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Abstract. This paper introduces a logic to support the specification and
development of reactive systems on various levels of abstraction, from
property specifications, concerning e.g. safety and liveness requirements,
to constructive specifications representing concrete processes. This is
achieved by combining binders of hybrid logic with regular modalities
of dynamic logics in the same formalism, which we call D↓-logic. The
semantics of our logic focuses on effective processes and is therefore given
in terms of reachable transition systems with initial states. The second
part of the paper resorts to this logic to frame stepwise development of
reactive systems within the software development methodology proposed
by Sannella and Tarlecki. In particular, we instantiate the generic con-
cepts of constructor and abstractor implementations by using standard
operators on reactive components, like relabelling and parallel compo-
sition, as constructors, and bisimulation for abstraction. We also study
vertical composition of implementations which relies on the preservation
of bisimularity by the constructions on labeleld transition systems.

1 Introduction

The quest for suitable notions of implementation and refinement has been for
more than four decades on the research agenda for rigorous Software Engineering.
It goes back to Hoare’s paper on data refinement [16], which influenced the whole
family of model-oriented methods, starting with VDM [18]. A recent reference
[30] collects a number of interesting refinement case studies in the B method,
probably the most industrially successful in the family.

Almost 30 years ago, D. Sannella and A. Tarlecki claimed, in what would
become a most influential paper in (formal) Software Engineering [28], that “the
program development process is a sequence of implementation steps leading from
a specification to a program”. Being rather vague on what was to be understood
either by specifications (“just finite syntactic objects of some kind” which “describe
a certain signature and a class of models over it”) or programs (“which for us
are just very tight specifications”), the paper focuses entirely on the development
process, based on a notion of refinement. In model-oriented approaches it is con-
sensual that a specification refines to another if every model of the latter is a model
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of the former. Sannella and Tarlecki’s work complemented and generalised this
idea with the notions of “constructor” and “abstractor implementations”. The
idea of a constructor implementation is that for implementing a specification SP
one may use one or several given specifications and apply a construction on top
of them to satisfy the requirements of SP. Abstractor implementations have been
introduced to deal with the fact that sometimes the properties of a requirements
specification are not literally satisfied by an implementation but only up to an
abstraction which usually involves hiding of implementation details. Over time,
many others contributed along similar paths, with Sannella and Tarlecki’s spe-
cific view later consolidated in their landmark book [29]. All main ingredients were
already there: (i) the emphasis on loose specifications; (ii) correctness by construc-
tion, guaranteed by vertical compositionality and (iii) genericity, as the develop-
ment process is independent, or parametric, on whatever logical system better
captures the requirements to be handled.

Our paper investigates this approach in the context of reactive software, i.e.
systems which interact with their environment along the whole computation, and
not only in its starting and termination points [1]. The relevance of such an effort
is anticipated in Sannella and Tarlecki’s book [29] itself: “An example of an area
for which a satisfactory, commonly accepted solution still seems to be outstanding
(despite numerous proposals and active research) is the theory of concurrency”
(page 157). Different approaches in that direction have been proposed, of which
we single out an extension to concurrency in K. Havelund’s Ph.D. thesis [15].
The book, however, focused essentially on functional requirements expressed by
algebraic specifications and implemented in a functional programming language.

On the other hand, the development of reactive systems, nowadays the norm
rather than the exception, followed a different path. Typical approaches start
from the construction of a concrete model (e.g. in the form of a transition system
[31], a Petri net [26] or a process algebra expression [4,17]) upon which the
relevant properties are later formulated in a suitable (modal) logic and typically
verified by some form of model-checking. Resorting to old software engineering
jargon, most of these approaches proceed by inventing & verifying, whereas this
paper takes the alternative correct by construction perspective.

Our hypothesis is that also in the domain of reactive systems, loose specifi-
cation has an important role to play, because they support the gradual addition
of requirements and implementation decisions such that verification of the cor-
rectness of a complex system can be done piecewise in smaller steps. Thus also
a documentation keeping trace of design decisions is available supporting main-
tenance and extensibility of systems. Therefore, our challenge was twofold. First
to design a logic to support the development of reactive systems at different
levels of abstraction. Second, to follow Sannella and Tarlecki’s recipe according
to which “specific notions of implementation (...) corresponds to a restriction on
the choice of constructors and abstractors which may be used” [28]. The paper’s
contributions respond to such challenges:

– Borrowing modalities indexed by regular expressions of actions, from dynamic
logic [14], and state variables and binders, from hybrid logic [6], a new logic,
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D↓, is proposed to express properties of computations of reactive systems.
D↓ is able to express abstract properties, such as liveness requirements or
deadlock avoidance, but also to describe concrete, recursive process structures
implementing them. Note that our focus is actually on computations, and
therefore on transition structures over reachable states with an initial point,
rather than on arbitrary relational structures with global satisfaction, as usual
in modal logic. Symbol ↓ in D↓ stands for the binder operator borrowed from
hybrid logic: ↓ x.φ evaluates φ and assigns to variable x the current state of
evaluation.

– Then, a particular pallete of constructors and abstractors found relevant to the
development of reactive systems, is introduced. Interestingly, it turns out that
requirements of Sannella and Tarlecki’s methodology for vertical composition
of abstractor/constructor implementations is just the congruence property of
bisimulation w.r.t. constructions on labelled transition systems, like parallel
composition and relabelling.

The new D↓ logic is introduced in Sect. 2. Then, the two following sections,
3 and 4, respectively, introduce the development method, with a brief revision
of the relevant background, and its tuning to the design of reactive systems.
Finally, Sect. 5 concludes and points out some issues for future work. To respect
the page limit fixed for the Conference, all proofs were removed from the paper.
They appear in the accompanying technical report [21].

2 D↓ - A Dynamic Logic with Binders

2.1 D↓-logic: Syntax and Semantics

D↓ logic is designed to express properties of reactive systems, from abstract
safety and liveness properties, down to concrete ones specifying the (recursive)
structure of processes. It thus combines modalities with regular expressions,
as originally introduced in Dynamic Logic [14], and binders in state variables.
This logic retains from Hybrid Logic [6], only state variables and the binder
operator first studied by V. Goranko in [11]. These motivations are reflected in
its semantics. Differently from what is usual in modal logics, whose semantics are
given by Kripke structures and the satisfaction evaluated globally in each model,
D↓ models are reachable transition systems with initial states where satisfaction
is evaluated.

Definition 1 (Model). Models for a finite set of atomic actions A are reachable
A-LTSs, i.e. triples (W,w0, R) where W is a set of states, w0 ∈ W is the initial
state and R = (Ra ⊆ W×W )a∈A is a family of transition relations such that, for
each w ∈ W , there is a finite sequence of transitions Rak(wk−1, wk), 1 ≤ k ≤ n,
with wk ∈ W , ak ∈ A, such that w0 = w0 and wn = w.

The set of (structured) actions, Act(A), induced by a set of atomic actions
A is given by

α:: = a | α;α | α + α | α∗
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where a ∈ A.
Let X be an infinite set of variables, disjoint with the symbols of the atomic

actions A. A valuation for an A-model M = (W,w0, R) is a function g : X → W .
Given such a g and x ∈ X, g[x �→ w] denotes the valuation for M such that
g[x �→ w](x) = w and g[x �→ w](y) = g(y) for any other y �= x ∈ X.

Definition 2 (Formulas and sentences). The set FmD↓
(A) of A-formulas is

given by

ϕ:: = tt | ff | x | ↓ x. ϕ | @xϕ | 〈α〉ϕ | [α]ϕ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where x ∈ X and α ∈ Act(A). SenD↓
(A) = {ϕ ∈ FmD↓

(A)|FVar(ϕ) = ∅} is the
set of A-sentences, where FVar(ϕ) are the free variables of ϕ, defined as usual
with ↓ being the unique operator binding variables.

D↓ retains from Hybrid Logic the use of binders, but omits nominals: only
state variables are used, even as parameters to the satisfaction operator (@x). By
doing so, the logic becomes restricted to express properties of reachable states
from the initial state, i.e. processes.

To define the satisfaction relation we need to clarify how composed actions are
interpreted in models. Let α ∈ Act(A) and M ∈ ModD↓

(A). The interpretation
of an action α in M extends the interpretation of atomic actions by Rα;α′ =
Rα ◦ Rα′ , Rα+α′ = Rα ∪ Rα′ and Rα∗ = (Rα)�, with the operations ◦, ∪ and �
standing for relational composition, union and Kleene closure.

Given an A-model M = (W,w0, R), w ∈ W and g : X → W ,

– M, g, w |= tt is true; M, g, w |= ff is false;
– M, g, w |= x iff g(x) = w;
– M, g, w |=↓ x. ϕ iff M, g[x �→ w], w |= ϕ;
– M, g, w |= @xϕ iff M, g, g(x) |= ϕ;
– M, g, w |= 〈α〉ϕ iff there is a w′ ∈ W with (w,w′) ∈ Rα and M, g, w′ |= ϕ;
– M, g, w |= [α]ϕ iff for any w′ ∈ W with (w,w′) ∈ Rα it holds M, g, w′ |= ϕ;
– M, g, w |= ¬ϕ iff it is false that M, g, w |= ϕ;
– M, g, w |= ϕ ∧ ϕ′ iff M, g, w |= ϕ and M, g, w |= ϕ′;
– M, g, w |= ϕ ∨ ϕ′ iff M, g, w |= ϕ or M, g, w |= ϕ′.

We write M, w |= ϕ if, for any valuation g : X → W , M, g, w |= ϕ. If ϕ is
a sentence, then the valuation is irrelevant, i.e., M, g, w |= ϕ iff M, w |= ϕ. For
each sentence ϕ ∈ SenD↓

(A), we write M |= ϕ whenever M, w0 |= ϕ. Observe
again the pertinence of avoiding nominals: if a formula is satisfied in the standard
semantics of Hybrid Logic, then it is satisfiable in ours. Obviously, this would
not happen in the presence of nominals.

The remaining of the section discusses the versatility of D↓ claimed in the
introductory section. Here and in the following sentences, in the context of a set
of actions A = {a1, . . . , an}, we write A for the complex action a1 + . . .+an and
for any ai ∈ A, we write −ai for the complex action a1+. . .+ai−1+ai+1+. . .+an.
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By using regular modalities from Dynamic Logic [13,14], D↓ is able to express
liveness requirements such as “after the occurrence of an action a, an action b can
be eventually realised” with [A∗; a]〈A∗; b〉tt or “after the occurrence of an action
a, an occurrence of an action b is eventually possible if it has not occurred before”
with [A∗; a; (−b)∗]〈A∗; b〉tt. Safety properties are also captured by sentences of
the form [A∗]ϕ. In particular, deadlock freeness is expressed by [A∗]〈A〉tt.
Example 1. As a running example we consider a product line with a stepwise
development of a product for compressing files services, involving compressions
of text and of image files. We start with an abstract requirements specification
SP0. It is built over the set A = {inTxt, inGif, outZip, outJpg} of atomic actions
inTxt, inGif for inputting a txt-file or a gif-file, and actions outZip, outJpg
for outputting a zip-file or a jpg-file. Sentences (0.1)–(0.3) below express three
requirements: (0.1) Whenever a txt-file has been received for compression, the
next action must be an output of a zip-file, (0.2) whenever a gif-file has been
received, the next action must be an output of a jpg-file, and (0.3) the system
should never terminate.

(0.1) [A∗; inTxt]
(〈outZip〉tt ∧ [−outZip]ff

)

(0.2) [A∗; inGif]
(〈outJpg〉tt ∧ [−outJpg]ff

)

(0.3) [A∗]〈A〉tt
Obviously, SP0 is a very loose specification of rudimentary requirements and

there are infinitely many models which satisfy the sentences (0.1)–(0.3). ��
D↓-logic, however, is also suited to directly express process structures and,

thus, the implementation of abstract requirements. The binder operator is crucial
for this. The ability to give names to visited states, together with the modal
features to express transitions, makes possible a precise description of the whole
dynamics of a process in a single sentence. Binders allow to express recursive
patterns, namely loop transitions (from the current to some visited state). In
fact we have no way to make this kind of specification in the absence of a feature
to refer to specific states in a model, as in standard modal logic. For example,
sentence

↓ x0.
(〈a〉x0 ∧ 〈b〉 ↓ x1.(〈a〉x0 ∧ 〈b〉x1)

)
(1)

specifies a process with two states accepting actions a and b respectively. As
discussed in the sequel, the stepwise development of a reactive system typically
leads to a set of requirements defining concrete transition systems and expressed
in the fragment of D↓ which omits modalities indexed by the Kleene closure of
actions, that can be directly translated into a set of FSP [22] definitions. Figure 1
depicts the translation of the formula above as computed by a proof-of-concept
implementation of such a translator1. Note, however, that sentence (1) loosely
specifies the purposed scenario (e.g. a single state system looping on a and b also
satisfies this requirement). Resorting to full D↓ concrete processes unique up to
isomorphism, can be defined, i.e. we may introduce monomorphic specifications.
1 See translator.nrc.pt.
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Fig. 1. D2FSP Translator: Translating D↓ into FSP processes.

For this specific example, it is enough to consider, in the conjunction in the scope
of x1, the term @x1¬x0 (to distinguish between the states binded by x0 and x1),
as well as to enforce determinism resorting to formula (det) in Example 2.

2.2 Turning D↓-logic into an Institution

In order to fit the necessary requirements to adopt the Sannella Tarlecki devel-
opment method, logic D↓ has to be framed as a logical institution [10].

In this view, our first concern is about the signatures category. As suggested,
signatures for D↓ are finite sets A of atomic actions, and a signature morphism

A
σ �� A′ is just a function σ : A → A′. Clearly, this entails a category to be

denoted by SignD↓
.

Our second concern is about the models functor. Given two models, M =
(W,w0, R) and M′ = (W ′, w′

0, R
′), for a signature A, a model morphism is a

function h : W → W ′ such that h(w0) = w′
0 and, for each a ∈ A, if (w1, w2) ∈ Ra

then (h(w1), h(w2)) ∈ R′
a. We can easily observe that the class of models for A,

and the corresponding morphisms, defines a category ModD↓
(A).

Definition 3 (Model reduct). Let A
σ �� A′ be a signature morphism

and M′ = (W ′, w′
0, R

′) an A′-model. The σ-reduct of M′ is the A-model
ModD↓

(σ)(M′) = (W,w0, R) such that

– w0 = w′
0;

– W is the largest set with w′
0 ∈ W and, for each v ∈ W , either v = w′

0 or there
is a w ∈ W such that (w, v) ∈ R′

σ(a), for some a ∈ A;
– for each a ∈ A, Ra = R′

σ(a) ∩ W 2.

Models morphisms are preserved by reducts, in the sense that, for each models
morphism h : M′

1 → M′
2 there is a models morphism h′ : ModD↓

(σ)(M′
1) →

ModD↓
(σ)(M′

2), where h′ is the restriction of h to the states of ModD↓
(σ)(M′

1).
Hence, for each signature morphism A

σ �� A′ , a functor ModD↓
(σ) :

ModD↓
(A′) → ModD↓

(A) maps models and morphisms to the corresponding
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reducts. Finally, this lifts to a contravariantmodels functor,ModD↓
: (SignD↓

)op →
Cat, mapping each signature to the category of its models and, each signature mor-
phism to its reduct functor.

The third concern is about the definition of the functor of sentences. Each
signature morphism A

σ �� A′ can be extended to formulas’ translation

σ̂ : FmD↓
(A) → FmD↓

(A′) identifying variables and replacing, symbol by sym-
bol, each action by the respective σ-image. In particular, σ̂(↓ x.ϕ) =↓ x.σ̂(ϕ)
and σ̂(@xϕ) = @xσ̂(ϕ). Since FVar(ϕ) = FVar(σ̂(ϕ)) we can assure that, for
each signature morphism A

σ �� A′ , we can define a translation of sentences

SenD↓
(σ) : SenD↓

(A) → SenD↓
(A′), by SenD↓

(σ)(ϕ) = σ̂(ϕ), ϕ ∈ SenD↓
(A).

This entails the intended functor SenD↓
: SignD↓ → Set, mapping each signature

to the set of its sentences, and each signature morphism to the corresponding
translation of sentences.

Finally, our forth concern is on the agreement of the satisfaction relation
w.r.t. satisfaction condition. This is established in the following result:

Theorem 1. Let σ : A → A′ be a signature morphism, M′ = (W ′, w′
0, R

′) ∈
ModD↓

(A′), ModD↓
(σ)(M′) = (W,w0, R) and ϕ ∈ FmD↓

(A). Then, for any
w ∈ W (⊆ W ′) and for any valuations g : X → W and g′ : X → W ′, such that,
g(x) = g′(x) for all x ∈ FVar(ϕ), we have

ModD↓
(σ)(M′), g, w |= ϕ iff M′, g′, w |= σ̂(ϕ)

In order to get the satisfaction condition, we only have to note that for any
ϕ ∈ SenD↓

(A), we have FVar(ϕ) = ∅, and hence, by Theorem 1, for any w ∈ W ,
ModD↓

(σ)(M′), w |= ϕ iff M′, w |= SenD↓
(σ)(ϕ). Moreover, by the definition of

reduct, w0 = w′
0 ∈ W . Therefore, ModD↓

(σ)(M′) |= ϕ iff M′ |= SenD↓
(σ)(ϕ).

3 Formal Development á la Sannella and Tarlecki

Developing correct programs from specifications entails the need for a suitable
logic setting in which meaning can be assigned both to specifications and their
refinement. Sannella and Tarlecki have proposed a formal development method-
ology [28,29] which is presented in a generic way for arbitrary logical systems
forming an institution. As already pointed out in the Introduction, Sannella and
Tarlecki have studied various algebraic institutions to illustrate their methodol-
ogy and they presume the lack of a satisfactory solution in the theory of con-
currency. In this section we briefly summarize their crucial principles for formal
program development over an arbitrary institution and we illustrate the case
of simple implementations by examples of our D↓-logic institution. The more
involved concepts of constructor and abstractor implementations will be instan-
tiated for the case of D↓-logic later on in Sect. 4.

In the following we assume given an arbitrary institutions with category Sign
of signatures and signature morphisms, with sentence functor Sen : Sign → Set,
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and with models functor Mod : Signop → Cat assigning to any signature Σ ∈
|Sign| a category Mod(Σ) whose objects in |Mod(Σ)| are called Σ-models. As
usual, the class of objects of a category C is denoted by |C|. If it is clear from
the context, we will simply write C for |C|.

3.1 Simple Implementations

The simplest way to design a specification is by expressing the system require-
ments by means of a set of sentences over a suitable signature, i.e. as a pair SP =
(Sig(SP ), Ax(SP )) where Sig(SP ) ∈ |Sign| and Ax(SP ) ⊆ |Sen(Sig(SP ))|.
The (loose) semantics of such a flat specification SP consists of the pair
(Sig(SP ),Mod(SP )) where

Mod(SP ) = {M ∈ |Mod(Sig(SP ))| : M |= Ax(SP )}.

In this context, a refinement step is understood as a restriction of an
abstract class of models to a more concrete one. Following the terminology of
Sannella and Tarlecki, we will call a specification which refines another one an
implementation. Formally, a specification SP ′ is a simple implementation of
a specification SP over the same signature, in symbols SP � SP ′, whenever
Mod(SP ) ⊇ Mod(SP ′). Transitivity of the inclusion relation ensures the vertical
composition of simple implementation steps.

Example 2. We illustrate two refinement steps with simple implementations in
the D↓-logic institution. Consider the specification SP0 of Example 1 which
expresses some rudimentary requirements for the behavior of compressing files
services. The action set A defined in Example 1 provides the signature of SP0

and the axioms of SP0 are the three sentences (0.1)–(0.3) shown in Example 1.

First refinement step SP0 � SP1. SP0 is a very loose specification which
would allow to start a computation with an arbitrary action. We will be a bit
more precise now and require that at the beginning only an input (of a text or gif
file) is allowed; see axiom (1.1) below. Moreover whenever an output action (of
any kind) has happened then the system must go on with an input (of any kind);
see axiom (1.4). This leads to the specification SP1 with Sig(SP1) = Sig(SP0) =
A and with the following set of axioms Ax(SP1):

(1.1) 〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff
(1.2) [A∗; inTxt]

(〈outZip〉tt ∧ [−outZip]ff
)

(1.3) [A∗; inGif]
(〈outJpg〉tt ∧ [−outJpg]ff

)

(1.4) [A∗; (outZip + outJpg)]
(〈inTxt + inGif〉tt ∧ [outZip + outJpg]ff

)

It is easy to check that SP0 � SP1 holds: Axioms (0.1) and (0.2) of SP0

occur as axioms (1.2) and (1.3) in SP1. It is also easy to see that non-termination
(axiom (0.3) of SP0) is guaranteed by the axioms of SP1.

The level of underspecification is, at this moment, still very high. Among
the infinitely many models of SP1, we can find, as an admissible model the LTS
shown in Fig. 2 with initial state w0 and with an alternating compression mode.

Second refinement step SP1 � SP2. This step rules out alternating behav-
iours as shown above. The first axiom (2.1) of the following specification SP2
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is equivalent to axiom (1.1) of SP1. Alternating behaviours are ruled out by
axioms (2.2) and (2.3) which require that after any text compression and after
any image compression the initial state must be reached again. To express this
we need state variables and binders which are available in D↓-logic. In our exam-
ple we introduce one state variable x0 which names the initial state by using the
binder at the beginning of axioms (2.2) and (2.3). Moreover, we only want to
admit deterministic models such that in any (reachable) state there can be no
two outgoing transitions with the same action. It turns out that D↓-logic also
allows to specify this determinism property with the set of axioms (det) shown
below. This leads to the specification SP2 with Sig(SP2) = Sig(SP1) = A and
with axioms Ax(SP2):

(2.1) (〈inTxt〉tt ∨ 〈inGif〉tt) ∧ [outZip + outJpg]ff
(2.2) ↓ x0. [inTxt]

(〈outZip〉x0 ∧ [−outZip]ff
)

(2.3) ↓ x0. [inGif]
(〈outJpg〉x0 ∧ [−outJpg]ff

)

(det) For each a ∈ A, the axiom: [A∗] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y.@x[a]y))

Clearly SP2 fulfills the requirements of SP1, i.e. SP1 � SP2. SP2 has three
models which are shown in Fig. 3. (Remember that models can only have states
reachable from the initial one.) The first model allows only text compression, the
second one only image compression, and the third supports both. The signature
of all models is A, though in the first two some actions have no transitions.

Let us still discuss some variations of SP2 to underpin the expressive power
of D↓. If we want only the model where both text and image compression are
possible, then we can simply replace in axiom (2.1) 〈inTxt〉tt ∨ 〈inGif〉tt by
〈inTxt〉tt ∧ 〈inGif〉tt. If we would like to require that text compression must be
possible in any model but image compression is optional, i.e. we rule out the
second model in Fig. 3, then we would simply omit ∨〈inGif〉tt in axiom (2.1).
This is an interesting case since this shows that D↓-logic can express so-called
“may”-transitions offered by modal transition systems [20] to specify options for
implementations. ��

Fig. 2. A model of SP1

3.2 Constructor Implementations

The concept of simple implementations is, in general, too strict to capture
software development practice, along which, implementation decisions typically
introduce new design features or reuse already implemented ones, usually entail-
ing a change of signatures along the way. The notion of constructor implemen-
tation offers the necessary generalization. The idea is that for implementing a
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Fig. 3. Models of SP2

specification SP one may use a given specification SP′ and apply a construction
to the models of SP′ such that they become models of SP. More generally, an
implementation of SP may be obtained by using not only one but several spec-
ifications SP′

1, . . . ,SP′
n as a basis and applying an n-ary constructor such that

for any tuple of models of SP′
1, . . . ,SP′

n the construction leads to a model of
SP. Such an implementation is called a constructor implementation with decom-
position in [29] since the implementation of SP is designed by using several
components. These ideas are formalized as follows, partially in a less general
manner than the corresponding definitions in [29] which allow also partial and
higher-order functions as constructors.

Given signatures Σ1, ..., Σn, Σ ∈ |Sign|, a constructor is a total function
κ : Mod(Σ1) × · · · × Mod(Σn) → Mod(Σ). Constructors compose as follows:
Given a constructor κ : Mod(Σ1) × · · · × Mod(Σn) → Mod(Σ) and a set of
constructors κi : Mod(Σ1

i ) × · · · × Mod(Σki
i ) → Mod(Σi), 1 ≤ i ≤ n, the

constructor κ(κ1, . . . , κn) : Mod(Σ1
1) × · · · × Mod(Σk1

1 ) × · · · × Mod(Σ1
n) × · · · ×

Mod(Σkn
n ) → Mod(Σ) is obtained by the usual composition of functions.

Definition 4 (Constructor implementation). Given specifications SP,SP′
1,

. . . ,SP′
n, and a constructor κ : Mod(Sig(SP ′

1)) × · · · × Mod(Sig(SP ′
n)) →

Mod(Sig(SP )), we say that 〈SP ′
1, . . . , SP ′

n〉 is a constructor implementation
via κ of SP , in symbols SP �κ 〈SP ′

1, . . . , SP ′
n〉, if for all Mi ∈ Mod(SP ′

i ) we
have κ(M1, . . . ,Mn) ∈ Mod(SP ). We say that the implementation involves a
decomposition if n > 1.

3.3 Abstractor Implementations

Another aspect in formal program development concerns the fact that some-
times the properties of a requirements specification are not literally satisfied by
an implementation but only up to an admissible abstraction. Usually such an
abstraction concerns implementation details which are hidden to the user of the
system and which may, for instance for efficiency reasons, not be fully conform
to the requirements specification. Then the implementation is still considered
to be correct if it shows the desired observable behavior. In general this can be
expressed by considering an equivalence relation ≡ on the models of the abstract
specification and to allow the implementation models to be only equivalent to
models of the requirements specification.
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Formally, let SP be a specification and ≡ ⊆ Mod(Sig(SP ))×Mod(Sig(SP ))
be an equivalence relation. Let Abs≡(Mod(SP )) be the closure of Mod(SP )
under ≡. A specification SP ′ with the same signature as SP is a simple abstrac-
tor implementation of SP w.r.t. ≡, whenever Abs≡(Mod(SP )) ⊇ Mod(SP ′).
Both concepts, constructors and abstractors can be combined as shown in the
definition of an abstractor implementation. (For simplicity, the term constructor
is omitted.)

Definition 5 (Abstractor implementation). Let SP,SP ′
1, . . . ,SP ′

n be spec-
ifications, κ : Mod(Sig(SP ′

1)) × · · · × Mod(Sig(SP ′
n)) → Mod(Sig(SP )) a con-

structor, and ≡ ⊆ Mod(Sig(SP)) × Mod(Sig(SP)) an equivalence relation. We
say that 〈SP ′

1, · · · , SP ′
n〉 is an abstractor implementation of SP via κ w.r.t.

≡, in symbols SP �≡
κ 〈SP ′

1, · · · , SP ′
n〉, if for all Mi ∈ Mod(SP ′

i ) we have
κ(M1, . . . ,Mn) ∈ Abs≡(Mod(SP )).

4 Reactive Systems Development with D↓

4.1 Constructor Implementations in D↓-logic

This section introduces a pallete of constructors to support the formal develop-
ment of reactive systems with D↓, instantiating the definitions in Sect. 3.2. The
idea is to lift standard constructions on labelled transition systems (see, e.g. [31])
to constructors for implementations. We will illustrate most of the constructors
introduced in the following with our running example.

Along the refinement process it is sometimes convenient to reduce the action
set, for instance, by omitting some actions previously introduced as auxiliary
actions or as options that are no longer needed. For this purpose we use the
alphabet extension constructor. Remember that constructors always map con-
crete models to abstract ones. Therefore when omitting actions in a refinement
step we need an alphabet extension on the concrete models to fit them to the
abstract signature.

Definition 6 (Alphabet extension). Let A,A′ ∈ |SignD↓ | be signatures in
D↓, i.e. action sets, such that A ⊆ A′. The alphabet extension constructor κext :
ModD↓

(A) → ModD↓
(A′) is defined as follows: For each M = (W,w0, R) ∈

ModD↓
(A), κext(M) = (W,w0, R

′) with R′
a = Ra for all a ∈ A and R′

a = ∅ for all
a ∈ A′ \ A.

Example 3. The specification SP2 of Example 2 has the three models shown in
Fig. 3. Hence, it allows three directions to proceed further in the product line.

Third refinement step SP2 �κext
SP3. We will consider here the simple

case where we vote for a tool that supports only text compression. The following
specification SP3 is a direct axiomatisation of the first model in Fig. 3 considered
over the smaller action set A3 = {inTxt, outZip}. Hence, Sig(SP3) = A3 and the
axioms in Ax(SP3) are:
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(3.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈outZip〉x0 ∧ [inTxt]ff) ∧ [outZip]ff)
(det) For each a ∈ A3, the axiom: [A∗

3 ] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y.@x[a]y))

Since the signature of SP3 has less actions than the one of SP2, we apply
an alphabet extension constructor κext : ModD↓

(A3) → ModD↓
(A) which trans-

forms the model of SP3 into an LTS with the same states and transitions but
with actions A and with an empty accessibility relation for the actions in A\A3.
Then, trivially, SP2 �κext

SP3 holds. Specification SP3 is a simple example that
shows how labeled transition systems can be directly specified in D↓. This could
suggest that we are already close to a concrete implementation. But this is not
true, since SP3 is in principle just an interface specification which specifies the
system behavior “from the outside”, i.e. its interactions with the user. ��

The standard way to build reactive systems is by aggregating in parallel
smaller components. The following parallel composition constructor synchronis-
ing on shared actions caters for this.

Definition 7 (Parallel composition). Given signatures A and A′ the parallel
composition constructor κ⊗ : ModD↓

(A) × ModD↓
(A′) → ModD↓

(A ∪ A′) is a
function mapping models M = (W,w0, R) ∈ ModD↓

(A) and M′ = (W ′, w′
0, R

′) ∈
ModD↓

(A′), to the A ∪ A′-model M ⊗ M′ =
(
W⊗, (w0, w

′
0), R

⊗)
where W⊗ ⊆

W × W ′ and R⊗ = (R⊗
a )a∈A∪A′ are the least sets satisfying (w0, w

′
0) ∈ W⊗, and,

for each (w,w′) ∈ W⊗,

– if a ∈ A ∩ A′, (w, v) ∈ Ra, (w′, v′) ∈ R′
a, then (v, v′) ∈ W⊗ and(

(w,w′), (v, v′)
) ∈ R⊗

a ;
– if a ∈ A \ A′, (w, v) ∈ Ra, then (v, w′) ∈ W⊗ and

(
(w,w′), (v, w′)

) ∈ R⊗
a ;

– if a ∈ A′ \ A, (w′, v′) ∈ R′
a, then (w, v′) ∈ W⊗ and

(
(w,w′), (w, v′)

) ∈ R⊗
a .

Since, up to isomorphism, parallel composition is associative, the extension
of this constructor to the n-ary case is straightforward. Parallel composition is
a crucial operator for constructor implementations with decomposition; see Def-
inition 4. Remember again that constructors always go from concrete models to
abstract ones, i.e. in the opposite direction as the development process. There-
fore the parallel composition constructor justifies the implementation of reactive
systems by decomposition.

Example 4. We are now going to construct an implementation for the inter-
face specification SP3. in Example 3. For this purpose, we propose a decom-
position into two components, a controller component Ctrl and a component
GZip which does the actual text compression. The controller has the actions
ACtrl = {inTxt, txt, zip, outZip}. First, it receives (action inTxt) a txt-file from
the user. Then it hands over the text, with action txt, to the GZip component
and receives the resulting zip-file (action zip). Finally it provides the zip-file
to the user (action outZip) and is ready to serve a next compression. Hence,
the controller component has the signature Sig(Ctrl) = ACtrl and the following
axioms Ax(Ctrl) specify a single model, shown in Fig. 4 (left), with the behavior
as described above.
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(4.1) ↓ x0. (〈inTxt〉 ↓ x1. (〈txt〉 ↓ x2. (〈zip〉 ↓ x3. (〈outZip〉x0 ∧ [−outZip]ff)
∧[−zip]ff)

∧[−txt]ff)
∧[−inTxt]ff)

(det) For each a ∈ ACtrl, the axiom: [A∗
Ctrl] ↓ x.(〈a〉tt ⇒ (〈a〉 ↓ y.@x[a]y))

The GZip component has the actions AGzip = {txt, compTxt, zip}. First, it
receives (action txt) the text to be compressed from the controller. Then it
does the compression (action compTxt), delivers the zip-file (action zip) to the
controller and is ready for a next round. The GZip component has the sig-
nature Sig(Gzip) = AGzip and the axioms Ax(Gzip) are similar to the ones
of the controller and not shown here. They specify a single model, shown in
Fig. 4 (right). To construct an implementation

〈
Ctrl,GZip

〉
by decomposition

(see Definition 4), we use the synchronous parallel composition operator “⊗”
defined above. According to [29], Exercise 6.1.15, any constructor gives rise to a
specification building operation. This means that we can define the specification
Ctrl ⊗GZip whose model class consists of all possible parallel compositions of the
models of the single specifications. Since Ctrl and GZip have, up to isomorphism,
only one model there is also only one model of Ctrl ⊗ GZip which is shown in
Fig. 5. Therefore, we know by construction that Ctrl ⊗ GZip �κ⊗

〈
Ctrl,GZip

〉

is a constructor implementation with decomposition. It remains to fill the gap
between SP3 and Ctrl ⊗ GZip which will be done with the action refinement
constructor to be introduced in Definition 9. ��
Two constructions which are frequently used and which are present in most
process algebras are relabelling and restriction. They are particular cases of the
reduct functor of the D↓ institution.

Fig. 4. Models of Ctrl and GZip

Definition 8 (Reduct, relabelling and restriction). Let σ : A → A′ be
a signature morphism. The reduct constructor κσ : ModD↓

(A′) → ModD↓
(A)

maps any model M′ ∈ ModD↓
(A′) to its reduct κσ(M′) = ModD↓

(σ)(M′).
Whenever σ is a bijective function, κσ is a relabelling constructor. If σ is injec-
tive, κσ is a restriction constructor removing actions and transitions.

A important refinement concept for reactive systems is action refinement
where an abstract action is implemented by a combination of several concrete
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Fig. 5. Model of Ctrl ⊗ GZip

ones (see [12]). It turns out that an action refinement constructor can be easily
defined in D↓-logic if we use the reduct functor for models over a signature
consisting of structured actions built over atomic ones.

Definition 9 (Action refinement). Let A,A′ ∈ |SignD↓ | be signatures in D↓,
i.e. sets of actions. Let D be a finite subset of Act(A′) considered as a signature
in |SignD↓ | and let f : A → D be a signature morphism. The action refinement
constructor |f : ModD↓

(D) → ModD↓
(A) maps any model M′ ∈ ModD↓

(D) to
its reduct ModD↓

(f)(M′).

Example 5. Let us now establish a refinement relation between SP3

(Example 3) and Ctrl ⊗GZip (Example 4). The signature of SP3 consists of the
actions A3 = {inTxt, outZip}, the signature of Ctrl ⊗ GZip is the set A4 =
{inTxt, txt, compTxt, zip, outZip}. To obtain an action refinement we define the
signature morphism f : A3 → Act(A4) by f(inTxt) = inTxt; txt; compTxt
and f(outZip) = zip; outZip. Then we use the action refinement constructor |f :
ModD↓

(A4) → ModD↓
(A3) inducedbyf .Clearly, the applicationof |f to themodel

of Ctrl ⊗GZip leads to the model of SP3 explained above. Hence, SP3 �|f Ctrl ⊗
GZip and together with Example 4 we have also Ctrl ⊗ GZip �κ⊗

〈
Ctrl,GZip

〉

which completes our refinement chain

SP0 � SP1 � SP2 �κext
SP3 �|f Ctrl ⊗ GZip �κ⊗

〈
Ctrl,GZip

〉
.

Finally, let us discuss how we could implement the last specification of the
chain in a concrete process algebra. Translation from D↓ to FSP yields

Ctrl = (inTxt -> txt -> zip -> outZip -> Ctrl).
Gzip = (txt -> compTxt -> zip -> Gzip).

The FSP semantics of the two processes are just the two models of the Ctrl
and Gzip specifications respectively. They can be put together to form a concur-
rent system (Ctrl || Gzip) by using the synchronous parallel composition of
FSP processes. Since the semantics of parallel composition in FSP coincides with
our constructor κ⊗, we have justified that the FSP system (Ctrl || Gzip) is a
correct implementation of the interface specification SP3. ��
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4.2 Abstractor Implementations in D↓-logic

Abstractor implementations in the field of algebraic specifications use typically
observational equivalence relations between algebras based on the evaluation of
terms with observable sorts. Interestingly, in the area of concurrent systems,
abstractors have a very intuitive interpretation if we use bisimilarity notions. To
motivate this, consider the specification SP = ({a}, {↓ x.〈a〉x}). The axiom is
satisfied by the first LTS in Fig. 6, but not by the second one. Clearly, however,
both are bisimilar and so it should be irrelevant, for implementation purposes,
to choose one or the other as an implementation of SP . We capture this with
the principle of abstractor implementation using (strong) bisimilarity [24] as
behavioural equivalence.

Fig. 6. Behavioural equivalent LTSs

Vertical composition of implementations refers to the situation where the
implementation of a specification is further implemented in a next refinement
step. For simple implementations it is trivial that two implementation steps
compose. In the context of constructor and abstractor implementations the sit-
uation is more complex. A general condition to obtain vertical composition in
this case was established in [28]. However, the original result was only given for
unary implementation constructors. In order to adopt parallel composition as a
constructor, we first generalise the institution independent result of [28] to the
n-ary case involving decomposition:

Theorem 2 (Vertical composition). Consider specifications SP, SP1, . . . ,
SPn over an arbitrary institution, a constructor κ : Mod(Sig(SP1)) × · · · ×
Mod(Sig(SPn)) → Mod(Sig(SP )) and an equivalence ≡ ⊆ Mod(Sig(SP )) ×
Mod(Sig(SP )) such that SP �≡

κ 〈SP1, · · · , SPn〉. For each i ∈ {1, . . . , n}, let
SPi �≡i

κi
〈SP 1

i , · · · , SP ki
i 〉 with specifications SP 1

i , . . . , SP ki
i , constructor κi :

Mod(Sig(SP 1
i ))×· · ·×Mod(Sig(SP ki

i )) → Mod(Sig(SPi)), and equivalence ≡i⊆
Mod(Sig(SPi)) × Mod(Sig(SPi)). Suppose that κ preserves the abstractions ≡i,
i.e. for each Mi,Ni ∈ Mod(Sig(SPi)) such that Mi ≡i Ni, κ(M1, . . . ,Mn) ≡
κ(N1, . . . ,Nn). Then,

SP �≡
κ(κ1,··· ,κn)

〈
SP 1

1 , · · · , SP k1
1 , · · · , SP 1

n , · · · , SP kn
n

〉
.

The remaining results establish the necessary compatibility properties between
the constructors defined in D↓ and behavioural equivalence ≡A ⊆ |ModD↓

(A)|×
|ModD↓

(A)|, A ∈ SignD↓
, defined as bisimilarity between LTSs.
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Theorem 3. The alphabet extension constructor κext preserves behavioural
equivalences, i.e. for any M1 ≡A M2, κext(M1) ≡A′ κext(M2).

Theorem 4. The parallel composition constructor κ⊗ preserves behavioural
equivalences, i.e. for any M1 ≡A1 M′

1 and M2 ≡A2 M′
2, M1 ⊗ M2 ≡A1∪A2

M′
1 ⊗ M′

2.

Theorem 5. Let f : A → Act(A′) be a signature morphism. The constructor |f
preserves behavioural equivalences, i.e. for any M1,M2 ∈ ModD↓

(Act(A′)), if
M1 ≡Act(A′) M2, then |f (M1) ≡A |f (M2).

5 Conclusions and Future Work

We have introduced the logic D↓ suitable to specify abstract requirements for
reactive systems as well as concrete designs expressing (recursive) process struc-
tures. Therefore D↓ is appropriate to instantiate Sannella and Tarlecki’s refine-
ment framework to provide stepwise, correct-by-construction development of
reactive systems. We have illustrated this with a simple example using speci-
fications and implementation constructors over D↓. We believe that a case was
made for the suitability of both the logic and the method as a viable alternative
to other, more standard approaches to the design of reactive software.

Related Work. Since the 80’s, the formal development of reactive, concurrent
systems has emerged as one of the most active research topics in Computer
Science, with a plethora of approaches and formalisms. For a proper comparison
with this work, the following paragraphs restrict to two classes of methods: the
ones built on top of logics formalised as institutions, and the attempts to apply
to the domain of reactive systems the methods and techniques inherited from
the loose specification of abstract data types.

In the first class, references [7,9,25] introduce different institutions for tem-
poral logics, as a natural setting for the specification of abstract properties of
reactive processes. Process algebras themselves have also been framed as insti-
tutions. Reference [27] formalises CSP [17] in this way. What distinguishes our
own approach, based on D↓ is the possibility to combine and express in the
same logic both abstract properties, as in temporal logics, and their realisation
in concrete, recursive process terms, as typical in process algebras.

Our second motivation was to discuss how institution-independent methods,
used in (data-oriented) software development, could be applied to the design
of reactive systems. A related perspective is proposed in reference [23], which
suggests the loose specification of processes on top of the CSP institution [27]
mentioned above. The authors explore the reuse of institution independent struc-
turing mechanisms introduced in the CASL framework [3] to develop reactive
systems; in particular, process refinement is understood as inclusion of classes of
models. Note that the CASL (in-the-large) specification structuring mechanisms
can be also taken as specific constructors, as the ones given in this paper.
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Future Work. A lot of work, however, remains to be done. First of all, logic D↓

is worth to be studied in itself, namely proof calculi, and their soundness and
completeness as well as decidability. In [2] it has been shown that nominal-free
dynamic logic with binders is undecidable. Decidability of D↓ is yet an open
question: while [2] considers standard Kripke structures and global satisfaction,
D↓ considers reachable models and satisfaction w.r.t. initial states. On the other
hand, in D↓ modalities are indexed with regular expressions over sets of actions.
It would also be worthwhile to discuss satisfaction up to some notion of obser-
vational equivalence, as done in [5] for algebraic specifications, thus leading to a
behavioural version of D↓.

The study of initial semantics (for some fragments) of D↓ is also in our
research agenda. For example, theories in the fragment of D↓ that alternates
binders with diamond modalities (thus binding all visited states) can be shown
to have weak initial semantics, which becomes strong initial in a deterministic
setting. The abstract study of initial semantics in hybrid(ised) logics reported
in [8], together with the canonical model construction for propositional dynamic
logic introduced in [19] can offer a nice starting point for this task. Moreover,
for realistic systems, data must be included in our logic.

A second line of inquiry is more directly related to the development method.
For example, defining an abstractor on top of some form of weak bisimilarity
would allow for a proper treatment of hiding, an important operation in CSP
[17] and some other process algebras through which a given set of actions is
made non observable. Finally, our aim is to add a final step to the method
proposed here in which any constructive specification can be translated to a
process algebra expression, as currently done by our proof-of-concept translator
D2CSP. A particularly elegant way to do it is to frame such a translation as an
institution morphism into an institution representing a specific process algebra,
for example the one proposed by M. Roggenbach [27] for CSP.
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1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling,
Specification and Verification. Cambridge University Press, Cambridge (2007)

2. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics.
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