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Abstract

Background: Colorectal cancer (CRC) is one of the most common malignancies and a leading cause of cancer
death worldwide. Most cancer cells display high rates of glycolysis with production of lactic acid, which is then
exported to the microenvironment by monocarboxylate transporters (MCTs). The main aim of this study was to
evaluate the significance of MCT expression in a comprehensive series of primary CRC cases, lymph node and
hepatic metastasis.

Methods: Expressions of MCT1, MCT4, CD147 and GLUT1 were studied in human samples of CRC, lymph node and
hepatic metastasis, by immunohistochemistry.

Results: All proteins were overexpressed in primary CRC, lymph node and hepatic metastasis, when compared with
non-neoplastic tissue, with exception of MCT1 in lymph node and hepatic metastasis. MCT1 and MCT4 expressions
were associated with CD147 and GLUT1 in primary CRC. These markers were associated with clinical pathological
features, reflecting the putative role of these metabolism-related proteins in the CRC setting.

Conclusion: These findings provide additional evidence for the pivotal role of MCTs in CRC maintenance and
progression, and support the use of MCTs as biomarkers and potential therapeutic targets in primary and metastatic
CRC.

Keywords: Colorectal cancer, Lymph node metastasis, Hepatic metastasis, Monocarboxylate transporters, CD147,
GLUT1

Background
Colorectal cancer (CRC) is the third most common can-
cer in men and the second in women, being one of the
most prevalent diseases of the occidental world [1].
Altered metabolism in cancer cells was recently recog-

nized as a hallmark of cancer [2]. Most cancer cells display
high rates of glycolysis with production of lactic acid,
which is then exported to the microenvironment, leading

to a decrease in extracellular pH. High levels of lactate and
low pH has been associated with increased malignant fea-
tures, including cell invasion [3], suppression of immune
response [4] tumour proliferation, angiogenesis and metas-
tasis [5, 6]. Extracellular lactate has been associated with
poor prognosis in cancer [6, 7] and monocarboxylate trans-
porters (MCTs) are essential players in the maintenance of
the glycolytic metabolism being both lactate transporters
and pH regulators [8–11]. MCTs are currently seen as
promising therapeutic targets in cancer, with encouraging
results in vitro and in vivo models [12–21].
The MCT family comprises 14 members; however, only

the first four (MCT1-4) were identified as mediating the
proton-coupled transport of monocarboxylic acids across
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the plasma membrane [22–24]. It is currently believed
that the MCT isoform 4 mediates mostly lactate efflux,
whereas MCT1 performs the uptake of lactate that is
used by oxidative cancer cells [17, 25, 26]. CD147 is co-
expressed with MCT1 and MCT4 for proper plasma
membrane expression and catalytic activity [27–30].
Data on the role of MCTs in CRC is somewhat contra-

dictory. Koukoukaris et al. [31] described MCT1 and
MCT2 expression in cancer cells and tumour-associated
fibroblasts, with weak MCT4 expression in the tumour
stroma. On the other hand, our group described higher
MCT1 and MCT4 CRC membrane expression and lower
of MCT2 expression, comparing with the adjacent
normal tissue [32]. However, despite these controversies,
positive MCT4 expression in CRC has been associated
with poor prognosis [33, 34], supporting the role of this
MCT isoform in CRC malignancy. Interestingly, the
expression of MCT1 and MCT4 is described to vary
along tumor progression, especially for MCT1. There
are reports showing decrease in MCT1 expression during
transition from normality to malignancy in the colonic
mucosa [35, 36]. However, upregulation of MCT1 has also
been described in advanced CRC tumors [31, 32]. Besides
MCTs, lactate can be also transported by sodium-coupled
monocarboxylate co-transporters (SMCTs), which are
expressed in the apical membrane of colon [37–39]. How-
ever, SMCT1 expression is frequently silenced in aberrant
colon precursor lesions and cancer [40, 41].
The aim of the present study was to evaluate the role of

MCTs in CRC, by assessing the immunohistochemical
expression of the MCT isoforms 1, 4, CD147 and the
glycolytic metabolic marker GLUT1, and correlate their
expressions with clinicopathological parameters in a
comprehensive CRC series, including primary tumours
and both lymph node and hepatic metastasis. Our results
provide additional evidence of MCTs role in primary CRC
and CRC metastasis, supporting their use as biomarkers

and potential therapeutic targets in primary and meta-
static CRC.

Methods
CRC primary tumour and metastasis human samples
Tissue samples and data from 487 patients treated in
Hospital de Braga, Portugal, between 1st January of 2005
and 1st January of 2010 with CRC diagnosis were col-
lected prospectively. Tumour localization was recorded
and classified as colon and rectum (between anal verge
and 15 cm at rigid rectoscopy). The histological type of
CRC was classified by an experienced pathologist and
tumour staging was graded according to the TNM classi-
fication, sixth edition [42]. Tissue samples of CRC lymph
node metastasis were selected from the previous series,
comprising 210 patients.
Additionally, an independent series of 45 patients with

histological diagnosis of CRC hepatic metastasis oper-
ated between 1st January of 2003 and 1st January of
2011 was retrieved from the files of Hospital de Braga
and data were retrospectively collected.
CRC samples and CRC lymph node metastasis were

included into tissue microarrays (TMAs). Prior to TMA
construction, haematoxylin and eosin sections were
reviewed to select representative areas of the tumour.
Normal-adjacent tissue was also included in the TMAs
for primary tumours. Each case was represented in the
TMA by at least two cores of 0.6 mm.
The study protocol was approved by the Ethics

Committee of Hospital de Braga. The data of CRC and
lymph node metastasis series were collected prospect-
ively, patients were informed and signed a written
consensus for collecting data and samples collection.

Immunohistochemistry
Protein expression in primary CRC samples, lymph
nodes and hepatic metastasis was evaluated by

Table 1 Detailed aspects of the immunocytochemical and immunohistochemical procedure used to visualize the different proteins

Protein Antigen retrieval Positive
Control

Peroxidase
inactivation

Detection system Antibody

Company Dilution Incubation
period

MCT1 Citrate buffer
(10 mM, pH = 6.0)
98 °C; 20 min.

Colon
carcinoma

0.3 % H2O2

in methanol,
30 min.

R.T.U. VECTASTAIN® Elite® ABC Kit
(Vector Laboratories)

Chemicon Ref. AB3538P 1:300 Overnight

MCT4 Citrate buffer
(10 mM, pH = 6.0)
98 °C; 20 min.

Colon carcinoma 3 % H2O2

in methanol,
30 min.

Ultravision Detection System
Anti-polyvalent, HRP
(Lab Vision Corporation)

Santa Cruz Biotechnology
Ref. sc-50329

1:200 2 h

CD147 EDTA (1 mM, pH = 8)
98 °C; 15 min.

Colon carcinoma 3 % H2O2 in
methanol,
10 min.

Ultravision Detection System
Anti-polyvalent, HRP
(Lab Vision Corporation)

Zymed Ref. 18-7344 1:500 2 h

GLUT1 Citrate buffer
(10 mM, pH = 6.0)
98 °C; 10 min.

Skin 3 % H2O2 in
methanol,
10 min.

Ultravision Detection System
Anti-polyvalent, HRP
(Lab Vision Corporation)

Abcam Ref. ab15309-500 1:500 2 h
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Fig. 1 Representative immunohistochemical expression of proteins in CRC NA tissue, CRC primary tumour, CRC lymph node metastasis and CRC
hepatic metastasis. Representative immunohistochemical expression of MCT1, MCT4, CD147 and GLUT1 in CRC NA tissue, CRC primary tumour
and CRC lymph node metastasis and CRC hepatic metastasis. (40x and 200x magnification)
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immunohistochemistry, as previously described [43]. De-
tailed information is depicted in Table 1. The specificity
of MCT1 and MCT4 antibodies has been demonstrated
in previous publications [19–21].

Immunohistochemical evaluation
Immunohistochemical evaluation was performed as pre-
viously described [32].
Briefly, sections were scored semi-quantitatively for im-

munoreaction extension (score 0–3) and intensity (score
0–3). Immunoreaction final score was defined as the sum
of both parameters, and grouped as negative (0–2) and
positive (≥3). Both cytoplasm and plasma membrane
staining were assessed, but for statistical analysis only
membrane staining was considered. Evaluation of protein
expressions was performed by blind analysis by two ob-
servers and discordant cases were discussed in a double-
head microscope in order to define the final score.

KRAS and BRAF mutation screening
Mutation analysis of BRAF (exon 15) and KRAS (codons
12 and 13) hotspot mutations, was performed by PCR,

using primers and methods previously described [44, 45],
followed by direct sequencing.

Microsatellite Instability analysis
Microsatellite Instability (MSI) was determined using a
multiplex PCR of five quasimonomorphic mononucleo-
tide repeat markers was end-labeled with a fluorescent
dye (NR27, NR21, NR24, BAT25 and BAT26), as de-
scribed [46]. PCR was performed using the Qiagen
Multiplex PCR Kit, and products were separated using
the ABI 3730 XL capillary genetic analyzer (Applied Bio-
systems) and analyzed using the GeneMapper 4.1 soft-
ware (Applied Biosystems). Cases exhibiting instability at
three or more markers were considered as having high
MSI (MSI-H), those with instability at one or two
markers being defined as having low MSI (MSI-L), and
those showing no instability were defined as microsatel-
lite stable (MSS), as described [47].

Statistical analysis
All data were analyzed using the Statistical Package for the
Social Sciences, version 19.0 (SPSS Inc., Chicago, Illinois,

Fig. 2 Frequency of protein staining in CRC NA tissue, CRC primary tumour and CRC lymph node and hepatic metastasis. Frequency of MCT1,
MCT4, CD147 and GLUT1 plasma membrane staining in CRC NA (normal adjacent) tissue, CRC primary tumour and CRC lymph node and hepatic
metastasis. *p≤ 0.05
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USA). Comparisons were examined for statistical signifi-
cance using Pearson’s chi-square (χ2) test and Fisher’s
exact test (when n < 5).
Expression differences between lymph node metasta-

sis and primary CRC were tested with McNemar test.
Survival curves were determined for overall survival by
the Kaplan–Meier method using log-rank test.
Predictive factors of prognosis were identified by means

of Cox proportional hazards regression models, which
were used to estimate hazard ratios (HR) and their 95 %
confidence intervals in univariate and multivariate ana-
lysis. For multivariate analysis, variables that reached a
p value <0.1 at univariate analysis were included. The
threshold for significant p values was established as
p ≤ 0.05.

Results
MCT4, CD147 and GLUT1 are overexpressed in CRC
primary tumours, lymph node and hepatic metastasis
To infer about the importance of the proteins MCT1,
MCT4, CD147 and GLUT1 in the progression of CRC,
their expression was evaluated by immunohistochemistry
in 487 samples of CRC, 210 samples of CRC lymph node
metastasis and 45 samples of hepatic metastasis. Repre-
sentative images of MCT1, MCT4, CD147 and GLUT1
positive staining in CRC normal adjacent (NA) epithelium,

primary tumour, lymph node and hepatic metastasis are
presented in Fig. 1.
All proteins were overexpressed at the plasma membrane

of primary CRC tumours, CRC lymph node metastasis and
CRC hepatic metastasis when compared with CRC NA
tissue (p < 0.001, Fig. 2), with exception for MCT1 in CRC
lymph node and hepatic metastasis. We detected a signifi-
cant increase in both MCT1 and MCT4 expressions in
CRC primary tumour (p < 0.001, for both), with a decrease
of MCT1 expression in CRC primary tumour to lymph
node and hepatic metastasis (p < 0.001, for both) and a
decrease of MCT4 expression in CRC primary tumour to
hepatic metastasis (p = 0.0001). Compared to the MCTs
expressions, the percentage of CD147 and GLUT1 positiv-
ity reactions were lower in CRC primary tumour; however,
there was an increase in their expression from CRC pri-
mary tumour to lymph node (p < 0.001 and p = 0.003,
respectively) and hepatic metastasis (p < 0.001, for both)
(Fig. 2). In the context of another study (yet unpublished),
we analyzed 45 samples of non-neoplastic lymph nodes
where we saw that all cases were negative for MCT1,
MCT2, MCT4 and CD147 and only one case was positive
for GLUT1 (2.2 %).
We also matched the expression of these metabolism-

related proteins in CRC hepatic metastasis with NA hep-
atic tissue, and we observed that these proteins presented

Table 2 Assessment of associations between protein plasma membrane expression in CRC primary tumour and in CRC lymph node
metastasis

LN_MCT1 p

MCT1 Negative Positive Total 0.000

(%) (%)

CRC_MCT1 Negative (%) 80 % (n = 8) 20,0 % (n = 2) 100 % (n = 10)

Positive (%) 69.5 % (n = 73) 30.5 % (n = 32) 100 % (n = 105)

Total 70.4 % (n = 81) 29.6 % (n = 34) 100 % (n = 115)

MCT4 LN_MCT4 p

Negative (%) Positive (%) Total 0.568

CRC_MCT4 Negative (%) 45.0 % (n = 18) 55.0 % (n = 22) 100 % (n = 40)

Positive (%) 40.3 % (n = 27) 59.7 % (n = = 40) 100 % (n = 67)

Total 100 % (n = 45) 100 % (n = 62) 100 % (n = 107)

CD147 LN_CD147 p

Negative (%) Positive (%) Total 0.000

CRC_CD147 Negative (%) 25.3 % (n = 20) 74.7 % (n = 59) 100.0 % (n = 79)

Positive (%) 14.7 % (n = 5) 85.3 % (n = 29) 100.0 % (n = 34)

Total 22.1 % (n = 25) 77.9 % (n = 88) 100.0 % (n = 113)

GLUT1 LN_GLUT1 p

Negative (%) Positive (%) Total 0.003

CRC_GLUT1 Negative (%) 55.6 % (n = 35) 44.4 % (n = 28) 100.0 % (n = 63)

Positive (%) 26.5 % (n = 9) 73.5 % (n = 25) 100.0 % (n = 34)

Total 45.4 % (n = 44) 54.6 % (n = 53) 100.0 % (n = 97)

CRC Colorectal cancer, LN Lymph node
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a low expression in the liver tissue (p < 0.001, for all pro-
teins, data not shown), namely MCT4 and GLUT1 with
no expression and MCT1 and CD147 with 64.4 and 30 %,
respectively, at NA hepatic tissue.
Since CRC primary tumours and lymph node metastasis

belong to the same group of patients, we could compare
the expression of the proteins in the two types of samples.
We observed that MCT1, CD147 and GLUT1 positivity in
CRC primary tumour samples associates with MCT1,
CD147 and GLUT1 positivity in their respective lymph
node metastasis (p < 0.001, p < 0.001 and p = 0.003
respectively). On the other hand, MCT4 expression in
lymph node metastasis seems to be independent of its
expression in CRC primary tumour. Interestingly, primary
CRC with negative MCT1 and MCT4 expressions can ori-
ginate lymph node metastasis with positive expression for
both markers. Detailed information is depicted in Table 2.

MCT1 and MCT4 expression is associated with CD147 and
GLUT1 in CRC primary tumour and in lymph node and
hepatic metastasis
To better characterize the role of MCT1 and MCT4 in
our samples, we assessed the association with their

chaperone CD147 and the glycolytic marker GLUT1.
MCT1 expression was associated with CD147 (p =
0.003) in CRC primary tumour samples and with
GLUT1 in CRC hepatic metastasis (p = 0.002) (Table 3).
The expression of MCT4 was associated with GLUT1
(p = 0.001) in CRC primary tumour and with CD147 ex-
pression (p = 0.050) (Table 3). MCT4 positivity was also
associated with CD147 and GLUT1 in CRC lymph node
metastasis samples (p = 0.007 and p = 0.019, respectively)
and hepatic metastasis samples (p = 0.019 and p < 0.001,
respectively) (Table 3).

MCT1, MCT4, CD147 and GLUT1 expressions are
associated with poor prognostic features
In order to assess the clinicopathological value of the ex-
pression of MCTs, CD147 and GLUT1, we sought for
associations with the clinicopathological data of CRC
primary tumours. The following associations were found:
positive association between MCT1 expression and older
patients (p = 0.007, Table 4); CD147 positivity and bigger
tumours and higher tumour penetration (p = 0.003, p =
0.034 Table 5); and GLUT1 with exophytic macroscopic
appearance and low CEA levels (p = 0.023 and p = 0.050

Table 3 Assessment of associations between MCTs and CD147/GLUT1 in CRC primary tumour and in CRC primary tumour and
metastasis

CRC primary tumour CD147 GLUT1

n Positive (%) p n Positive (%) p

MCT1

Positive 452 157 (34.7 %) 0.003 425 126 (29.6 %) 0.076

Negative 36 4 (11.1 %) 33 5 (15.2 %)

MCT4

Positive 269 100 (37.2 %) 0.050 262 90 (34.4 %) 0.001

Negative 203 58 (28.6 %) 191 38 (19.9 %)

CRC lymph node metastasis

MCT1

Positive 31 30 (96.8 %) 0.100 28 24 (85.7 %) 0.165

Negative 66 56 (84.8 %) 44 31 (70.5 %)

MCT4

Positive 56 54 (96.4 %) 0.007 46 39 (84.8 %) 0.019

Negative 39 30 (76.9 %) 25 15 (60.0 %)

CRC hepatic metastasis

MCT1

Positive 33 24 (72.7 %) 0.097 33 23 (69.7 %) 0.002

Negative 8 3 (37.5 %) 9 1 (11.1 %)

MCT4

Positive 18 16 (88.9 %) 0.019 18 18 (100 %) <0.001

Negative 25 13 (52.0 %) 25 6 (24.0 %)

CRC Colorectal cancer

Martins et al. BMC Cancer  (2016) 16:535 Page 6 of 15



respectively, Table 4), poorly differentiated tumours (p =
0.009, Table 5) and a trend to associate with the pres-
ence of lymph node metastasis (p = 0.058, Table 5). No
significant correlations were found among MCTs,
CD147 and GLUT1 and the molecular markers KRAS
or BRAF mutations and Microsatellite Instability status.
Assessment of associations between plasma membrane

protein expression in lymph node metastasis and clinico-
pathological data of CRC primary tumour revealed a sig-
nificant association between MCT4 and tumours
localized in colon (colon cancer (p = 0.032, Table 6) and
tumour penetration (p = 0.034, Table 7), and for CD147
positivity and tumour differentiation (p = 0.033, Table 7).
In CRC hepatic metastasis, we observed associations

between MCT1 and colon tumour localization (p = 0.022)
(Table 8).
Observing the influence of MCTs, CD147 and GLUT1

expressions in CRC survival curves assessed by log-rank
test, we found that positivity for MCT1 in the plasma
membrane associated with better cumulative survival in
CRC stage IV (p = 0.012) (Fig. 3), while no correlations
were found for the remaining proteins (Table 9). The
predictive prognostic value of MCT1 was analyzed by
means of Cox proportional hazards regression model,

however, multivariate analysis showed that only tumor
differentiation remains as an independent factor with
predictive value for overall survival (Table 10). No sig-
nificant differences were found in the CRC lymph node
and hepatic metastasis survival curves for the different
proteins.

Discussion
MCTs play an essential role in the maintenance of can-
cer glycolytic metabolism. On one hand, they perform
the efflux of lactate and, on the other hand, they help
in the regulation of the cell pH, by co-transporting a
proton [8, 13–15, 17, 18]. Due to their upregulation in
several cancers, they are currently seen as promising
therapeutic targets [8, 12–18], with an inhibitor of
MCT1 already in clinical trials (NCT01791595). Here
we aimed to characterize the expression of MCT1,
MCT4, CD147 and GLUT1 in a comprehensive series
of CRC primary tumours, lymph node and hepatic me-
tastasis, as well as to assess the clinical-pathological
significance of their overexpression.
Our group has previously analyzed the immunoexpres-

sion of MCT isoforms 1, 2 and 4 in a series of 126 cases
of CRC. Expression of all MCT isoforms in tumour cells

Table 4 Assessment of associations between proteins plasma membrane expression and clinical data in CRC primary tumours

MCT1 MCT4 CD147 GLUT1

n Positive (%) p n Positive (%) p n Positive (%) p n Positive (%) p

Sex

Male 314 92.7 0.934 302 57.3 0.801 312 31.4 0.391 294 28.6 0.969

Female 186 92.5 180 56.1 182 35.2 169 28.4

Age (years)

≤45 23 78.3 0.007 21 47.6 0.383 23 21.7 0.247 23 26.1 0.792

>45 477 93.3 461 57.3 471 33.3 440 28.6

Presentation

Asymptomatic 87 93.1 0.844 84 48.8 0.102 87 36.8 0.383 83 28.9 0.928

Symptomatic 413 92.5 398 58.5 407 31.9 380 28.4

Localization

Colon 360 92.5 0,891 351 59.3 0.080 359 33.4 0.625 338 29.3 0.541

Rectum 140 92.9 131 50.4 135 31.1 125 26.4

Macroscopic Appearence

Polypoid 254 92.9 0.492 247 54.7 0.245 249 33.3 0.798 239 23.8 0.023

Ulcerative 116 91.4 115 54.8 118 32.3 111 29.7

Infiltrative 42 85.7 40 62.5 40 27.5 35 25.7

Exophytic 42 95.2 37 70.3 41 29.3 34 50.0

Vilosous 2 100 2 100 2 0.0 2 0.0

CEA (ng/mL)

<5 122 90.2 0.568 115 60.0 0.665 118 33.1 0.455 111 36.9 0.05

≥5 272 91.9 269 57.6 270 29.3 256 22.7
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was significantly increased, with a significant gain in
membrane expression for MCT1 and MCT4 and loss
for MCT2 in tumour cells, when compared to adjacent
normal epithelium [32]. In the present study, we

strengthen the previous results by increasing the number
of primary CRC cases from 126 to 487 and also included
210 of lymph node metastasis of the same patients and
45 additional cases of CRC hepatic metastasis. We

Table 5 Assessment of associations between proteins plasma membrane expression and pathological data in CRC primary tumours

MCT1 MCT4 CD147 GLUT1

n Positive (%) p n Positive (%) p n Positive (%) p n Positive (%) p

Tumor size (cm)

≤4.5 286 93.4 0.389 278 54.7 0.265 283 27.9 0.003 267 29.6 0.466

>4.5 182 91.2 175 60.0 180 41.1 167 26.3

Histological Type

Adenocarcinoma 417 92.8 0.456 402 57.0 0.862 411 33.6 0.787 386 28.2 0.389

A. Mucinous 51 90.2 49 57.1 52 28.8 46 26.1

A. Invasive 24 95.8 24 54.2 23 26.1 23 39.1

Signet ring and mucinous 4 75.0 3 33.3 4 25.0 4 0.0

Differentiation

Well-differentiated 219 93.2 0.271 213 56.8 0.070 217 34.6 0.875 202 21.3 0.009

Moderately-differentiated 209 93.3 204 55.4 206 32.5 197 35.0

Poorly-differentiated 49 85.7 43 69.8 48 29.2 43 39.5

Undifferentiated 4 100.0 3 0.0 4 25.0 3 33.3

Tumour Penetration

Tis 5 100.0 0.946 6 16.7 0.277 4 25.0 0.034 5 0.0 0.436

T1 30 90.0 28 50.0 30 13.3 27 29.6

T2 59 93.2 58 56.9 59 30.5 55 21.8

T3 376 92.6 359 57.7 371 33.2 350 29.4

T4 24 91.7 25 64.0 24 54.2 20 35.0

Spread to lymph nodes

Absent 280 92.5 0.888 272 54.0 0.269 277 32.5 0.876 263 25.5 0.058

Present 204 92.2 196 59.2 202 33.2 187 33.7

Vessel invasion

Absent 159 94.3 0.255 159 58.5 0.541 156 33.3 0.817 150 25.3 0.194

Present 314 91.4 299 55.5 313 32.3 291 31.3

TNM

Stage I 77 92.1 0.566 77 52.0 0.464 77 22.1 0.147 74 23.3 0.206

Stage II 183 92.9 179 57.0 181 36.5 173 26.0

Stage III 155 94.2 151 57.6 154 34.4 142 30.3

Stage IV 75 88.0 67 59.7 73 31.5 66 39.4

BRAF mutations

Negative 87 94.3 1.000 56 65.9 0.608 33 38.4 0.641 16 19.8 0.196

Positive (V600E) 4 100 2 50.0 2 50.0 2 50.0

KRAS mutations (codon12/13 and 61)

Negative 78 96.3 0.437 51 64.6 0.217 27 34.2 0.668 17 21.8 0.411

Positive 41 93.2 31 75.6 16 38.1 6 15.4

Microsatellite Instability

Negative 102 95.3 0.986 66 65.3 0.335 38 36.5 0.321 20 20.2 0.984

Positive (MSI-L + MSI-H) 20 95.2 16 76.2 5 25.0 4 20.0
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assessed the expression and the association between
MCTs and additional proteins not previously studied
(CD147 as MCT1/4 chaperone and the glycolytic protein
marker GLUT1), to further understand the role of MCTs
in the glycolytic metabolism remodeling of primary CRC
and in metastasis.
Our results showed that most proteins studied (MCT4,

CD147 and GLUT1) were overexpressed at the plasma
membrane of CRC cells and CRC lymph node and hepatic
metastasis when compared with CRC NA tissue, with
exception of MCT1 in CRC lymph node and hepatic me-
tastasis. Here we showed that in CRC samples, MCTs were
the most frequently expressed proteins followed by CD147
and GLUT1. The MCT results are in concordance to our
previous study, in which we showed upregulation of MCT1
and MCT4 in the tumour samples, compared to NA tissue
[32]. We found that MCT1 expression was associated with
CD147 in CRC primary samples and with GLUT1 in CRC
hepatic metastasis. Expression of MCT4 was associated
with CD147 and GLUT1 in all samples. It is known that
the association of MCT1 and MCT4 with the cell surface
glycoprotein CD147 is essential for their activity and proper

expression at the plasma membrane [10, 48]. However, not
always this association prevails in cancer tissue, suggesting
the role of putative additional chaperones [9].
Most CRC cells, as many other solid tumours, rely

mostly on glycolysis to meet their energetic demands [49].
Thus, the high rates of glucose uptake are accompanied
by upregulation of glucose transporters. There are two
types of sugar transporters in gut, facilitative Na + −inde-
pendent sugar transporters (GLUT) and Na + −dependent
sugar cotransporters (SGLT), which require energy for
sugar transport. Increased expression of GLUT1 was
described in various cancer tissues, including CRC, indi-
cating that GLUT1 plays an important role in cancer and
that its expression could be useful as a marker for malig-
nant transformation [50–52]. Besides, overexpression of
SGLT1 in CRC showed a correlation with higher clinical
stages [53]. Our results showed association between
MCT1 and MCT4 and GLUT1, supporting their role in
glycolytic metabolism. To the best of our knowledge, this
is the first report on this association in the context of
CRC. Koukourakis group [31] described strong GLUT1
expression in CRC cells, although the association with

Table 6 Assessment of associations between proteins plasma membrane expression in CRC lymph node metastasis and clinical data

MCT1 MCT4 CD147 GLUT1

n Positive (%) p n Positive (%) p n Positive (%) p n Positive (%) p

Sex

Male 77 25 (32.5) 0.581 74 46 (62.2) 0.317 77 62 (91.9) 0.159 71 47 (76.7) 0.523a

Female 40 11 (27.5) 40 21 (52.5) 40 34 (82.4) 38 22 (86.4)

Age (years)

≤45 10 3 (30.0) 1.000a 8 4 (50.0) 0.715a 9 8 (75.0) 0.228a 8 5 (40.0) 0.053a

>45 107 33 (30.8) 106 63 (59.4) 108 88 (89.8) 101 64 (82.8)

Presentation

Asymptomatic 19 6 (31.6) 0.933 18 8 (44.4) 0.178 22 18 (88.9) 1.000a 16 10 (60.0) 0.109a

Symptomatic 98 30 (30.6) 96 59 (61.5) 95 78 (88.5) 93 59 (83.1)

Localization

Colon 94 28 (29.8) 0.642 91 58 (63.7) 0.032 95 81 (88.9) 0.681a 88 57 (80.7) 0.698a

Rectum 23 8 (34.8) 23 9 (39.1) 22 15 (86.7) 21 12 (75.0)

Macroscopic Appearence

Polypoid 47 14 (29.8) 0.596 47 27 (57.4) 0.534 45 36 (86.1) 0.701 45 25 (84.0) 0.500

Ulcerative 31 7 (22.6) 30 20 (66.7) 34 28 (85.7) 28 20 (70.0)

Infiltrative 13 5 (38.5) 13 6 (46.2) 12 11 (90.9) 11 6 (100.0)

Exophytic 14 6 (42.9) 13 7 (53.8) 14 12 (100.0) 14 11 (81.8)

Vilosous 1 0 (0.0) 1 0 (0.0) 1 1 (100.0) 1 1 (100.0)

CEA (ng/mL)

<5 71 21 (29.6) 0.354 67 42 (62.7) 0.434 68 56 (91.1) 0.120 65 40 (85.0) 0.237a

≥5 25 5 (20.0) 26 14 (53.8) 26 23 (78.3) 23 13 (69.2)
aComparisons were examined for statistical significance using Fisher’s exact test (when n < 5)
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MCTs was not assessed. It is likely that CRC cells up-
regulate GLUT1 to increase glucose uptake and the
subsequent accumulated lactate is extruded by MCTs.
Additionally, as far as we are aware, we show for the
first time that the expression of MCTs, CD147 and
GLUT1 are also present in CRC hepatic metastasis,
suggesting the maintenance of this metabolic profile in
the invasive phenotype.
To the best of our knowledge, this is the first report

that compares the expression of these proteins in CRC
primary tumour with the respective lymph node metas-
tasis,. MCT1, CD147 and GLUT1 positivity were posi-
tively associated in CRC and lymph node metastasis,
although the expression of MCT1 was less pronounced
in the metastasis than the primary tumour, which

suggests that metabolic profile of the lymph node metas-
tasis may be different from the primary tumour. For
MCT4, the maintenance of membrane expression in
lymph node metastasis, suggests the predominance of
glycolytic metabolism, but more studies are necessary to
demonstrate this hypothesis. In studies performed in
breast cancer, MCT expression is reduced in lymph
node metastasis compared to primary tumour [54].
Lymph node metastasis are initially independent of

vascularization, relying on the stroma to provide the re-
quired nutrients [54, 55]. It seems to exist a high expres-
sion of MCT4 in the tumour stroma and an association
of this expression with a worse patient survival [55]. On
the other hand, no association with prognosis was ob-
served for epithelial MCT4 levels [55]. There is no data

Table 7 Assessment of associations between proteins plasma membrane expression in CRC lymph node metastasis and
pathological data

MCT1 MCT4 CD147 GLUT1

n Positive (%) p n Positive (%) p n Positive (%) p n Positive (%) p

Tumor size (cm)

≤4.5 67 26 (38.8) 0.065 65 38 (58.5) 0.692 68 53 (92.5) 0.492a 65 43 (76.7) 0.548a

>4.5 45 10 (22.2) 45 28 (62.2) 45 40 (87.5) 40 25 (84.0)

Histological Type

Adenocarcinoma 92 32 (34.8) 0.287 92 54 (58.7) 0.376 90 76 (88.2) 0.826a 85 58 (77.6) 0.084a

A. Mucinous 16 2 (12.5) 15 7 (46.7) 18 14 (85.7) 17 6 (100.0)

A. Invasive 6 1 (16.7) 6 5 (83.3) 6 5 (100.0) 6 4 (100.0)

Signet ring
and mucinous

3 1 (33.3) 1 1 (100.0) 3 1 (100.0) 1 1 (0.0)

Differentiation

Well-differentiated 41 18 (43.9) 0.152 40 23 (57.5) 0.493 41 36 (91.7) 0.033a 38 26 (76.9) 0.902a

Moderately-differentiated 51 13 (25.5) 50 28 (56.0) 50 43 (86.0) 47 29 (79.3)

Poorly-differentiated 23 5 (21.7) 22 15 (68.2) 23 16 (93.8) 22 13 (84.6)

Undifferentiated 1 0 (0.0) 1 0 (0.0) 2 1 (0.0) 1 1 (100.0)

Tumour Penetration

T1 2 0 (0.0) 0.408 1 0 (0.0) 0.034 2 1 (100.0) 0.665a 1 1 (100.0) 0.653a

T2 5 2 (40.0) 4 3 (75.0) 4 3 (100.0) 4 3 (66.7)

T3 101 22 (32.7) 99 62 (62.6) 101 83 (89.2) 96 61 (78.7)

T4 9 1 (11.1) 10 2 (20.0) 10 9 (77.8) 8 4 (100.0)

Spread to lymph nodes

Absent 9 4 (44.4) 0.450a 8 6 (75.0) 0.465a 10 8 (87.5) 1.000a 8 6 (100.0) 0.326a

Present 96 28 (29.2) 94 54 (57.4) 96 77 (89.6) 90 55 (76.4)

Vessel invasion

Absent 30 12 (40.0) 0.259 29 20 (69.0) 0.288 33 28 (89.3) 1.000a 30 16 (81.3) 1.000a

Present 80 23 (28.8) 78 45 (57.7) 79 62 (88.7) 73 49 (81.6)

TNM

Stage III 84 28 (33.3) 0.338 82 52 (63.4) 0.107 82 66 (92.4) 0.076 79 48 (81.3) 0.632

Stage IV 33 8 (24.2) 32 15 (46.9) 35 30 (80.0) 30 21 (76.2)
aComparisons were examined for statistical significance using Fisher’s exact test (when n < 5)
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Table 8 Assessment of associations between proteins expression in CRC hepatic metastasis and anatomopatological data from
primary tumour and clinical data from hepatic metastasis series

Anatomopatological data from Primary tumours MCT1 MCT4 CD147 GLUT1

n Positive (%) p n Positive (%) p n Positive (%) p n Positive (%) p

Localization

Colon 7 42.8 0.022 7 28.6 0.682 7 42.8 0.190 7 42.8 0.443

Rectum 38 86.8 37 43.2 36 72.2 37 59.4

CRC Stage

I + II 7 71.4 0.637 8 62.5 0.250 8 75.0 1.000 8 62.5 1.000

III + IV 34 79.4 32 37.5 31 67.7 32 56.2

Vessel invasion

Absent 4 50.0 0.681 4 50.0 0.683 4 50.0 0.560 5 80.0 0.346

Present 28 50.0 28 39.3 27 74.1 28 50.0

Clinical data from Hepatic Metastasis

Localization

One hepatic lobe 30 80.0 1.000 30 50.0 0.251 30 73.3 0.129 30 60.0 1.000

Both hepatic lobe 10 80.0 9 22.2 9 44.4 8 62.5

Size

≤5 cm 39 76.9 0.316 37 43.2 1.000 37 70.3 0.373 36 58.3 1.000

>5 cm 7 100.0 6 33.3 6 50.0 6 50.0

Fig. 3 Kaplan-Meyer survival curve of MCT1 plasma membrane expression in CRC. stage IV. The illustration represents the survival curve related to
MCT1 plasma membrane expression in CRC stage IV. Patients with negative expression of MCT1 show shorter survival (continuous line), whereas
longer survival values were obtained for patients with MCT1 positive expression (interrupted line) (p = 0.012)
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in the literature for none of the proteins studied in
lymph node metastasis, so additional studies are neces-
sary to confirm and explain this observation.
Regarding the association between the proteins under

study in primary CRC and clinicopathological data, we
found that MCT1 positivity was associated with older
patients; CD147 was associated with both larger tumours
and more advanced tumour stage. Our results are sup-
ported by previous observations showing CD147 might
enhance CRC growth, thus being associated with poor
clinical prognosis [56–58]. GLUT1 expression associated
significantly with exophytic lesions, low CEA levels,
poorly-differentiated tumours, and a tendency for associ-
ation with the presence of lymph node metastasis. All of
these features, with exception of low CEA levels, are
characteristic of more aggressive tumours and poor
prognosis. These associations support previous studies
suggesting that GLUT1 may play an important role in
tumour cell survival, by promoting an adequate energy
supply [59, 60] and could be a useful biomarker for
malignant transformation [50, 60].
Regarding the association between the protein expression

in lymph node metastasis and the same clinicopathological
data, MCT4 positivity was associated with colon tumours
and more advanced tumour stage and CD147 with tumour

differentiation. MCTs and CD147 work synergistically,
increasing invasiveness and metastatic potential trough
microenvironment acidification and extracelular matrix de-
struction, via metalloproteinase induction [61–63]. Studies
with growth factors and metalloproteinases in lymph nodes
reveal expression similar to the primary tumour, suggesting
that primary tumours acquire an invasive phenotype and
that these characteristics are maintained in the metastasis
[61]. For CD147, we were unable to show that lower tumor
differentiation corresponds to higher membrane expression,
as observed in other studies [51, 64], but our sample of
poorly and undifferentiated tumours was small (n = 16 and
n = 1, respectively), which may have compromised statis-
tical power.
Data on associations between protein expression in

hepatic metastasis with the clinicopathological revealed
that MCT1 expression was associated with primary
tumour localization in colon. Association with left colon
is a poor prognosis factor since CRC located in the left
colon is associated with worse prognosis [65].
Analyzing the CRC survival curves, we observed that

MCT1 plasma membrane expression was associated
with better patient survival in stage IV, however this
association was not confirmed by multivariate analysis.
MCT1 plays a pivotal role in colon epithelial cell metab-
olism, being critical for the metabolic communication
between cells and for the transport of short chain fatty
acids (SCFA), including lactate [29, 66, 67]. Indeed, gut
microbial-derived SCFA, namely acetate, propionate and
butyrate, exert multiple beneficial effects on the colon
energy metabolism [66–69]. SCFA were demonstrated “in
vitro” and “in vivo” to induce apoptosis of CRC cells but
not of normal colon cells, protecting normal colon mu-
cosa [70, 71]. Our group has recently demonstrated that
acetate induces lysosomal membrane permeabilisation
and the release of Cathepsin D [70]. In this sense,

Table 9 Kaplan-Meyer survival curves p values

Protein

Stage MCT1 MCT4 CD147 GLUT1

Stage I 0.427 0.627 0.639 0.162

Stage II 0.249 0.596 0.300 0.302

Stage III 0.958 0.157 0.526 0.733

Stage IV 0.012 0.253 0.434 0.604

Overall 0.722 0.317 0.503 0.285

Table 10 Prognostic factors for overall survival in CRC stage IV

Overall survival

Variable Univariate analysis Multivariate analysis

HR 95 % CI p HR 95 % CI p

Age (<45 years) 2.116 0.938 – 4.774 0.071 0.898 0.271 - 2979 0.860

Localization (rectum) 0.684 0.350 – 1.447 0.267

CEA (>5 ng/mL) 2.017 1.117 – 3.641 0.020 1.834 0.946 – 3.553 0.072

Differentiation (Poorly/undifferentiated) 2.748 1.470 – 5.138 0.002 3.488 1.563 – 7.782 0.002

Spread lymph node (present) 1.156 0.638 – 2.093 0.633

Vessel invasion (present) 1.312 0.733 – 2.351 0.361

MCT1 (+) 0.394 0.186 – 0.834 0.015 0.694 0.310 – 1.597 0.390

MCT4 (+) 1.429 0.767 – 2.664 0.261

CD147 (+) 0.779 0.412 – 1.473 0.442

GLUT1 (+) 1.169 0.642 – 2.129 0.610
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overexpression of MCT1 will increase not only the uptake
of SCFA but also the transport of lactate into the CRC
cells inducing intracellular acidification [17], and conse-
quently will potentiate CRC cells apoptosis.
No significant differences were found in primary tumour,

CRC lymph node and hepatic metastasis survival curves for
the different proteins.

Conclusions
Overall, our findings support the role of MCT1, MCT4,
CD147 and GLUT1 in CRC maintenance and progression.
Moreover, since we found upregulation of these molecules
either in primary tumours or metastasis, our results also
support their exploitation as molecular targets in CRC
treatment.
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