Platelet Lysate-Loaded Photo-cross-linkable Hyaluronic Acid Hydrogels for Periodontal Endogenous Regenerative Technology

Pedro S. Babo, Ricardo L. Pires, Lívia Santos, Albina Franco, Fernando Rodrigues, Isabel Leonor, Rui L. Reis, and Manuela E. Gomes

ABSTRACT: The integrity and function of the periodontium can be compromised by traumatic injuries or periodontitis. Currently available clinical therapies are able to stop the progression of periodontitis and allow the healing of periodontal tissue. However, an optimal strategy capable of restoring the anatomy and functionality of the lost periodontal tissue is still to be achieved. Herein is proposed the development of an injectable hydrogel system able to release a growth factors and cells to the periodontal defect. This injectable system is based on a photo-cross-linkable hydrogel, prepared from methacrylated hyaluronic acid (me-HA) and incorporating platelet lysate (PL). The delivery of growth factors and cells in situ is expected to enhance regeneration of the periodontium. Various formulations of me-HA containing increasing PL concentrations were studied for achieving the formation of stable photo-cross-linkable hydrogels. The produced hydrogels were subsequently characterized to assess mechanical properties, degradation, protein/growth factor release profile, antimicrobial activity and response toward human Periodontal Ligament fibroblasts (hPDLFs). The results demonstrated that it was possible to obtain stable photo-cross-linkable hydrogels incorporating different amounts of PL that can be released in a sustained manner. Furthermore, the incorporation of PL improved the viscoelastic properties of the hydrogels and enhanced their resilience to the degradation by hyaluronidase (HAase). Additionally, the PL was shown to provide antimicrobial properties. Finally, hPDLFs, either seeded or encapsulated into the developed hydrogels, showed enhanced proliferation over time, proportionally to the increasing amounts of PL present in the hydrogel formulations.

KEYWORDS: photo-cross-linkable hydrogels, platelet lysate, hyaluronic acid, periodontal ligament, endogenous regenerative technology

INTRODUCTION

The periodontium is a complex and dynamic oral structure comprising soft and hard tissues, the cementum, a functionally oriented periodontal ligament, alveolar bone and gingiva. The main function of this structure is anchoring the teeth to the jaw bones, while withstanding the forces originated by the masticatory process.1 The integrity and function of the periodontium can be compromised by trauma or disease, such as periodontitis, an inflammatory disease predominantly caused by Gram-negative bacteria that causes the destruction of these tooth supportive tissues potentially leading to tooth loss.1,2 Current therapeutic options, which include the implantation of autografts, synthetic bone fillers and guided tissue regeneration (GTR), are not able to fully regenerate periodontium morphology and function. In recent years endogenous regenerative technology (ERT) has arisen as a new paradigm in periodontal regeneration. This new concept has its foundations in tissue engineering and aims to induce or encourage periodontal regeneration by superimposing specific chemical (e.g., growth factors) and biophysical cues.3 These signals are expected to encourage homing of stem and progenitor cells, leading to the formation of new periodontal ligament and cementum.4

Platelet-rich hemoderivatives (PRHds), namely platelet-rich plasma and platelet-rich fibrin, have been widely investigated for periodontal ERT as important sources of autologous growth factors and provisional fibrin matrices.5,6 Nevertheless, the traditional PRHds clots retract, impairing the needed stability for periodontal tissue ingrowth.7 In this research work we propose the development of photo-cross-linkable hyaluronic acid hydrogels enriched with platelet lysate as a stable system.
for the delivery of endogenous GFs, directed for periodontal ERT.

It is advocated that current ERT scaffolding materials need sophistication and that should be employed in a patient-tailored fashion using preferably own patients' biological material. In this sense, platelet lysate (PL) offer great potential in regenerative medicine as an alternative source of growth factors (GFs).\(^5,6\) These PL-origin GFs, include fibroblast growth factor (FGF), vascular endothelial growth factor, platelet-derived growth factor, transforming growth factors-\(\beta_1\) and -\(\beta_2\), insulin-like growth factor, epidermal growth factor, epithelial cell growth factor, hepatocyte growth factor, and bone morphogenic proteins\(^7−9\) are known to be involved in essential stages of wound healing and regenerative processes such as chemotaxis, cell proliferation and differentiation.\(^10,11\) Moreover, platelets release numerous cell adhesion molecules (fibrin, fibronectin, and vitronectin) which can provide a provisional matrix for the adhesion and migration of cells.\(^10\) In addition, platelet concentrates (PCs) have also been reported to exhibit antimicrobial properties\(^12\) and the PL, as a product of PCs activation, is expected to have the same antimicrobial properties, contributing for the prophylaxis of the wound site.\(^8\) In fact, the use of PL holds several advantages over other PRHds, which include the ease of standardizing the production process and the higher consistency in GF content between batches,\(^5\) that is expected to yield more predictable clinical outcomes.

Because PL is obtained as a liquid solution, it was incorporated in a photo-cross-linkable HA matrix. HA is a glycosaminoglycan copolymer of D-glucuronic acid and N-acetyl-D-glucosamine that is present in connective tissues and plays an important role in several cellular processes including, cell proliferation, morphogenesis, inflammation, and wound repair.\(^13\) HA-based biomaterials have demonstrated positive results for several potential applications in the regeneration of hard or soft tissues.\(^14\) Moreover, given HA anti-inflammatory, antiedematous, and antibacterial effects, it has been also proposed for the treatment of lesions caused by periodontal diseases.\(^15−17\)

The aim is to characterize these PL-rich scaffolds with regard to mechanical properties, release of proteins, periodontal cell response, and antimicrobial action against dental plaque bacteria. This new ERT scaffold offers a new and promising periodontal treatment modality that should encourage tissue regeneration through the release of PL-derived GFs while providing concomitant antimicrobial action. Furthermore, functionalization of HA with methacrylic groups allows the production in situ of stable photopolymerizable hydrogels, enabling the application in periodontal defects in a clinical scenario.
Materials. HA obtained from Streptococcus equi (Mw = 1.5 to 1.8 MDa), methacrylic anhydride Irgacure 2959 (2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropionophenone), hyaluronidase type IV from bovine origin (HAase), phosphate buffered saline (PBS), phallolidin-tetramethylrhodamine B isothiocyanate 4,6-diamidino-2-phenylindole, dilactate DAPI and the dialysis tubing cellulose membrane were all purchased from Sigma (Sigma-Aldrich, USA). Sodium hydroxide (NaOH) and hydrochloride acid (HCl) were purchased from VWR Chemicals (BDH, Prolabo - international, USA). Alpha MEM (α-MEM) culture medium and fetal bovine serum (FBS) were purchased from Gibco (Life Technologies, UK). Deuterium oxide (2H2O) was purchased from LaborSpirIt lda (PT) and the polydimethylsiloxane (PDMS) from Dow Corning (USA). The Muller–Hinton agar plate was obtained from Oxoid (UK).

Preparation of Platelet Lysate (PL). PL was obtained from different lots of platelet concentrates provided by Servicio de Imunohematología do Centro Hospitalar de São João (CHSJ, Porto, Portugal), based on a previously established protocol. To produce PL, batches of platelet concentrates obtained by plasma apheresis with a density of 10^10 cells/mL and biologically qualified according to Portuguese legislation (Decreto-Lei No. 100/2011) were processed as previously described.18,19 Very briefly, platelet concentrates from three different donors were pooled and exposed to three repeated freezing and thaw cycles (frozen with liquid nitrogen and thawed in a 37 °C water bath) to promote the lysis of the platelets and release of GFs. Afterward, the lytic product was centrifuged at 1400 rcf for 10 min and the supernatant stored at −20 °C until further use.18,19

Methacrylation of Hyaluronic Acid (HA). The method followed for the methacrylation of HA was based on a previously described protocol,5 (depicted in Figure 1A), consisting in the addition between 5- to 10-fold molar excess (5% and 10%) of methacrylic anhydride (MA) to a solution of 1 wt % HA in distilled water (dH2O). The pH 146 was adjusted between 8 and 8.5 with 5N NaOH added dropwise. Then, the reaction occurred during 24 h at 4 °C provided by an ice bath. Subsequently, the reaction products were precipitated using cold ethanol (at −20 °C). Then the precipitate was dissolved in dH2O and diazoyed using a membrane with a cutoff of 14 000 kDa for a week against mill-Q water, replaced 3 times a day, to remove the unreacted reagents and byproducts. Finally, the solution was filtered, frozen at −80 °C and the methacrylated HA (me-HA) recovered upon lyophilization.

Characterization of the me-HA. Fourier transform infrared spectroscopy (IR-Prestige-21, FTIR Shimadzu) was used to record the infrared spectra of HA and me-HA. Briefly, a small portion of each batch was mixed with potassium bromide, and processed into pellets. The spectra were obtained in the range of 400 to 4000 cm⁻¹ at a 4 cm⁻¹ resolution with 32 scans. 1H NMR spectra were recorded with a Varian Inova 500 at 70 °C. me-HA solutions were prepared for analysis by dissolving 5 mg of me-HA in 1 mL of 2H2O. The degree of methacrylation (Dmeth) was defined as the percentage of methacryloyl groups per HA disaccharide repeat unit and was calculated from the ratio of the relative peak integration of the methacrylate protons (peaks at ~6.20, ~5.77, and ~2.05 ppm) and HA’s methyl protons (~1.98 ppm).

Development of the Photo-cross-linkable me-HA Hydrogels Incorporating PL. The development of the photo-cross-linkable me-HA hydrogels incorporating PL was optimized by changing the HA (5% and 10% MA molar excess) solution concentration (1 and 2 wt %), the concentration of photoinitiator Irgacure 2959 (0.1 and 0.2 wt %), the power of the UV light, the distance to the UV light source, and the concentration of PL incorporated in the solvent solution (Table 1). PL was incorporated in the solvent solution in increasing volumetric concentrations ranging from pure water (0% PL) to pure PL (100% PL). To obtain hydrogels, dry me-HA was dissolved in the solvent solution containing the photoinitiator. Then, 25 μL of me-HA solution were injected into a circular (5 mm diameter) PDMS mold and exposed to a UV light (Omnicure series 2000 EXFO S2000-XLA, Omnicure, Canada) to trigger the photo-cross-linking, producing disk-shaped hydrogels. The produced formulations, incorporating 0, 50 and 100% PL, were designated PL50, PL100, and PL100, respectively.

Characterization of the HAPL Hydrogels. Only the 10X me-HA batch allowed obtaining the hydrogels by photopolymerization, using either 0.1 or 0.2% of photoinitiator, so this batch was selected for all further studies. Considering that Irgacure 2959 presents some cytotoxicity,20 it was also decided to use the lower photoinitiator concentration for the following characterization steps.

Evaluation of the Mechanical Properties by DMA. The viscoelastic properties of the developed hydrogels (PL50 and PL100 with 1% or 2% of me-HA and with 0.1% of Irgacure) were evaluated by dynamic mechanical analysis (DMA) (TRITeC8000B, Tritton Technology, UK), equipped with the compressive mode. DMA spectra were obtained during a frequency scan ranging between 0.1 and 15 Hz for all time points. The experiments were performed under constant strain amplitude, corresponding to approximately 1% of the original height of the sample. Samples were tested while immersed in PBS and at 37 °C, to simulate the physiological conditions.

Swelling and Weight Loss. The results obtained from the DMA analysis revealed better mechanical properties for the 2% me-HA formulation and thus this was selected for the subsequent studies, namely degradation, protein release and cell response. Thus, formulations of hydrogels with increasing concentrations of PL (PL50, PL100, and PL100), were prepared into disc-shaped samples of 5 mm in diameter and 1 mm thickness, as above-described, and placed in 24 wells plate.

Periodontal ligament fibroblasts express hyaluronidase (HAase) and generate HAase activity that regulates extracellular hyaluronan metabolism.22 Given the presence of this enzyme in the periodontium, the degradation promoted by a HAase was investigated. Similar assay was conducted in PBS. Each sample was incubated in 1.6 mL of PBS at 37 °C, pH 7.4. For the enzymatic degradation assays, the same formulations were incubated at 37 °C in 1.6 mL of a HAase solution of 0.2 U/mL in PBS.

The assays were carried out using 4 samples of each formulation immersed in each of the solutions. The samples were retrieved after 1, 3, 7, 14, and 21 days of incubation.

The wet weight of the samples was registered (PI-214 analytical balance, Denver Instrument Company, USA) at each predetermined time point. The dry weight of the samples was also registered after allowing samples to dry overnight at 37 °C. The percentage of weight loss was calculated according to eq 1.

weight loss = \left(\frac{m_i - m_f}{m_i}\right) \times 100 \tag{1}
where \(m_i \) is the initial weight and \(m_f \) the final weight.

226 The water uptake ratio was also calculated following eq 2 by
227 dividing each sample wet mass (\(m_{\text{wet}} \)) by the final dry hydrogel mass
228 (\(m_{\text{dry}} \)).

\[
\text{water uptake ratio} = \frac{m_{\text{wet}}}{m_{\text{dry}}} = \frac{100}{D}
\]

229

230 Quantification of Protein Release. Protein release from PL0, PL50, and PL100 was quantified after 30 min, 1, 4, and 8 h, and 1, 7, 14, and 21 days of incubation in PBS at 37 °C. For this purpose, at each
231 time point, a volume of supernatant was collected and stored at −20
232 °C. The total protein content was quantified using a micro BCA
233 protein assay (Thermo Fisher Scientific, USA), following the
234 manufacturer’s instructions. Additionally, the release of fibroblast
235 growth factor-2 (FGF-2), present in the PL, was also quantified using
236 an enzyme-linked immunosorbent assay kit (Human FGF-basic,
237 ELISA Development Kit, by PeproTech, USA), according to
238 manufacturer’s instructions.

239 Evaluation of the Response of Human Periodontal
240 Ligament Fibroblasts (hPDLFs). The response of hPDLFs to the
241 photo-cross-linked me-HA/PL hydrogels was assessed upon either
242 encapsulation or seeding of the cells onto the hydrogels surface and
243 further cultured for up to 14 days.

244 The hPDLFs (ScienCell Research Laboratories) at passage 3 were
245 seeded on disc-shaped (5 mm diameter) samples of the formulations
246 PL0, PL50, and PL100 produced as previously described, at a cell density
247 of 5 × 10^4 cm^{-2}. A 50 μL drop of a cellular suspension containing 1 ×
248 10^5 cells was seeded on the surface of each sample, previously placed
249 in a 24 wells plate, and allowed to adhere for 1 h. After this period, 450
250 μL of α-MEM basal medium (supplemented with 10% of FBS and 1% antibiotic-antimycotic) were added to each well. The 24 wells plates
251 containing the cell-seeded hydrogels were further incubated at 37 °C,
252 5% CO_2 for 1, 4, 7, and 14 days, renewing the culture medium every 3
253 days. Cells cultured on polystyrene coverslips (Sarsstedt) were
254 employed as positive control.

255 For the encapsulation, hPDLFs cells were resuspended in 2% me-
256 HA solutions containing 0, 50 and 100% PL to obtain a
257 density of 4
258 10^4 cm
259 ^−2. HA methacrylation.

260 of the amount of energy dissipated (viscous component) relative
261 to the amount of energy stored (elastic component). E
262 \(\tan \delta \) is the storage modulus (elastic), and G
263 \(\tan \delta \) is the loss modulus (viscous).

264 Dynamic mechanical analysis (DMA) experiments were
265 performed in a hydrated environment at 37 °C, performed
266 simultaneously in order to reduce the variability intra-assay and 3
267 independent studies were performed, exactly as described. Results are
268 expressed as mean ± standard error of the mean (SEM). Statistical
269 analysis was performed by repeated measures Two-way ANOVA
270 comparison test (** \(p < 0.05 \), *** \(p < 0.01 \) and **** \(p < 0.001 \) for
271 statistically significant differences) using the software Graph Pad Prism
272 6.

273 RESULTS

274 Development of the Photo-cross-linkable me-HA
275 Hydrogels. HA methacrylation. In this study, unmodified
276 hyaluronic was methacrylated Reacting a 1% HA aqueous
277 solution at pH 8, with 5X and 10X of molar excess of MA for
278 24h at 4 °C.

279 The methacrylation of HA was confirmed by the FTIR
280 spectra, where the deep peak at 1715 cm^{-1} represents the
281 carbonyl ester group resultant from the methacrylation (Figure
282 1C). Moreover, the 1H NMR spectra of the me-HA batches (Figure
283 1D) exhibited the presence the characteristic peaks corresponding to the two protons of the double bond region (δ 5.77 and 6.20 ppm) of the MA group absent in the
284 nonmodified HA spectrum.

285 The degree of methacrylation was calculated from the ratio
286 of the relative peak integration of the methacrylate protons
287 (protons of N-acetyl-D-glucosamine (peaks at
288 δ 6.20, ~5.77, and ~2.05 ppm) and the methyl protons of N-acetyl-D-glucosamine (~1.98 ppm). A Dmet of
289 14% was obtained for the me-HA batch produced with 5X excess of MA (5X me-HA), while the batch produced with 10X excess MA (10X me-HA) presented a Dmet of 24%.

290 Mechanical Properties of the Developed Hydrogels.
291 Dynamic mechanical analysis (DMA) experiments were
292 performed in a hydrated environment at 37 °C, in an array of
293 biologically relevant frequencies, in order to assess the
294 viscoelastic properties of the samples in a physiological-like
295 environment. Both storage (elastic) modulus, E’, and the loss
296 factor, tan δ, were obtained at different frequencies. E’ is
297 a measure of the materials stiffness. The loss factor is the ratio of
298 the amount of energy dissipated (viscous component) relative to
299 energy stored (elastic component); tan δ = E″/E’.
The obtained results (Figure 2) showed the effect of different concentrations of me-HA and/or PL on the stiffness of the developed hydrogels. When the concentration of me-HA was increased from 1% to 2%, the elastic storage modulus of the hydrogels increased significantly (*p < 0.05). The loss factor (tan δ) also showed similar trends, with statistically significant differences observed at 1 Hz (**p < 0.02; ***p < 0.001).

Figure 2. Variation in (A) elastic modulus (E') and (B) loss factor (tan δ) with frequency of 1% and 2% HA hydrogels incorporating 0, 50, and 100% v/v PL (PL0, PL50, and PL100) measured by dynamic mechanical analysis. Differences observed on (C) elastic modulus (E') and (D) loss factor (tan δ) at 1 Hz. *p < 0.05, **p < 0.02, ***p < 0.001.

Figure 3. Weight loss (A, B) and (C, D) swelling ratio profile of PL0, PL50, and PL100 hydrogels in (A, C) PBS and (B, D) HAase solution (100 U/mL). (a) Statistically different (p < 0.05) from PL100, (b) statistically different (p < 0.05) from PL50, (c) statistically different (p < 0.05) from PL0 and PL50.
hydrogels also increased above three to four times, from approximately 100 kPa to 428–600 kPa, in formulations incorporating PL (PL50 and PL100). The concentration of PL in the hydrogels also showed to influence the elastic modulus that was found to increase proportionally with the amount of PL. The formulation that exhibited the highest elastic modulus corresponds to the formulation containing 2% of me-HA dissolved in 100% PL.

Degradation Behavior. The weight loss and swelling ratio profiles of the PL0, PL50 and PL100 hydrogels after incubation in PBS or HAase (100U/mL) solution at 37 °C for 1, 3, 7, and 14 days are presented in Figure 3.

Weight Loss. Overall, the results obtained showed that the incorporation of PL in me-HA hydrogels influences its stability. Although the PL0 hydrogels showed lower weight loss until the seventh day of immersion in PBS, they were completely degraded after 14 days (Figure 3A). On the other hand, despite the weight loss profile of the formulations incorporating PL is characterized by an initial loss of around 70% of the dry weight in the first 3 days, the PL50 and PL100 hydrogels tend to be more stable along immersion time in PBS.

The weight loss results obtained upon immersion in HAase, revealed that the PL100 formulation displays higher degradability, upon the first day. Nevertheless, it was found that samples containing PL were only completely degraded after 14 days, while all the hydrogels of the PL0 formulation were completely degraded after only 3 day of immersion in the enzymatic solution.

Swelling Ratio. In the beginning of the assay, the swelling of freshly produced PL100 hydrogels was significantly lower than the formulations with lower PL concentration. When immersed in the PBS solution the PL0 and PL50 hydrogels, did not show significant statistical differences among them for all the time points studied. Accordingly, both hydrogels formulations presented a similar profile characterized by a peak around day 1 (1500% for PL0) and day 3 (1000% for PL0), followed by a decrease of swelling until the end of the assay, because of the total degradation of the material. On the other hand, PL100 hydrogels had a later peak at day 7, reaching near 1400% of swelling.

Regarding the swelling in HAase solution, the values were statistically similar for PL0, PL50 and PL100 hydrogels. Nevertheless, while the formulations PL0 and PL50 depicted a similar behavior, presenting a constant decrease in the swelling values from the beginning of the assay, the PL100 formulation reached an average swelling of 1400% at day 7, before starting to decrease.

Protein Release. The total amount of protein released from me-HA/PL hydrogels over time is represented in Figure 4.

Both PL50 and PL100 hydrogels displayed a similar release profile that is characterized by an initial “burst” of protein released during the first hour, that represents around 15% for PL100 hydrogels and 25% for PL50 hydrogels of the total protein contained, followed by a sustained release up to 14 days. Although no statistically significant differences were observed between the formulations during the first day of release, there was a substantial difference in the amount of protein released by the PL100 formulation, which is proportional with the amount of protein incorporated in the formulations.

To evaluate the release of PL-specific GFs from the developed HA hydrogels, and the interaction of the GFs with the HA mesh, hydrogels were incubated either in PBS or in 100 U/mL HAase solution and the release products were quantified by ELISA.

The results for the release of FGF-2, depicted in Figure 4B, showed that the PL50 and PL100 had a different profile for FGF-2 release. The FGF-2 released by PL50 was characterized by an initial burst of release up to day 3, as observed. After day 3, the release kinetics reached an apparent plateau, and a slow sustained delivery remained up to day 21. On the other hand, PL100 hydrogels showed a sustained release, progressing in a linear way, during all the duration of the assay, without signs of deceleration. Nevertheless, despite the PL100 hydrogels have a higher amount of total protein incorporated, they depicted a FGF-2 release similar to the PL50 hydrogel.

Cell Response to the Developed Hydrogels. The response of hPDLFs, either surface seeded or encapsulated onto the PL0, PL50 and PL100 hydrogels was assessed. In both the cases, the increasing amounts of PL in the hydrogels had a positive effect in the cells metabolic activity and proliferation rate as shown in Figure 5.

The results presented in Figure 5A show that there were no significant differences between the PL0 and PL50 hydrogels with respect to proliferation and metabolic activity of encapsulated cells. Remarkably, PL100 hydrogels exhibited higher cell growth and metabolic activity than PL0 and PL50 hydrogels. Regarding the morphology of the encapsulated cells, Figure 5B shows that hPDLFs dispersed and stretched inside of the hydrogels, following the alignments of the fibrous structures observed macroscopically in the hydrogels.
significant differences were seen in terms of seeding efficiency on the hydrogels and on the PS positive control. The analysis of hPDLFs distribution throughout the PL-enriched hydrogels, obtained by confocal microscopy from PL100 hydrogels 21 days after being seeded on the surface, is represented in Figure 6. This picture shows that hPDLFs seeded in the surface of the hydrogels migrated up to 70 μm deep into to the hydrogel after 21 days in culture.

Antimicrobial Activity. The antimicrobial effect of PL soluble factors against *Pseudomonas aeruginosa*, *Candida albicans*, *Escherichia coli*, *Bacillus megaterium*, *Staphylococcus VRSA*, and *Staphylococcus MRSA* was evaluated. The antimicrobial properties of the developed hydrogels containing PL were assessed using the agar well diffusion method, adapted from the Kirby-Bauer original method for testing microbial resistance to antibiotic drugs. The Figure 7 shows the effect of the hydrogels incorporating increasing amounts of PL in the *Pseudomonas aeruginosa*, *Candida albicans*, and *Escherichia coli* and, *Bacillus megaterium*, vancomycin-resistant *Staphylococcus aureus* (VRSA), and methicillin-resistant *Staphylococcus aureus* (MRSA).

The release of PL provides antimicrobial action against methicillin resistant *Staphylococcus aureus*, as shown by the inhibition of growth in the space occupied by the PL100 hydrogel (Figure 7F). Moreover, it is dependent on the PL content, because no inhibition halo was observed for the formulations with lower amounts of PL incorporated (PL0 and PL50). Nevertheless, despite no inhibition halo was observed in the rest of the species for the formulations investigated, no degradation or bacterial growth on the hydrogel surface was reported.

DISCUSSION

The present work describes the development of novel photo-cross-linkable hydrogels incorporating allogenic platelet lysate, a platelet rich hemoderivative (PRHd), aimed at endogenous
regenerative technology (ERT) being used for the regeneration of periodontal ligament. PL can be used in clinical applications as an autologous therapy. However, several authors have reported high donor-to-donor variability in PRHs batches, which could correlate with the high variability associated with the clinical outcomes of PRHs treatments. On the other hand, Crespo-Díaz et al. reported lower variability in PL batches produced from outdated platelet concentrates obtained by plasma apheresis from different donors; therefore more predictable therapeutic outcomes could be anticipated. Furthermore, these PL batches were shown to be safe of standard pathogens and infectious diseases. In the present work, were used outdated (>5 days old) platelet concentrates obtained by plasma apheresis and biologically qualified according to Portuguese legislation (Decreto-Lei No. 100/2011) for blood products collection, transport and therapeutic administration. Therefore, these PL batches were expected to be as safe as any other blood component aimed for therapeutic administration and used in allogenic PL-based strategy as proposed. The combination of me-HA with PL as herein proposed, produced a photo-cross-linkable system with several advantages for tissue engineering applications. Being injectable, these biomaterials can be implanted using minimally invasive techniques without requiring surgical interventions. Moreover, the system can fit perfectly to irregular-shaped defects, deeply interacting with the preserved tissue margins, before being photo-cross-linked to produce a stable matrix.

With regard to viscoelastic properties, DMA analysis revealed that these hydrogels exhibit elastic modulus ranging from 264 ± 81 kPa for the PL0 formulation to 600 ± 186 kPa to the PL100 formulation (at 1 Hz), comparable to other HA hydrogels incorporating fibrin described for artificial cartilage implantation (445 kPa), which support the use of our photo-cross-linkable hydrogels for soft tissue reconstruction. Moreover, periodontal tissue is continuously subjected to very dynamic forces, acting the periodontal ligament as a damper. Therefore, the viscoelastic properties displayed by the hydrogels herein developed are of paramount importance for periodontal therapy approaches.

Regarding the degradation of HA hydrogels, it was faster in the presence of the HAase, the specific enzymes that degrade the HA in vivo, than in saline solution, as previously reported. Remarkably, the PL-enriched hydrogels remained stable for longer periods. The time to total degradation of PL100 was even longer when compared with other HA hydrogels exposed to similar conditions. It should be noted that in this study we used a supra-physiologic concentration of HAase (100 U/mL), which in human plasma ranges from 0.0028 ± 0.0004 to 3.8 ± 0.7 U/L depending on patient health condition. Therefore, these findings suggest that PL-enriched photo-cross-linkable HA hydrogels, may maintain the necessary space stability in vivo for new tissue ingrowth. Such reinforcement is attributed to the presence of fibrinogen in the PL1 as this protein is capable of cross-linking, forming a fibrin mesh which is not susceptible to degradation by the HAase. The fibrin/fibrinogen interact specifically with HA for the formation of ECM either during wound healing or in normal tissues. This result is in line with previous studies in which HA hydrogels incorporating fibrin were proposed for cartilage repair and their improved biomechanical properties and the ability to provide an adequate environment for cell encapsulation.

The total PL-proteins release kinetics from the HA hydrogels herein developed was characterized by an initial “burst”, followed by a sustained release over time. The release profile observed can be explained by two different processes: (1) the fast elution of large amount of the soluble proteins that are not physically interacting with the HA mesh, facilitated by the strong initial swelling of roughly two times the hydrogel initial weight; (2) a slow release of the proteins entrapped in the hydrogel mesh or adherent to the mesh, that are released by the

Figure 7. Antimicrobial assay for (i) PL100, (ii) PL50, and (iii) PL0 formulations where control is (iv) PBS using (A) Pseudomonas aeruginosa, (B) Staphylococcus aureus Vancomycin-resistant, (C) Escherichia coli, (D) Bacillus megaterium, (E) vancomycin-resistant Staphylococcus aureus (VRSA), and (F) methicillin-resistant Staphylococcus aureus (MRSA).
Finally, we have studied the antimicrobial properties of the developed hydrogels. Since the PL proteins have different isolectric points (pI), the electrostatic interactions and probability of remaining adsorbed to the HA mesh, which are negatively charged at physiologic pH, will vary. In this way, the albumin, which is the main soluble protein in PL, with an acidic pI (at pH 4.7), is expected to be easily washed out from the HA mesh. On the other hand, most of the GFs present in PL with therapeutic interest have basic pI (TGF-β at pH 8.90; PDGF-A at pH 9.52; PDGF-B at pH 9.39; VEGF-1 at pH 8.66; FGF-2 at pH 9.6). So, they are expected to bind electrostatically to the HA matrix and to the insoluble PL proteins to be further released by ion exchange or by the degradation of the HA mesh promoted by HAses released for the ECM remodeling promoted during the wound healing process. In fact, the release of PL-specific GFs from the photocross-linkable hydrogels, namely FGF-2, was detected only after degradation of the hydrogels in HAase (Figure 4B), whereas no detectable traces of GFs were detected after incubation of the hydrogels in PBS. Studies with PGF-2 have shown that this GF upregulate the migration and proliferation of PDL cells. In fact, to fully regenerate functional of periodontal tissues, several GFs and cytokines should interplay in a temporal as spatial controlled manner. Therefore, the controlled release of growth factors is a real asset to our hydrogels.

In line with what has been reported in literature, our findings show that the encapsulation of hPDLFs in nonsupplemented HA hydrogels (PL0) affects cell proliferation and metabolic activity. The biological performance of cells encapsulated in me-PA hydrogels is affected by the concentration of the macromer, as well as by the concentration of photo-initiator. Furthermore, the exposure to UV radiation was also reported to have adverse effects on viability and cell cycle progression, whereas the differentiation potential remains unchanged. Remarkably, the adverse effects of photocross-encapsulation were overcome by the incorporation of PL into the hydrogels. The viability and metabolic activity of the encapsulated hPDLFs increased proportionally with the incorporation of PL. Previous works have reported the positive effect of PL in the proliferation and maintenance of stemness phenotype of human periodontal ligament stem cells. In the same line, we observed, in previous works that (hPDLFs) adhere and proliferate in genipin-cross-linked PL membranes.

It is known that platelets release several growth factors, namely PDGF and FGF-2, which have a mitogenic effect over human periodontal ligament cells. Moreover, PDGF and FGF-2 have been reported to have chemotactic properties over hPDLFs, while the adhesion sites provided by the clot-forming proteins present in PL should facilitated the inward cell migration observed (Figure 6). Therefore, a strategy that can recruit progenitor cells from the preserved periodontal tissue and promote their proliferation and maintenance of stemness to colonize the periodontal defect with cells with high potential to regenerate periodontal tissue would be a valuable asset for periodontal ERT. Hereupon, the first intentional repair promoted by cells originated from periodontal tissues could partially restore the primitive anatomy and function of the periodontium.

Finally, we have studied the antimicrobial properties of the developed hydrogels. This is a very important aspect considering the target application. It is known that the main cause of periodontal disease, as well as the main factor of rejection for some of the GTR techniques, is bacterial infections. The HA was previously described to have bacteriostatic properties against oral and nonoral bacteria. Carlson et al. suggested that the bacteriostatic effect of HA may be due to the saturation of the bacterial hyaluronate lyase by the excess HA, which prevents the bacteria from maintaining elevated levels of tissue permeability and penetrating the physical defenses of the host. This would enhance the ability of the host’s immune system to eradicate pathogens. HA molecules in the hydrogels also form a random network of chains that may act as a sieve preventing the spread of the bacteria. Platelet concentrate (PC) was previously reported to have antimicrobial properties significantly reducing the growth of methicillin-sensitive or -resistant Staphylococcus aureus, Group A Streptococcus, and Neisseria gonorrhea, among others. As PL is a product of PC activation by freeze/thaw cycles, the same would be expected for this hemoderivative. The obtained results in this study meet with the antimicrobial properties already described in the literature for platelet concentrates. Here, the methicillin resistant Staphylococcus aureus (MRSA) was more susceptible to the hydrogels containing PL100 than the other microbial strains tested. Yeaman and Bayer proposed that the bactericidal activity against MRSA involved β-lisin, which is responsible for blood clotting found after platelets activation, which is one of the most abundant compound found in PL after activation has been described to act against bacteria cell-wall, rapidly killing and stopping bacteria reproduction, which could explain the results from this study. In addition, other PL-derived molecules with antibacterial properties against Gram+ bacteria could be involved in this response, such as neutrophil activating protein-2 demonstrated capacity to kill Gram-positive and Gram-negative bacteria. Although no effect was observed against Gram bacteria and fungus, other factors can be found in PL with bactericidal and fungicidal activity. For instance, Platelet factor-4 can bind to Gram-negative bacteria because it has an affinity for the lipopolysaccharide from these bacteria, facilitating their clearance. Nevertheless, further investment is needed in order to fully understand PL antimicrobial properties against microbial pathogens, especially whether the molecules that demonstrate antimicrobial potential interact alone or together when supplemented as PL and not from induced platelets.

CONCLUSIONS

Overall, our findings demonstrate that is possible to obtain versatile photo-cross-linkable HA-PL hydrogels that provide adequate substrates for hPDLFs attachment and growth while enabling the sustained release of PL and inhibit bacterial growth. Besides providing adequate space and stability, as well as biochemical cues for the regeneration of the lost tissues the hydrogels developed in this study present antimicrobial properties, which can contribute for the prophylaxis, preventing recurrent microbiotic colonization of the periodontal wound. These results suggest the great potential of these materials as cell and/or autologous growth factors carriers for endogenous regenerative technology (ERT) envisioning tissue engineering approaches targeting various tissues, namely the periodontal ligament.
Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding

The research leading to these results has received funding from Fundação para a Ciência e a Tecnologia (FCT) under project BIBS (PTDC/CVT/102972/2008) and project ACROSS (PTDC/BBB-BIO/0827/2012), from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement number REGPOT-CT2012-316331-PO-LARIS and from the project “Novel smart and biomimetic materials for innovative regenerative medicine approaches” RL1-ABMR-NORTE-01-0124-FEDER-000016 cofinanced by North Portugal Regional Operational Programme (ON.2-O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Mariana Oliveira for the support in the dynamic mechanical analysis experiments; Dr. Célia Manaia from the Escola Superior de Biotecnologia (Porto, Portugal) for providing the Pseudomonas sp. bacteria; and Dr. Albert Faustino from the Hospital de S. Marcos (Braga, Portugal) for providing all other bacterial strains. P.S.B and A.F. acknowledge FCT for the PhD grant SFRH/BD/73403/2010 and Post-Doc grant SFRH/BPD/100760/2014.

ABBREVIATIONS

PL, platelet lysate
hPDLPs, human periodontal ligament fibroblasts
GTR, guided tissue regeneration
HAase, hyaluronidase
ERT, endogenous regenerative technology
MRSA, methicillin-resistant Staphylococcus aureus
VRSA, vancomycin-resistant Staphylococcus aureus
HA, hyaluronic acid
me-HA, methacrylated hyaluronic acid
GFs, growth factors
α-MEM, minimum essential medium Eagle alpha modification
PDMS, polydimethylsiloxane
MA, methacrylic anhydride
dH2O, distilled water
FTIR, Fourier transform infrared spectroscopy
1HNMR, proton nuclear magnetic resonance
Dmet, degree of methacrylation
PLgly, hydrogel incorporating 0 v/v% PL
PLgly50, hydrogel incorporating 50 v/v% PL
PLgly100, hydrogel incorporating 100 v/v% PL
HAPL, hyaluronic acid hydrogels incorporating PL
mH2O, hydrogel wet mass
mH2O, dry hydrogel mass
mPL, initial weight
mF, final weight
ELISA, enzyme-linked immunosorbent assay
FGF-2, fibroblast growth factor-2
MH, Muller–Hinton (agar)
DMA, dynamic mechanical analysis

REFERENCES

ACS Biomaterials Science & Engineering

(21) Williams, C. G.; Malik, A. N.; Kim, T. K.; Manson, P. N.; Elisseef, J. H. Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation.

Biomaterials 2005, 26 (11), 1211−8.

(48) Lam, F. W.; Vijayan, K. V.; Rumbaut, R. E. Platelets and their interactions with other immune cells. Comprehensive Physiology 2015, 5 (9), 1265−1280.

(50) Hamzeh-Cognasse, H.; Damien, P.; Chabert, A.; Pozzetto, B.; Cognasse, F.; Garraud, O. Platelets and infections - complex interactions with bacteria. Front. Immunol. 2015, 6, 82. DOI: 10.1021/acsbiomaterials.6b00508