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Abstract. The BBMCSFilter method was developed to solve mixed integer nonlinear programming problems. This kind
of problems have integer and continuous variables and they appear very frequently in process engineering problems. The
objective of this work is to analyze the performance of the method when the coordinate searches are interrupted in the context
of the multistart strategy. From the numerical experiments, we observed a reduction on the number of function evaluations
and on the CPU time.
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1. INTRODUCTION

A wide range of problems arising in practical applications, such as, process engineering, water, gas, energy and
transportation networks [1], involve both discrete decisions and nonlinear real-world phenomena. They are modeled
as mixed-integer nonlinear programming (MINLP) problems. For a review of MINLP applications see [2].

There are different strategies to solve MINLP problems. For a review of the available solvers, we refer the reader to
[2]. A large number of algorithms are based on a branch and bound (BB) framework (like the BBMCSFilter algorithm).
Recently, the nonconvex MINLP research area became more interesting since metaheuristics and derivative-free
algorithms, like the genetic algorithm, ant colony, differential evolution, pattern search algorithms, and the multistart
Hooke and Jeeves algorithm [3] have been used in MINLP. (For details see the references included in [4].)

The MINLP problem to be solved is of the form

min f (x,y)
subject to g j(x,y)≤ 0, j ∈ J

x ∈ X , y ∈ Y
(1)

where f : Rn −→R is the objective function, g j, j ∈ J = {1, · · · ,m}, are the constraint functions and J is the index set
of the g functions, the vector x contains the continuous variables, with X ⊂ Rnc being the set of simple bounds on x,
the vector y contains the integer variables, where Y ⊂ Zni is the set of simple bounds on y, and n = nc +ni represents
the total number of variables. It is assumed that at least one of the functions is nonlinear since this study aims to focus
on MINLP problems.

Many MINLP problems arise in the context of the engineering applications being the time needed to obtain the
solution of the MINLP problems sometimes a crucial issue. However, the engineering applications often require the
use of complex black-box modeling routines that link the design variables with the objective and constraint functions.
This MINLP problems are in general NP-hard nonsmooth and nonconvex ones. In the present study we are particularly
interested in solving this type of problems. In [4], the BBMCSFilter method, which relies on a BB framework and a
derivative-free methodology to solve nonsmooth and nonconvex MINLP problems, is presented. This study aims to
modify the BBMCSFilter method so that a reduction on the number of function evaluations and, consequently, on the
CPU time, required to reach a global solution to the MINLP problems, is obtained. In the BBMCSFilter method, the
continuous NLP problems that appear in the BB tree search are solved to optimality by the MCSFilter method. This
is a derivative-free global method that relies on a multistart algorithm coupled with a coordinate search filter method
as the local procedure [4, 5]. The MCSFilter has shown to be an efficient algorithm for finding multiple minima of
nonsmooth and nonconvex NLP problems, and hence the global one [6].



The remaining part of the paper is organized as follows. In Section 2, a brief description of the BBMCSFilter
method is provided and the proposed interrupted search process is presented. Section 3 reports on the computational
experiments and the last section contains the conclusions.

2. BBMCSFILTER WITH INTERRUPTED SEARCHES

In the present study we focus on nonsmooth and nonconvex MINLP problems. With this kind of problems two major
issues have to be addressed. One is related with the integrality of some variables and the other is concerned with
the lack of smoothness and convexity of the functions. The BBMCSFilter method is capable of solving this type of
problems. However, to improve its efficiency, an interrupted search process is incorporated into the local coordinate
search procedure of the MCSFilter method.

2.1. The BBMCSFilter Method

A detail description of the BBMCSFilter algorithm is available in [4]. To settle the first issue pointed out above,
the algorithm uses a BB paradigm. A tree search is performed in the space of the integer variables and in each node
of the tree search a continuous relaxation NLP subproblem is solved. The process of branching, bounding, relaxation
and elimination of nodes, as well as the update of the solution, are performed along of the tree search until there
are no more nodes to be explored. The updated solution (with all integer variables taking integer values) with the
lowest function value is the solution of the MINLP problem. To settle the second issue, the BBMCSFilter algorithm
uses the MCSFilter solver. This is a multistart (MS) strategy that invokes the local coordinate search filter (CSFilter)
method. To explore the search space more effectively, the MS algorithm sequentially and randomly generates points
xi = li +λ (ui− li), i = 1, . . . ,n, where λ is a random number uniformly distributed in [0,1], and applies the CSFilter
method to these points to converge to the optimal solutions of the problem. To each located minimizer a region of
attraction is constructed. The MS algorithm uses the information produced by each region of attraction to check if a
new randomly generated point xi is likely to be inside a region of attraction. If this is so, the local CSFilter method is
not invoked and xi is discarded. Otherwise, the CSFilter method is invoked to converge to a new minimizer x∗ [6].

The CSFilter method combines the classical derivative-free coordinate search method with a filter methodology
for handling the constraints of the problem. In this approach, the continuous relaxation problem is rewritten as a
bi-objective optimization problem of the form: minx (θ(x), f (x)), where θ(x) is a nonnegative continuous aggregate
constraint violation function defined by θ(x) = ‖g(x)+‖2+‖(l−x)+‖2+‖(x−u)+‖2, with v+ = max{0,v}. The filter
technique uses the concept of nondominance, to construct a filter that is able to accept trial approximations if they
improve the constraint violation or the objective function value.

The search in the CSFilter algorithm begins with a central point, denoted by x̃, and computes 2n trial approximations
t i
c = x̃+αei, using vectors ei ∈ D⊕, where D⊕ denotes the set of 2n coordinate directions and α > 0 is a step size.

Then, the two criteria θ and f are evaluated for all these trial points and if one of the conditions

θ(t i
c)< (1− γθ ) θ(x̃) or f (t i

c)≤ f (x̃)− γ f θ(x̃),

holds, for fixed constants γθ ,γ f ∈ (0,1), and the trial point is acceptable by the filter, then filter is updated. Whenever
the filter is updated, the entries dominated by new ones are removed from de filter.

However, when x̃ is nearly feasible, the trial approximation t i
c has to satisfy only the condition f (t i

c)≤ f (x̃)−γ f θ(x̃)
in order to be acceptable.

The best trial point, tbest
c , is selected among all nondominated trial points and will replace the current approximation.

However, if it is not possible to find a non-dominated best trial approximation, even after invoking a restoration phase,
the step size is reduced. The algorithm stops when α falls below a specified tolerance.

2.2. Interrupted CSFilter

In the context of the MCSFilter, the proposed interrupted version is a clever extension of the CSFilter, which
avoids solving the relaxed problem through the algorithm CSFilter till optimality when the probability of converging



to an already located minimizer is high. The idea consist of interrupting the coordinate searches whenever a non-
dominated best trial approximation enters an ε-neighborhood of a previously located solution. This way, the CSFilter
avoids convergence to previous solutions and efficiency is improved. To check if an approximation x is inside the
ε-neighborhood of a minimizer x∗i , the following strategy is followed.

Let M be the set with all the minimizers found so far. Then, the approximation x is considered to be in the ε-
neighborhood of a minimizer x∗i ∈M, if the distance to the minimizer verifies

||x− x∗i ||< ε, (2)

with a small constant ε > 0. In this case, the likelihood that the search will converge to the minimizer x∗i is high and
the local search is interrupted. If the condition (2) does not hold for all x∗i ∈M, then the search process continues.

3. NUMERICAL RESULTS

To analyze and compare the behavior of the new interrupted coordinate search strategy (within the BBMCSFilter
algorithm) with the BBMCSFilter itself, we set all the parameters as presented in [4], and in equation (2) we set ε = 0.1.
The new algorithm is tested using a benchmark set of problems (from the engineering field) from the MINLPLib
library available online [7]. This is the same set of benchmark problems used in [4]. Similarly, each problem was
solved 30 times. Table 1 shows the numerical results produced by the proposed interrupted coordinate search version
of BBMCSFilter. The columns in the table show the known global optimum, f ∗; the average value of the obtained
objective function values, ‘ favg’; the standard deviation of obtained function values, ‘SD’; the average number of
function evaluations, ‘n f eavg’; the average CPU time (in seconds), ‘Tavg’; the average number of nodes, ‘Nodesavg’;
the successful rate (percentage of runs that found a solution within an error of 10−2 of the known global optimal
solution), ‘SR’ (%). These results are compared with the results taken from [4] and listed in Table 2.

TABLE 1. Numerical results produced by the interrupted CS version of BBMCSFilter.

Problem f ∗ favg SD Tavg n f eavg Nodesavg SR

f1 2 2.001406 0.0E+00 3.3 2440 1.0 100
f2 2.124 2.124799 0.0E+00 0.6 785 1.0 100
f3 1.07654 1.077146 0.0E+00 2.0 3616 3.0 100
f4 99.245209 99.239636 0.0E+00 0.1 627 1.0 100
f5 3.557463 3.561929 2.8E-03 29.3 44224 14.5 77
f6 4.579582 4.586224 0.0E+00 17.9 30684 7.0 100
f7 -17 -16.998524 2.2E-03 9.4 2709 2.6 100
f8 -32217.4 -32217.42778 0.0E+00 2.6 17062 5.0 0
f9 7.6671801 7.667919 9.6E-04 19.9 19022 3.7 100
f10 -2.4444 -2.444444 1.0E-08 1.1 1796 5.0 100
f11 3.2361 3.236266 0.0E+00 17.4 36639 10.0 100
f12 1.125 1.125616 0.0E+00 1.0 1413 3.0 100
f13 87.5 87.502735 2.1E-03 99.3 22463 3.0 87
f14 -6.666667 -6.666392 0.0E+00 0.4 856 1.0 100
f15 -5.6848 -5.611664 4.7E-02 1199.9 214025 54.1 6
f16 2 2.000000 0.0E+00 19.5 15560 4.7 97
f17 3.4455 3.445795 0.0E+00 1.6 1969 6.0 100
f18 2.2 2.200000 0.0E+00 3.9 7056 3.7 100
f19 6.0098 6.010985 5.1E-04 14.3 29849 6.8 87
f20 -17 -16.991320 9.9E-03 39.9 22354 1.1 63
f21 -4.514202 -4.513490 0.0E+00 22.1 19385 4.0 100
f22 -13.401904 -13.401902 5.4E-04 41.9 72790 14.8 100
f23 -1.08333 -1.083304 0.0E+00 2.6 2061 1.0 100

The computed solutions are of good quality since the favg for all problems are very close to the minimum known
from the literature. The values of SD are equal to zero on 14 problems and moderate on the remaining 9 problems,
ranging from 4.7E − 2 to 1.0E − 8 and showing the consistency of the algorithm. If a comparison is made using
the third columns of both tables, it could be stated that the results are very similar or slightly worst than the results
previously obtained. On the other hand, if a comparison is based on n f eavg and Tavg, then clearly the new strategy has
positively influenced the results, i.e., the number of function evaluations has been reduced and, consequently, the CPU
time required to reach a global solution almost halved.



TABLE 2. Numerical results produced by BBMCSFilter from [4].

Problem f ∗ favg SD Tavg n f eavg Nodesavg SR

f1 2 2.00082 3.6E-04 10.0 3530 1.1 100
f2 2.124 2.124590 1.4E-06 1.5 1259 1.0 100
f3 1.07654 1.081640 8.1E-03 3.8 5274 3.0 87
f4 99.245209 99.239635 1.0E-07 0.2 670 1.0 100
f5 3.557463 3.560848 2.0E-03 59.3 76775 11.0 97
f6 4.579582 4.582322 9.3E-04 54.9 75413 10.7 100
f7 -17 -16.998054 2.3E-03 9.5 4296 1.8 100
f8 -32217.4 -32217.42778 0.0E00 3.2 18051 5.7 0
f9 7.6671801 7.667583 9.5E-04 30.3 28090 3.9 100
f10 -2.4444 -2.444444 0.0E00 2.4 2736 5.0 100
f11 3.2361 3.236121 8.7E-05 18.8 41635 10.0 100
f12 1.125 1.125115 2.9E-04 42.3 7770 2.8 100
f13 87.5 87.507043 1.7E-02 252.5 41852 3.0 90
f14 -6.666667 -6.666131 1.8E-04 0.5 1122 1.0 100
f15 -5.6848 -5.651952 2.6E-02 3567.4 393345 59.8 30
f16 2.000 2.000000 0.0E00 52.7 29847 4.9 100
f17 3.4455 3.445808 2.1E-04 18.2 5469 6.0 100
f18 2.2000 2.200000 0.0E00 8.6 11182 3.7 100
f19 6.0098 6.010714 6.6E-04 21.1 37132 5.3 100
f20 -17.0000 -16.994605 5.5E-03 52.5 27149 1.1 80
f21 -4.514202 -4.513448 6.8E-04 84.4 50146 4.6 100
f22 -13.401904 -13.401930 3.6E-04 57.8 84790 14.0 100
f23 -1.08333 -1.083245 5.4E-05 2.6 2458 1.0 100

4. CONCLUSIONS

Since MINLP problems may appear in real engineering applications, the time required to reach a solution is most of
the time a critical issue. To address this issue, a new strategy based on interrupting the coordinate searches within the
MS paradigm of the BBMCSFilter method is devised. The numerical experiments carried out until now show that the
average number of function evaluations and the average CPU time required to obtain the solution have been reduced.
Since the quality of the solutions has not been improved for all the tested problems, future developments will focus on
using a different and more rigorous step size choice.
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