of 2 weeks of handling for at least once a
day, animals were subjected to a surgery for implantation of
chronic single-wire electrodes. Electrodes were assembled in-
house from formvar insulated nichrome single wires (Science
Products GmbH, Hofheim, Germany), 50 wm inner diameter,
and golden Mill-Max receptacles (Mill-Max Mfg. Corp., Oyster
Bay, NY, USA). Animals were kept under anesthesia during the
whole procedure with a gaseous mixture of 2-4% sevoflurane
in 100% oxygen. Electrodes were implanted, through skull burr-
holes, and targeted the mid-ventral portion of the pre-limbic area
of the prefrontal cortex (3.3 anterior, —0.8 lateral and 4.0 depth),
the dorsal portion of the hippocampus (3.9 posterior, —2.2
lateral and 2.4 depth), the ventral portion of the hippocampus
(4.8 posterior, —4.8 lateral and 8.4 depth) and the basolateral
amygdala (2.4 posterior, —4.9 lateral and 8.6 depth). A stainless-
steel screw electrode over the cerebellum (10.5 posterior, 0.0
lateral) served as ground. Distances are in mm from bregma.
All electrodes were cemented directly to the skull and connected
to a Mill-Max connector. The final assembly was cemented with
dental acrylic resin (GC America Inc., Alsip, IL, USA), with four
additional skull screws serving as anchors. Animals were allowed
to recover for 15 days.

Following the recovery period, animals were familiarized
with the recording room and tethering procedure in 20 min
familiarization sessions during 5 days.

Stress Protocol

To confirm the validity of the analysis in control rats and assess
how stress could have a differential effect on the vHPC-BLA-
mPFC(PrL) circuit 5 rats were exposed to a chronic unpredictable
stress (CUS) protocol, described elsewhere (Cerqueira et al.,
2007), for 21 days. Importantly, exposure to this CUS protocol is
known to induce anxiety-like behavior (Pégo et al., 2008). Briefly,
stressed animals were exposed to a daily stressor (up to 1h). In
order to avoid adaptation the stressor applied was different every
day and presented at a different hour of the day. Four different
stressors were used: restraint, noise, shaking and cold air stream.
The stress protocol started after the familiarization period with

the recording room and procedures. All stressors were applied
in a separate experimental room from where the animals of both
groups were housed. Control group animals (n = 5) were handled
for the same time during the same period.

On the day following the end of the stress protocol blood
samples were drawn from all animals (stress and control groups)
via tail venipuncture for serum corticosterone levels assessment.
Blood samples were collected in the morning. The samples were
centrifuged at 13,000 rpm for 10 min. Serum was extracted and
stored at —80°C for posterior analysis. Serum corticosterone
levels were measured using 1251 radioimmunoassay (RIA) kits
(MP Biomedicals, Inc, Orangeburg, NY, USA). Reduced or slow
body weight gain has also been associated with the efficacy of
stress protocols (Pégo et al., 2008); therefore, body weights of
all animals were recorded on a weekly basis and body weight
gain between the first and last days of the stress protocol was
calculated.

Elevated-Plus Maze Test

Following 1 day of rest after blood collection, animals from both
groups were exposed to the Elevated-Plus Maze (EPM) test with
a duration of 5 min. The EPM is a validated test to assess anxiety-
like behavior in rodents and the protocol has been described
elsewhere (Sousa et al., 2006; Walf and Frye, 2007).

Data Acquisition

Signals were acquired during EPM performance in single-ended
non-referenced mode using the dacqUSB system (Axona Ltd.,
London, UK) at 24 kHz. Field potential signals were amplified
and low-pass filtered with a 600 Hz cut-off frequency. A 50 Hz
notch filter was applied in all recordings. Position coordinates
were also acquired (20 Hz) with an integrated video-tracking
system from an infra-red LED on the headstage connected to the
animal’s headmount.

Data Analysis

Data was imported into Matlab (Mathworks, Natick, MA, USA)
and analyzed with custom-written code and Chronux toolbox
(http://www.chronux.org) (Mitra and Bokil, 2008). Data was
first downsampled to 1.2 kHz and detrended using the function
locdetrend from the Chronux toolbox (window size 0.5 s; step
0.1s). Time instants of open and closed arms entries were
automatically obtained via position tracking data in matlab. All
animals performed open arm risk-assessment entries at least five
times, a pre-requisite we had set for further analysis. Transition
data contaminated with saturation or movement artifacts were
removed from posterior analysis. Theta power estimates were
calculated with a multitaper method using Chronux. Half-second
windows with no overlap were used for the analysis of open
and closed arms’ transitions. The time-bandwidth product (TW)
was chosen as 3 and the number of tapers (K) was 5. Frequency
resolution was chosen to be 0.6 Hz. Theta spectral coherence
between all brain regions was calculated as the cross-spectrum
of each LFP pair normalized by their auto-spectra. The spectrum
estimates were obtained by the multitaper method for the same
windows used in the power estimates using similar multitaper
parameters. Total theta power on each window was obtained by
the summation of spectral power estimates of all frequencies in
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the 5-12 Hz band while theta coherence was averaged for all
estimates in the same frequency band. Theta power and theta
coherence during risk-assessment periods were analyzed in 0.5
windows up to 1.5s after the beginning of the open arm risk-
assessment entry with respect to a 0.5 s baseline period prior to
the entry. Theta power and theta coherence variations for each
time bin during the risk-assessment period were given by the
ratio of the theta power or coherence estimate in the analyzed
time bin minus the estimate in the baseline bin by the estimate
in the analyzed time bin. This normalization procedure was
calculated for each animal and then averaged across animals
within each group for each time bin. The calculated normalized
measure, for both theta power and theta coherence, is positive if
power or coherence increases in respect to the baseline period,
negative if it decreases and takes a value of zero if unchanged.

Exemplificative average spectrograms (Figure2) for the
activity preceding approach and avoidance actions for one
animal were calculated for 0.5s windows (with 90% overlap)
for the time period of the theta power variation analysis (from
0.5s before open arm risk-assessment entry to 1.5s after the
entry). Exemplificative spectrograms for mPFC(PrL) theta power
proceeding and following closed arm exits (Figure S3) were
calculated in the same way but spanning a longer time period
(from 3.0 s prior to the exit up to 3.0 s following the exit).

To test if the variations in theta power observed could
be accounted for by speed modulation, the total time of
each recording for each brain area was divided in 0.5s non-
overlapping segments and mean theta power and mean speed
were calculated for each segment. Speed was calculated as the
distance between two consecutive tracking positions obtained by
the video-tracking system during test performance; and mean
segment speed was obtained by averaging all speed values within
each segment. Pearson correlation coefficients between speed and
theta power were averaged across animals for the same brain
regions.

Histology

To confirm the position of the electrodes, at the end of the
experimental period, all animals were deeply anesthetized with
pentobarbital (100 mg/Kg). An electrolytic lesion was done by
passing current through all the electrodes. The animals were then
perfused transcardially with fixative (4% paraformaldehyde).
The brains were removed and placed in fixative solution. After
further fixation the brains were coronally sectioned in 45
pm slices, collected on non-coated glass slides, stained with
Giemsa and mounted with Entellan-New (Merck, Darmstad,
Germany). Electrode tip position was determined by microscopic
observation of the slides.
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