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HIGHLIGHTS 

 

 Chloromethylated coumarin fused oxazoles were obtained and efficiently used in the 

derivatisation of butyric acid, as model carboxylic acid drug.  

 

 The new seven cages based on 6-oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl groups 

revealed to be photo-responsive units upon irradiation at various selected wavelengths. 

 

 

 Irradiation of the cages resulted in the complete release of the expected butyric acid, being 

the coumarin fused oxazole with phenyl or chromone substituents at the position 2 of the 

polycyclic system especially pertinent for bioapplications.  

 

 This study shows new promising alternative moieties for the development of photoactivable 

fluorescent butyric acid prodrugs. 
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Abstract: New coumarin fused oxazoles were investigated as photosensitive units for carboxylic 

acid groups using butyric acid as a model compound. 6-Oxo-6H-benzopyrano[6,7-d]oxazol-8-

yl)methyl derivatives possessing various (hetero)aromatic substituents at position 2 of the 

heterocyclic system were used in the synthesis of ester conjugates of butyric acid. Photolysis at 

selected wavelengths in methanol/HEPES buffer (80:20) solutions, monitored by HPLC/UV and 
1
H 

NMR, produced the complete release of butyric acid. The shorter irradiation times for cleavage at 

longer wavelengths occurred for the conjugate with a 4-oxo-4H-benzopyran-2-yl substituent and 

thus (6-oxo-2-(4-oxo-4H-benzopyran-2-yl)-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl has potential 

as a candidate photosensitive moiety for butyric acid prodrugs.  

 

Keywords: Prodrugs; Coumarins; Oxazoles; Butyric acid; Photocleavable protecting groups; 

Photolysis. 
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1. Introduction 

 

A diversity of light-sensitive moieties have been reported in recent years to target molecules 

including amines and amino acid neurotransmitters, nucleic acids, enzyme substrates and inhibitors, 

proteins, biochemical sensors, as well as to be used as triggers for the creation of biomaterials. The 

use of light in combination with these moieties enables the behavioural manipulation of organisms, 

control of cell biochemistry and the treatment of a variety of anomalous physiological conditions 

and manifestations of disease [1-6]. Moreover, “phototherapeutics” possesses wide-ranging 

potential applications in cancer therapy, tissue engineering and surgery [7]. The preparation of 

light-sensitive species usually involves the covalent modification of a functional group essential for 

the biological activity of the compound of interest. This modification results from the use of a 

photocleavable protecting group, also designated as a phototrigger or caging group. Carboxylates, 

amines and alcohols are typical reactive sites for substitution by photocleavable units, usually 

through ester, carbonates, carbamate and anhydride linkages [3,8,9]. The implementation of a 

caging strategy provides both spatial and temporal control over the release of molecules triggered 

by ultraviolet and visible light.  

The occurrence of severe side effects, drug resistance, along with other diverse factors that 

influence the efficacy of drug activity are responsible for the development of innovative 

methodologies to circumvent these limitations. Butyric acid can be taken as an example, as it is a 

pleotropic anticancer agent that has a specific effect on the inhibition of nuclear histone deacetylase 

enzyme(s), leading to an increase in the acetylation level of H3 and H4 histones. However, in vivo it 

displays low potency because of rapid metabolisation [10-12]. In order to bypass this problem, 

butyric acid prodrugs, including those that are photoactivatable, have been described in the 

literature [13,14].  

Our research has been involved in studies related with the design, synthesis and evaluation of light-

sensitive moieties for the release of bioactive molecules, including butyric acid [1,2,15-20]. 
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Recently, we have reported on coumarin, benzocoumarin thio(benzo)coumarin, coumarin fused 

with julolidine and amino-substituted benzocoumarin cages [19-21]. Also, our studies with 

photoactive prodrugs of butyric acid were initiated with the use of naphthoxazoles and coumarin 

fused oxazoles; namely naphtho[2,3-d]oxazole, naphtho[1,2-d]oxazole and 6-oxo-6H-

benzopyrano[6,7-d]oxazole (with a linkage between the heterocycle and the active molecule 

through oxopyran or oxazole moieties) [22].
 
In this regard, and considering that the more promising 

results were found with benzopyranoxazole with a linkage to butyric acid through the pyranone 

ring, we describe here the synthesis of a new set of benzopyranoxazoles, with an improved 

capability for the photorelease of butyric acid using longer wavelength light to initiate the release. 

Longer wavelengths are advantageous as they help to avoid the absorption of light by intrinsic 

species (biological material including amino acids, proteins and nucleic acids), and enable the 

resulting conjugates to be addressed using two-photon excitation.  

In this work, novel 6-oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl groups were synthesised and 

used in the caging of butyric acid. The resulting ester cages were irradiated at 254, 300 and 350 nm 

in a photochemical reactor in a solution of methanol/HEPES buffer (80:20). Because the caging 

groups exhibit fluorescence, it is possible to make use of this fact and employ fluorescence 

techniques, principally time-resolved methods to characterise their photophysical properties. Since 

the photocleavage proceeds via intermediate species (eg ion pairs) it is helpful to ascertain if the 

substituent groups have any marked effect on processes that can be elucidated using changes in 

their fluorescence behaviour. The determination of decay associated spectra enables both spectral 

(energetic) and decay kinetics to be compared.  
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2. Experimental section 

 

2.1. Material and instruments 

All melting points were measured on a Stuart SMP3 melting point apparatus. TLC analyses 

were carried out on 0.25 mm thick precoated silica plates (Merck Fertigplatten Kieselgel 

60F254) and spots were visualised under UV light. Chromatography on silica gel was carried 

out on Merck Kieselgel (230-240 mesh). IR spectra were determined on a BOMEM MB 104 

spectrophotometer. UV/visible absorption spectra (200 – 700 nm) were obtained using a 

Shimadzu UV/2501PC spectrophotometer. NMR spectra were obtained on a Bruker Avance 

III 400 at an operating frequency of 400 MHz for 
1
H and 100.6 MHz for 

13
C using the 

solvent peak as internal reference at 25 ºC. All chemical shifts are given in ppm using δH 

Me4Si = 0 ppm as reference and J values are given in Hz. Assignments were supported by 

spin decoupling-double resonance and bidimensional heteronuclear correlation techniques. 

Mass spectrometry analyses were performed at the “C.A.C.T.I. - Unidad de Espectrometria 

de Masas”, at University of Vigo, Spain. Fluorescence spectra were collected using a 

FluoroMax-4 fluorometer. Time-resolved fluorescence measurements were performed on a 

HORIBA Scientific DeltaFlex with a DeltaDiode excitation source emitting at 336 nm (DD-

340). All reagents were used as received.  

 

2.2. General procedure for the synthesis of oxo-benzopyranoxazoles 3a-g 

To a solution of 6-amino-4-(chloromethyl)-7-hydroxy-2-oxo-2H-benzopyran 1 (1 equiv.) in 

polyphosphoric acid (0.500 g), the acid derivative 2 (2 equiv.) was added, and the mixture 

was stirred at 130 °C for 4 h. The reaction mixture was poured into iced water and stirred for 

1 h to give a fine grey precipitate. The solid was collected by filtration, washed with cold 

water and dried in a vacuum oven.  
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2.2.1. 8-(Chloromethyl)-2-phenyl-6-oxo-6H-benzopyrano[6,7-d]oxazole, 3a 

Starting from benzopyran 1 (0.095 g, 0.42 mmol) in polyphosphoric acid (0.500 g) and 

benzoic acid 2a (0.101 g, 0.83 mmol), compound 3a was obtained as a grey solid (0.080 g, 

62 %). mp = 251.1-251.9 ºC. λmax (MeOH-HEPES 80/20)/nm 341 (log ε 3.9). 
1
H NMR

 

(DMSO-d6, 400 MHz): δ = 5.11 (s, 2 H, CH2), 6.69 (s, 1 H, H-7), 7.61-7-67 (m, 3 H, H-3’, 

H-4’ and H-5’), 7.92 (s, 1 H, H-4), 8.21 (dd, J = 7.6 and 1.6 Hz, 2 H, H-2’ and H-6’), 8.28 

(s, 1 H, H-9) ppm. 
13

C NMR
 
(DMSO-d6, 100.6 MHz): δ = 41.47 (CH2), 99.58 (C-4), 114.13 

(C-7), 114.69 (C-8a), 115.46 (C-9), 125.65 (C-1’), 127.28 (C-2’ and C-6’), 129.20 (C-3’ and 

C-5’), 132.27 (C-4’), 138.36 (C-9a), 150.75 (C-8), 151.64 (C-4a), 151.93 (C-3a), 159.03 (C-

6), 163.91 (C-2) ppm. IR (KBr 1%): νmax
 
3377, 2922, 2315, 1714 (br), 1632, 1595, 1554, 

1489, 1438, 1406, 1353, 1267, 1137, 1043, 1018, 961, 886, 843, 778, 729, 700, 664 cm
-1

. 

HRMS: m/z (EI): Found [M
+
]: 311.03585; C17H10NO3Cl requires [M

+
]: 311.03492. 

 

2.2.2. 2-(3’-Aminophenyl)-8-(chloromethyl)-6-oxo-6H-benzopyrano[6,7-d]oxazole, 3b  

Starting from benzopyran 1 (0.050 g, 0.22 mmol) in polyphosphoric acid (0.500 g) and 3-

aminobenzoic acid 2b (0.060 g, 0.22 mmol), compound 3b was obtained as a grey solid 

(0.065 g, 89 %). mp = 242.5-243.5 ºC. λmax (MeOH-HEPES 80/20)/nm 340 (log ε 3.90). 
1
H 

NMR
 
(DMSO-d6, 400 MHz): δ 5.13 (s, 2 H, CH2), 6.70 (s, 1 H, H-7), 7.02 (d, J = 7.6 Hz, 1 

H, H-4’), 7.36 (t, J = 7.6 Hz, 1 H, H-5’), 7.53 (dd, J = 7.6 and 1.6 Hz, 1 H, H-6’), 7.60 (s, 1 

H, H-2’), 7.96 (s, 1 H, H-4), 8.26 (s, 1 H, H-9) ppm. 
13

C NMR
 
(DMSO-d6, 100.6 MHz): δ = 

41.61 (CH2), 99.70 (C-4), 114.36 (C-7), 114.65 (C-2’), 114.83 (C-8a), 115.66 (C-9), 117.92 

(C-6’), 120.22 (C-4’), 126.48 (C-1’), 130.29 (C-5’), 138.56 (C-9a), 145.52 (C-3’), 151.10 

(C-8), 151.80 (C-4a), 152.06 (C-3a), 159.70 (C-6), 164.36 (C-2) ppm. IR (KBr 1%): νmax
 

3385, 2965, 2320, 1720 (br), 1635, 1593, 1557, 1487, 1442, 1410, 1328, 1143, 1094, 995, 

877, 744, 666 cm
-1

. HRMS: m/z (EI): Found [M
+
]: 326.04501; C17H11N2O3Cl requires [M

+
]: 

326.04582. 
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2.2.3. 2-(3’-Amino-4’-methylphenyl)-8-(chloromethyl)-6-oxo-6H-benzopyrano[6,7-

d]oxazole, 3c 

 Starting from benzopyran 1 (0.100 g, 0.44 mmol) in polyphosphoric acid (0.500 g) and 4-

methyl-3-aminobenzoic acid 2c (0.066 g, 0.44 mmol), compound 3c was obtained as a grey 

solid (0.080 g, 54 %). mp = 201.3-202.0 ºC. λmax (MeOH-HEPES 80/20)/nm 342 (log ε 

3.46). 
1
H NMR

 
(DMSO-d6, 400 MHz): δ = 5.12 (s, 2 H, CH2), 6.69 (s, 1 H, H-7), 7.20 (d, J 

= 7.6 Hz, 1 H, H-5’), 7.41 (d, J = 7.6 Hz, 1 H, H-6’), 7.58 (s, 1 H, H-2’), 7.92 (s, 1 H, H-4), 

8.22 (s, 1 H, H-9) ppm. 
13

C NMR
 
(DMSO-d6, 100.6 MHz): δ = 17.57 (CH3), 41.67 (CH2), 

99.60 (C-4), 113.74 (C-2’), 114.11 (C-7), 114.72 (C-8a), 115.24 (C-9), 117.14 (C-6’), 

123.90 (C-4’), 128.01 (C-1’), 131.00 (C-5’), 138.57 (C-9a), 144.88 (C-3’), 150.98 (C-8), 

151.53 (C-4a), 151.88 (C-3a), 159.57 (C-6), 164.55 (C-2) ppm. IR (KBr 1%): νmax
 
3377, 

2970, 2316, 1719 (br), 1635, 1585, 1558, 1489, 1438, 1406, 1328, 1141, 1094, 993, 876, 

743, 663 cm
-1

. HRMS: m/z (EI): Found [M
+
]: 340.06272; C18H13N2O3Cl requires [M

+
]: 

340.06147. 

 

2.2.4. 2-(3’-Amino-4’-chlorophenyl)-8-(chloromethyl)-6-oxo-6H-benzopyrano[6,7-

d]oxazole, 3d 

 Starting from benzopyran 1 (0.100 g, 0.44 mmol) in polyphosphoric acid (0.500 g) and 4-

chloro-3-aminobenzoic acid 2d (0.075 g, 0.44 mmol), compound 3d was obtained as a grey 

solid (0.110 g, 70 %). mp = 323.4-324.2 ºC. λmax (MeOH-HEPES 80/20)/nm 341 (log ε 

3.85). 
1
H NMR

 
(DMSO-d6, 400 MHz): δ 5.13 (s, 2 H, CH2), 6.70 (s, 1 H, H-7), 7.32 (dd, J = 

7.6 and 2.0 Hz, 1 H, H-6’), 7.41 (d, J = 7.6 Hz, 1 H, H-5’), 7.64 (d, J = 2.0 Hz, 1 H, H-2’), 

7.95 (s, 1 H, H-4), 8.25 (s, 1 H, H-9) ppm. 
13

C NMR
 
(DMSO-d6, 100.6 MHz): δ = 41.70 

(CH2), 99.76 (C-4), 113.58 (C-2’), 114.27 (C-7), 114.76 (C-8a), 115.54 (C-6’), 115.56 (C-

9), 121.04 (C-4’), 125.03 (C-1’), 130.08 (C-5’), 138.46 (C-9a), 145.40 (C-3’), 150.98 (C-8), 
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151.73 (C-4a), 151.96 (C-3a), 159.59 (C-6), 163.83 (C-2) ppm. IR (KBr 1%): νmax
 
3380, 

2970, 2316, 1722 (br), 1638, 1600, 1567, 1498, 1440, 1406, 1335, 1151, 1084, 997, 882, 

745, 666 cm
-1

. HRMS: m/z (EI): Found [M
+
]: 360.00710; C17H10N2O3Cl2 requires [M

+
]: 

360.00685. 

 

2.2.5. 2-(3’-Dimethylaminophenyl)-8-(chloromethyl)-6-oxo-6H-benzopyrano[6,7-d]oxazole, 

3e 

Starting from benzopyran 1 (0.043 g, 0.19 mmol) in polyphosphoric acid (0.200 g), and 3-

dimethylaminobenzoic acid 2e (0.060 g, 0.19 mmol), compound 3e was obtained as a yellow 

solid (0.047 g, 70 %). mp = 211.2-212.1 ºC. λmax (MeOH-HEPES 80/20)/nm 339 (log ε 

4.02). 
1
H NMR

 
(CDCl3, 400 MHz): δ 3.09 (s, 6 H, N(CH3)2), 4.75 (s, 2 H, CH2), 6.61 (s, 1 

H, H-7), 6.95 (dd, J = 2.2 and 8.2 Hz, 1 H, H-4’), 7.41 (t, J = 8.0 Hz, 1 H, H-5’), 7.58-7.61 

(m, 3 H, H-4, H-2’, H-6’), 8.06 (s, 1 H, H-9) ppm. 
13

C NMR
 
(CDCl3, 100.6 MHz): δ = 40.79 

(N(CH3)2), 41.61 (CH2), 99.84 (C-4), 111.35 (C-2’), 114.52 (C-9), 114.72 (C-7), 114.83 (C-

8a), 116.62 (C-4’), 116.72 (C-6’), 126.75 (C-1’), 129.88 (C-5’), 139.42 (C-9a), 149.78 (C-

8), 150.40 (C-3’), 152.07 (C-4a), 152.62 (C-3a), 160.16 (C-6), 165.77 (C-2) ppm. IR (KBr 

1%): νmax
 
2969, 2315, 1715 (br), 1633, 1594, 1553, 1502, 1436, 1406, 1349, 1285, 1239, 

1140, 1055, 991, 949, 918, 875, 842, 777, 724, 680 cm
-1

. HRMS: m/z (EI): Found [M
+
]: 

354.07808; C19H15N2O3Cl requires [M
+
]: 354.07712. 

 

2.2.6. 2-(4’-Dimethylaminophenyl)-8-(chloromethyl)-6-oxo-6H-benzopyrano[6,7-d]oxazole, 

3f 

Starting from benzopyran 1 (0.060 g, 0.26 mmol) in polyphosphoric acid (0.200 g), 4-

dimethylaminobenzoic acid 2f (0.043 g, 0.26 mmol), compound 3f was obteined as a yellow 

solid (0.064 g, 69 %). mp = 221.3-222.1 ºC. λmax (MeOH-HEPES 80/20)/nm 361 (log ε 

4.02). 
1
H NMR

 
(CDCl3, 400 MHz): δ 3.11 (s, 6 H, N(CH3)2), 4.74 (s, 2 H, CH2), 6.58 (s, 1 
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H, H-7), 6.95 (dd, J = 2.0 and 7.2 Hz, 2 H, H-3’ and H-5’), 7.53 (s, 1 H, H-4), 7.94 (s, 1 H, 

H-9), 8.10 (dd, J = 2.4 and 7.2 Hz, 2 H, H-2’ and H-6’) ppm. 
13

C NMR
 
(CDCl3, 100.6 

MHz): δ = 40.11 (N(CH3)2), 41.69 (CH2), 99.42 (C-4), 111.61 (C-3’ and C-5’), 112.82 (C-

1’), 113.17 (C-9), 114.28 (C-7), 114.44 (C-8a), 129.47 (C-2’ and C-6’), 140.09 (C-9a), 

149.93 (C-8), 151.54 (C-4a), 152.68 (C-3a), 152.85 (C-4’), 160.45 (C-6), 166.24 (C-2) ppm. 

IR (KBr 1%): νmax
 
2918, 2849, 2315, 1727 (br), 1630, 1607, 1511, 1436, 1373, 1345, 1262, 

1190, 1138, 1041, 944, 867, 820, 735, 696 cm
-1

. HRMS: m/z (EI): Found [M
+
]: 354.07744; 

C19H15N2O3Cl requires [M
+
]: 354.07712. 

 

2.1.7. 8-(Chloromethyl)-2-(4’-oxo-4H-benzopyran-2’-yl)-6H-benzopyrano[6,7-d]oxazole, 3g 

 Starting from benzopyran 1 (0.100 g, 0.44 mmol) in polyphosphoric acid (0.500 g) and 

chromone-2-carboxylic acid 2h (0.167 g, 0.87 mmol), compound 3g was obtained as a 

yellow solid (0.086 g, 51 %). mp = 224.5-225.5 ºC. λmax (MeOH-HEPES 80/20)/nm 306 (log 

ε 3.85). 
1
H NMR

 
(CDCl3, 400 MHz): δ 4.77 (s, 2 H, CH2), 6.67 (s, 1 H, H-7), 7.38 (s, 1 H, 

H-3’), 7.52 (dt, J = 1.0 and 7.6 Hz, 1 H, H-6’), 7.71 (s, 1 H, H-4), 7.33 (dd, J = 7.6 and 1.0 

Hz, 1 H, H-8’), 7.82 (dt, J = 1.6 and 7.6 Hz, 1 H, H-7’), 8.25 (s, 1 H, H-9), 8.28 (dd, J = 7.6 

and 1.6 Hz, 1 H, H-5’) ppm. 
13

C NMR
 
(CDCl3, 100.6 MHz): δ = 41.48 (CH2), 100.55 (C-4), 

113.23 (C-3’), 115.76 (C-7), 116.12 (C-8a), 116.68 (C-9), 118.54 (C-8’), 124.54 (C-4a’), 

126.00 (C-5’), 126.22 (C-6’), 134.02 (C-7’), 138.32 (C-8) 149.35 (C-9a), 150.43 (C-2’), 

152.42 (C-4a), 153.37 (C-3a), 156.14 (C-8a’), 157.56 (C-2), 159.40 (C-6), 177.35 (C-4’) 

ppm. IR (KBr 1%): νmax
 
3429, 2921, 1738, 1648, 1462, 1438, 1390, 1346, 1286, 1198, 1022, 

951, 900, 870, 842, 776, 750, 732 cm
-1

. HRMS: m/z (EI): Found [M
+
]: 379.02551; C20H10NO5Cl 

requires [M
+
]: 379.02475. 
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2.3. General procedure for the synthesis of conjugates 5a-g 

The chloromethyl precursor 3a-g was dissolved in dry DMF (3 mL), potassium fluoride (3 

equiv) and butyric acid (1 equiv) were added.  The reaction mixture was stirred at room 

temperature for 24 h.  The solvent was removed by evaporation under reduced pressure and 

the required conjugate was obtained as a solid. The crude residue of compounds 5a, 5c and 

5g were purified by column chromatography using chloroform/methanol (95:5) as eluent.  

 

2.3.1. (6-Oxo-2-phenyl-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl butyrate, 5a 

 Starting from compound 3a (0.090 g, 0.29 mmol) in dry DMF (3 mL), potassium fluoride 

(3 equiv, 0.050 g, 0.86 mmol) and butyric acid (1 equiv, 0.026 mL, 0.29 mmol), the ester 

conjugate 5a was obtained as a yellow solid (0.050 g, 48 %). mp = 246.5-247.3 ºC. λmax 

(MeOH-HEPES 80/20)/nm 339 (log ε 3.86). 
1
H NMR

 
(CDCl3, 400 MHz): δ = 1.01 (t, J = 

7.6 Hz, 3 H, CH3), 1.75 (sext, J = 7.6 Hz, 2 H, β-CH2), 2.48 (t, J = 7.2 Hz, 2 H, α-CH2), 5.38 

(s, 2 H, CH2), 6.52 (s, 1 H, H-7), 7.54-7.61 (m, 4 H, H-4, H-3’, H-4’ and H-5’), 7.91 (s, 1 H, 

H-9), 8.25-8.28 (m, 2 H, H-2’ and H-6’) ppm. 
13

C NMR
 
(CDCl3, 100.6 MHz): δ = 13.20 

(CH3), 17.88 (β-CH2), 35.44 (α-CH2), 60.74 (CH2), 99.37 (C-4), 111.85 (C-7), 113.51 (C-9), 

114.36 (C-8a), 125.72 (C-1’), 127.41 (C-2’ and C-6’), 128.64 (C-3’ and C-5’), 131.86 (C-

4’), 138.87 (C-9a), 148.99 (C-8), 151.48 (C-4a), 152.06 (C-3a), 159.79 (C-6), 164.49 (C-2), 

172.24 (C=O ester) ppm. IR (KBr 1%): νmax
 
3355, 2970, 2404, 1727 (br), 1634, 1608, 1556, 

1484, 1443, 1405, 1354, 1300, 1263, 1189, 1140, 1095, 993, 872, 747, 704, 523 cm
-1

. 

HRMS: m/z (ESI): Found [M
+
+1]: 364.11693; C21H18NO5 requires [M

+
+1]: 364.11795. 

 

2.3.2. (2-(3’-Aminophenyl)-6-oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl butyrate, 5b 

Starting from compound 3b (0.083 g, 0.25 mmol) in dry DMF (3 mL), potassium fluoride (3 

equiv, 0.044 g, 0.75 mmol) and butyric acid (1 equiv, 0.023 mL, 0.25 mmol), the ester 

conjugate 5b was obtained as a yellow solid (0.030 g, 46 %). mp = 252.3-253.1 ºC. λmax 
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(MeOH-HEPES 80/20)/nm 343 (log ε 3.36). 
1
H NMR

 
(CDCl3, 400 MHz): δ = 1.01 (t, J = 

7.6 Hz, 3 H, CH3), 1.68 (sext, J = 7.6 Hz, 2 H, β-CH2), 2.47 (t, J = 7.6 Hz, 2 H, α-CH2), 5.37 

(s, 2 H, CH2), 6.51 (s, 1 H, H-7), 6.88 (dd, J = 2.0 and 7.6 Hz, 1 H, H-4’), 7.32 (t, J = 7.6 

Hz, 1 H, H-5’), 7.55 (t, J = 1.6 Hz, 1 H, H-2’), 7.57 (s, 1 H, H-4), 7.63 (dd, J = 1.6 and 7.6 

Hz, 1H, H-6’), 7.87 (s, 1 H, H-9) ppm. 
13

C NMR
 
(CDCl3, 100.6 MHz): δ = 13.59 (CH3), 

18.20 (β-CH2), 35.91 (α-CH2), 61.22 (CH2), 99.76 (C-4), 112.23 (C-7), 113.70 (C-2’), 

113.84 (C-9), 114.75 (C-8a), 118.08 (C-6’), 118.91 (C-4’), 126.95 (C-1’), 130.06 (C-5’), 

139.31 (C-9a), 147.00 (C-3’), 149.49 (C-8), 151.88 (C-4a), 152.48 (C-3a), 160.32 (C-6), 

165.22 (C-2), 171.72 (C=O ester) ppm. IR (KBr 1%): νmax
 
3377, 2969, 2315, 1719 (br), 

1634, 1595, 1557, 1489, 1438, 1406, 1328, 1141, 1094, 993, 876, 743, 663 cm
-1

. HRMS: m/z 

(ESI): Found [M
+ 

+1]: 379.12757; C21H19N2O5 requires [M
+
+1]: 379.12885. 

 

2.3.3. (2-(3’-Amino-4’-methylphenyl)-6-oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl 

butyrate, 5c 

 Starting from compound 3c (0.100 g, 0.44 mmol) in dry DMF (3 mL), potassium fluoride (3 

equiv, 0.077 g, 1.32 mmol) and butyric acid (1 equiv, 0.067 mL, 0.44 mmol), the ester 

conjugate 5c was obtained as a yellow solid (0.080g, 69 %). mp = 232.0-234.0 ºC. λmax 

(MeOH-HEPES 80/20)/nm 344 (log ε 3.78). 
1
H NMR

 
(CDCl3, 400 MHz): δ = 1.01 (t, J = 

7.6 Hz, 3 H, CH3), 1.75 (sext, J = 7.6 Hz, 2 H, β-CH2), 2.27 (s, 3 H, CH3), 2.47 (t, J = 7.6 

Hz, 2 H, α-CH2), 5.38 (s, 2 H, CH2), 6.52 (s, 1 H, H-7), 7.22 (d, J = 7.6 Hz, 1 H, H-5’), 7.54-

7.63 (m, 3 H, H-4, H-5’and H-6’), 7.88 (s, 1 H, H-9) ppm. 
13

C NMR
 
(CDCl3, 100.6 MHz): δ 

= 13.67 (CH3), 17.65 (CH3), 18.35 (β-CH2), 35.91 (α-CH2), 61.24 (CH2), 99.69 (C-4), 

112.15 (C-7), 113.48 (C-9), 113.60 (C-2’), 114.65 (C-8a), 118.19 (C-6’), 124.71 (C-1’), 

127.26 (C-4’), 131.14 (C-5’), 139.45 (C-9a), 145.17 (C-3’), 149.52 (C-8), 151.7 (C-4a), 

152.49 (C-3a), 160.37 (C-6), 165.46 (C-2), 172.72 (C=O ester) ppm. IR (KBr 1%): νmax
 

3462, 3357, 2966, 2934, 2875, 2315, 1734, 1718, 1634, 1606, 1557, 1522, 1491, 1437, 
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1420, 1333, 1302, 1247, 1166, 1140, 1058, 995, 960, 870, 842, 811, 755, 739, 726, 664 cm
-

1
. HRMS: m/z (ESI): Found [M

+
+1]: 393.14611; C22H21N2O5 requires [M

+
+1]: 393.14513. 

 

2.3.4. (2-(3’-Amino-4’-chlorophenyl)-6-oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl 

butyrate, 5d 

 Starting from compound 3d (0.050 g, 0.14 mmol) in dry DMF (3 mL), potassium fluoride 

(3 equiv, 0.024 g, 0.42 mmol) and butyric acid (1 equiv, 0.013 mL, 0.14 mmol), the ester 

conjugate 5d was obtained as a yellow solid (0.050 g, 70 %). mp = 201.3-202.0 ºC. λmax 

(MeOH-HEPES 80/20)/nm 345 (log ε 4.04). 
1
H NMR

 
(CDCl3, 400 MHz): δ 1.01 (t, J = 7.6 

Hz, 3 H, CH3), 1.75 (sext, J = 7.6 Hz, 2 H, β-CH2), 2.47 (t, J = 7.6 Hz, 2 H, α-CH2), 5.38 (s, 

2 H, CH2), 6.52 (s, 1 H, H-7), 7.55 (dd, J = 2.0 and 7.6 Hz, 1 H, H-6’), 7.58 (s, 1 H, H-4), 

7.65 (d, J = 2.0 Hz, 1 H, H-2’) 7.88 (s, 1 H, H-9) ppm. 
13

C NMR
 
(CDCl3, 100.6 MHz): δ = 

13.66 (CH3), 18.34 (β-CH2), 35.90 (α-CH2), 61.19 (CH2), 99.80 (C-4), 112.35 (C-7), 113.93 

(C-9), 114.32 (C-2’), 114.88 (C-8a), 118.16 (C-6’), 123.31 (C-4’), 125.51 (C-1’), 130.20 (C-

5’), 139.24 (C-9a), 143.51 (C-3’), 149.42 (C-8), 151.97 (C-4a), 152.47 (C-3a), 160.21 (C-6), 

164.41 (C-2), 172.71 (C=O ester) ppm. νmax/cm
-1 

3450, 3365, 2966, 2931, 2875, 2317, 1733 

(br), 1634, 1599, 1558, 1503, 1439, 1328, 1264, 1167, 1139, 1098, 1046, 996, 955, 871, 

840, 815, 740, 726, 664. HRMS: m/z (ESI): Found [M
+
+1]: 413.08861; C21H18N2O5Cl requires 

[M
+
+1]: 413.08988. 

 

2.3.5. (2-(3’-(Dimethylamino)phenyl)-6-oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl 

butyrate, 5e 

 Starting from compound 3e (0.030 g, 0.08 mmol) in dry DMF (3 mL), potassium fluoride (3 

equiv, 0.050 g, 0.24 mmol) and butyric acid (1 equiv, 0.007 mL, 0.08 mmol), the ester 

conjugate 5e was obtained as a yellow solid (0.024 g, 70 %). mp = 198.4-199.2 ºC. λmax 

(MeOH-HEPES 80/20)/nm 341 (log ε 3.98). 
1
H NMR

 
(CDCl3, 400 MHz): δ = 1.01 (t, J =7.6 
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Hz, 3 H, CH3), 1.75 (sext, J = 7.6 Hz, 2 H, β-CH2), 2.47 (t, J = 7.6 Hz, 2 H, α-CH2), 3.07 (s, 

6 H, N(CH3)2), 5.36 (s, 2 H, CH2), 6.49 (s, 1 H, H-7), 6.92 (dd, J = 8.0 and 2.4 Hz, 1 H, H-

4’), 7.39 (t, J = 8.0 Hz, 1 H, H-5’), 7.53-7.55 (m, 2 H, H-2’ and H-6’), 7.57 (s, 1 H, H-4), 

7.87 (s, 1 H, H-9) ppm. 
13

C NMR
 
(CDCl3, 100.6 MHz): δ = 13.66 (CH3), 18.34 (β-CH2), 

35.89, (α-CH2), 40.45 (N(CH3)2), 61.21 (CH2), 99.72 (C-4), 110.90 (C-2’), 112.13 (C-7), 

113.71 (C-9), 114.65 (C-8a), 115.81 (C-6’), 116.61 (C-4’), 126.62 (C-1’), 129.74 (C-5’), 

139.37 (C-9a), 149.49 (C-8), 150.68 (C-3’), 151.79 (C-4a), 152.48 (C-3a), 160.34 (C-6), 

165.80 (C-2), 172.69 (C=O ester) ppm. IR (KBr 1%): νmax
 
3414, 2963, 2301, 1730 (br), 

1633, 1599, 1552, 1498, 1438, 1403, 1360, 1328, 1263, 1141, 1061, 990, 959, 886, 781, 

723, 679 cm
-1

. HRMS: m/z (ESI): Found [M
+
+1]: 407.15928; C23H23N2O5 requires [M

+
+1]: 

407.16015. 

 

2.3.6. (2-(4’-(Dimethylamino)phenyl)-6-oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl 

butyrate, 5f 

 Starting from compound 3f (0.025 g, 0.07 mmol) in dry DMF (3 mL), potassium fluoride (3 

equiv, 0.012 g, 0.21 mmol) and butyric acid (1 equiv, 0.006 mL, 0.07 mmol), the ester 

conjugate 5f was obtained as a yellow solid (0.020 g, 71 %). mp = 200.4-201.4 ºC. λmax 

(MeOH-HEPES 80/20)/nm 361 (log ε 3.90). 
1
H NMR

 
(CDCl3, 400 MHz): δ = 1.01 (t, J = 

7.6 Hz, 3 H, CH3), 1.72 (sext, J = 7.6 Hz, 2 H, β-CH2), 2.47 (t, J = 7.6 Hz, 2 H, α-CH2), 5.37 

(s, 2 H, CH2), 6.49 (s, 1 H, H-7), 6.78 (d, J = 7.6 Hz, 2 H, H-3’ and H-5’), 7.53 (s, 1 H, H-4), 

7.79 (s, 1 H, H-9), 8.10 (d, J = 7.6 Hz, 2 H, H-2’ and H-6’) ppm. 
13

C NMR
 
(CDCl3, 100.6 

MHz): δ = 13.67 (CH3), 18.35 (β-CH2), 35.89, (α-CH2), 40.08 (N(CH3)2), 61.30 (CH2), 

99.36 (C-4), 111.57 (C-3’ and C-5’), 112.50 (C-1’), 112.60 (C-9), 112.80 (C-7), 114.32 (C-

8a), 129.46 (C-2’and C-6’), 140.05 (C-9a), 149.67 (C-8), 151.34 (C-4a), 152.57 (C-3a), 

152.85 (C-4’), 160.64 (C-6), 166.19 (C-2), 172.74 (C=O ester)  ppm. IR (KBr 1%): νmax
 

3416, 2964, 2300, 1729 (br), 1635, 1595, 1549, 1490, 1440, 1401, 1359, 1328, 1261, 1130, 
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1059, 992, 960, 885, 783, 725, 669 cm
-1

. HRMS: m/z (ESI): Found [M
+
+1]: 407.15900; 

C23H23N2O5 requires [M
+
+1]: 407.16015. 

 

2.3.7. (6-Oxo-2-(4’-oxo-4H-benzopyran-2’-yl)-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl 

butyrate, 5g 

 Starting from compound 3g (0.031 g, 0.08 mmol) in dry DMF (3 mL), potassium fluoride 

(3 equiv, 0.015 g, 0.26 mmol) and butyric acid (1 equiv, 0.008 mL, 0.08 mmol), the ester 

conjugate 5g was obtained as a yellow solid (0.030 g, 85%). mp = 237.4-238.4 ºC. λmax 

(MeOH-HEPES 80/20)/nm 348 (log ε 3.53). 
1
H NMR

 
(CDCl3, 400 MHz): δ = 1.01 (t, J = 

7.6 Hz, 3 H, CH3), 1.75 (sext, J = 7.6 Hz, 2 H, β-CH2), 2.47 (t, J = 7.6 Hz, 2 H, α-CH2), 5.39 

(s, 2 H, CH2), 6.56 (s, 1 H, H-7), 7.34 (s, 1 H, H-3’), 7.50 (dt, J = 7.2 and 1.2 Hz, 1 H, H-6’), 

7.69 (s, 1 H, H-4), 7.71 (dd, J = 8.4 and 0.8 Hz, 1 H, H-8’), 7.80 (dt, J = 7.6 and 1.6 Hz, 1 H, 

H-7’), 8.07 (s, 1 H, H-9), 8.25 (dd, J = 1.6 and 8.0 Hz, 1 H, H-5’) ppm. 
13

C NMR
 
(CDCl3, 

100.6 MHz): δ = 13.65 (CH3), 18.32 (β-CH2), 35.85 (α-CH2), 61.08 (CH2) 100.43 (C-4), 

113.15 (C-3’), 113.31 (C-7), 115.86 (C-9), 116.03 (C-8a), 118.50 (C-8’), 124.48 (C-4a’), 

125.92 (C-6’), 126.17 (C-5’), 134.86 (C-7’), 138.25 (C-8), 149.05 (C-9a), 150.38 (C-2’), 

152.28 (C-4a), 153.13 (C-3a), 156.06 (C-8a’), 157.43 (C-2), 159.52 (C-6), 172.64 (C=O 

ester), 177.25 (C-4’) ppm. IR (KBr 1%): νmax
 
3441, 2963, 2285, 1734 (br), 1649 (br), 1466, 

1439, 1385, 1329, 1248, 1127, 1051, 955, 871, 843, 815, 778, 754 cm
-1

. HRMS: m/z (ESI): 

Found [M
+
+1]: 432.10646; C24H18NO7 requires [M

+
+1]: 432.10778. 

 

 

2.4. Photolysis general 

A 1  10
-4

 M methanol/HEPES (80:20) solution of compounds 5a-g (5 mL) were placed in a 

quartz tube and irradiated in a Rayonet RPR-100 reactor at the desired wavelength. The 

lamps used for irradiation were at 254 nm, 300 nm and 350 nm (± 10 nm). HEPES buffer 
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solution was prepared in distilled water with HEPES (4-(2-hydroxyethyl)-1-piperazine 

ethanesulfonic acid) (10 mM), sodium chloride (120 mM), potassium chloride (3 mM), 

calcium chloride (1 mM) and magnesium chloride (1mM) and pH adjusted to 7.2 with 

aqueous 1 M sodium hydroxide solution. Aliquots of 100 µL were taken at regular intervals 

and analysed by RP-HPLC using a Licrospher 100 RP18 (5 μm) column in a JASCO HPLC 

system composed by a PU-2080 pump and a UV-2070 detector with ChromNav software. 

The eluent was acetonitrile/water, 75:25 at a flow rate of 0.8 mL/min for all compounds, 

previously filtered through a Millipore, type HN 0.45 µm filter and degassed by ultra-sound 

for 30 min. The chromatograms were traced by detecting UV absorption at the wavelength 

of maximum absorption for each compound (retention time: 5a, 6.6; 5b, 7.0; 5c, 6.7; 5d, 6.5; 

5e, 9.6; 5f, 11.9; 5g, 7.3 min). 

 

 

3. Results and Discussion 

 

3.1. Synthesis of butyric acid conjugates 5a–g 

The synthesis of chloromethylated 6-oxo-6H-benzopyrano[6,7-d]oxazoles 3a-f was achieved by a 

condensation reaction between 6-amino-4-(chloromethyl)-7-hydroxy-2H-benzopyran-2-one [23] 1 

and benzoic acid 2a or its derivatives; namely 3-aminobenzoic acid 2b, 3-amino-4-methylbenzoic 

acid 2c, 3-amino-4-chlorobenzoic acid 2d, 3-(dimethylamino)benzoic acid 2e and 4-

(dimethylamino)benzoic acid 2f, mediated by polyphosphoric acid (PPA) at 130º C according to a 

known procedure [23]. Reaction of precursor 1 with 4-oxo-4H-benzopyran-2-carboxylic acid 2g in 

the same conditions gave compound 3g (Scheme 1, Table 1). 

 

<Scheme 1> 
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Compounds 3a-g were used in the derivatisation of butyric acid 4, in the presence of potassium 

fluoride in N,N-dimethylformamide at room temperature, resulting in the ester prodrugs 5a-g in 

moderate to good yields (Scheme 2, Table 1).  

All compounds were new and fully characterized by high-resolution mass spectrometry, IR, 
1
H and 

13
C NMR spectroscopy. The IR spectra of compounds 5a-g displayed stretching bands of the ester 

carbonyl groups from 1727 to 1734 cm
-1

. 
1
H NMR spectra showed signals of butyric acid, the 

methyl (δ 1.01 ppm) and two methylenes (δ 1.68-1.76 and 2.47-2.48 ppm, respectively). The 

heterocycle methylene group, adjacent to the ester link, was visible for all compounds (δ 5.36-5.40 

ppm). The newly formed ester linkages were confirmed by 
13

C NMR spectra signals of the carbonyl 

group, at about δ 171.7-172.7 ppm.  

 

<Scheme 2> 

<Table 1> 

 

3.2 Evaluation of the photophysical properties of butyric acid conjugates 5a-g 

Fundamental UV–vis photophysical characterisation of conjugates 5a-g was carried out to acquire 

the parameters required for monitoring the photolytic process and to assess their sensitivity to light. 

The absorption and emission spectra of degassed 10
-5

 M solutions in methanol/HEPES 

buffer (80:20) solution of conjugates 5a-g and precursors 3a-g were measured and the 

corresponding data are presented in Table 1. Relative fluorescence quantum yields (ΦF) 

were calculated using 9,10-diphenylanthracene in ethanol (ΦF 0.95) [24]
 
as standard. For the 

ΦF determination, the fluorescence standard was excited at the wavelengths of maximum 

absorption found for each compound and in all fluorimetric measurements the absorbance of 

the solution did not exceed 0.1. Maximum absorption wavelengths (λabs) in methanol/HEPES 

buffer (80:20) solutions of the new conjugates 5a-g displayed a bathochromic shift from 13 to 35 

nm (λabs 339-361 nm) in comparison with compound 6, previously obtained by our research group 
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(Figure 1) [22]. The fluorescence spectra in the same solvent revealed that emission maxima (λem) 

of conjugates 5a-g occurred in the range 418-463 nm, with relative fluorescent quantum yields 

inferior to the of analogue 6, with exception of conjugate 5g (~ four times superior), and good large 

Stokes’ shifts (79-125 nm). 

 

<Figure 1> 

 

The conjugates were further characterised using time-resolved fluorescence spectroscopy and after 

an initial study monitoring the decay at 450 nm revealed that the decay kinetic was 

multiexponential (data not shown) a determination of decay associated spectra was made by 

measuring the fluorescence decay at 5 nm increments, over the range 360 nm to 625 nm, for equal 

time periods. A global analysis of each dataset was then made, with the need to use the sum of three 

exponential decay components in each case to give a satisfactory fit to the data.  The data, given in 

Figure 2, show that the shorter-wavelength spectrum is associated with the shorter-lived decay and 

the longer-lived decay with the longer wavelength spectrum. This is consistent with the emissions 

having the same origin [25] and previously we have reported these to relate to the conjugate, ion 

pair and photocleaved species [16]. It is expected that the light intensities present in this time-

correlated single-photon counting experiment should not cause significant photocleaveage of the 

conjugates. However, as this cannot be completely ruled out these data are indicative of the states 

present and via the lifetimes the rates (1/) of the decay processes.  

 

<Figure 2> 

 

Although the decay associated spectra are good to identify the species present and their contribution 

to the overall fluorescence emission it should be kept in mind that since they are basically the pre-

exponential weighted by the lifetime, they do not represent the relative concentrations of the species 
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present. This is better represented by the normalised pre-exponential values and this is illustrated in 

Figure 3 for the decay monitored at 425 nm, which is close to the peak emission.  

 

<Figure 3> 

 

These data show that the decay kinetic, in the main, is dominated by the shorter-lived component 

(shorter wavelength species) which is most likely relates to the conjugate. The minor contribution 

comes from the longer-lived (longer wavelength species) and hence can relate to the cleaved 

species. In this case the intermediate species would be the ion pair. 

 

Coumarin-caged esters, phosphates, carboxylates, and sulfonates as well as carbonate, carbamate, 

and anhydride derivatives have been reported as interesting photosensitive compounds with an 

emphasis on biological applications [26-30].
 

Ever since the introduction of coumarins as 

photoactivatable releasing groups, several alterations in the coumarin skeleton have been carried 

out; namely the nature of substituents at positions 6 and 7, as well as by the addition of a third 

aromatic ring, a benzene nucleus or an oxazole moiety [3,15,16,19-22]. The later modifications 

were carried out by our research group, and coumarin fused oxazoles (eg. 6-oxo-6H-

benzopyrano[6,7-d]oxazoles) were used in the caging of butyric acid [22]. The most advantageous 

results were found with (2-methyl-6-oxo-6H-benzopyran[6,7-d]oxazol-8-yl)methyl group with a 

linkage to butyric acid through pyranone ring. However, improvements on the release parameters of 

the active molecule at longer wavelengths are still desired for bioapplications. As a result, a new set 

of 6-oxo-6H-benzopyrano[6,7-d]oxazoles were synthesised. Instead of possessing the methyl group 

(Figure 1), (hero)aromatic substituents at position 2 of the heterocyclic system were employed. The 

groups used were phenyl, 3-aminophenyl, 3-amino-4-methylphenyl, 3-amino-4-chlorophenyl, 3-

(dimethylamino)phenyl and 4-oxo-4H-benzopyran-2-yl. Evaluation of the new coumarin fused 

oxazoles as photosensitive units for carboxylic acids, using butyric acid as a model compound was 
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achieved. Accordingly, conjugates 5a-g were irradiated at 254 nm, 300 nm and 350 nm in mixtures 

of methanol with aqueous HEPES buffer in 80:20 solutions, in a Rayonet RPR-100 reactor, and 

kinetic data were collected. The course of the photolytic reaction was followed by reverse phase 

HPLC with UV detection. The plots of peak area (A) of the starting material versus irradiation time 

were obtained for each compound, at chosen wavelengths. The peak areas were determined by 

HPLC, which revealed a gradual decrease with time and were taken as the average of three runs. 

The irradiation time given represents the time necessary for the consumption of the starting 

materials until less than 5 % of the initial area was detected (Table 2). For each compound, based on 

HPLC data, the plot of ln A versus irradiation time showed a linear correlation for the disappearance 

of the starting material. This is indicative of a first order reaction, obtained by the linear least 

squares methodology for a straight line. The photochemical quantum yields (ΦPhot) were calculated 

based on half-lives (t1/2), molar extinction coefficients () and the incident photon flux (I0), which 

was determined by potassium ferrioxalate actinometry [31]. 

The results at the various irradiation wavelengths revealed the significant influence of the 

(hetero)aromatic substitution on the oxazole ring; namely at position 2 of the oxo-

benzopyranoxazole, in the irradiation time (tirr) necessary to release butyric acid (Table 2). 

In comparison with conjugate 6, bearing a methyl group, the most relevant result is related 

to the decrease of irradiation times at 350 nm for all cages (except for 5b, which is similar). 

In the case of compound 5a with the phenyl group (tirr 55 min) this was more than five times 

and about twenty-five times in the case of compound 5g, which possesses the 4-oxo-4H-

benzopyran-2-yl group. These results are advantageous for biological purposes. On the other 

hand, by comparing conjugates 5c and 5d, the presence at the benzene ring of a methyl 

group promotes faster photolysis than the chlorine atom in all wavelengths of irradiation. It 

is interesting to note that the shortest-lived decay component (exciting at 336 nm) occurs in 

compounds 5f and 5g, which signifies that non-radiative processes are more dominant in 

these compounds. Considering the practical applications of the present compounds, although 
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they cleaved readily at 254 nm (the fastest were 5a with 13 min and 5g with 18 min), and 

also at 300 nm (the fastest again were 5g with 14 min, followed by 5a with 46 min), 

photolysis at these shorter wavelengths (higher energies) can be harmful to biological media. 

Hence, photolysis at 350 nm and longer wavelengths is preferable and the results obtained 

encourage us to continue the development of new oxo-benzopyranoxazoles as alternative 

photosensitive carboxylic acid caging compounds.  

 

<Table 2> 

 

As stated earlier, the photolysis process was monitored by HPLC/UV detection. Nevertheless, the 

release of butyric acid, as the expected product of the cage photolysis, was also followed by 
1
H 

NMR in a methanol-d4/D2O (80:20) solution to provide further evidence. Upon irradiation at 350 

nm of a solution of butyric acid conjugate 5a, the signal due to the benzylic-type CH2 at position 4 

of the pyran ring, observable at about δ 5.3 ppm gradually decreased with time. The same 

observation occurred with the signals related to the butyric acid in the conjugated form at about δ 

2.5, 1.7 and 1.0 ppm, giving rise to a close set of signals corresponding to butyric acid in its free 

form at about δ 2.3, 1.6 and 0.90 ppm, respectively (see Figure 4 as representative example). NMR 

monitoring was carried out with a 4.4 × 10
-4

 M solution, which led to an expected increase in the 

photolysis time for the complete release of the molecule, when compared to the irradiation times in 

Table 2 obtained with dilute solutions. In the reported conditions, at the various wavelengths of 

irradiation, no formation of side or rearrangement products was detected in the monitoring by 

NMR. 

<Figure 4> 

 

Coumarinyl esters are thought to photocleave through an ionic mechanism that involves both 

homolytical or heterolytical fission of the O-CH2 bond, although the latter is energetically favoured 
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(Scheme 3). The homolytic cleavage of the O-C bond, followed by electron transfer, can yield the 

ion pair (a methylenic coumarin carbocation and the leaving group anion), whereas the heterolytic 

cleavage of the O-C bond directly affords the already mentioned ion pair. Once formed, the 

methylenic coumarin carbocation can undergo nucleophilic attack by the solvent to form the final 

products. The ion pair may also recombine to the starting material [3]. The presence of these species 

is consistent with what is observed in the time-resolved fluorescence data. 

 

The behaviour of a variety of coumarinyl methyl esters as photocleavable protecting groups for a 

butyric acid derivative, namely -aminobutyric acid (GABA), has also been explored in previous 

work by the authors [2,15,18,32,33]. The previous findings also confirmed the applicability of such 

heterocycles as phototriggers for GABA at different wavelengths and their behaviour is closely 

related to the one described in the present report, with varying irradiation times to ensure complete 

release of the active molecule, according to the structure of the heterocycle. 

 

4. Conclusion 

 

Chloromethylated coumarin fused oxazoles were synthesised and efficiently used in the 

derivatisation of butyric acid, as a model carboxylic acid drug. The seven new cages based on 6-

oxo-6H-benzopyrano[6,7-d]oxazol-8-yl)methyl groups with various (hetero)aromatic substituents at 

position 2 of the heterocyclic system were revealed to be photo-responsive units upon irradiation at 

various selected wavelengths (254, 300 and 350 nm). Irradiation resulted in the complete release of 

the expected butyric acid. The influence of the substitution at position 2 was confirmed, and in 

comparison with previously reported (2-methyl-6-oxo-6H-benzopyran[6,7-d]oxazol-8-yl)methyl 

group, was found to provide a significant improvement in relation to the photolysis data. Especially 

pertinent when considering the longer wavelengths more suited for bioapplications. Overall, the 

presence of the phenyl group and 4-oxo-4H-benzopyran-2-yl, namely (6-oxo-2-phenyl-6H-
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benzopyrano[6,7-d]oxazol-8-yl)methyl and (6-oxo-2-(4-oxo-4H-benzopyran-2-yl)-6H-

benzopyrano[6,7-d]oxazol-8-yl)methyl groups displayed the best results, with the corresponding 

ester cages activated using short irradiation times (11 min, at 350 nm). Thus, resulting in promising 

moieties for the development of photoactivable fluorescent butyric acid prodrugs. 
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CAPTIONS 

 

Scheme 1. Synthesis of chloromethylated 6-oxo-6H-benzopyrano[6,7-d]oxazoles 3a-g. 

 

Scheme 2. Synthesis of butyric acid cages based on 6-oxo-6H-benzopyrano[6,7-d]oxazol-8-

yl)methyl groups 5a-g. 

 

Scheme 3. Proposed mechanism for the photolysis of butyric acid cages 5. 

  

Table 1. Synthesis, UV/vis absorption and emission data for precursors 3a-g and their conjugates 

5a-g, in methanol/HEPES buffer (80:20) solutions. 

 

Table 2. Irradiation times (tirr, in min), and photochemical quantum yields (ΦPhot, × 10
-3

) for the 

photolysis of conjugates 5a-g at different wavelengths in methanol/HEPES buffer (80:20) solution. 

 

Figure 1. Structure of (2-methyl-6-oxo-6H-benzopyran[6,7-d]oxazol-8-yl)methyl butyrate 6 [22]. 

 

Figure 2. Decay associated spectra for compounds 5a to 5g, excited at 336 nm. The dotted lines 

signify the overall emission spectrum (sum of the decay associated spectra). 

 

Figure 3. Normalised pre-exponential values for compounds 5a to 5g, excited at 336 nm, with the 

decay monitored at 425 nm.
 

 

Figure 4. Partial 
1
H NMR spectra in methanol-d4/D2O (80:20) of the photolysis of conjugate 5a (C 

= 4.4 × 10
-4

 M) at 350 nm: (a) before irradiation; (b) after irradiation for 30 min; (c) after irradiation 

for 60 min; (d) sample of free butyric acid. 
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Scheme 1 
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Scheme 2 
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Scheme 3 
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TABLES 

 

Table 1 

Compound 

Yield 

(%) 

Absorption Emission 

λmax (nm) log ε λem  (nm) ΦF Stokes’ shift (nm) 

3a 62 341 3.98 397 0.06 56 

3b 89 340 3.90 428 0.01 88 

3c 54 342 3.46 423 0.02 81 

3d 70 341 3.85 418 0.01 77 

3e 70 339 4.02 465 0.004 127 

3f 69 361 4.02 417 0.02 56 

3g 51 306 3.85 444 0.04 138 

5a 48 339 3.86 418 0.07 79 

5b 46 337 3.36 426 0.03 83 

5c 69 345 4.04 430 0.01 85 

5d 70 344 3.78 456 0.07 112 

5e 70 341 3.98 463 0.003 125 

5f 71 361 3.90 455 0.02 116 

5g 85 347 3.53 451 0.39 103 

6 [22] 95 326 3.83 424 0.10 98 
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Table 2 

Compound 

254 nm 300 nm 350 nm 

tirr ΦPhot tirr ΦPhot tirr ΦPhot 

5a 13 0.486 46 0.220 55 0.132 

5b 30 1.42 149 0.166 291 0.080 

5c 35 0.510 127 0.071 160 0.052 

5d 58 0.322 195 0.042 193 0.042 

5e 79 0.152 170 0.355 243 0.207 

5f 68 0.203 58 0.124 40 0.158 

5g 18 1.80 14 0.213 11 0.153 

6[22] 45 6.59 33 6.59 285 1.04 
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FIGURES 

 
Figure 1 
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Figure 2 
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Figure 3 
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Figure 4  

 

 

 

 

 

 


