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Acral lentiginous melanoma (ALM) is the less common
subtype with singular characterization. TERT (human
telomerase reverse transcriptase) promoter mutations have
being described as recurrent in melanomas and infrequent
in ALM, but their real incidence and clinical relevance is
unclear. The objectives of this study were to describe the
prevalence of TERT promoter mutations in ALM, and
correlate with the molecular profile of other drive genes and
clinical features. Sixty-one samples from 48 patients with
ALM were analyzed. After DNA isolation, the mutation
profiles of the hotspot region of BRAF, NRAS, KIT, PDGFRA,
and TERT genes were determined by PCR amplification
followed by direct Sanger sequencing. KIT, PDGFRA, and
VEGFR2 gene amplification was performed by quantitative
PCR. Clinical information such as survival, clinical stage,
and Breslow tumor classification were obtained from
medical records. TERT promoter mutations were found in
9.3% of the cases, BRAF in 10.3%, NRAS in 7.5%, KIT in
20.7%, and PDGFRA in 14.8% of ALM. None of the cases
showed KIT, PDGFRA, or VEGFR2 gene amplification. We
found an association between KIT mutations and advanced
Clark level (IV and V, P= 0.043) and TERT promoter
mutations with low mitotic index. No other significant

associations were observed between mutation profile and
patients’ clinical features nor survival rates. Oncogenic
TERT promoter mutations are present in a fraction of ALMs.
No relevant associations were found between TERT
mutation status and clinical/molecular features nor survival.
Mutations of KIT and PDGFRA are the most common
genetic alterations, and they can be therapeutic targets for
these patients. Melanoma Res 26:93–99 Copyright © 2016
Wolters Kluwer Health, Inc. All rights reserved.
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Introduction
Cutaneous melanoma is the most aggressive skin cancer,

with a rising incidence worldwide in the past few decades

[1]. Different from the main melanoma subtypes, usually

diagnosed in white populations with fair skin and hair,

the acral lentiginous melanoma (ALM) is an infrequent

counterpart, accounting for less than 2% of all melanoma

cases [2,3]. This subtype exhibits unique clinical char-

acteristics, affecting only the palms of the hands, the

soles of the feet, and the subungual area [4,5]. In regions

with vast contingent of non-white population, such as

Asia, Africa, and part of America, ALM is a major concern,

as it occurs in populations and skin areas that are not

generally at risk for skin cancer, leading frequently to late

diagnosis and low survival rates [6–8]. In Brazil, a country

with high miscegenated and heterogeneous population

with African, European and indigenous heritage, ALM is

prevalent in some geographic areas [9–11].

Over the past few years we have witnessed a fast growth

in molecular characterization of melanomas, with great

emphasis in alterations of cell signaling pathways [12,13].

The mitogen-activated protein kinase pathway has a

crucial role in melanoma development and progression

[12,14]. BRAF, an intracellular serine-threonine kinase, is

mutated in ∼ 60% of cutaneous melanomas [12,15,16].

Ninety-five percent of such cases result in a V600E

mutation, which involves a valine to glutamic acid sub-

stitution at position 600, which leads to a constitutive

activation of the mitogen-activated protein kinase path-

way [12,14,17]. Mutations are also frequent in another

intracellular kinase, particularly in the NRAS gene, with a

rate of 15–18% of mutated cases [12,14,17]. It has been

reported that ALM exhibited a distinct molecular profile

when compared with cutaneous melanoma [18]. In the

ALM subtype, BRAF mutations are uncommon, and

mutations were identified in upstream receptor tyrosine

kinase, such as KIT (15–30%) and PDGFRA (6.8%)

[12,14,17]. It was also reported that KIT and PDGFRA
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could be altered in ALM by gene amplification

mechanisms of their 4p12 locus [18–20]. Besides these

two oncogenes, this locus also harbors another important

oncogene, KDR, also known as VEGFR2 (vascular

endothelial growth factor receptor-2 gene) [21,22].

Importantly, many of the mutated molecules in ALM

have emerged for therapeutic targets, such as BRAF, KIT/
PDGFR, and VEGFR2 [23–25].

Recently, another important cancer-related gene, tel-

omerase reverse transcriptase (TERT), was described to

be mutated in melanomas [26,27]. TERT encodes a

subunit of telomerase that, together with other compo-

nents, elongates the telomere maintaining genomic

integrity. Its upregulation has being demonstrated in

several human cancers, and the promoter region of the

gene is considered the most regulatory element for tel-

omerase expression. TERT promoter mutations, namely

at positions c.− 124 C>T and c.− 146 C>T, have being

reported in up to 50% of cutaneous melanoma [26]. In

ALM, the data are scarce, with few studies addressing its

biological and clinical impacts [28–30].

In the present study, we intend to determine the fre-

quency of hotspot TERT promoter mutations in a series

of ALM melanomas. Furthermore, we aimed to assess

other major molecular features, such as BRAF, NRAS,
KIT, PDGFRA mutations, as well as amplification of

4q12 locus (KIT/PDGFRA/VEGFR2), and correlate with

TERT mutation status and with ALM clinicopathological

features.

Materials and methods
Sixty-one formalin-fixed paraffin-embedded tissues from

48 ALM patients were retrieved from the files of the

Department of Pathology at Barretos Cancer Hospital. All

the patients were diagnosed between 1999 and 2013.

Primary tumor samples were obtained from 48 cases.

Eleven cases also presented lymph node (LN) samples

and in two cases we assessed the distant metastasis. All

cases were re-evaluated by a pathologist who confirmed

the diagnosis and identified the tumor region for further

molecular analysis. The study was conducted according

to the national and institutional ethical policies, and it

was previously approved by the Local Ethics Committee

(CEP-548/2011).

DNA isolation from FFPE tissue
DNA was obtained from formalin-fixed paraffin-

embedded tissue sections representative of the tumor

lesions, as previously described with some modifications

[31]. Briefly, serially 10-μm-thick unstained sections of

paraffin blocks were sectioned and one haematoxylin and

eosin (H&E) section was used for identification and

selection of the tumor area, which was macrodissected

into a microfuge tube using a sterile needle (25 G –

0.5 mm, Neolus, Terumo Corporation, Tokyo, Japan).

The macrodissected tissue was deparaffinized by a serial

wash with xylol and ethanol (100–70–50%) and allowed

to air-dry. DNA was extracted using Qiagen’s QIAamp

DNAMicro Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions and quantified by NanoDrop

2000 (Thermo Scientific, Waltham, Massachusetts, USA).

DNA samples were stored at −20°C until further genetic

analysis.

Mutation analysis of TERT, KIT, PDGFRA, and BRAF
and NRAS hotspot regions
The analysis of hotspot mutations of TERT promoter

regions (contained the sites of c.− 124:C>T and

c.− 146:C>T), KIT (exons 9, 11, 13, and 17), PDGFRA
[12,14,18], BRAF (exon 15), and NRAS (codon12/13, 61),

was performed by PCR followed by direct Sanger

sequencing, as described previously [28,31–33]. Briefly,

using specific pairs of primers (Supplementary Table 1),

the target regions were amplified by PCR with an initial

denaturation at 95°C for 15 min, followed by 40 cycles of

95°C denaturation for 45 s, specific annealing tempera-

ture for 90 s and 72°C elongation for 45 s, and 72°C final

elongation for 7 min, in a Verity PCR machine (Applied

Biosystems, Carlsbad, California, USA). Amplification of

PCR products was confirmed by gel electrophoresis.

Sequencing PCR was performed using a Big Dye ter-

minator v3.1 cycle sequencing ready reaction kit (Applied

Biosystems) and the ABI PRISM 3500 xL Genetic

Analyzer (Applied Biosystems). All mutated cases were

confirmed with a second PCR followed by sequencing.

Gene amplification analysis of KIT, PDGFRA, and
VEGFR2
KIT, PDGFRA, and VEGFR2 gene amplification was

performed by quantitative real-time PCR with

LightCycler (Roche Molecular Biochemicals, Mannheim,

Germany), using fluorescent hybridization probes and

fluorescence resonance energy transfer for the detection

of PCR amplification product, as previously described

[34,35]. In all assays, appropriate positive and negative

controls of 4q12 loci amplification were included [36].

These controls had also been previously assessed

by other methodologies, such as array-CGH and CISH

[34,36,37].

Statistical analysis
The SPSS 19.0 software (IBM Corp., Armonk, New York,

USA) was used for all statistics analyses. To identify

associations among clinicopathological characteristics and

the molecular alterations, and to compare the prevalence

of molecular findings with the previous reports, the

Fisher exact test was used. Associations of the same

variables with specific cancer survival were analyzed by

the Kaplan–Meier method to estimate specific cancer

survival, with log-rank testing used to evaluate differ-

ences between curves. The P-value established for the

statistics significance was up to 0.05.
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Results
Clinicopathological features
The characteristics of the patients are shown in Table 1.

The age ranged from 26 to 85 years old (mean 62 ± 14.8),
and men and women had similar distribution. One-third

of the cases presented non-white skin phenotype.

Primary lesions were thick and ulcerated in most cases

and arose only on the hands in three (6.3%) cases.

Localized disease represented half of the cases. Breslow

tumor thickness ranged from 0.62 to 20.0 mm, with a

median of 4.9 (± 4.6). Five-year-specific cancer survival

rate for all patients was 51.5%. Follow-up ranged from 2

to 174 months, with a mean of 35.5 (± 30.4) and a median

of 29.6. At the last evaluation, 20 patients (41.7%) were

alive without disease, nine were alive with disease

(18.8%), 17 were dead because of melanoma (35.4%), and

two were dead because of other causes (4.1%).

Molecular profile
Because of the low amount and/or poor DNA quality

yield in some samples, we were not able to obtain

molecular profiles from all ALM cases. Table 2 sum-

marizes the molecular results. In primary tumors, we

observed the presence of 7.0% (3/43) TERT mutations,

harboring the c.− 146 C>T mutation in all cases

(Tables 2 and 3). We found a frequency of mutations of

20.7% for KIT, 14.8% for PDGFRA, 7.5% for NRAS, and
10.3% for BRAF genes (Table 2). KIT, PDGFRA, and
VEGFR2 copy numbers were normal in all analyzed

cases. One case exhibited two mutations in PDGFRA:
one at exon 12 and another on exon 14 (Table 3). In the

comparison of primary and LN or skin metastasis, we

observed a similar molecular status, except in one case

that showed TERT mutated only in the LN metastasis

(Table 2). One case exhibited the same BRAF mutation

in both primary and LN metastases (Table 2). The co-

occurrence of mutations across specimens is demon-

strated in Fig. 1. Only BRAF mutations were exclusive.

NRAS was mutated mutually only in one case with

PDGFRA mutation, and the same was observed with

TERT and KIT; KIT and PDGFRA presented comutated

with two other mutations (Fig. 1).

Clinicopathological and molecular associations
We found a significant association between KITmutation

status and higher Clark levels (Table 4). We also

observed an association between TERT mutations and

lower mitosis index (Table 4). There were no significant

Table 1 Demographic and clinicopathological features of 48 acral
lentiginous melanomas

Characteristics n (%)

Sex
Male 23 (47.9)
Female 25 (52.1)

Age [mean (SD)] 62 (14.8)
Skin
White 32 (66.7)
Pigmented 15 (31.3)
Not available 1 (2)

Anatomical location
Hands 3 (6.3)
Feet 45 (93.7)

Breslow depth (mm)
Up to 1 4 (8.3)
1.1–2 7 (14.6)
2.1–4 16 (33.3)
More than 4 17 (35.4)
Not available 4 (8.3)

Ulceration
Yes 31 (64.6)
No 10 (20.8)
Not available 7 (14.6)

Mitotic rate (mm2)
0 0 (0)
1 11 (22.9)
>1 37 (52.1)
Not available 12 (25)

TNM stage
I 5 (10.4)
II 22 (45.8)
III 17 (35.4)
IV 4 (8.3)

Table 2 Molecular profile of acral lentiginous melanomas

Mutations [n/N (%)] Gene amplification [n/N (%)]

Patient group TERT KIT PDGFRA NRAS BRAF KIT PDGFRA VEGFR2

Primary 3/43 (7.0) 6/29 (20.7) 4/27 (14.8) 3/40 (7.5) 4/39 (10.3) 0/35 (0) 0/36 (0) 0/8 (0)
Lymph node 1/10 (10) 0/10 (0) 0/8 (0) 0/10 (0) 1/11 (9.1) 0/10 (0) 0/10 (0) 0/2 (0)
Metastasis 0/2 (0) 0/2 (0) 0/2 (0) 0/2 (0) 0/2 (0) 0/2 (0) 0/2 (0) 0/0 (0)

TERT, telomerase reverse transcriptase; VEGFR2, vascular endothelial growth factor receptor-2.

Table 3 Exons/codons location of the mutated genes

Mutation n (%)

TERT
c.−146 C> T 4 (100)

BRAF
Exon 15 (V600E) 5 (100)

NRAS
Codon 61 3 (100)

KIT
Exon 9 1 (16.6)
Exon 11 3 (50)
Exon 13 1 (16.6)
Exon 17 1 (16.6)

PDGFRA
Exon 12 3 (60)
Exon 14 1 (20)
Exon 18 1 (20)

TERT, telomerase reverse transcriptase.
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differences in the survival rates according to TERT,
BRAF, NRAS, KIT, and PDGFRA mutation status in the

univariate analysis (data not shown).

Discussion
In the present study, we described for the first time the

molecular profile of Brazilian acrolentigenous melan-

omas. We showed that Brazilian patients exhibited a

similar profile to the one described in the international

literature [12,18–20,24,28–30,38–64] (Table 5).

We found that TERT c.− 146C>T promoter mutation is

present in 9.3% of patients, and this frequency was in

concordance with the reported 7.6% (7/92) (P= 0.732)

(Table 5). However, our study represents the larger ana-

lysis of the gene hotspot region of TERT in this melanoma

subtype (Table 5). Previous studies in thyroid cancer and

skin melanomas suggested an association of TERT muta-

tion with other molecular alterations, such as BRAF [28].

In superficial melanomas, thyroid cancer, and gliomas,

TERT promoter mutations have been also reported to be

Fig. 1
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Distribution of BRAF/NRAS/KIT/PDGFRA and TERT promoter mutations of 48 acral lentiginous melanomas. TERT, telomerase reverse
transcriptase.

Table 4 Association of molecular profile with clinicopathological features in acral lentiginous melanomas

n (%)

BRAF NRAS KIT PDGFRA TERT

Variables WT Mutated WT Mutated WT Mutated WT Mutated WT Mutated

Breslow (mm)
Up to 1 2 (5.7) 0 (0) 3 (8.1) 0 (0) 1 (4.3) 0 (0) 1 (4.3) 0 (0) 2 (5.1) 1 (25)
1.1–2.0 5 (14.3) 1 (25) 6 (16.2) 0 (0) 4 (17.4) 1 (16.7) 4 (17.4) 1 (25) 7 (17.9) 0 (0)
2.1–4.0 12 (34.3) 2 (50) 12 (32.4) 3 (100) 9 (39.1) 3 (50) 10 (43.5) 2 (50) 13 (33.3) 1 (25)
More than 4 13 (37.1) 1 (25) 13 (35.1) 0 (0) 6 (36.1) 2 (33.3) 6 (26.1) 1 (25) 14 (35.9) 2 (50)
Unknown 3 (8.6) 0 (0) 3 (8.1) 0 (0) 3 (13) 0 (0) 2 (8.7) 0 (0) 3 (7.7) 0 (0)

P=0.899 P=0.248 P=0.886 P=1.00 P=0.594
Clark
II 1 (3.1) 0 (0) 1 (2.9) 0 (0) – – – – 1 (2.8) 0 (0)
III 2 (6.3) 0 (0) 3 (8.8) 0 (0) 3 (15) 0 (0) 2 (9.5) 1 (25) 4 (11.1) 1 (25)
IV 16 (50) 3 (75) 17 (50.0) 3 (100) 14 (70) 2 (33.3) 12 (57.1) 3 (75) 19 (52.8) 1 (25)
V 13 (40.6) 1 (25) 13 (38.2) 0 (0) 3 (15) 4 (66.7) 7 (33.3) 0 (0) 12 (33.3) 2 (50)

P=0.736 P=0.428 P=0.043 P=0.400 P=0.491
Ulceration
Absent 6 (19.4) 0 (0) 6 (18.8) 2 (66.6) 4 (19) 2 (33.3) 5 (22.7) 1 (25) 8 (22.9) 1 (33.3)
Present 25 (80.6) 4 (100) 26 (81.2) 1 (33.3) 17 (81) 4 (66.7) 17 (77.3) 3 (75) 27 (77.1) 2 (66.7)

P=0.581 P=1.00 P=0.588 P=1.00 P=0.164
Mitosis
1 6 (22.2) 2 (66.7) 9 (32.1) 0 (0) 5 (27.8) 2 (33.3) 7 (35) 0 (0) 6 (20) 3 (100)
>1 21 (77.8) 1 (33.3) 19 (67.9) 3 (100) 13 (72.2) 4 (66.7) 13 (65) 3 (100) 24 (80) 0 (0)

P=0.166 P=0.537 P=1.00 P=0.526 P= 0.015
TNM stage
I 3 (8.6) 0 (0) 4 (10.8) 0 (0) 2 (8.7) 0 (0) 1 (4.3) 1 (25) 4 (10.3) 1 (25)
II 17 (48.6) 2 (50) 18 (48.6) 2 (66.7) 10 (43.5) 4 (66.7) 13 (56.5) 1 (25) 18 (46.2) 1 (25)
III 11 (31.4) 2 (50) 12 (32.4) 1 (33.3) 8 (34.8) 2 (33.3) 7 (30.4) 2 (50) 13 (33.3) 2 (50)
IV 4 (11.4) 0 (0) 3 (8.1) 0 (0) 3 (13) 0 (0) 2 (8.7) 0 (0) 4 (10.3) 0 (0)

P=1.00 P=1.00 P=0.776 P=0.440 P=0.751

Fisher’s exact test was applied in all cases.
Bold number indicates significant association.
TERT, telomerase reverse transcriptase.
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associated with older patients and worse patient prognosis

[65]. In our study, we did not observe such molecular and

clinical associations in acrolentigenous melanomas. The

association with low mitotic index could be related to

better prognosis, but the small number of mutated cases

needs further confirmation in a larger series.

Acrolentigenous melanomas are known to harbor a

distinct molecular profile of superficial melanomas.

Compelling evidence showed the paramount role of KIT
and PDGFRA alterations in the melanoma subtype [66].

In the present study, we found a mutation frequency of

16.7 and 12.5% for KIT and PDGFRA, respectively.

Among KIT mutations, 50% were located on exon 11 and

the others were distributed among the other exons [9,13,

17], whereas 60% of PDGFRAmutations were located on

exon 12 and the others were distributed on exons 14 and

18. These mutation rates are in accordance with previous

descriptions of 13.1% (75/572) and 6.2% (9/145)

(P= 0.145 and 0.108) (Table 5). Some authors have

identified KIT gene amplification as an alternative

mechanism for KIT upregulation in these tumors

[18–20]. However, we did not find any case with KIT
gene amplification using quantitative real-time PCR, a

very sensitive and specific methodology, previously

optimized by us and reported by our group and other

groups [34,36,67,68]. We observed an association

between KIT mutation and higher Clark staging, indi-

cating that KIT could be associated with a more aggres-

sive disease. The presence of KIT and PDGFRA
alterations, namely mutations, has an important ther-

apeutic impact. It has been shown that some melanoma

patients exhibiting KIT/PDGFRA mutations, rather than

gene amplification, can benefit from imatinib-based tar-

geted therapy [69]. Recently, KIT/PDGFRA mutations

have been found as targets for other small inhibitors, such

as crenolanib and nilotinib [39,70]. Therefore, we can

anticipate that between 15 and 20% of Brazilian acro-

lentigenous melanoma patients would benefit from these

above-mentioned therapeutic modalities.

Table 5 Summary of molecular features of acral lentiginous melanomas

Mutations [n/N (%)] Gene amplification [n/N (%)]

References Country TERT KIT PDGFRA NRAS BRAF KIT PDGFRA VEGFR2

This study Brazil 4/43 (9.3) 6/29 (20.7) 4/27 (14.8) 3/40 (7.5) 4/39 (10.3) 0/35 (0) 0/36 (0) 0/8 (0)
Heidenreich et al. [29] Spain 4/42 (9.5) NA NA 2/38 (5.3) 12/30 (28.6) NA NA NA
Pozzobon et al. [38] Spain NA NA NA 0/10 (0) 2/10 (20) NA NA NA
Liau et al. [30] China 2/32 (6.25) NA NA NA NA NA NA NA
Dai et al. [39] China NA NA 9/132 (9.8) NA NA NA NA NA
Vinagre et al. [28] Portugal 1/14 (7.1) NA NA NA 2/14 (14.3) NA NA NA
Hodi et al. [20] Multicenter NA 2/6 (33.3) NA NA NA 4/4 (100) NA NA
Zebary et al. [41] Sweden NA 13/88 (14.8) NA 13/88 (14.8) 15/88 (17.0) NA NA NA
Greaves et al. [48] USA NA NA NA NA 18/111 (16.2) NA NA NA
Dai et al. [39] China NA 9/39 (23.1) NA NA NA NA NA NA
Lin et al. [40] China NA 0/20 (0) NA NA NA NA NA NA
Puig-Butillé et al. [42] Spain NA NA NA 3/17 (17.6) 0/17 (0) NA NA NA
Minor et al. [24] USA NA 3/22 (13.6) NA 6/22 (27.3) 7/22 (31.8) 6/22 (27.3) NA NA
Si et al. [47] China NA NA NA 13/148 (8.8) 23/148 (15.5) NA NA NA
Ashida et al. [43] Japan NA 4/44 (9.1) NA NA NA NA NA NA
Jakob et al. [44] USA NA NA NA 7/44 (15.9) 6/44 (13.6) NA NA NA
Yun et al. [45] Korea NA 4/40 (10) NA NA NA 7/20 (35.0) NA NA
Kong et al. [46] China NA 23/193 (11.9) NA NA NA 14/193 (7.3) NA NA
Handolias and colleagues [49,50] Australia NA 2/6 (33.3) NA NA NA NA NA NA
Terada [51] Japan NA 1/2 (50) 0/2 (0) NA NA NA NA NA
Handolias and colleagues [49,50] Australia NA 1/16 (6.25) NA NA NA NA NA NA
Torres-Cabala et al. [52] USA NA 5/39 (12.8) NA NA NA NA NA NA
Ashida et al. [53] Japan NA 2/16 (12.5) NA 0/22 (0) 3/22 (13.6) 3/16 (18.8) NA NA
Curtin et al. [54] USA NA NA 0/7 (0) NA NA NA 3/7 (42.9) NA
Akslen et al. [55] Africa NA NA NA 3/26 (11.5) 1/25 (4.0) NA NA NA
Beadling et al. [56] USA NA 3/13 (23.1) NA 1/9 (11.1) 2/12 (16.7) 3/11 (27.3) NA NA
Takata et al. [57] Japan NA NA NA 1/6 (16.7) 2/8 (24.05) NA NA NA
Liu et al. [59] Australia NA NA NA NA 0/6 (0) NA NA NA
Curtin et al. [19] USA NA 3/28 (10.7) NA 0/10 (0) 1/10 (10.0) 2/28 (7.1) NA NA
Saldanha et al. [18] UK NA NA NA 9/19 (47.4) 2/21 (9.5) NA NA NA
Davison et al. [60] USA NA NA NA NA 0/3 (0) NA NA NA
Curtin et al. [12] Multicenter NA NA NA 3/35 (8.6) 7/35 (20.0) NA NA NA
Takata et al. [58] Japan NA NA NA 1/28 (3.6) 3/28 (10.8) NA NA NA
Lang and MacKie [61] UK NA NA NA NA 2/17 (11.8) NA NA NA
Sasaki et al. [62] Germany NA NA NA 0/15 (0) 5/15 (33.3) NA NA NA
Reifenberger et al. [63] Germany NA NA NA 1/4 (25.0) 2/4 (50.0) NA NA NA
Maldonado et al. [64] USA/Japan NA NA NA NA 4/30 (13.3) NA NA NA
All the referred studies _ 7/92 (7.6) 75/572 (13.1) 9/145 (6.2) 63/544 (11.6) 119/724 (16.4) 39/294 (13.3) 3/7 (42.9) NA
Total _ 11/131 (8.4) 81/601 (13.5) 13/168 (7.7) 66/581 (11.4) 123/759 (16.2) 39/329 (11.9) 3/43 (7.0) 0/8 (0)

NA, not available; TERT, telomerase reverse transcriptase; VEGFR2, vascular endothelial growth factor receptor-2.
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We also analyzed in this study the frequency of NRAS
(codon12/13 and 61) and BRAF (exon 15) hotspot

mutations. We found that NRAS was mutated in 6.3% of

cases. This frequency was somehow below what is

reported worldwide, which is above 11% (63/544)

(P= 0.787) of cases (Table 5). However, NRAS frequency

reports range from 0 to 47% (Table 5); therefore, there is

not really a consensus in the literature, and this could be

because of the distinct sizes of series analyzed in each

study, or it could reflect the differences between

populations.

With regard to BRAF, we observed the presence of 10.6%

(all V600E) of mutated cases. This result is in line with

the reported (16.4% – 119/724) (P= 0.639) (Table 5),

where the values range from 0 to 33% of BRAF mutated

cases. BRAF mutations were exclusive events. Besides

the low frequency of all mutations, they were mutually

present at least in one-third of the cases, except for the

BRAF, corroborating the high spectrum of melanoma

mutations reported.

In conclusion, we have molecularly characterized a series

of 48 ALMs. We have shown that less than 10% of

patients harbor the recurrent TERT promoter mutation,

and KIT represents the most mutated gene (21%), fol-

lowed by PDGFRA (15%), in this series. These results

could help in the selection of other alternative and

potential therapeutic options for Brazilian acral lentigi-

nous melanoma patients.
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