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The increasing food demand and the exhaustion of non-renewable fuels provide new market opportu-
nities in the agro-farming sector. Biological systems designed to add value to useless organic sub-
products and to generate off-grid electricity may be one of the most interesting outcomes. Therefore,
the capacity of some microorganisms to transfer electrons generated during organic carbon oxidation
directly to an anode in a so-called microbial fuel cell (MFC) might be an asset in a sustainable man-
agement context. In this regard, the main goal of the present work was to evaluate the performance of a
continuous MFC applied in a dairy industry. A maximum voltage of 576 mV was produced during
continuous operation, corresponding to a power density of 92.2 mW m~2 or 1.9 W m 3. MFC was able to
remove 1298 + 617 mg L~! of chemical oxygen demand (COD) at a hydraulic retention time of 8.4 h, and
the maximum COD removal (63 + 5%) was achieved after 20 days of continuous operation. In addition,
the coulombic efficiency average was around 10.5 + 10% with a maximum of 24.2 + 1.5%. In average, the
MFC was able to extract a specific energy of 8.95 x 1072 kW h kg~! COD with a maximum output of
20.53 x 1072 kW h kg~! COD. In conclusion, the MFC technology is a valuable option for simultaneous
wastewater treatment and energy recovery and deserves to be tested and scaled-up in the dairy industry.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

The access to food in quantity and quality is one of the key issues
affecting human development and is a main driver for the circular
economy growth and human equity. The increasing shortage of
resources, namely water and energy, is highly challenging for
science and technology. Nowadays, research on innovative, cost-
effective and competitive industrial processes are necessary to
boost food production and the quest for sustainable technologies to
process agro-industrial wastewaters is a step forward (Aydiner
et al.,, 2016; Almuktar et al., 2015).

In response to this ambition, several efforts are being pursued
trying to explore decentralized and clean energy sources. One of
those possibilities is the use of microbial fuel cells (MFCs) (Logan
et al., 2006; Martins et al., 2010). The MFC technology is based on
the ability of some carbon-oxidizing microorganisms to transfer
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electrons directly to an anode in anaerobic conditions (Peixoto
et al.,, 2013; Logan et al., 2006). The standard design consists of
an electrochemical cell with anodic and cathodic compartments
separated by a proton exchange membrane. In the anode
compartment, the conversion of different carbon sources is carried
out through catalytic reactions, which involve anaerobic electro-
active microorganisms (Franks and Nevin, 2010). Several environ-
mental factors influence MFC performance, namely, inoculum type,
carbon source, concentration, feed rate, pH, temperature and
reactor configuration (Ren et al, 2014a; Cheng et al., 2006).
Therefore, for full scale applications in wastewater treatment,
continuous flow MFC could be more suitable than batch or fed-
batch for a higher COD removal and power generation (Sevda
et al., 2015; Zhuang et al.,, 2012; Rahimnejad et al., 2011). In
continuous MFC operation, the maximum chemical oxygen de-
mand (COD) removal is in the range of 70% and 99% (Pasupuleti
et al, 2015; Rahimnejad et al., 2011). However, the hydraulic
retention time (HRT) was higher (up to 48 h) than those adopted in
conventional wastewater treatment systems (4—12 h) (Sevda et al.,
2015; Ahn and Logan, 2013; Aelterman et al., 2006; Min et al,,
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2005). In conclusion, there have been few studies on wastewater
treatment using MFC in a HRT range of ~10 h or less (Kim et al.,
2015).

A cleaner and more competitive agro-industrial management is
essential in order to face energy and water scarcity (Almuktar et al.,
2015). In particular, dairy industry is one of the most significant
examples of biodegradable organic based wastewaters that
endanger surface waters quality. Therefore, a technology that
achieves wastewater treatment with simultaneous bioenergy re-
covery will represent an asset towards an eco-efficient industry
(Aydiner et al.,, 2016; Pant et al.,, 2010; Oh et al., 2010). Dairy
wastewater is a complex organic mixture rich in carbohydrates,
proteins and fats, presenting a significant biological oxygen de-
mand (BOD) and COD (Karadag et al., 2015; Elakkiya and
Matheswaran, 2013; Demirel et al., 2005). Biological processes are
the standard in dairy wastewater treatment plant designs, often
complemented by physico-chemical processes for fat and grease
abatement or nutrient removal (Karadag et al., 2015; Martin-Rilo
et al, 2015; Demirel et al, 2005). Lagoon systems are the
preferred low-cost approach, but the performance is rather low and
odour problems may occur (Bhatia and Goyal, 2014). On the con-
trary, activated sludge processes present a good performance but
the energy consumption and sludge production are significant
drawbacks (Demirel et al., 2005), Anaerobic filters (Lim and Fox,
2011) and upflow anaerobic sludge blanket reactors or related
concepts (Ramasamy et al.,, 2004; Demirel et al., 2005) are used
also. These reactors may have some performance limitations and
being driven by biogas production requires further conversion
processes to produce electricity (Passeggi et al., 2012). Therefore,
there is a substantial gap that requires innovative designs towards a
circular economy and clean production in the dairy industry
(Kubota and da Rosa, 2013).

In electricity driven world, MFCs are probably the comprehen-
sive answer for such a demand in the agro-food industry, being a
more efficient answer than biogas production, especially when we
compare the net electrical efficiency of anaerobic digestion (10%—
15%) with the coulombic efficiency of MFCs (20%—80%)
(Mardanpour et al.,, 2012; Pant et al., 2010; Oh et al., 2010). In
addition, MFCs are not affected by high concentrations of volatile
fatty acids that are known to inhibit conventional anaerobic
digestion processes (Oh and Martin, 2009; Hawkes et al., 2007;
Logan and Regan, 2006). However, to date only a few attempts
tried to apply MFC technology in the framework of industrial dairy
wastewaters, especially in a continuous flow mode. Therefore, the
goal of the present work is to assess the performance of a contin-
uous MFC for dairy wastewater treatment and energy valorisation.

2. Material and methods
2.1. MFC setup and operation

A dual chamber MFC was assembled by connecting two com-
partments of transparent poly methylmethacrylate, with equal di-
mensions (12 cm x 8 cm x 5 cm). The two compartments were
physically separated by a proton exchange membrane (Nafion
Membrane 117, DuPont Co., USA), sealed with a silicone rubbers,
and to keep it tight, rubber gaskets and stainless steel screws were
used. Total volume of each chamber was 480 mL with approxi-
mately 350 mL of liquid volume. The electrodes, both carbon Toray
TP-090 (QUINTECH, USA) sheet (6 cm x 6 cm = 72 cm?), were
connected to an external resistance using copper coated wires
(2 mm diameter). The circuit was closed with a fixed resistance of
500 Q, according to the results obtained by Elakkiya and
Matheswaran (2013). In Fig. 1 it is depicted a schematic diagram
of continuous MFC setup.

external
resistance

2 i

cathodic
chamber

anodic
chamber

dairy treated

wastewater effluent proton exchange

membrane

Fig. 1. Schematic diagram of continuous MFC setup.

In order to promote biofilm formation on anode surface and to
produce power density, 350 mL of pre-screened municipal waste-
water (with an average chemical oxygen demand (COD) concen-
tration of 500 + 100 mgL~!, conductivity of 790 + 20 pS cm~! and
pH 7 + 0.2) was used as a batch stirred anolyte at room temperature
(=22 °C). After sampling, the wastewater was deoxygenated with
nitrogen gas and kept at 4 °C until use (Peixoto et al., 2013). When
necessary, wastewater was replaced to avoid organic carbon limi-
tations on bioelectricity production. In the cathode compartment
and to avoid oxygen limitation, 50 mM of hexacyanoferrate in
phosphate buffer (50 mM) at pH 7, was used as a catholyte solution.

After the steady state was reached (i.e: when similar values of
power density were obtained along three consecutively cycles), the
flow regime was changed from fed-batch to continuous and a dairy
wastewater was used to feed the MFC at a flow rate of 1 Ld ™\ A
synthetic feed was prepared in order to simulate the average
composition of a dairy wastewater (1500—5000 mgCOD L ';
Elakkiya and Matheswaran, 2013; Mardanpour et al., 2012), and no
precise mode was in place regarding synthetic effluent preparation
because wastewater COD values in the dairy industry present sig-
nificant variations due to process operations and due to disconti-
nuity in the production cycles of different products (Farizoglu and
Uzuner, 2011). Therefore, the synthetic effluent was prepared by
adding ~100 mL of low fat pasteurized milk to ~5 L of tap water,
without macro or micronutrient supplementation.

2.2. Electrochemical and chemical analysis

Bioelectricity production was measured by recording every
30 min the voltage between anode and cathode. Data were
collected automatically and stored in a computer by a USB-9215A
BNC connector data logger (National Instruments) and a data
acquisition software (Labview 6.0) (Martins et al., 2014). Electro-
chemical analysis was performed according to Martins et al. (2010).
Briefly, the current intensity (I) was calculated according to the
Ohm's law (Equation (1)), where V is the voltage and R the resis-
tance. The current density (j) was calculated as depicted in Equation
(2), where A is the projected surface area of the anode electrode.
The power density (P) is calculated as the product of current in-
tensity and voltage divided by the projected surface area of the
anode (Equation (3)). The polarization curve, describing the voltage
and the power density as a function of the current density (Peixoto
et al., 2013) was recorded using a series of resistances in the range
of 71.1 kQ to 50 Q during biofilm formation and the stable phase of
bioelectricity production along the continuous operation (Peixoto
et al., 2013). The internal resistance of the MFC (Rj,¢) was calcu-
lated from the slope of the polarization curve in the region
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dominated by Ohmic losses (Peixoto et al., 2013). The open circuit
voltage (OCV) was measured at infinite resistance.

1%
-y (1)
i=x )
v
p=1 3

Treatment performance was assessed by COD removal, using
chromate as the oxidant agent, as described in Standard Methods
(A.PH.A et al., 1998). Coulombic efficiency (CE) was calculated ac-
cording to Equation (4), where Ct was the total coulombs calculated
by integrating the current over time (Equation (5)), and Cth was the
theoretical amount of coulombs available based on the COD
removed in the MFC over the same amount of time, calculated by
Equation (6).

ct .
CE = o, < 100% (4)
Ct=> 1At (5)

Fb(COD;;, — CODgut) QAL 6
M

I is the current intensity, At is the time interval, F is Faraday's
constant, b = 4 is the number of electrons exchanged per mole of
oxygen, CODin and CODout are the influent and effluent COD, Q is
the flow rate, and M = 32 is the molecular weight of oxygen (Ren
et al.,, 2014a; Logan et al., 2006).

Cth =

3. Results and discussion
3.1. MFC operation

Voltage variations between anode and cathode were monitored
during biofilm formation. Voltage started to increase after 14 days
of incubation with municipal wastewater and a stable value
(431 + 22 mV) was obtained after 6 feeding cycles. In terms of
power density, the maximum value obtained during biofilm for-
mation was around 52 + 5 mW m~2. After the 26th day of opera-
tion, the MFC reactor flow regime was switched to continuous and
the synthetic dairy effluent was added. The voltage variation and
power density along time are depicted in Fig. 2.

During continuous operation, voltage remained between
400 mV and 500 mV for approximately four days, which corre-
sponded to 45 mW m~2 and 69 mWm 2, respectively. The voltage
dropped due to fouling of the feeding tubes and cleaning was done
by hydraulic washing increasing the flow rate to the maximum
value (~10 mL min~!) and by switching the flow direction. There-
after, the feed was renewed and COD was determined. The voltage
started to increase and reached a new maximum, 576 mV
(92 W m~2). During this period, a new polarization and power
curve assessment were carried out (Figs. 3 and 4). Based on those
results, it was decided to change the external resistor from 500 Q to
80 Q. This change had the purpose of the optimize power pro-
duction once that the optimum external resistance is the resistance
for which the maximum power density was obtained (Martins
et al., 2014).

However, after a short period where power density increased
from 92 mW m~2 to 246 mW m™?, it started to decrease, probably
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Fig. 2. Voltage (V) and power density (P) variation along MFC continuous operation; a)
addition of new feed solution; b) addition of new feed solution and changing the
external resistor from 500 Q to 80 Q; c) changing the external resistor from 80 Q to
500 Q; d) addition of new feed solution; and e) addition of new cathodic solution.
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Fig. 3. Polarization curves obtained in the stable phase of biofilm formation and in
continuous MFC operation.

due to a high electron discharge promoted by the lower resistor
(Mardanpour et al., 2012; Venkata Mohan et al., 2010). At lower
external resistances, the electrons flow more rapidly through the
circuit compared to higher external resistances (Mardanpour et al.,
2012). A higher wastewater oxidation rate by microorganisms is
expected with a large amount of oxidized electron carriers at low
external resistances (Venkata Mohan et al., 2010).
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Fig. 4. Power curves obtained in the stable phase of biofilm formation and in
continuous MFC operation.
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To reverse the voltage decrease, the external resistor was
switched to 500 Q. However, power density maintained the
descending trend for two days and only partially recovered after-
wards. At day 40 (13 days after continuous operation), a new feed
solution was added and voltage increased up to 474 mV
(62 mW m~2) decreasing afterwards, probably due to cathodic
solution limitations. A new cathodic solution was prepared and
voltage increased again until 369 mV (37 mW m~2), decreasing
afterwards. The fair performance in power production could be due
to the membrane fouling on the anode driven by the organic con-
centration (Elakkiya and Matheswaran, 2013). Moreover, recent
studies have shown that both high power densities and low effluent
COD concentrations is difficult to achieve in MFC under continuous
flow conditions (Kim et al., 2015; Elakkiya and Matheswaran, 2013;
Akman et al., 2013).

3.2. Polarization and power curves

The open circuit voltage (OCV) corresponds to the maximum
voltage that is possible to obtain from the MFC under a set of
experimental conditions. The measured OCV was 562 mV during
biofilm formation and 649 mV during continuous operation. These
values are in the range of those reported in literature for similar
setups (500—800 mV) (Peixoto et al., 2013; Logan, 2010). The po-
larization curves depicted in Fig. 3 presents the voltage as a func-
tion of current density obtained during biofilm formation and
reactor operation with resistances varying from 71.1 kQ to 50 Q. The
results reveal a current density increase from 174 mA m~2 during
biofilm formation up to 665 mA m~2 when in continuous operation.

The shape of the curves confirmed the prevalence of ohmic
losses generated by one or several of the following factors: mem-
brane resistance, wastewater electrolyte resistance and bacterial
metabolism. In the present work, the initial slope of polarization
curves, usually observed due to activation losses, were not
observed. This revealed a mature biofilm in both cases, where
direct electron transfer may predominate as well as interspecies
electron transfer instead of mediated processes. The sharp final
voltage drop, due to mass transfer limitations in the electrode
surface, was evident in the polarization curve obtained during
biofilm formation. During continuous operation, internal mass
transfer limitations were not significant because the MFC was
continuously fed with new substrate (Aelterman et al., 2006).
However, at higher current densities, power disruption was noticed
in the polarization curve that corresponds to overshoot of the
system (Fig. 3). This phenomenon can provide some additional
insights about biofilm electrical stability that discharges the elec-
trons faster in the presence of lower external resistances
(Mardanpour et al., 2012; Venkata Mohan et al., 2010). Neverthe-
less, this process is not well understood. Probably, biofilm stability
might be compromised in continuous operation, being acclimation
and biofilm development considered the probable causes (Logan,
2012). This limitation can be overcome through biofilm stabiliza-
tion using a controlled electric potential during MFC biofilm growth
phase and operation (Zhu et al., 2013). In addition, this fact might
explain the efficiency loss in terms of voltage and the observed
power oscillations (Fig. 2). Furthermore, the variation of output
power with the external resistance can be attributed to polarization
losses (i.e., activation, ohmic and concentration) across MFC (Logan
et al., 2006). Thus, based on the slope of voltage vs. current density
curve in the ohmic losses zone, it was also possible to verify that the
internal resistance of the MFC, either in batch or in continuous flow,
was very low, 15 Q and 5 Q, respectively. These values were lower
than expected when compared with published results (55 Q)
(Mardanpour et al., 2012; Venkata Mohan et al., 2010), However,
this reveals a good biofilm adhesion to the electrode surface and

the predominance of direct electron transfer to the electrode. A
further explanation for these low values of internal resistance
might be the cathodic solution that was used in the present work.
In MFCs using pH buffers, it was verified a proton transfer increase
and an internal resistance reduction (Elakkiya and Matheswaran,
2013; Fan et al., 2007).

The maximum power density obtained with respect to the
electrode area was 255 mW m™2, corresponding to a current den-
sity of 665 mA m~2 (external resistor = 80 Q), and this was
observed during continuous operation (Fig. 4). The maximum po-
wer density increased 5 times by changing the flow regime of the
reactor, compared with the 51 mWm 2 obtained in the power
curve during the biofilm formation in batch mode. This result might
be due to the high COD concentration of the influent and to the
decrease of reaction by-products in anodic chamber that could
inhibit bacterial activity. Indeed, the main disadvantages associated
with batch MFCs are the substrate depletion and by-product
toxicity (Ren et al., 2014b; Rahimnejad et al., 2011).

When comparing the maximum power densities during biofilm
formation and continuous operation with the power densities ob-
tained experimentally, it was possible to observe a significant cor-
relation. When the MFC was operated in the batch mode during
biofilm adhesion and formation, the maximum power density was
57 mW m~2. This value was very similar to the one obtained in the
power curve, 51 mW m~2. During continuous operation with the
dairy effluent and in the period immediately before the determi-
nation of the polarization and power curve, the observed power
density was around 90 mW m~2, but in the polarization curve, a
maximum of 255 mW m~2 was obtained. This result motivated the
external resistance switch and contributed to a power density in-
crease up to 228 mW m~2 However, as described previously
(section 3.1.), this value was not retained and started to decrease
afterwards.

3.3. Organic matter processing

The MFC performance regarding the organic matter degradation
expressed by COD removal is presented in Table 1.

In average, the MFC was able to reduce 1298 + 617 mg L™! of
COD at an hydraulic retention time of 8.4 h. COD removal rates were
lower than other ones presented in MFC literature (Elakkiya and
Matheswaran, 2013; Mardanpour et al, 2012; Velasquez-Orta
et al.,, 2011; Venkata Mohan et al., 2010), probably due to shorter
hydraulic retention time when compared to long fed-batch cycle
times (12—72 h) (Ren et al., 2014a; Mardanpour et al., 2012). To
date, COD removal rates in MFCs operated with dairy wastewater
varied from 55 + 11% (average of the present study) up to 95%
(Elakkiya and Matheswaran, 2013). In addition, during continuous
operation, the coulombic efficiency average was around 10.5 + 10%
with the maximum of 24.2 + 1.5%. The high standard error of
coulombic efficiency might be the result of substrate concentration
oscillations, as well as the presence of different electron acceptors
and reactor chamber designs (Hu, 2008). A higher organic load
during initial phases of operation might also result in lower
coulombic efficiency, mainly due to the organic matter utilization
by other microbial processes towards growth and physiological
balances generating other by-products (Butti et al., 2016; Venkata
Mohan et al., 2010; Pant et al., 2010). The average energy produc-
tion, expressed as kWh kg~! COD removed, was 8.95 x 102 and the
maximum value was obtained between the day 32 and 36,
20.53 x 102 kWh kg~! COD. A comparison of type, inoculum and
MFC performance fed with dairy wastewaters is presented in
Table 2.

As can be seen in Table 2, up to now, the best results obtained
with a MFC operated with dairy wastewater were achieved in a



A. Faria et al. / Journal of Cleaner Production 140 (2017) 971-976 975

Table 1

COD and coulombic efficiency values in feed and output.
Time elapsed after the start of operation in continuous/day Feed COD/mg L' Output flow COD/mg L~} COD removal/% CE/%
5 2417 + 148 1026 + 60 58 +2 41 +0.1
8 1513 + 148 922 + 120 39+8 113+ 09
13 1920 + 247 786 + 123 59 +6 242 +15
20 3299 + 25 1222 + 175 63 +5 22 +01

(mean value + standard deviation).

Table 2
Comparison of MFC performance using dairy wastewater as substrate.
MEC type Inoculum Operation mode Maximum power CE/% Reference
density/W m—3
Dual chambered Activated sludge; Municipal wastewater treatment plant Continuous 5.1 24 This study
Dual chambered Activated sludge; Dairy wastewater treatment plant Fed-batch 2.6 17 Elakkiya and Matheswaran 2013
Single chambered Anaerobic sludge; Industrial wastewater treatment plant Fed-batch 1.1 14 Venkata Mohan et al., 2010
Single chambered Activated sludge; Dairy wastewater treatment plant Fed-batch 20.2 27 Mardanpour et al., 2012
Single chambered Anaerobic sludge; Municipal wastewater Batch 04 3 Velasquez-Orta et al., 2011

treatment plant

single chambered MFC inoculated with aerobic activated sludge
from a dairy wastewater treatment plant (Mardanpour et al., 2012),
revealing the importance of inoculum selection and acclimation.
The maximum power density and CE were both higher in
Mardanpour et al. (2012), but those values were achieved under a
fed-batch cycle of 72 h, contrasting to the lower HRT (8.4 h) ob-
tained in the present study with a conventional MFC configuration.
Regarding the coulombic efficiency, the values achieved in the re-
ported fed-batch work were similar to the ones obtained in the
present study. Nevertheless, the present work innovates because it
was carried out in a continuous flow mode displaying higher en-
ergy conversion efficiency than the fed-batch and batch mode
operation (Pasupuleti et al., 2015). Comparing the power densities,
the present values are in the same range of previous works.
Therefore, MFC could provide the appropriate level of treatment for
effluent reuse in crop irrigation, namely in vulnerable water scar-
city zones, as is the case in the Mediterranean area. In addition, MFC
might also provide enough power for low-energy applications,
namely real-time environmental monitoring (Peixoto et al., 2011).

4. Conclusions

Linear models of production and consumption are increasingly
challenged. In this regard, the present study disclosed the MFC as a
resource recovery technology in the dairy industry, combining
wastewater treatment and off-grid electricity production. The
following conclusions can be drawn from this research:

1) the maximum voltage obtained by the two chamber MFC during
continuous operation was around 576 mV, corresponding to a
power density of 1.9 W m~3;

2) the maximum power density was 246 mW m~2 with an external
resistance of 80 Q;

3) COD removal rates were 55 + 11%, corresponding to a removal of
1298 + 617 mg L~! COD, at a hydraulic retention time of 8.4 h;

4) the maximum columbic efficiency obtained by the present study
was of 24.2 + 1.5%, corresponding to an energy production
around 20.5 x 1072 kW h kg~! COD removed.

MEC applications in the dairy industry require further optimi-
zation in order to increase power voltage and to reduce retention
times. In spite of this, the MFC experimental results encourage a
more ambitious agenda when is to be designed for by-products

reuse in the agro-food industry. Effective and low-cost construc-
tion materials and straightforward reactor designs, as well as po-
wer recovery by the development of more efficient voltage
boosting circuits are among the main technological challenges that
are to be addressed further for an eco-efficient wastewater treat-
ment with decentralized energy production.
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