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Abstract. The timing of movements and of action sequences is difficult when on-line coupling to sensory information
is a requirement. That requirement arises in most behavior-based robot architectures, in which relatively low-level
and often noisy sensor input is used to initiate and steer action. We show how an attractor dynamics approach to
the generation of behavior in such architectures can be extended to the timing of motor acts. We propose a two-layer
architecture, in which a competitive “neural” dynamics controls the qualitative dynamics of a second, “timing” layer.
At that second layer, periodic attractors generate timed movement. By activating such limit cycles over limited time
intervals, discrete movements and movement sequences can be obtained. We demonstrate the approach by simulating
two tasks that involve control of timing: the interception of moving objects by a simple two-degree-of-freedom robot
arm and the temporal coordination of the end-effector motions of two six-degree-of-freedom robot arms.

1 Introduction

The classical organization of autonomous robots separates task planning, path planning, trajectory planning,
and control (e.g., Latombe, 91). The time structure of movement is primarily concentrated at the trajectory
planning level, at which time courses of relevant effector variables are specified. These time courses may
be planned beforehand, based on prior knowledge about space and time constraints. In the potential field
approach, some of this planning may take place on-line in reaction to changing sensory information as well
(Khatib, 1986). Continuous on-line coupling to sensory information is, however, an important requirement
for robots that interact with humans, that are mounted on mobile platforms, or that work in “natural” envi-
ronments which are not highly controlled and may change over time. This aspect is particularly emphasized
in behavior-based approaches to autonomous robotics (e.g., Arkin, 1998), in which linkage between action
and perception is attempted at particularly low levels of sensory information.

Most current demonstrations of behavior-based robotics do not address timing: The time when a partic-
ular action is initiated and terminated is not a controlled variable, and not stabilized against perturbations.
When a vehicle, for instance, takes longer to arrive at a goal because it needed to circumnavigate an obstacle,
this change of timing is not compensated for by accelerating the vehicle along its path. Timed actions, by
contrast, involve stable temporal relationships. Stable timing is important when particular events must be
achieved in time-varying environments such as hitting or catching moving objects, avoiding moving obsta-
cles, or coordinating multiple robots. Moreover, timing is critical in tasks involving sequentially structured
actions, in which subsequent actions must be initiated only once previous actions have terminated or reached
a particular phase.

While time schedules can be developped within classical approaches (e.g., through configuration-time
space representations), timing is more difficult to control when it must be compatible with continuous on-
line coupling to sensory information. One type of solution is to generate time structure at the level of control.
Raibert (1986), for instance, generated rhythmic action by inserting into dynamic control models terms that
stabilized oscillatory solutions. Similarly, Schaal and Atkeson (1993) generated rhythmic movements in a
robot arm that supported juggling of a ball by inserting into the control system a model of the bouncing
ball together with terms that stabilized stable limit cycles. A limitation of such approaches is that they
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essentially generate a single motor act in rhythmic fashion. The flexible activation of different motor acts in
response to user demands or sensed environmental conditions is more difficult to achieve from the control
level.

These control level solutions were inspired, in part, by analogies with nervous systems, in particular, by
the way the rhythmic movement patterns in legged locomotion are generated (e.g., Beer, Chiel, Sterling,
1990). The timing of rhythmic activities in nervous systems is typically based on the autonomous generation
of rhythms in specialized neural networks (“central pattern generators”), which can be mathematically
described as nonlinear dynamical systems with stable limit cycle (periodic) solutions. Coordination among
limbs can be modelled through mutual coupling of such nonlinear oscillators (Schöner, Kelso, 1986). The
on-line linkage to sensory information can be understood through the coupling of these oscillators to time-
varying sensory information (Schöner, 1994). Limited attempts to extend these theoretical ideas to temporally
discrete movements (e.g., reaching) have been made (Schöner, 1990).

The dynamic approach to autonomous robotics (Schöner, Dose, 1992; Schöner, Dose, Engels, 1995; Stein-
hage, Schöner, 1998; Large, Christensen, Bajcsy, 1999; Bicho, Mallet, Schöner, 2000) extends these ideas
to the level of planning. Plans are generated from stable states of nonlinear dynamical systems, into which
sensory information is fed. Intelligent choice of planning variables makes it possible to obtain complex trajec-
tories and action sequences from stationary stable states, which shift and may even go through instabilities as
sensory information changes. For the control of vehicle motion, for instance, a dynamical system of heading
direction may generate paths that circumnavigate obstacles and find their way to a target, while at all times
the planning variable “heading direction” sits in a fixed point attractor, which may shift as the vehicle moves
and sensory information changes. The possibility of integrating multiple constraints and generating decisions
through instabilities and multistability makes such systems much more flexible than nonlinear controllers.

The generation of trajectories with stable timing had not yet been attempted within this approach (but
see Schaal, Kotosaka, Sternad, 2000, for a related attempt). In this paper we propose a dynamical systems
architecture that generates timed trajectories of manipulators. The model consists of a timing layer, which can
generate both stable oscillations and stationary states. A “neural” dynamics controls the switching between
these two regimes. Incoupling of sensory information enables sensor driven initiation and termination of
movement. Coupling among several such systems enables temporal coordination of multiple effectors.

2 The dynamical systems trajectory generator

The timing level consists of a dynamical system for a pair of timing variables, (x, y). Generating oscillatory
solutions requires at least two dynamical degrees of freedom. Thus, although only the variable, x, will be used
to control motion of a relevant robotic task variable, a second auxiliary variable, y, is needed to represent
oscillatory states. The time courses of these two variables are generated from a dynamical system(
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that can operate in three dynamic regimes controlled by the three “neurons” ui (i = init, hopf, final). The
“init” and “final” contributions generate stable stationary solutions at x = −1 for “init” and +1 for “final”
with y = 0 for both. These states are characterized by a time scale of τ = 1/5 = 0.2. The “hopf” term
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is the normal form of the Hopf bifurcation (Perko, 1991), that is, the simplest polynomial equation containing
a bifurcation to a limit cycle. We use it because it can be completely analytically solved, providing complete
control over its stable states. The “hopf” term in isolation (uinit = ufinal = 0; |uhopf | = 1) provides a stable
periodic solution (limit cycle attractor)

x(t) = sin(ωt) (3)

with cycle time T = 2π/ω and amplitude 1. Relaxation to that stable solution occurs at a time scale of
1/(2. ∗ 2.5) = 0.2 time units.

Gaussian white noise gwn is added to the timing dynamics to guarantees escape from unstable states.



The “neuronal” dynamics of ui (i = init, final, hopf) switches the timing dynamics from the fixed point
regimes into the oscillatory regime and back. Thus, a single discrete movement act is generated by starting
out with neuron |uinit| = 1 activated, the other neurons deactivated (|uhopf | = |ufinal| = 0), so that the system
is in a postural state. The oscillatory solution is then stabilized (|uinit| = 0; |uhopf | = 1). This oscillatory
solution is deactivated again when the effector reaches its target state, after approximately a half-cycle of
the oscillation, turning on the final postural state instead (|uhopf | = 0; |ufinal| = 1). These various switches
are generated from the following competitive dynamics:

α u̇init = µinit uinit − |µinit| u3
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The first two terms of each equation represent the normal form of a degenerate pitchfork bifurcation: A
single attractor at u = 0 for negative µi becomes unstable for positive µi, and two new attractors at ui = 1
and ui = −1 form. We use the absolute value of ui as a weight factor in the timing dynamics, so that +1
and −1 are equivalent “on” states of a neuron, while u = 0 is the “off” state.

The last term in each equation is a competitive term, which destabilizes any attractors in which more
than one neuron is “on”. For positive µi, all attractors of this competitive dynamics have one neuron in an
“on” state, and the other two neurons in the “off” state (Schöner, Dose, 1992; Large, Christensen, Bajczy,
1999).

The neuron, ui, with the largest competitive advantage, µi > 0, is likely to win the competition, although
for sufficiently small differences between the different µi values multiple outcomes are possible (the system
is multistable). To control switching, the parameters, µi (competitive advantages) are therefore defined as
functions of user commands, sensory events, or internal states (Steinhage, Schöner, 1998). Here, we assure
that one neuron is always “on” by varying the µ-parameters between the values 1.5 and 3.5: µi = 1.5 + 2bi,
where bi are “quasi-boolean” factors taking on values between 0 and 1 (with a tendency to have values
either close to 0 or close to 1). These quasi-booleans express logical or sensory conditions controlling the
sequential activation of the different neurons (see Steinhage, Schöner, 1998, for a general framework for
sequence generation based on these ideas):

1. binit may be controlled by user input: the command “move” sets binit from the default value 1 to 0 to
destabilize the initial posture. binit may also be controlled by sensory input, such that, for instance, binit

changes from 1 to 0 when a particular sensory event is detected. Below we demonstrate how the time-to-
contact of an approaching object computed from sensory information can be used to initiate movement
in this manner.

2. bhopf is set from 0 to 1 under the same conditions. This term is multiplied, however, with a second factor
bhas not reached target(x) = σ(xcrit−x) that resets bhopf to zero when the effector has reached its final state.
Herein, σ(x) is a sigmoid function that ranges from 0 for negative argument to 1 for positive argument,
chosen here as

σ(x) = [tanh(10x) + 1]/2 (7)

although any other functional form will work as well. The factor, bhas not reached target(x) has values close
to one while the timing variable x is below xcrit = 0.7 and switches to values close to zero when x comes
within 0.3 of the target state x = 1. Multiplying two quasi-booleans means connecting the corresponding
logical conditions with an “and” operation. Thus, as soon as the timing variable has come within the
vicinity of the final state, it autonomously turns the oscillatory state off. In actual implementation, this
switch can be driven from the sensed actual position of an effector rather than from the timing dynamics.

3. bfinal is, conversely, set from 0 to 1 when the timing variable comes into the vicinity of the target:
bfinal = 1− bhas not reached target.

The time scale of the neuronal dynamics is controlled by α = 45.45, which leads to a typical relaxation
time of τu = 0.02, ten times faster than the relaxation time of the timing variables. This difference in time
scale guarantee that the analysis of the attractor structure of the neural dynamics is unaffected by the
dependence of its parameters, µi on the timing variable, x, which is a dynamical variable as well. (Strictly
speaking, the neural and timing dynamics are thus mutually coupled. The difference in time scale makes it
possible to treat x as a parameter in the neural dynamics. Conversely, the neural weights can be assumed
to have relaxed to their corresponding fixed points when analyzing the timing dynamics.)



Solutions. Periodic movement can be trivially generated from the timing and neural dynamics by selecting
uhopf “on” through the corresponding quasi-booleans. A timed, but temporally discrete movement act, is
autonomously generated by these two coupled levels of nonlinear dynamics through a sequence of neural
switches, such that an oscillatory state exists during an appropriate time interval of about a half-cycle. This
is illustrated in Figure 1. The timing variable, x, which is used to generate effector movement, is initially
in a postural state at −1, the corresponding neuron uinit being “on”. When the user initiates movement,
the quasi-booleans, binit and bhopf exchange values, which leads, after a short delay, to the activation of
the “hopf” neuron. This switch initiates movement, with x evolving along a harmonic trajectory, until it
approaches the final state at +1. At that point, the quasi-boolean bfinal goes to one, while bhopf changes to
zero. The neurons switch accordingly, activating the final postural state, so that x relaxes to its terminal
level x = 1. The movement time is approximately a half cycle time, here MT = 2.
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Fig. 1. Simulation of a user initiated temporally discrete movement represented by the timing variable, x,
which is plotted together with the auxiliary variable, y, in the top panel. The time courses of the three neural
activation variables, uinit, uhopf , and ufinal, which control the timing dynamics, are shown in the middle panel.
The quasi-boolean parameters, binit, bhopf , and bfinal, plotted on bottom, determine the competitive advantage
of each neuron.

3 Simulation of a two degree-of-freedom arm intercepting a ball

As a first (toy) example of how the dynamical systems approach to timing can be put to use to solve robotic
problems, consider a two degree-of-freedom robot arm moving in a plane (Fig. 2). The task is to generate a
timed movement from an initial posture to intercept an approaching ball. Movement with a fixed movement
time (reflecting manipulator constraints) must be initiated in time to reach the ball before it arrives within
the plane in which the arm moves. Factors such as reachability and approach path of the ball are continuously
monitored, leading to a return to the resting posting when interception becomes impossible (e.g., because the
ball hits outside the workspace of the arm, the ball is no longer visible, or ball contact is no longer expected
within a criterion time-to-contact). After the ball was intercepted, the arm moves back to its resting position,
ready to initiate a new movement whenever appropriate sensory information arives.
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Fig. 2. A two degree-of-freedom arm intercepts an approaching ball. Corresponding ball and arm positions
are illustrated by using the same grey-scale. The first position (light grey) is close to the critical time-to-
contact, where arm motion starts. The last position (dark grey) is close to actual contact. The black arrows
indicate the ball’s movement.

In this simulation we have extracted from a simulated ball trajectory two measures: the time-to-contact,
τt2c, based on constant approach velocity and the point of collision in the plane in which the robot arm
moves. The time-to-contact can be extracted from segmented visual information without having estimated
the full cartesisan trajectory of the ball (Lee, 1976). The point of impact can be computed along similar
lines if the ball size is assumed known and can be measured in the image.

These two measures fully control the neural dynamics through the quasi-boolean parameters. A sequence
of neural switches is generated by translating sensory conditions and logical constraints into values for
these parameters (Steinhage, Schöner, 1998). For instance, the parameter, binit, controlling the competitive
advantage of the initial postural state must be “on” (= 1) when the the timing variable x is close to the
initial state −1, and either of the following is true: (1) ball not approaching or not visible (τt2c ≤ 0); (2) ball
contact not yet within a criterion time-to-contact (τt2c > τcrit); (3) ball is approaching within criterion time-
to-contact but is not reachable (0 < τt2c < τcrit; breachable = 0). These logical conditions can be expressed
through this mathematical function:

binit = σ(−xcrit − x) [σ(τt2c − τcrit) + σ(τt2c) σ(τcrit − τt2c) σ(1− breachable) + σ(−τt2c)] (8)

where σ(·) is the threshold-function used earlier (Eq. 7). Multiplication of sigmoids expresses logical “and”
operations. The “or” is realized by summing terms which are never simultaneously different from zero. In
other cases, the “or” is expressed with the help of the “not” (subtracting from 1) and the “and”. This is
used in the following expressions for bhopf and bfinal which can be derived from a similar analysis:

bhopf = 1− (1− [σ(xcrit − x) σ(τt2c) σ(τcrit − τt2c) σ(breachable)]) (9)
· (1− [σ(x+ xcrit){1− (1− σ(1 − breachable))(1 − σ(−τt2c))(1− σ(τt2c − τcrit))(1 − σ(xcrit − x))}])

bfinal = σ(x− xcrit) σ(τt2c) σ(τcrit − τt2c) σ(breachable) (10)



Finally, the three relevant coordinate frames must be linked: (a) The timing variable frame describes the
end-effector position along a straight path from the initial position (reference posture) to the target position
(computed coordinates of point of interceptance). (b) The task relevant frame is cartesian and describes
the end-effector position of the arm and the ball position. (c) The arm kinematics is described by two joint
angles. Frame (a) and (b) are linked through straightforward formulae, which depend on the predicted point
of interceptance. Frame (b) and (c) are linked through the kinematic model of the robot arm and its inverse.
During movement execution, the timing variables are continuously transformed into reference frame (b),
from which joint angles are computed through the inverse kinematic transformation.

Figure 2 shows how this two degree-of-freedom arm intercepts an approaching ball. The detailed time
courses of the relevant variables and parameters are shown in Figure 3. As the ball approaches, the current
time-to-contact becomes smaller than a critical value (here 3), at which time the quasi-boolean for motion,
bhopf becomes one, triggering activation of the corresponding neuron, uhopf , and movement initiation. Move-
ment is completed (x reaches the final state of +1) well before actual ball contact is made. The arm waits
in the target posture. In this simulation the ball is reflected upon contact. The negative time-to-contact
observed then leads to autonomous initiation of the backward movement to the arm resting position.
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Fig. 3. Trajectories of variables and parameters in autonomous ball interception and return to resting position.
The top three panels represent timing variables, neural variables, and quasi-booleans as in Fig 1. The bottom
panel shows the time-to-contact, which crosses a threshold at about 0.5 time units. When contact is made,
the ball is assumed to be reflected, leading to negative time-to-contact.

The fact that timed movement is generated from attractor solutions of a nonlinear dynamical system
leads to a number of properties of this system, that are potentially useful to the real-world implementation
of this form of autonomy. For instance, the autonomous sensor-driven initiation of movement is stabilized
by the hysteresis properties of the competitive neural dynamics (see Schöner, Dose, 1992, for analysis).
Moreover, when sensory conditions change, an appropriate new sequence of events emerges. When one of the
sensory conditions for ball interception is invalided (e.g., ball becomes invisible, unreachable, or no longer



approaches with appropriate time-to-contact), then one of the following happens depending on the point
within the sequence of events at which the change occurs: (1) If the change occurs during the initial postural
stage, the system stays in that postural state. (2) If the change occurs during the movement, then the system
continues on its trajectory, now going around a full cycle to return to the reference posture. (3) When the
change occurs during posture in the target position, a discrete movement is initiated that takes the arm back
to its resting position. As an illustration, Figure 4 shows how the arm continues on its movement cycle when
during the motion phase a sudden change (ball trajectory is changed leading to much larger time-to-contact)
invalidates the sensory conditions for ball contact.
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Fig. 4. Similar to Fig. 3, but now the ball is suddenly shifted away from arm at about 1.5 time units, leading
to much increased time-to-contact, well beyond threshold for movement initiation. The arm is in the motion
stage at this point and hence continues its movement a full cycle, until captured by the initial postural
state when the arm is back to the reference position. This behavior emerges from the sensory conditions
controlling the neuronal dynamics.

4 Simulation of two six degree-of-freedom arms: temporal coordination

A second example illustrating uses of the dynamical systems approach to timing is the temporal coordination
of two robot arms. In the simulations, we used two PUMA arms, whose inverse kinematics were based on
the exact solution (Fu, Gonzalez, Lee, 1987; section. 2.3.2.). Each arm was driven by a complete system of
timing and neural dynamics. The two timing dynamics were coupled in a way that generates phase-locking
in the periodic regime. This was achieved by modifying the “Hopf” contribution to the timing dynamics as
follows: (
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where the index i = 1, 2 refers to arm 1 and arm 2. The coupling term is multiplied with the neuronal
activation of the other system’s hopf state so that coupling is effective only when both components are in
the movement state.

In discrete motor acts, a coupling of this form tends to synchronize movement in the two components.
Thus, even if the movement onsets are not perfectly synchronized, this coupling coordinates the two com-
ponents so that movements terminate approximately simultaneously. This is illustrated in the top panel of
Figure 5. Moreover, coupling two timing dynamics removes the need to compute exactly identical movement
times for two component movements that must be temporally coordinated. Even if there is a discrepancy in
the movement time programmed by the parameter, ω, of the timing dynamics, coupling generates identical
effective movement times. This discrete analogue of frequency locking is illustrated in the bottom panel of
Figure 5.
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Fig. 5. Coordination between two timing dynamics through coupling leads to synchronization. The relevant
x component of the timing dynamics is shown in each panel for both systems. In the top panel, movement
initiation is slightly asynchronous. Without coupling (grey lines) this asynchrony would persist throughout
the movement. With coupling (black lines), the initial asynchrony is diminished so that the two components
terminate movement almost simultaneously. In the bottom panel, movement initiation is asynchronous as
well, but in addition movement times differ (2 vs. 3). While in this case coupling does not achieve perfect
synchrony, the movement time of the two coupled componets is equal.

5 Conclusion/Outlook

We have shown how timed movements and sequences of movements can be autonomously generated from
an attractor based two-layer dynamics. The timing level has either stable fixed points or stable limit cycles.
It is switched between these regimes by the neural dynamics, which is build entirely around fixed points,
at which only one neuron is active. Parameters of the neural dynamics (“competitive advantage”) express
sensory and logical conditions for the activation of any particular neuron and the corresponding movement
state.



We have illustrated how this attractor based dynamics may generate rhythmic and temporally discrete
movements, movement sequences, and temporally coordinated movements of multiple effectors. We simulated
two situations: In one, a simple robot arm intercepts a moving object and returns to a reference position
thereafter. This sequence is stably adapted to changing online sensory information. Moreover, movement
initiation is entirely sensor-driven in this example. A second simulation demonstrated how coupling amoung
multiple timing systems helps synchronize systems and reduces the computational requirements for determin-
ing identical movement parameters across such components. This coordination through coupling approach
resembles the generation of coordinated patterns of activation in locomotory behavior of nervous systems.

One advantage of our formulation is the ease with which the system is integrated into larger architectures
for behavioral organization (Steinhage, Schöner, 1998) that do not necessarily explicitly represent timing
requirements. At a technical level, our system is analytically treatable to a large extent, which facilitates the
specification of parameters such as movement time, movement extent, maximal velocity, etc. Moreover, even
relatively complex logical and sensory conditions can be expressed though the quasi-boolean parameters of the
neuronal dynamics. This enables the generation of sequences. Schaal, Kotosaka, and Sternad (2000) present
a related project, in which a neuronally inspired dynamical system is used to generate both rhythmic and
temporally discrete movement. The analytical solvability of our dynamics and the generalization to sequence
generation are two distinguishing features of our approach.

An implementation of this approach in hardware will provide a more rigorous test of its robustness.
This will probe, in particular, how the inherent stability properties of neural and timing dynamics play out
when the sensory information that serves to initiate movement is noisy and unreliable. We are currently
planning an implementation of this nature making use of an experimental robot vehicle available in our lab
(Bicho, Mallet, Schöner, 2000). Another direction in which these ideas could be developed lies in the domain
of computer based animation, in which autonomy can help to reduce the amount of programmer effort to
generate scenes and can provide user interactivity (Latombe, 1999).
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