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Objective: The purpose of this study is to elucidate the behavior of retinyl acetate in penetrating human skinwith-
out the presence of enhancers by using confocal Raman spectroscopy and molecular dynamics simulation.
Methods: In this study, in vivo confocal Raman spectroscopy was combined with molecular dynamics simulation
to investigate the transdermal permeation of the aqueous suspension of retinyl acetate.
Results: Permeation was measured after 30 min, and retinyl acetate was found up to 20 μm deep inside the stra-
tum corneum. The delivery of retinyl acetate inside a skinmembranemodel was studied bymolecular dynamics.
The membrane model that was used represented normal young skin containing a lipid bilayer with 25% cer-
amide, 36% fatty acid, 30% cholesterol, and 6% cholesterol sulfate.
Conclusion: Spectroscopy data indicate that retinyl acetate permeates into the stratum corneum. Molecular dy-
namics data showed that retinyl acetate permeates in the membrane model and that their final location is
deep inside the lipid bilayer. We showed, for the first time, a correlation between Raman permeation data and
computational data.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

According to several authors, vitamin A and its derivatives provide
topical protection against the effects of photoaging in skin [1,2] and se-
vere acne [3–6], and they may improve skin elasticity by increasing the
number and activity of fibroblasts [6]. This vitamin is significantly
absorbed by human skin when it is applied with water in an oil emul-
sion or in a hydro-alcoholic gel. Among the vitaminAderivatives, retinyl
acetate (RA) is better tolerated by skin than retinol is [7]. RA is the vita-
min A derivative that is most common in cosmetic products, and it can
be encapsulated for skin application [8].

The first barrier for RA transdermal permeation is the stratum
corneum (SC), which is the outer layer that provides the main obstacle
against microorganisms and water loss [9]. The SC thickness varies ac-
cording to body site. In the cheek region, the SC thickness is 12 μm to
16 μm; in the back region, it is approximately 29 μm; and in the volar
forearm region, it is 18 μm to 22 μm [10,11]. The intercellular lipid la-
mellae of the SC may be represented by a lipid bilayer that is predomi-
nantly composed of ceramides, cholesterol, and fatty acids [12–14].
The composition of the lipid bilayer dictates the affinity and transport
of the vitamin through membrane [15].

The penetration process and molecule transport are usually studied
by complementary techniques, such as in vivo experiments and compu-
tational simulations [13–17]. Molecular dynamics simulations repro-
duce the behavior of membranes [18] in a large-scale temporal
approach [19], particularly when using a coarse grained (CG) molecular
approach [20–22]. Martins et al. recently elaborated a cosmetic nano
formulation for in vitro transdermal permeation analysis. Usingmolecu-
lar dynamics, they confirmed thepermeation of the formulation into the
lipid bilayer in silico model [23]. Other approaches, such as in vivo con-
focal Raman spectroscopy, may be combined with in silico techniques
to understand the permeation process of compounds in human skin.

In vivo confocal Raman spectroscopy is a powerful non-invasive
technique that allows an analysis of skin constituents [24–29] related
to biochemical composition, permeation processes [27–30] of the skin
and RA, and it can replace other methods such as skin biopsy and tape
tripping [31,32].

Confocal Raman equipment can detect skin profiles from the surface
to a depth of 175 μm [33]. This technique is used to investigate the per-
meation of enhancers on trans-retinol delivery into skin by using differ-
ent formulations, as described previously [26,34]. The combination of in
vivo and in silico techniques is an alternative method that corroborates
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Fig. 1. Confocal Raman system model 3510 showing in detail the CCD detector.
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the understanding of some delivery processes by developing a new
technology or methodology, such as drug delivery [35].

In this study, in vivo confocal Raman spectroscopy was combined
with molecular dynamics simulation to investigate the penetration of
retinyl acetate to elucidate the behavior of RA permeating into human
skin without the presence of enhancers.

2. Methodology

To elucidate the behavior of RA without any interference, water was
used as a vehicle in a suspension with 0.015% retinyl acetate
(500.000 IU/g feed grade; Xiamen Kingdomway Vitamin Corporation,
Xiamen, China). An ultrasonic bath (40 kHz, model USC 1450, Unique,
Brazil) was applied for 30 min to obtain homogeneity. The particle
size was measured using a Particle Size Analyzer Microtrac model
S3550. The particle size analyzer system can detect a minimum aggre-
gate particle size of 0.0255 μm but cannot detect individual molecules
of retinyl acetate. These procedures (ultrasonic bath + particle size
measurement) were always repeated before application on the forearm
skin of the study participant.

2.1. Study Participants

Five healthy study participants (Caucasianwomen, 30±7years old)
were selected, with Fitzpatrick phototype I or II [27], following thewrit-
ten agreement. The selection of skin phototype I and II was based on the
scattering technique, where the presence of melanin is associated with
thefluorescence effect. This effect has a significant impact on the quality
of the spectra for in vivo analysis. The exclusion criteria for study partic-
ipants were a history of dermatological disease, pregnancy or lactation,
sensitivity to cosmetic components, and if they had used any type of
cosmetic product on the forearm skin within 24 h before the experi-
ment. The study participant washed (with neutral soap and water)
the area (approximately 1 cm2) of forearm that was to be measured
and waited for 20 min in an air-conditioned environment at 23 ± 1 °C
and a relative humidity of 50 ± 5%. The suspension (approximately
5 ml) was applied on the participant's forearm. Before moving the
arm, the participant waited for the water in the suspension to evapo-
rate/disappear. The principal role of thewaterwas to facilitate the appli-
cation of the RA onto the skin. The RA interacts with skin because of its
liposolubility.

The study was approved by the Research Ethics Committee (CEP)
under protocol number 09112612.7.0000.5503. All study participants
signed a consent form before the start of the study and received infor-
mation about the study procedures.

2.2. Confocal Raman Spectroscopy

The acquisition of Raman spectra were performed using a confocal
Raman system 3510 Skin Composition Analyzer (River Diagnostics, Rot-
terdam, The Netherlands), with the excitation laser set at 785 nm, the
power at the sample set at of 26 mW and 2 μm of spatial resolution in
the z-direction. The calibration measurements of the Raman system
were performed according to the short guide ofModel 3510 SCA provid-
ed by River Diagnostics. This process involves many set-up steps,
including the CCD camera, neon/argon calibration standard, Raman fin-
gerprint region, background fingerprint in (and above) window and
NIST standard calibrations. These standard calibrations were obtained
by the default setup of the spectrometer. The Ramandatawere collected
by a CCD detector (see Fig. 1).

The fingerprint (400–1800 cm−1) region was analyzed at different
depths (0 to 20 μm), with a step size of 2 μm. The integration time
was 10 s for each depth. The average Raman spectrum was calculated
for each depth profile.

To evaluate the retinyl acetate permeation through the stratum
corneum, the study was divided into two sets of measurements, T0
and T30. T0 represents the confocal Raman spectra before the vitamin
A derivative in water was applied on the skin. T30 represents the confo-
cal Raman spectra measurements from the same region obtained
30 min after the RA application.

Before each measurement, the forearmwas gently wiped with optic
paper to remove any excess RA from the surface of the skin. Each mea-
surement (T0 and T30) was taken at three different points of the fore-
arm region. To analyze the permeation process, we computed the
difference between T0 and T30 by using the averaged spectrum for
each depth of the participant's epidermis.

To pre-process the Raman spectra data, the polynomial baseline cor-
rection method was used. The backgroundwas estimated by a 5 degree
polynomial using the LabSpec 5.78® software (Horiba) and was nor-
malized by the amide I band using Origin 8.5®.

2.3. Molecular Dynamics

2.3.1. Stratum Corneum Model
The elaborated stratum corneum model is based on the molecular

constituents of normal young human skin [12] and on previously pub-
lished simulation data [13], i.e., ceramide-2 (25%), fatty acid (36%), cho-
lesterol (30%) [9] and cholesterol sulfate (6%) [14]. These lipids all play
an important role in the model. Ceramide-2 (ceramide NS) retains sub-
stantial ordering [9] and is responsible for the lowwater permeability of
the stratum corneum [36]. The fatty acid is significantly more mobile
than the ceramide [9]. The role of the cholesterol allows fluidity for
the lipid bilayer [37], and the cholesterol sulfate facilitates and stabilizes
the formation of the lipid lamellae [38].

The model was built using the CELLmicrocosmos 2.2 package [39].
The molecules involved in this coarse-grained model were obtained ac-
cording to Martins et al. 2013 [23]. The size of the box simulation ob-
tained was 15 × 15 × 12 nm3. The negative charges were neutralized
with 366 Na+.

The simulations were executed using the GROMACS 4.5.5 package
[40] with theMartini [20] forcefield, applying periodic boundary condi-
tions in all dimensions, i.e., x, y, and z. The bond lengths were restrained
using the LINCS algorithm [41]. The cut-offs for the Van der Waals and
electrostatic interactions were adjusted to 1.2 nm [9]. A neighboring
search was conducted up to 1.2 nm and was updated every ten steps.



Fig. 2.Distribution (average± standard deviation) of the particle size for retinyl acetate in
water after 30 min of the ultrasonic bath.
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The integration time was 20 fs. A Berendsen barostat with a reference
pressure of 1 bar [42] was used for pressure coupling, with a relaxation
time of 3.0 ps and an isothermal compressibility of 3.0 × 10−5/bar. A v-
rescale thermostat [43] at 300 K [23] was used for temperature control.
Each system component was included separately in contact with heat,
with temperature coupling constants of 1.5 ps.

The stratum corneum model was considered to be converged after
500 ns of the simulation, and it was applied as the basic model for per-
meation studies.

2.3.2. Retinyl Acetate Model
First, it was necessary to parameterize the vitamin A derivative to

develop a CG model (fine-grained to coarse-grained representation)
[44]. The molecule was divided into small chemical groups or blocks
(around four atoms, disregarding thehydrogen atoms), and each atomic
group was mapped as one new CG particle. The RA (C22H32O2) turned
seven particles, where the functional acetate group was parameterized
as a CG polar group and other CG particles were parameterized as an
apolar group. The guide to CG particle type was presented by Marrink
S.J et al. [20]. This parameterizationmaintained themain characteristics
of the molecule.

The RA was optimized separately, following the same parameters
used for the model of the lipid bilayer. The integration time interval
was changed to 5 fs.
Fig. 3. Raw data a) T0 and b) T30 measure
3. Results and Discussion

Themain purpose of the water as a vehicle was to allow the suspen-
sion of the isolated retinyl acetate on the skin without any interference
from excipients. The hydrophilic part of the RA is surrounded by water
molecules. This effect causes the perpendicular orientation of the apolar
part of the active principle on the skin surface, thus permitting its
permeation.

The ultrasonication (30 min) treatment of the suspension reduced
the granularity of the vitamin A derivative for stratum corneum pene-
tration. Particles with 1 μm diameters have more contact with water
molecules, which is conducive to disaggregation and permits their indi-
vidual permeation. Themean values of the summary peakmaxima pro-
vided by the particle size analyzer represent 98.7% of the suspension
volume. The remaining 1.3% of the volume must contain aggregates
with different sizes, where those of the lowest size have a greater possi-
bility of interacting with the skin surface for permeation.

Fig. 2 shows the average and standard deviation of the particle size
distribution. The peak summary provides predominantly two particle
sizes: 12.0± 0.7 μm,which corresponds to 87± 9% of the total volume,
and 1.09 ± 0.06 μm, which corresponds to 18 ± 3% of the volume. The
difference in the particle sizes implies the heterogeneous characteriza-
tion of the suspension.

3.1. In Vivo Experimental Studies

To analyze the permeation of the active principle through the skin
epidermis by confocal Raman spectroscopy, the applied substance
must have some non-coincident Raman bands with the Raman spectra
of the skin epidermis. Fig. 3 displays the raw Raman spectra (T0 and
T30 measurements) without any pre-processing data. For the RA, the
most prominent non-coincident Raman band was centered at
1593 cm−1 (dashed region in Fig. 4). This shoulder was observed at dif-
ferent depths, which suggested that RA penetrated the skin.

In the Raman spectra of the skin, we found characteristic bands of
the amino acid chain assigned to the lipoprotein constitution
(1580 cm−1 to 1720 cm−1 region), where the peptide bonds –C-
[C_O]-NH-R exist.

The wavenumber position of the ν(C_O) of the retinyl acetate with
reference to the Amide I band wavenumber can bemostly explained by
the resonance effect through the ether and carbonyl atom of the R-O-
(C_O)-OH structural fragment. The C_O bond and the force constant
ment without pre-processed analysis.



Fig. 4. Profile of the Raman spectra for skin surface up to depth of 20 μm of the skin, a) T0
and T30measurements for all depths, b) dotted line represents the pure Raman spectrum
of the RA. Dashed region is the main difference between T0 and T30 spectra.
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of the carbonyl bond become weaker upon acquiring the oxygen atom
negative charge [46].

To determine the extended penetration of the RA into the skin, the
intensity of the 1593 cm−1 Raman band was determined for different
depth profiles in the skin. To perform such a calculation, we consider
the band area at 1593 cm−1 in [Rint. (arbitr. unit) ×cm−1] of the RA con-
trol sample to have a value of 100% (see Fig. 5). The peaks in the skin
spectrum displayed at 1606 cm−1 and 1615 cm−1 are not changed in
terms of intensity as a function of the increasing depth.

The other intensity values were obtained from the relative area of
this band after 30 min (T30) of RA application with the control sample
from the surface to 20 μm deep in the skin.

Fig. 6 corresponds to the graphical representation of the exponential
decay function y = A1 ∗ e(−x/t1) + y0, where R2 = 0.97533 and
p b 0.0001. The parameter A1 is related to the amplitude (quantity of
product on the skin surface), and t1 is the decay constant associated
with absorption coefficient of the RA penetration into skin. Interpreting
the angular coefficient of the curve for a skin profundity of 0 gives
−0.28 [area (a.u.) x μm]; thus, the instantaneous velocity of the
variation of RA penetration at zero profundity is given by –d[SP]/
d[area]=0.28 [area (a.u.) x μm]. This result is evidence of the high affin-
ity of retinyl acetate for lipids and of its mobility into the stratum
corneum.

3.2. Molecular Dynamics Data

The stabilization of the stratum corneum model is shown in Fig. 7.
The simulation of the lipid bilayer was extended at 500 ns, and the var-
iation of the potential energy (kJ/mol) is constant after 100 ns. This time
extension allows a suitable stratum corneum model that can interact
with the chosen active principle.

The computational permeation model analyzes the interaction of
retinyl acetate molecules and the lipid bilayer. The box simulation
contained 11,352 molecules, 1433 lipids present in the stratum
corneum, 9909 CG molecules of water (each water CG particle corre-
sponds to four individual molecules of the water), and ten molecules
of vitamin A derivatives. We considered that the disaggregation of the
RA microparticles obtained with (see Subsection 3.1) led to an individ-
ual permeation of the active principle in the skin.

The time evolution of simulation is shown in Fig. 8. The first snap-
shot shows that ten RA molecules are scattered in the box simulation.
After approximately 30 ns of the simulation, all of these molecules pen-
etrated into the first lipid layer. The permeation process was a result of
the high chemical affinity of the active principle to the lipids (see Fig. 5).
The apolar region (large blue spheres in Fig. 8) of RA was the first part
that penetrated into the lipid layer. The polar part (two last green
spheres in tail of retinyl acetate) was the last to penetrate.

The simulation was extended to 160 ns, and at this time point, the
system reached a stable configuration. Significant differences were not
observed between the snapshots taken at 30 and 150 ns. The cholester-
ol, inwhich the head group is represented by a small sphere among lipid
tails as shown in Fig. 8, flowed into the lipid bilayer, as displayed in Fig.
9. This behavior of cholesterol translocationwas previously described in
Choubey 2013 et al., who showed the flip-flop dynamics into a
dipalmitoylphosphatidylcholine (DPPC) bilayer [45].

The RA mobility into the bilayer (red circle region in Fig. 8) was
noted at approximately 157 ns. The mobility was related to the RA sol-
ubility in the lipid bilayer and its carbon chain. Although there was a
polar group (acetate group) in the active principle, the extension of
the apolar region allowed RA translocation into the lipid matrix.

The density profile (Fig. 9) represents the relative position of the
components with respect to the stratum corneum model at the begin-
ning and end of the simulation. The system was pre-equilibrated prior
to the interactions with RA; therefore, it is not expected that the lipid
distribution at the bilayer will change significantly. This observation
corroborates the fact that Raman spectra do not display changes in the
lipid composition at different depths of the stratum corneum layer.

In fact, the ceramides, water, and cholesterol did not present large
differences between the initial and final density profiles. The small
changes presented are consistent with a swelling of the bilayer to ac-
commodate the FAmolecules. On the contrary, at the end of the simula-
tion, the density profile of the retinyl acetate changed dramatically,
showing the penetration of these molecules deep into the lipid bilayer.
From the literature, it is considered that the penetration of active com-
ponents to the lipid bilayer shows good experimental agreement ac-
cording to molecular dynamics [23].

4. Conclusions

This study presented the skin permeation of retinyl acetate using ex-
perimental and computational techniques. In vivo confocal Raman spec-
troscopy is a powerful non-invasive technique that can analyze skin
constituents and the permeation of formulations into the skin. Our re-
sults show that the intensity band of the RA (approximately
1593 cm−1), representing the –C_O vibrational mode, was detected



Fig. 5. Relative intensity of the RA band at 1593 cm−1 obtained by subtraction of the T30 and T0 measurements for five study participants.
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in the Raman spectra of skin at different stratum corneum depths up to
20 μm. This Raman peak of retinyl acetate has a non-coincident band
with the Raman spectra of the skin epidermis, demonstrating that the
vitamin A derivative penetrated forearm skin.

We demonstrated retinyl acetate translocation using an in silico
model. The translocation is directly associated with the ability of RA to
migrate into the lipidic bilayer and is a good simulation of skin perme-
ation. This was confirmed by the observation of the translocation phe-
nomenon that is related to a different Raman intensity of the
vibrational mode ν(C_O), where its intensity was found in up to
20 μm deep. Thus, experimental and computational techniques may
be combined to understand the penetration process through the skin
stratum corneum, and the computational results agreewell with the ex-
perimental ones.
Fig. 6. Area values (a.u.) (average and standard deviation) for skin surface up to 20 μm
depth into the skin.
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