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This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based
algorithm for nonconvex constrained global optimization problems. Convergence to an €-global mini-
mizer is proved. At each iteration k, the algorithm requires the £<k)-global minimization of a bound

constrained optimization subproblem, where e®) — & The subproblems are solved by a stochastic
population-based metaheuristic that relies on the artificial fish swarm paradigm and a two swarm strat-
egy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with
a dynamically defined probability. Numerical experiments with benchmark functions and engineering
design problems are presented. The results show that the proposed shifted hyperbolic augmented La-
grangian compares favorably with other deterministic and stochastic penalty-based methods.

Keywords: global optimization; augmented Lagrangian; shifted hyperbolic penalty; artificial fish
swarm; Nelder-Mead search

1. Introduction

This article presents a shifted hyperbolic augmented Lagrangian algorithm for solving noncon-
vex optimization problems subject to inequality constraints. The algorithm aims at guaranteeing
that a global optimal solution of the problem is obtained, up to a required accuracy € > 0. The
mathematical formulation of the problem is:

min f(x) subjectto g(x) <0 (1)
xeQ

where f: R” — R and g : R” — R? are nonlinear continuous functions, possibly nondifferen-
tiable, and Q = {x € R : —eo < [ < x < u < oo}. Functions f and g may be nonconvex and
many local minima may exist in the feasible region. For the class of global optimization prob-
lems, methods based on penalty functions are common in the literature. In this type of methods,
the constraint violation is combined with the objective function to define a penalty function.
This function aims at penalizing infeasible solutions by increasing their fitness values propor-
tionally to their level of constraint violation. In Ali, Golalikhani, and Zhuang (2014); Ali and
Zhu (2013); Barbosa and Lemonge (2008); Coello (2002); Lemonge, Barbosa, and Bernardino
(2015); Mezura-Montes and Coello (2011); Silva, Barbosa, and Lemonge (2011), penalty meth-
ods and stochastic approaches are used to generate a population of points, at each iteration,
aiming to explore the search space and to converge to a global optimal solution.
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Metaheuristics are approximate methods or heuristics that are designed to search for good so-
lutions, known as near-optimal solutions, with less computational effort and time than the more
classical algorithms. While heuristics are tailored to solve a specific problem, metaheuristics
are general-purpose algorithms that can be applied to solve almost any optimization problem.
They do not take advantage of any specificity of the problem and can then be used as black boxes.
They are usually non-deterministic and their behavior do not dependent on problem’s properties.
Some generate just one solution at a time, i.e., at each iteration, like the simulated annealing,
variable neighborhood search and tabu search, others generate a set of solutions at each itera-
tion, improving them along the iterative process. These population-based metaheuristics have
been used to solve a variety of optimization problems (Boussaid, Lepagnot, and Siarry 2013)
from combinatorial to the continuous ones. Popular metaheuristics are the differential evolution
(DE), electromagnetism-like mechanism (EM), genetic algorithm (GA), harmony search (HS),
and the challenging swarm intelligence-based algorithms, such as, ant colony optimization, arti-
ficial bee colony, artificial fish swarm, firefly algorithm and particle swarm optimization (PSO)
(see Akay and Karaboga (2012); Kamarian et al. (2014); Mahdavi, Fesanghary, and Damangir
(2007); Tahk, Woo, and Park (2007); Tsoulos (2009)).

The artificial fish swarm (AFS) algorithm is one of the swarm intelligence algorithms that
has been the subject of intense research in the last decade, e.g. M. Costa, Rocha, and Fernandes
(2014); Rocha, Fernandes, and Martins (2011); Rocha, Martins, and Fernandes (2011); Yazdani
et al. (2013). Recently, the AFS algorithm has been hybridized with other metaheuristics, like
the PSO (Tsai and Lin 2011; Zhao et al. 2014), and even with the classic Powell local descent
algorithm in (Zhang and Luo 2013). It has also been applied to engineering system design (see
Lobato and Steffen (2014)), in 0—1 multidimensional knapsack problems (Azad, Rocha, and
Fernandes 2014) and in other cases (see Neshat et al. (2014)).

Augmented Lagrangians (Bertsekas 1999) are penalty functions for which a finite penalty
parameter value is sufficient to guarantee convergence to the solution of the constrained prob-
lem. Methods based on augmented Lagrangians have similarities to penalty methods in that they
find the optimal solution of the constrained optimization problem by identifying the optimal
solutions of a sequence (or possible just one) of unconstrained subproblems (C. Wang and Li
2009; Zhou and Yang 2012). Recent studies regarding augmented Lagrangians and stochastic
methods are available in Ali and Zhu (2013); L. Costa, Espirito Santo, and Fernandes (2012);
Deb and Srivastava (2012); Jansen and Perez (2011); Long et al. (2013); Rocha and Fernandes
(2011); Rocha, Martins, and Fernandes (2011). Recently, a hyperbolic augmented Lagrangian
paradigm has been presented in M. Costa, Rocha, and Fernandes (2014). The therein augmented
Lagrangian function is different from the one herein proposed and the subproblems are approx-
imately solved by a standard AFS algorithm.

In the present study, the properties of a shifted hyperbolic penalty are derived and discussed.
The convergence properties of an augmented Lagrangian algorithm proving that every accumu-
lation point of a sequence of iterates generated by the shifted hyperbolic augmented Lagrangian
algorithm is feasible and is an £-global minimizer of problem (1), where € is a sufficiently small
positive value, are analyzed. The developed algorithm uses a new AFS algorithm that generates
two subpopulations of points and move them differently aiming to explore the search space and
to avoid local optimal solutions. To enhance convergence, an intensification phase based on the
Nelder-Mead local search procedure is invoked with a dynamically defined probability.

The article is organized as follows. In Section 2, the shifted hyperbolic penalty function is
presented and the augmented Lagrangian algorithm and its convergence properties are derived.
Section 3 describes the AFS algorithm and discusses the new algorithm that incorporates the two
swarm paradigm and the heuristic to invoke the Nelder-Mead local search. Finally, Section 4
presents some numerical experiments and the article is concluded in Section 5.
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2. Shifted hyperbolic penalty-based augmented Lagrangian algorithm

Here, the good properties of the 2-parameter hyperbolic penalty term (see Xavier (2001)) given
by

Py(gi(x):T.p) = T8i(x) +1/ T2 (8i(x))” + p2 (2)

are extended, where g;(x) is the ith constraint function of the problem (1) (i =1,...,p) and
T > 0 and p > 0 are penalty parameters, to a shifted penalty term. The penalty in (2), which
is a continuously differentiable function with respect to x, is made to work in Xavier (2001)
as follows. In the initial phase of the process, T increases while p remains constant, causing
a significant increase of the penalty at infeasible points. This way the search is directed to the
feasible region since the goal is to minimize the penalty. From the moment that a feasible point
is obtained, the penalty parameter p decreases, while 7 remains constant.

The herein derived methodology uses a shifted penalty strategy in which one is willing to
modify the origin from which infeasibility is to be penalized, i.e., one penalizes the positive
deviation of g;(x) with respect to a certain threshold value, 7;, rather than 0. If 7; = —?l is
defined then using (2) the shifted hyperbolic penalty term arises

51' 5,' 2
P(gi(x); 6,7, 1) =7 gi<x)+T+\/<gi(x)+T> +u? 3)

where &, the ith component of the vector § = (8y,...,8,)”, is the multiplier associated with the
inequality constraint g;(x) <0, and 7 and u € R are the penalty parameters, being L = (p /1) >
0, for T # 0. For any i, the function Ps(g;(x);d;, T, 1t) approaches the straight line /;(g;(x)) =0
as g;(x) — —oo (the horizontal asymptote), and to the straight line /,(g;(x)) = 27g;(x) + 2; as
gi(x) — oo (the oblique asymptote), for 7 > 0,8; > 0 and pu > 0, as shown in Figure 1.
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Figure 1. Shifted hyperbolic penalty function

The most important properties that will be used in the present study are now listed.

Properties. Let y = g;(x) and 8, = §; (fixed) for any i. Function in (3) satisfies the following
properties:
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P1: Py(y; 0y, 7, 1) is continuously differentiable with respect to y € R, for 7,u > 0 and §, > 0;
P2: fory;,y2 €R, y1 <y2<0,0<Py(y1;0y,7,u) <Ps(y2;0y,7,1), for fixed T > 0and &y, u > 0;
P3: fory;,y2 €R, 0<y; <y2,0<Py(y1;0y,7,u) <Ps(y2;0y,7,u), for fixed T > 0and &y, u > 0;

P4: 28, <P(0;6), 7, ) = &+ /67 + (t1)? < 28, + Ty, for fixed 7 > 0 and &), u > 0;
0, ify<Oandy+2 <0
P5: Py(y;6,,7,0) = 2T y+% , ify<0andy+% >0
27 y+% , ify>0
for fixed 7 > 0 and &, > 0;
TU, ify<0andy+§§0
P6: Py(y; 8y, T, 1) < 26, +TU, ify<Oandy+ = >0
2r(y+%>+w, ify>0
for fixed 7 > 0 and &, > 0.
The penalty term (3) is to be used in an augmented Lagrangian based method (Bertsekas 1999)

where the augmented Lagrangian function, hereafter denoted by shifted hyperbolic augmented
Lagrangian, has the form

p

08,7, 1) = f(x) + Y Py(gi(x): 6, T, 1) (4)

i=1

The implemented multiplier method penalizes the inequality constraints of the problem (1)
while the bound constraints are always satisfied when solving the subproblems. This means that,
at each iteration k, where k denotes the iteration counter of the outer cycle, for fixed values of
the multipliers vector & ®) and penalty parameters () and ,u(k), the subproblem is the bound
constrained optimization problem:

- GG 20 5" 6\
min ¢(x;6®, 70, u®) = f(x)+} = i)+ gy [ | &)+ gy | + W)

xeQ

®)
When penalty terms (2) and (3) are added to the objective function, they aim to assign a high
cost to infeasible points. As the penalty parameter 7 increases, problem (5) approximates
the original constrained problem. While the use of the penalty term (2) corresponds to taking
the multipliers to be equal to zero, and the success of the penalty algorithm depends only on
increasing the penalty parameter to infinity (with the decreasing of the parameter [.L(k)), when
(3) is used the performance of the algorithm may be improved by using nonzero multiplier
approximates & (%) that are updated after solving the subproblem (5). Hence, when (3) is used,
the algorithm is able to compute optimal multiplier values and provides information about which
constraints are active at the optimal solution and the relative importance of each constraint to the
optimal solution.
When the optimization problem is nonconvex, a global optimization method is required to
solve the subproblem (5), so that the algorithm has some guarantee to converge to a global
solution instead of being trapped in a local one. The following is remarked:

Remark 1 When finding the global minimum of a continuous objective function ¢(x) over a
bounded space Q C R”, the point X € Q is a solution to the minimization problem if ¢(x) <
minycq ¢ (y) + €, where € is the error bound which reflects the accuracy required for the solution.

Thus, at each iteration k of the outer cycle, an g -global solution of subproblem (5) is re-
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quired. Some challenging differences between augmented Lagrangian-based algorithms are lo-
cated on the algorithm used to find the sequence of approximate solutions to the subproblems (5).
The proposal for computing an £¥)-global minimum of subproblem (5), for fixed values of
5®), T(k),u(k) is based on a stochastic population-based algorithm, denoted by enhanced artifi-
cial fish two swarm (AF-2S) algorithm. Other important differences are related with the updating
of penalty, smooth or tolerance parameters aiming to promote the algorithm’s convergence.

2.1 Augmented Lagrangian-based algorithm

A formal description of the shifted hyperbolic augmented Lagrangian (shifted-HAL) algorithm
for solving the original problem (1), is presented in Algorithm 1.

Algorithm 1 Shifted-HAL algorithm
Require: 700> 1,41 >0,%>1,0<y <5p <(r) " 0<¥,pm<1l0<e<1el) >¢,
N >0, LB, Spa € [0,490), 8 € [0, 8ya] forall i =1,.... p.
1: Setk=1
2: Randomly generate m points in Q
3: repeat
4:  Find an e(k)—global minimizer x*) of subproblem (5) such that:

¢(x;60 20 ®Y < 6(x;60, ¢ p®) 1 e® forallx € Q. (6)

5. Compute 5,-(1‘“) using (9), fori=1,...,p
6. if [V <n® then
7 Set gt = ¢ ) — g () gt ) = max {g,,,gg(k)}, D = 5, n®

g: else
o Set t*k+1) = g0 k1) = 5),”“(10’ glktl) = gb) p(k+1) — %m“)
10: end if

1:  Setk=k+1
12: until [V®| =0 and f(x®)<LB+e

The form of the shifted penalty in (3) compels that the penalty parameter u is to be decreased
at all iterations, whatever the proximity to the feasible region, although a strong reduction is
beneficial when feasibility is approaching. Thus, the strategy is the following. When the level of
feasibility and complementarity at the iterate x®) is acceptable within the tolerance n(k) >0,

IV <n®, (7)
where
(k+1)
k) _ oy 9 -
Vi _max{gl(x( ))7_ T(k) }71_17"'7[77 (8)

the parameter ) remains unchanged since there is no need to penalize further the violation,

but ,u("“) =% [J(k), for0 <y, <1, ie, ,u(k) undergoes a significant change, referred to as a
fast reduction, to accelerate the movement towards feasibility. Otherwise, T is increased using
T+ = 7.7 where ¥; > 1, and a slow reduction is imposed on p: p**+1 =5y, u® If y, <
5. < (y:)~! is chosen in the algorithm, {t®u®} is a bounded monotonically decreasing
sequence that converges to zero (see Gonzaga and Castillo (2003)).
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Note that when the penalty parameter is not updated, the tolerances for solution quality and
feasibility, € and 1 respectively, are decreased as follows: £ ¥t1) = max {8, e } and n*+1) =

ynn<k), where 0 < %, 7%; < 1, so that an even better solution than its ancestor is computed. It
is required that {n(k)} defines a decreasing sequence of positive values converging to zero as
k — oo. On the other hand, when penalty 7 is increased aiming to further penalize constraints
violation, € remains unchanged (e**t1) = gk)y and 7 is allowed even to increase (relative to its
previous value), n(k“) =" n(l), where 1 (' > 0 is the user provided initial value. In this study,
|| - || represents the Euclidean norm.

The multipliers vector is estimated using the usual first-order updating scheme (Bertsekas
1999) coupled with a safeguarded procedure:

5l.(k+l) = max {0, min {5i(k) + 'E(k)gi(x(k)), Smax} } , 9

for i = 1,...,p where Omax € [0,+o0). The use of this safeguarding procedure by projecting
the multipliers onto a suitable bounded interval aims to ensure boundedness of the sequence.
The algorithm terminates when a solution x*) that is feasible, satisfies the complementarity
condition and has an objective function value within € of the known minimum is found, i.e.,
when ||V (x®))|| = 0 and f(x¥)) < LB+ ¢ for a sufficiently small tolerance € > 0, where LB
denotes the smallest function value considering all algorithms that found a feasible solution of
problem (1).

2.2 Convergence to an e-global minimizer

Here, it is proved that every accumulation point, denoted by x*, of the sequence {x(k) }, produced
by the shifted-HAL algorithm is an &-global minimizer of problem (1). Since the set Q is com-
pact and the augmented Lagrangian function ¢ (x; 5% k) u(k)) is continuous, the £¥)-global
minimizer of subproblem (5), x*), does exist. For this convergence analysis, the methodology
presented in Birgin, Floudas, and Martinez (2010) is followed, where differentiability and con-
vexity properties are not required. The assumptions that are needed to show convergence of the
shifted-HAL algorithm (Algorithm 1) to an €-global minimum are now stated. Some of them are
common in the convergence analysis of augmented Lagrangian methods for constrained global
optimization, e.g. (Birgin, Floudas, and Martinez 2010).

As previously mentioned, the augmented Lagrangian approach is combined with a stochastic
population-based algorithm for solving the subproblems (5), and therefore it is assumed that
the sequence {x(k)} is well defined (see Assumption A 2.2 below). Note that Assumption A 2.4
is concerned with &*, the Lagrange multiplier vector at x* and Assumption A 2.5 below is a
consequence of the way the two parameters 7 and ,LL(") are updated in the algorithm.

Assumption A 2.1 A global minimizer z of the problem (1) exists.

Assumption A 2.2 The sequence {x(k)} generated by the Algorithm 1 is well defined and there
exists a subset of indices .4~ C N so that limc_4 x ) = x*,

Assumption A 2.3 The functions f : R” — R and g : R" — R? are continuous on Q.
Assumption A 2.4 Foralli=1,...,p, there exists Opmax € [0,+o0) such that §;" € [0, Omax]-

Assumption A 2.5 {T(k) [.L(k)} is a bounded and monotonically decreasing sequence of non-
negative real numbers.

First, it is proved that every accumulation point of the sequence {x(k)} is feasible.

THEOREM 2.6 Assume that Assumptions A 2.1 through A 2.3 and A 2.5 hold. Then every accu-
mulation point x* of the sequence {x(k) } produced by the Algorithm 1 is feasible for problem (1).
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Proof Since x¥) € Q and Q is closed then x* € Q. Two cases are considered: (a) {7} is
bounded; (b) k) 5 oo,

In case (a), there exists an index K and a value T > O such that %) = 7 for all k > K. This
means that, for all k > K, condition ||V ®)|| < n(®) is satisfied. Since n*) — 0, according to (8),
either g;(x*)) — 0 or 5i(k+1) — 0 with g;(x®)) <0, forall i = 1,..., p. Thus, by Assumptions
A 2.2and A 2.3, g;(x*) <0 for all i, and the accumulation point is feasible.

The proof in case (b) is made by contradiction by assuming that x* is not feasible and using z
(see Assumption A 2.1), the same for all k, such that g;(z) <0 forall i. Let I'", I ,I; and I; be
index subsets of I = {1,..., p} defined by:

o I'"={i:gi(x*)>02>gi(2)},

o I} ={i:gi(z) <gi(x") <0}, .
— : * sk

o I, ={i:gi(x") <gi(z) <0 and gi(z) + 7 > 0},
- H * s®

o Iy ={i:gi(x") <gi(z) <0 and gi(z) + T <0}

such that / = I Ul UI; ULy and I # 0 (since x* is infeasible). Using the properties P2 and
P3 described above, then

2
5% < s 5
Z gilx")+ 4=+ gi(x*)+ - + (u(k))
iel+ul; ( o o
2
s s 5
> ; L ; L (k)
Z -€1+ZU1 gi(2) + 7(®) + <g (z2)+ () + (,LL )
! 1
and similarly
2
. s® s 5
) <gi(x )+ ‘cl(k) + (g,'(x*) + fl(") + ()
iely Uy

2
5% sW 5
@)+ g+ (g,-(z) +@ | +e®)

< L

iel; ULy

hold, since §*) and p¥) are bounded by definition (see (9) and updates in Algorithm 1). Using
Assumptions A 2.2 and A 2.3, for a large enough k € .47, there exists a positive constant ¢ such
that

oW s\ ? )
i€l vy T T
2
>7h Y i)+ i +4| | i) + i +(u)? | +7®e
i€l Tl ™ ™
! 1



February 17,2016 Engineering Optimization ShiftedHAL AF-2S ‘revised

and therefore

)4
P(gi(x®):8, 70 1My > Y P (gi(2): 6,70, u®) + Y Py(gia®): 60 70, )

g

i=1 i=1 i€l uly
- Z Ps(gl(z);5i(k)a Z P;(gi ) ( )’“(k))
iely icl
+10¢

p

P
Z PS(gi(x(k))9 5i(k)’ ), ﬂ(k)) > Z P;(gi(2); 6i(k)7 ), .u(k))
i=1 i=1

iely i€ly
3 ® .
2 ZPS(&(Z);S,' -2 Z 5 —p’r +T( )e
i=l t€12
and
d P
f(x(k)) + Zps(gi(x(k)); 5i(k)’ r("),u(k)) > f(z)+ ZPs(gi(Z); ai(k)’ T(k),u(k)) 5 Z Si(k)
=l i=1

icly

—ptPp® 4704 £(xW) — £(2)

are obtained. Using Assumptions A 2.3 and A 2.5, for large enough k € A4 (1) — oo),

2 Y 6%~ pru® 4 cWe g p(x M) — f(2) > e® >0,

i€ly

1mply1ng that ¢ (x0); 80 10 10y > ¢ (z;6®) 70 u®)) 4 ek which contradicts the defini-
tion of x*) in (6). [ |

Now, it is proved that a sequence of iterates generated by the algorithm converges to an €-
global minimizer of problem (1).

THEOREM 2.7 Assume that the Assumptions A 2.1 through A 2.5 hold. Then every accu-
mulation point x* of a sequence {x(k)} generated by Algorithm 1 is an €-global minimizer of
problem (1).

Proof Two cases are considered: (a) {T(k>} is bounded; (b) 7(¥)
First, the case (a). By the definition of x®) in the Algorithm 1, and since ) = 7 for all k >K,
one gets

(10)
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where z € Q comes from Assumption A 2.1. Since g;(z) < 0and Si(k) >0forall i, and /,L(k) ,T>0,
using the properties P4 and P6, then for all kK > K

k u (k)y. s) = (k) (k) | = (k) k) | = (k)
S+ Y P (i) 6, 2,00 < @)+ X (289 +2u®) + Y (28 +2u®)
i=1 icl9 iel;
+ Y tu® 4 e® |
iely

p p
< flr)+2Y] 50 4 Y tu® 4 e®
i=1 1

i=

holds, where 1°, I, and I, are subsets of I defined by:

o 1= {i:gi(z) =0},

. s

o Iy ={i:gi) <0and gi(z) + %

6i<k)
z

> 0},
<0}

o I, ={i:gi(z) <Oand gi(z)+
and I~ =1, UL, . Now, let 4] C .4 be a subset of indices such that limy¢ 4 8% = §*. Taking
limits for k € .41 and using limyc 4 e®) = g and Assumption A 2.2,

)4 )4
£+ Y Py(gix): 87,7, uW) < f2) +2Y 8 + pTu® + e

i=1 i=1

is obtained. Since x* is feasible and §; > O (finite by Assumption A 2.4) for all i, using
e foric I° C I such that g;(x*) = 0 (property P4 above):

2y 8 < Y Polailx): 87,7, 1)

iel9 ielf

e fori eI~ C [ such that g;(x*) <0:

0< Y Py(ai(x"); 87,7, u®));

i€l

one gets

p
O +2Y & < fR)+2) & +piu® +e.

iel® i=1

Therefore

FO) <@ +2 Y &+ pu® v,

iel~

Since condition (7) and Algorithm 1 require that limy_,, Vl.(k) =0 then 6 = 0 when g;(x*) <0
(see (8)). Finally, using limye 4 /,L(k) = 0 (recall property P5) then f(x*) < f(z) + € which
proves the claim that x* is an €-global minimizer, since z is a global minimizer.

For case (b), ¢ (x*); 8% ¢ yu®)y < ¢(z;8W 70 1 ®)) 1+ el for all k € N. Since z is feasi-
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ble, recalling (10) (with 7 replaced by 7(¥)) and using property P6, one gets

p p
FE)+ Y Py (gi(xM);: 8,20, 1®) < f) 42 61+ prPu® 4 e,

i=1 i=1

Now, taking limits for k € .4, using Assumptions A 2.2, A2.3, A2.4and A 2.5, limyc 4y %) =€
and the same reasoning as above, one gets

FE) < F42Y 8 2T 8 te.

i=1 iel®

and the desired result f(x*) < f(z) +2 Z O + € = f(z) + € is obtained. [ |

iel~

3. Enhancing the AF-2S algorithm with Nelder-Mead local search

For solving the subproblems (5), a new AFS algorithm, denoted by enhanced AF-2S algorithm
is proposed. AFS is a stochastic population-based algorithm for global optimization (see Rocha,
Fernandes, and Martins (2011); Rocha, Martins, and Fernandes (2011)). The enhanced AF-2S
algorithm combines the global search AFS method with a two swarm paradigm and an intensi-
fication phase based on the Nelder-Mead local search (Nelder and Mead 1965) procedure. The
goal here is to find an approximate global minimizer x%) of the subproblem (5) satisfying (6).

For simplicity, ¢*(x) is used to denote the objective function of the subproblem (5), instead of
¢ (x;80 70 1K) The position of a point in the space is represented by x ; € R" (the jth point
of a population) and m < o is the number of points in the population. Let x,cs be the best point
of a population of m points so that (for fixed §*), 7% and u®):

Pogt = O* (Xbest) = min{9* (x;),j = 1,...,m} (11)

is the corresponding function value and x; (j = 1,...,m) are the points of the population.

3.1 Standard AFS algorithm

The AFS algorithm is now briefly described. At each iteration ¢, the current population of m
points, herein denoted by x,x2,...,x, is used to generate a trial population yy,ys,..., V. Ini-
tially, the population is randomly generated in the entire search space . Each fish/point x;
movement is defined according to the number of points inside its ‘visual scope’. The ‘visual
scope’ is the closed neighborhood centered at x; with a positive radius v which varies with the
point progress. A fraction of the maximum distance between x; and the other points x;, [ # j,
v; = max; ||x; — x| is used.

When the ‘visual scope’ is empty, a Random Behavior is performed, in which the trial y; is se-
lected along a random direction starting from x;. When the ‘visual scope’ is crowded, and a point
randomly selected from the visual, X;und, has a better fitness, ¥ (xrana) < ¢*(x;), the Searching
Behavior is implemented, i.e., y; is randomly generated along the direction from x; t0 Xpand.
Otherwise, the Random Behavior is performed. When the ‘visual scope’ is not crowded, and the
best point inside the ‘visual scope’, xmin, has a better fitness than x;, the Chasing Behavior is per-
formed. This means that y; is randomly generated along the direction from x; to xpi,. However,
if xmin 1s not better than x;, the Swarming Behavior may be tried instead. Here, the central point
of the ‘visual scope’, X, is computed and if it has better fitness than x;, y; is computed randomly
along the direction from x; to X; otherwise, a point xy,nq 18 randomly selected from the ‘visual
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scope’ and if it has a better fitness than x; the Searching Behavior is implemented. However, if
¢* (xrana) > ¢*(x;) a Random Behavior is performed. Note that in either case, each point x; will
produce a trial point denoted by y;.

Finally, to choose which point between the current x; and the trial y; will be a point of the pop-
ulation for the next iteration, a Selection Procedure is carried out. The current point is replaced
by its trial if ¢*(y i) < ¢)k(xj); otherwise the current point is preserved.

3.2 Artificial fish two swarm algorithm

In order to improve the capability of searching the space for promising regions where the global
minimizers lie, this study presents a new fish swarm-based proposal that defines two subpopu-
lations (or swarms), hereafter denoted by artificial fish two swarm — with acronym AF-2S. Each
swarm moves differently, but they may share information with each other: one is the ‘master
swarm’ and the other is the ‘training swarm’. The ‘master swarm’ aims to explore the search
space more effectively, defining trial points from the current ones using random numbers drawn
from a stable but heavy-tailed distribution, thus providing occasionally long movements. De-
pending on the number of points inside the ‘visual scope’ of each point x; of the ‘training
swarm’, the corresponding trial point is produced by the standard artificial fish behaviors.

To be able to produce a trial y;, from the current x;, ideas like those of Bare-bones particle
swarm optimization in Kennedy and Eberhart (2001) and the model for mutation in evolutionary
programming (Lee and Yao 2004) may be used:

(yj)i=y+0Y; (12)

where y represents the center of the distribution that may be given by (x;); or ((x;); + (Xbest)i)/2,
o represents the distance between (x;); and (xpes)i» and each Y; is an identically distributed
random variable from the Gaussian distribution with mean 0 and variance 1. Note that Y may be
the random variable of another probability distribution. Here, the standard Lévy distribution is
proposed since it can search a wider area of the search space and generate more distinct values
in the search space than the Gaussian distribution. This way the likelihood of escaping from
local optima is higher. The Lévy distribution, denoted by L;(a, B, 7, ), is characterized by four
parameters. The parameter  gives the skewness (8 = 0 means that the shape is symmetric
relative to the mean). The shape of the Lévy distribution can be controlled with . For ot =2
it is equivalent to the Gaussian distribution, whereas for o¢ = 1 it is equivalent to the Cauchy
distribution. The distribution is stable for ¢ = 0.5 and B = 1. o is the scale parameter and is
used to describe the variation relative to the center of the distribution. The location parameter
y gives the center. When ¥ = 0 and o = 1, the standard form, simply denoted by L(c) when
B =0, is obtained.

Hence, the proposal for further exploring the search space and improve efficiency is the fol-
lowing. The points from the ‘master swarm’ always move according to the Lévy distribution,

i.e., each trial point y; is generated component by component (i = 1,...,n) as follows:
(v;)i = (xj)i+ (0))iLi(a) if rand() < p (13)
a (Xbest)i + (0;)iLi(a) otherwise

where (0;); = |(x i)i— (xbest),-‘ /2 and xpey is the best point of the population, whatever the
swarm it belongs to. L;(o) denotes a number that is generated following the standard Lévy dis-
tribution with the parameter o = 0.5, for each i, rand() is a random number generated uniformly
from [0, 1] and p is a user specified probability value for sampling around the best point to oc-
cur. On the other hand, each point in the ‘training swarm’ moves according to the classical AFS
behaviors. Initially, the points of the ‘master swarm’ are randomly selected from the population

11
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and remain in the same swarm over the course of optimization. The same is true for the points
in the ‘training swarm’.

3.3 Enhanced AF-2S algorithm

The enhanced AF-2S algorithm herein presented integrates a deterministic direct search method,
known as Nelder-Mead (N-M) algorithm, e.g. (McKinnon 1998; Nelder and Mead 1965), into
the AF-2S algorithm. Further, since a two-swarm-based strategy is implemented, cooperation
and competition between the two swarms is required in order to reduce the computational effort.

The issues to address when a local search is integrated into a population-based algorithm are:
(i) which local search method should be chosen; (ii) which points of the population should be
used in the local search; (iii) how frequently should the local search be invoked; (iv) how many
function evaluations should be computed. To address issue (i), the N-M algorithm, originally
published in 1965 (Nelder and Mead 1965), is chosen due to its popularity in multidimensional
derivative-free optimization. Regarding issues (ii) and (iii), the most common strategy invokes
the local search algorithm at every iteration and applies it only to the best point of the population.
Since the N-M local search requires n+ 1 points to define the vertices of the simplex, the strategy
collects the best point of the population (both swarms together), xpest, and the n best points from
the swarm that does not include xpeg, hereafter designated by z;,i = 1,...,n. Since the ‘master
swarm’ is assumed to be the smallest of the two swarms, the number of points, mys, should
be at least n, so that n points may be supplied to the N-M local search, when xpes belongs to
the ‘training swarm’. Thus, the cooperation feature of the enhanced AF-2S algorithm is present
when the N-M local search is invoked since both swarms contribute to the points required by
N-M, to define the vertices of the initial simplex. Furthermore, competition arises when the
best point produced by the N-M algorithm, x{o\gf” , replaces the worst point of the population,
Xworst- Note that the best points in both swarms — xpes in one swarm and the n best points in
the other — are able to enhance the worst point of the population, either it belongs to the first
swarm or to the second. The previously designated z;,i = 1,...,n are updated by the remaining
n points va M i—1,...,n generated by the N-M. Algorithm 2 describes the pseudo-code for the
enhanced AF-2S algorithm, from which the N-M local search may be invoked, with a certain
probability.

To define the frequency of invoking the N-M local search, the algorithm relies on a dynami-
cally defined probability

1
if of <&
n k(. Ak best
DPN-M = 1 + Zlkzl ¢ (Zl)/n ¢best , (14)
¢best

T otherwise
Ly 0K(zi)/n

for £ = 0.00001. The proposed probability-based heuristic aims to avoid the local intensifica-
tion phase when py_j approaches one, and to follow the local exploitation when py_y ~ 0.
Note that the smallest the py_js the further away are the points z; (on average) from the best
point, thus requiring some improvement. The goal of this methodology is to reduce the overall
computational effort without perturbing the speed of convergence of the algorithm. Invoking the
N-M local search procedure is a task that requires between one to n extra function evaluations
per N-M iteration (see McKinnon (1998)). In this study, the N-M algorithm terminates when a
pre-specified number of function evaluations, N F.x, is achieved.

12
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Algorithm 2 Enhanced AF-2S algorithm

Require: m, x;,j=1,...,m, my, tmax, LB, 5K k) u(k), e®) and NFax

1: Sett =0 ; Select xpest according to (11)

2: Randomly select my, points of the population to define the ‘master swarm’ ; Define .# with

the set of indices of the points in the ‘master swarm’

3. while ¢f > LB+€e® and 1 <ty do
4. forj=1,....mdo
5 if j € ./ then
6: Compute y; by Lévy distribution using (13) with p = 0.5
7 else if ‘visual scope’ is empty then
8 Compute y; by Random Behavior
9: else if ‘visual scope’ is crowded then
10: if 9% (xrana) < 9%(x;) then
11 Compute y; by Searching Behavior
12: else
13: Compute y; by Random Behavior
14: end if
15: else if ¢* (xmin) < ¢*(x;) then
16: Compute y; by Chasing Behavior
17: else if ¢*(¥) < ¢*(x;) then
18: Compute y; by Swarming Behavior
19: else if ¢ (xana) < 9%(x;) then
20: Compute y; by Searching Behavior
21: else
22: Compute y; by Random Behavior
23: end if

24:  end for
25 for j=1,...,mdo

26 if 05(y;) < 94 (x;) then
27: Set Xj=Yj
28: end if

29:  end for
30.  Select xpes; and the worst point Xyorst ; Setf =141

31:  Select z;,i = 1,...,n for the local search ; Compute py_ps according to (14)
32:  if rand() < 1— py_p then

33: Run Nelder-Mead algorithm until N Fy,x is reached ; Set xyorst = xge;M
34: fori=1,...,ndo

35: Set z; = va -M

36: end for

37:  end if

38: end while

4. Numerical experiments

For a practical validation of the shifted-HAL algorithm based on the enhanced AF-2S algorithm
for solving the subproblems (5), three sets of benchmark problems are selected. First, a set of 20
small constrained global optimization problems are tested, where the number of variables ranges
from 2 to 6 and the number of constraints ranges from 1 to 12 (see Birgin, Floudas, and Martinez
(2010)). Second, six problems that have inequality constraints only (C01, C07, C08, C13, C14
and C15) from the suit of scalable functions developed for the ‘CEC 2010 Competition on Con-
strained Real-Parameter Optimization’ are selected from (Mallipeddi and Suganthan 2010a),
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and finally six well-known engineering design problems are used to analyze the performance of
the algorithm when integer and continuous variables are present. The C programming language
is used in this real-coded algorithm and the computational tests were performed on a PC with
a 2.7 GHz Core i7-4600U and 8 Gb of memory. Although the shifted hyperbolic penalty func-
tion is meant to work with inequality constrained optimization problems, it has been possible to
handle problems with equality constraints, 4(x) = 0, as long as they are reformulated into the
following couple of inequality constraints 2(x) — v < 0 and —h(x) — v < 0, where v > 0 is the
tolerance used for the constraints relaxation. The parameters have been set after a set of testing
experiments: v = 107>, 7)) =10, 7, =10, u) =1, 3, = 0.05, e =) = 1, %o = %, = 0.1,
Si(l) = 1foralli=1,...,p and 8uax = 10*. The probability p in the definition (13) is set to 0.5,
the maximum number of function evaluations in the N-M algorithm is N Fy,x = 100. Since the
parameter update schemes available in the outer cycle have a moderate influence on the conver-
gence speed of the shifted-HAL algorithm, ky,x = 50 and #,,x = 12 are considered. To stop the
Algorithm 1, an error tolerance of 107° is used in the feasibility condition and € is set to 107°.
If one of the conditions in the stopping rule is not satisfied, the algorithm will run for a maxi-
mum of kp,x iterations. Unless otherwise stated, m = 5n is set and each problem is solved 30
times. Setting my = | 5 | turned out to be a good choice. A large ‘master swarm’ has empowered
the exploratory ability of the AF-2S algorithm, improving the consistency of the solutions and
reducing the overall number of function evaluations.

The performance of the shifted-HAL algorithm, based on the Algorithm 2 with the N-M lo-
cal search, is compared with another hyperbolic augmented Lagrangian algorithm (HAL-AFS)
presented in M. Costa, Rocha, and Fernandes (2014) as well as with two deterministic meth-
ods, namely the exact penalty DIRECT-based method (e.penalty-DIRECT) in Di Pillo, Lucidi,
and Rinaldi (2012) and the augmented Lagrangian aBB-based method (AL-aBB) of Birgin,
Floudas, and Martinez (2010).

Table 1 lists the number of the problem as shown in Birgin, Floudas, and Martinez (2010),
‘Prob’; the best solution obtained by the tested augmented Lagrangian algorithm during the 30
runs, ‘frest ; the median (as a measure of the central tendency of the distribution) of the 30 solu-
tions, ‘fmed’; the number of function evaluations, ‘n.f.e.’, and the CPU time (in seconds), ‘time’,
required to reach the reported fiest. The table also displays the value of the constraint violation
at the best solution, ‘C.V.pet” and the average number of iterations in the outer cycle (over the 30
runs), ‘It,,’. The solution found by e.penalty-DIRECT, f*’, a measure of the constraint viola-
tion, ‘C.V. (in Di Pillo, Lucidi, and Rinaldi (2012)), the number of outer iterations, ‘/t’, required
by AL-aBB and the solution reported in Birgin, Floudas, and Martinez (2010) (used as the best-
known solution available in the literature), ‘LB’, are also shown. Using suitable reformulations
(Birgin, Floudas, and Martinez 2010; Di Pillo, Lucidi, and Rinaldi 2012) data related with n
(number of variables) and nc (number of equality and inequality constraints) are also displayed.

From the results it is concluded that the proposed shifted-HAL algorithm based on the Al-
gorithm 2, with the N-M local search, performs reasonably well. Not all the solutions obtained
for problems 2(b) and 3(a), during the 30 runs, are as good as it is expected, when compared
with those shown in Birgin, Floudas, and Martinez (2010), but some are better than the ones
reported in Di Pillo, Lucidi, and Rinaldi (2012). For the other problems, the results of the cur-
rent study are very competitive. It can be concluded that the algorithm is quite consistent with
similar values for ‘fyest” and ‘fineq’ for most tested problems. It is noteworthy that the results in
terms of number of function evaluations and CPU time are very competitive, taking into account
that this is a population-based method rather than a pointwise strategy. To analyze the statistical
significance of the results the Wilcoxon signed-rank test is used. This is a non-parametric sta-
tistical test for testing hypothesis on median. The Matlab™ (Matlab is a registered trademark
of the MathWorks, Inc.) function signrank is used. This function returns a logical value: ‘1’
indicates a rejection of the null hypothesis that the data are observations from a distribution
with a certain median, ‘0’ indicates a failure to reject the null hypothesis, at a 0.05 significance
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level. The comparisons are made between the median solution computed from the results and
(i) the median solution when comparing with HAL-AFS, (ii) the value of f* when comparing
with e.penalty-DIRECT, (iii) and the LB when comparing with AL-aBB. The character ‘+’ in
the table indicates a rejection of the null hypothesis with a p-value < 0.05, i.e., that the result is
statistically different.

Based on the results of the Table 1, it can be concluded that the shifted augmented Lagrangian
algorithm (that relies on the enhanced AF-2S for solving the subproblems (5)) will also com-
pete favorably with the penalty-based stochastic algorithms presented in Ali, Golalikhani, and
Zhuang (2014); Deb and Srivastava (2012); Silva, Barbosa, and Lemonge (2011). This conclu-
sion is based on the fact that the proposed algorithm outperforms the HAL-AFS algorithm pre-
sented in M. Costa, Rocha, and Fernandes (2014) which in turn performed well when compared
with those stochastic algorithms.

The second set of problems comprises six problems that arise from well-known scalable test
functions with rotated constraints and were used in the “2010 Congress on Evolutionary Compu-
tation Competition on Constrained Real-Parameter Optimization”. Twenty five independent runs
are performed and the allowed maximum number of function evaluations (n.f.epn,.x) is 2E+05.
The results are compared with those of the winner of the competition (Takahama and Sakai
2010) where an € constrained differential evolution combined with an archive and gradient-
based mutation,‘€DEg’, is used, as well as with another algorithm, ‘ECHT-DE’, a differential
evolution with ensemble of constraint handling techniques that ranked second between twelve
competitors (see Mallipeddi and Suganthan (2010b)). In Table 2, fyest, fmed, fav (the average
of the 25 obtained solutions) and the standard deviation, ‘St.d(f)’, are shown for each prob-
lem when ‘n.f.e.’ reaches 2E+04, 1E+05 and 2E+05 (along three consecutive rows of the table).
Furthermore, the number of violated constraints, ‘n.v.c.’, at the median solution by more than
1E+00, by more than 1E-02 and by more than 1E-04 have been reported. The mean value of the
constraint violations at the median solution, ‘v,,’, has been saved. The Wilcoxon signed-rank
test is used again to analyze the statistical significance relative to the median values. The com-
parisons are made between the median solution computed from the current results and each of
the median solutions of both articles (Takahama and Sakai 2010) and (Mallipeddi and Suganthan
2010b). The character ‘x’ indicates that the result is statistically different with a p-value < 0.05.
Note that all the results produced by the algorithm and reported in the table are feasible and
therefore n.v.c. = (0,0,0) and v,y = 0.0E+00. This comparison corroborates the competitive per-
formance of the proposed algorithm when solving constrained global optimization problems.

Finally, the next experiment aims to show the effectiveness of the proposed algorithm when
solving more complex and real application engineering design problems with discrete, integer
and continuous variables. Engineering problems with mixed-integer design variables are quite
common. To handle integer variables, a simple heuristic that relies on the rounding off to the
nearest integer before evaluation and selection stages is implemented. For the discrete variables,
the used heuristic rounds to the nearest value of the discrete set during the evaluation and se-
lection stages. Six well-known engineering design problems are considered. For the first four
problems, all parameter settings are the same as the previous experiment that produced the re-
sults of Table 1, except that tp,x = 25.

Welded Beam Design Problem

The design of a welded beam (Hedar and Fukushima 2006; Lee and Geem 2005; Silva, Barbosa,
and Lemonge 2011) is the most used problem to assess the effectiveness of an algorithm. The
objective is to minimize the cost of a welded beam, subject to constraints on the shear stress,
bending stress in the beam, buckling load on the bar, end deflection of the beam, and side con-
straints. There are four continuous design variables and five inequality constraints.
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Table 1. Numerical results for comparison
HAL-AFS shifted-HAL with enhanced AF-2S e.penalty-DIRECT AL-aBB

Prob  (n,nc) Joest n.fe. time fimed Joest n.fe. time C.V.pest Jfined Ity f* n.fe. time C.V. time It LB

1 (5,3) 0.0342 9608  0.046 0.1204x 0.0294 9723  0.024  2.58E-06 0.0450 50 0.0625x 39575 0.328  2.4E-07 18.86 9  0.029313x%
2(a) (5,100 -380.674 15813 0.109  -369.111x -400.0000 2434 0.005 0.0E+00  -400.0000 21 -134.1127« 115107  2.078 8.4E-04 0.13 8 -400.00
2(b) (5,10) -385.051 15808 0.093  -360.786x -600.0000 4038  0.008 0.0E+00  -400.0000 42 -768.4569« 120057 3.828  5.3E-04 0.76 13 -600.00x
2(c) (5,10) -743.416 15612 0.109  -693.743x% -750.0000 2433 0.004  0.0E+00 -750.0000 13 -82.9774« 102015  0.953 8.4E-04 0.16 8 -750.00
2(d) (5,12)  -399.910 15394  0.094  -399.492:x -400.0000 2711  0.007 0.0E+00  -400.0000 12 -385.1704« 229773 2.328  0.0E+00 0.23 4 -400.00
3(a) (6,5) -0.3880 18928  0.109 -0.3849x% -0.3840 19144  0.040 3.6E-06 -0.3691 50 -0.3861x 48647 1234 1.0E-06 12.07 6  -0.38880«
3(b) 2,1 -0.3888 2589  0.000 -0.3888x -0.3888 548  0.001 0.0E+00 -0.3888 15 -0.3888x 3449  0.031  0.0E+00 2.90 4 -0.38881x
4 2,1) -6.6667 2242 0.000 -6.6667 -6.6667 698  0.001 0.0E+00 -6.6667 12 -6.6666% 3547  0.031 0.0E+00 0.00 4 -6.6666x%
5 (3,3) 201.159 2926  0.000 201.159 201.1593 2717  0.003 6.5E-07 201.1593 15 201.1593 14087  0.078 1.7E-04 0.04 7 201.16%
6 2,1 376.292 5617 0.000 376.293x 376.2919 1578 0.003 0.0E+00 376.2919 13 0.4701x 1523  0.000  2.1E-05 0.01 5 376.29x
7 2,4) -2.8284 3434 0.000 -2.8284 -2.8284 886  0.001 0.0E+00 -2.8284 10 -2.8058x 13187  0.125  0.0E+00 0.02 4 -2.8284x%
8 (2,2) -118.705 2884  0.000 -118.705% -118.7049 995  0.001 0.0E+00  -118.7049 11 -118.7044x 7621  0.046  0.0E+00 0.15 6 -118.70x%
9 (6,6) -13.4018 5732 0.031  -13.4017% -13.4019 1437 0.003 0.0E+00 -13.4019 6 -13.4026% 68177  2.171 1.4E-04 0.00 1 -13.402x%
10 (2,2) 0.7418 6342 0.015 0.7418x 0.7418 1155  0.001 0.0E+00 0.7418 15 0.7420x 6739 0.078  0.0E+00 0.01 4 0.74178
11 2,1 -0.5000 3313 0.015 -0.5000 -0.5000 1043 0.002  0.0E+00 -0.5000 21 -0.5000 3579 0.031  0.0E+00 0.01 4 -0.50000
12 2,1) -16.7389 98  0.000 -16.7389 -16.7389 267  0.001 0.0E+00 -16.7389 5 -16.7389 3499  0.015 5.4E-06 0.01 8 -16.739x%
13 (3,2) 189.345 9230 0.031 189.347x 189.3449 9703  0.012 9.0E-06 189.3449 50 195.9553x% 8085 0.078  9.2E-04 0.47 8 189.35%
14 4,3) -4.5142 6344 0.031 -4.5142x% -4.5142 1170  0.002  0.0E+00 -4.5142 7 -4.3460x% 19685 0.250  9.2E-05 0.00 1 -4.5142
15 (3,3) 0.0000 2546 0.015 0.0000 0.0000 3187  0.004 1.0E-05 0.0000 20 0.0000 1645 0.000  4.9E-05 0.06 4 0.0000
16 (5,3) 0.7049 1850  0.015 0.7049: 0.7049 371  0.001 0.0E+00 0.7049 6 0.7181x 22593 0312 2.0E-04 0.15 6 0.70492
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Table 2. Results for comparison with Takahama and Sakai (2010) and Mallipeddi and Suganthan (2010b)

shifted-HAL with enhanced AF-2S

results™ in Takahama and Sakai (2010)

results’ in Mallipeddi and Suganthan (2010b)

Prob  n.femax Soest Simed Jav St.d.(f) Soest Smed Sav St.d.(f) Soest Smed Jav St.d.(f)
COo1 2E+04 -6.892E-01 -6.254E-01 -6.125E-01 5.4E-02 -7.471E-01 -7.466E-01x -7.462E-01 1.7E-03 -6.462E-01 -5.392E-01x -5.478E-01 4.3E-02
1E+05 -7.402E-01 -6.862E-01 -6.824E-01 3.5E-02 -7.473E-01 -7.473E-01% -7.470E-01 1.3E-03 -7.473E-01 -7.473E-01% -7.470E-01 1.4E-03
2E+05 -7.404E-01 -6.912E-01 -6.959E-01 3.7E-02 -7.473E-01 -7.473E-01% -7.470E-01 1.3E-03 -7.473E-01 -7.473E-01x -7.470E-01 1.4E-03
C07 2E+04 2.955E+00 7.139E+01 1.206E+02  1.6E+02 4.804E+00 6.57T4E+00x 6.973E+00  1.7E+00 5.195E+00 7.591E+00 9.403E+00  1.1E+01
1E+05 9.400E-11 4.139E-02 2.103E+01 4.5E+01 4.381E-18 8.660E-17x 1.323E-16 1.6E-16 0.000E+00 0.000E+00x 1.329E-01 7.3E-01
2E+05 0.000E+00 1.870E-08 4.198E-01 1.0E+00 0.000E+00 0.000E+00% 0.000E+00  0.0E+00 0.000E+00 0.000E+00x 1.329E-01 7.3E-01
C08 2E+04 1.013E+00 8.993E+01 1.445E+02  1.8E+02 1.165E+01 3.365E+01 3.940E+01 2.8E+01 7.492E+01 2.518E+02x% 3.619E+02  2.8E+02
1E+05 1.810E-09 4.176E+00 2.865E+01 4.7E+01 1.469E-18 1.094E+01 6.728E+00  5.6E+00 0.000E+00 7.098E+00 6.157E+00  6.5E+00
2E+05 0.000E+00 4.795E-06 4.543E+00  1.6E+01 0.000E+00 1.094E+01x 6.728E+00  5.6E+00 0.000E+00 7.098E+00x 6.157E+00  6.5E+00
C13 2E+04 -6.558E+01 -5.959E+01 -5.840E+01  5.1E+00 -2.744E+01 8.018E-01*x  -6.355E+00 1.2E+01 -6.837E+01 -6.206E+01  -6.171E+01  4.2E+00
1E+05 -6.558E+01  -5.959E+01  -5.938E+01  5.0E+00 -6.843E+01  -6.792E+01x  -6.748E+01 1.1E+00 -6.843E+01  -6.352E+01x  -6.512E+01  2.4E+00
2E+05 -6.843E+01  -5.959E+01  -5.951E+01  5.1E+00 -6.843E+01  -6.843E+01x  -6.843E+01 1.0E-06 -6.843E+01  -6.352E+01%  -6.512E+01  2.4E+00
Cl4 2E+04 1.170E+00 3.736E+02 6.198E+03  2.1E+04 2.929E+01 1.839E+02 2.209E+02  2.0E+02 3.207E+07 6.214E+10x% 1.136E+11 2.2E+11
1E+05 4.300E-11 2.772E+02 3.889E+03 1.8E+04 9.522E-16 1.937E-14x% 6.145E-14 1.3E-13 0.000E+00 0.000E+00x 7.024E+05  3.2E+06
2E+05 0.000E+00 2.772E+02 3.870E+03 1.8E+04 0.000E+00 0.000E+00x 0.000E+00  0.0E+00 0.000E+00 0.000E+00x 7.024E+05  3.2E+06
C15 2E+04 2.231E-01 7.060E+02 6.463E+05  3.2E+06 9.865E+01 6.273E+02 9.352E+02  1.2E+03 1.983E+12 4.818E+13x% 6.852E+13  7.1E+13
1E+05 3.000E-12 4.058E+02 2.583E+05 1.3E+06 6.145E-15 5.664E-14x 1.799E-01 8.8E-01 1.456E+07 6.740E+10x 2.515E+13  5.7E+13
2E+05 0.000E+00 4.058E+02 2.580E+05 1.3E+06 0.000E+00 0.000E+00x 1.799E-01 8.8E-01 0.000E+00 1.222E+10x 2.339E+13  5.3E+13

 The results herein reported from Takahama and Sakai (2010) and Mallipeddi and Suganthan (2010b) have n.v.c. = (0,0,0) and v,y = 0.0E+00.
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The optimization problem is expressed as follows:

min 1.10471x2x; 4 0.0481 Lx3xg (14 4 x3)

i 't 12 4PL3
subject to (‘L”)2+7xz+(‘c”)2 —Tmax <0, ———5 —Omax <0, x1 —x4 <0,
R Ex4xz

X3X

4.01
P 03( 50 om (BN g 8P o
12 2L \ 4G = ’X4X% max >~ Y,

where 0.125 < x; <10, 0.1 < x; < 10,i =2,3,4 and P = 6000 Ib., L = 14 in., Sax = 0.25 in.,
E =30 x 10° psi., G = 12 x 10° psi., Tmax = 13600 psi., Gmax = 30000! psi. and

P MR b %) X3 X1 +x3 2\ /2
T = ,r”:—,M:P(L+—),R: 2+< ) ,
ﬂxpcz J 2 4 2

I 2x1x x% X1 +x3 2
vz \2t ( 2 ) |

A comparison of the results with those of the adaptive penalty scheme used within a steady-
state genetic algorithm (APS-GA) (Lemonge, Barbosa, and Bernardino 2015), the dynamic use
of differential evolution variants combined with the adaptive penalty method (DUVDE+APM)
(Silva, Barbosa, and Lemonge 2011), the filter simulated annealing algorithm (FSA), available
in Hedar and Fukushima (2006), the hybrid evolutionary algorithm with an adaptive constraint
handling technique (HEA-ACT) (Y. Wang et al. 2009), the harmony search metaheuristic (HSm)
algorithm (Lee and Geem 2005) and the hybrid version of the electromagnetism-like algorithm
(Hybrid EM) (Rocha and Fernandes 2009) is carried out. Table 3 shows the values of the vari-
ables and of the objective function of the best run, the average objective function value, fay,
and the average number of function evaluations, n.f.e.,y, obtained by the shifted-HAL with en-
hanced AF-2S algorithm and the other methods. The results from APS-GA, DUVDE+APM,

FSA, HEA-ACT, HSm and Hybrid EM are taken from the cited articles. It can be seen that the
results are very competitive at a reduced computational cost.

Table 3. Comparative results for the welded beam design problem

Method X1 X2 X3 X4 Soest Jav n.f.e.ay

Shifted-HAL 0.2444 62175 8.2915 0.2444  2.380957 2.386778 25888

APS-GA 0.2444  6.2186 82915 0.2444 2.3811 2.405 50000
DUVDE+APM 02444 6.2186 82915 0.2444 2.38113 2.38113 40000
FSA 0.2444  6.2158 82939 0.2444 2381065 2.404166 56243
HEA-ACT 0.2444  6.2175 82915 0.2444 2380957  2.380971 30000
HSm 0.2442  6.2231 82915 0.2443 2.38 na. 110000
Hybrid EM 0.2435 6.1673 83772 0.2439  2.386269 n.a. 286507

T number of function evaluations of the best run; n.a. means not available.

Pressure Vessel Design Problem

The design of a cylindrical pressure vessel with both ends capped with a hemispherical head
is to minimize the total cost of fabrication, e.g. (Hedar and Fukushima 2006; Silva, Barbosa,
and Lemonge 2011). The problem has four design variables and four inequality constraints.

In Lee and Geem (2005), the formulation uses Gpax = 30600
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This is a mixed variables problem where the variables x;, the shell thickness, and x,, the head
thickness, are discrete — integer multiples of 0.0625 in. — and the other two are continuous. The
mathematical formulation is the following:

min 0.6224x1x3x4 + 1.7781x0x3 4 3.1661 x7x4 + 19.84x7x3
subject to —xj +0.0193x3 <0, —x; +0.00954x3 <0,
—mx3x4 — 3703 + 1296000 < 0, x4 —240 <0,

where 0.1 <x; <99,0.1 <x, <99,10 <x; <200, i=3,4. The results of the comparison of the
Shifted-HAL algorithm with the APS-GA, DUVDE+APM, FSA, HSm, Hybrid EM, the cost-
effective particle swarm optimization (CPSO), presented in Tomassetti (2010), a fish swarm
optimization algorithm (FSOA) proposed in Lobato and Steffen (2014), a modified augmented
Lagrangian DE-based algorithm (MAL-DE) by Long et al. (2013) and the modified constrained
differential evolution (mCDE) in Azad and Fernandes (2013), are available in Table 4. It has been
noticed that the results produced by the algorithm are very competitive and require a reasonable
amount of function evaluations.

Table 4. Comparative results for the pressure vessel design problem

Method X1 X2 X3 X4 ﬁJest de n.f.e.ay

Shifted-HAL 0.8125 0.4375 42.0984 176.6366 6059.714  6059.900 26255

APS-GA 0.8125 0.4375 42.0984 176.6366 6059.714 6146.822 15000
CPSO 0.8125 0.4375 42.0984 176.6366  6059.714 6086.9  10000*
DUVDE+APM  0.8125 04375 42.0984 176.6368 6059.718  6059.718 80000
FSA 0.7683  0.3798  39.8096  207.2256 5868.765 6164.586 108883
FSOA 0.8125 0.4375 42.0913 176.7466  6061.078  6064.726 2550
HSm 1.125 0.625  58.2789 43.7549  7198.433 n.a. n.a.
Hybrid EM 0.8125 0.4375 42.0701 177.3762  6072.232 na. 20993
MAL-DE 0.8125 0.4375 42.0984 176.6366 6059.714  6059.714 120000
mCDE 0.8125 0.4375 42.0984 176.6366  6059.714 n.a. 1000%

* number of function evaluations of best run; * number of iterations; n.a. means not available.

Table 5. Comparative results for the speed reducer design problem

Method X1 X2 X3 X4 X5 X6 X7 Joest Sfav n.f.e..y

Shifted-HAL 35 0.7 17 73000 7.7153 3.3502 5.2867 2994355  2994.355 47113

APS-GA 35 07 17 7.3000 7.800 3.3502  5.2867 2996.348  3007.860 36000
CPSO 35 07 17 73 7.8  3.3502 5.2867  2996.348 2996.5  10000%
HEA-ACT 35 07 17 73004 7.7154 3.3502 52867 2994.499  2994.613 40000
Hybrid EM 35 07 17 73677 7.7318 3.3513 52869 2995.804 na. 519897
MAL-DE 35 07 17 7.3 77153 33502 52867 2994.471 2994.471 120000
mCDE 35 07 17 73 77153 33502 52867 2994.342 n.a. 500%

T number of function evaluations of the best run; ¥ number of iterations; n.a. means not available.

Speed Reducer Design Problem

The weight of the speed reducer is to be minimized subject to the constraints on bending stress
of the gear teeth, surface stress, transverse deflections of the shafts and stress in the shafts as
described in Tomassetti (2010). There are seven variables and 11 inequality constraints. This is
a mixed variables problem, where the variable x3 is integer (number of teeth) and the others are
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continuous. The mathematical formulation of the optimization problem is as follows:

min 0.7854x1x3((10/3)x3 4 14.9334x3 — 43.0934) — 1.508x; (x2 +x7)
+7.4777(x3 +x3) +0.7854 (xsx% + x5x3)

397.5 1.93x;
subject to —1<0, 252 —1<0, —2*_1<0,
X1X5X3 X1X5X3 X2X3Xg
1.93x3
B or<0, By, 22 <,
X2X3X X1
X1 —1§O, l.5x6—|—1.9_1§07 1IX7—|-19_1§0
12x2 X4 / X5 /
745 172 745 1/2
(( )24 16.9 x 106> (( )2 1 157.5 106)
X2X3 . _1<0, X2X3 ! _1<0,
110.0x 85.0x3

where 2.6 <x <3.6,0.7 <x, <0.8,17 <x3 <28,7.3<x4<8.3,7.3<x5<8.3,29<x<3.9
and 5.0 < x7 <5.5. The comparative results among Shifted-HAL, APS-GA, CPSO, HEA-ACT,
Hybrid EM, MAL-DE and mCDE are shown in Table 5. It can be concluded that the proposed
algorithm performs reasonably well.

Coil Compression Spring Design Problem

This is a real world optimization problem involving discrete, integer and continuous design
variables. The objective is to minimize the volume of a spring steel wire used to manufacture
the spring (with minimum weight) (see Lampinen and Zelinka (1999)). The design problem has
three variables and eight inequality constraints, where x1, the number of coils, is integer, x, the
outside diameter of the spring, is continuous, and x3, the spring wire diameter, is taken from a
set of discrete values (see Table 6). The mathematical formulation is as follows:

min 7% (x; +2)xx3 /4

8C/F,
subject to —L2 g <0 Cr <0, Iy —lax <0,
X3
Fpax —F
6p—Opm <0, o, — ———L <0,

Fax— F,
ap+%+1.05(x1+2)x3—1f <0,

where 1 <x; < lmax/dmin’ 3dmin < X2 < Dpax, dmin < x3 < Dmax/3 and Frax = 1000 1b., S =
189000 psi., Imax = 14 in., dppin = 0.2 in., Dpax = 3.0 in., Fp =3001b.,, G=11.5x% 106, Opm =
6.0 in., 0, = 1.25 in. and

c _ A(n/x3)—1  0.615x3 K Gx§
f 4(xy/x3) —4 x 8x1x37

F F
Iy = %+1.05(x1+2)x3, op = ?”

Tests were done using the proposed Shifted-HAL with enhanced AF-2S, and a compari-
son with the differential evolution method coupled with a soft-constraint approach (DE-sca)
(Lampinen and Zelinka 1999), with the mCDE (Azad and Fernandes 2013) and with the ranking
selection-based particle swarm optimizer (RSPSO) (J. Wang and Yin 2008) is carried out. The
results are shown in Table 7. It can be concluded that the results produced by the algorithm are
quite competitive after a reduced computational effort. A low average number of function evalu-
ations has been reported since the algorithm converged after six outer iterations in 20 out of the
30 runs.
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Table 6. Available spring steel wire diameters

0.009 0.0095 0.0104 0.0118 0.0128 0.0132 0.014 0.015 0.0162 0.0173 0.018 0.020 0.023 0.025
0.028  0.032 0.035 0.041 0.047 0.054 0.063 0.072  0.080 0.092 0.105 0.120 0.135 0.148
0.162  0.177 0.192 0.207 0.225 0.244 0.263  0.283  0.307 0.331 0.362 0394 0.4375 0.500

Table 7. Comparative results for the coil compression spring design prob-

lem
Method X1 X X3 Joest Jav n.f.e..y
Shifted-HAL 9 1.223 0.283 2.65856  2.67220 8372
DE-sca 9 1.223 0.283 2.65856 na. 260007
mCDE 9 1223 0.283 2.65856 n.a. 500*
RSPSO 9 1223 0.283 2.65856  2.72887 15000

T number of function evaluations of the best run; ¥ number of iterations;
n.a. means not available.

Economic Dispatch with Valve-point Effect Problem

The economic dispatch (ED) problem reflects an important optimization task in power genera-
tion systems. The objective is to find the optimal combination of power dispatches from » dif-
ferent power generating units to minimize the total generation cost while satisfying the specified
load demand and the generating units operating conditions. Hence, the objective is

n
min Y a; 1P} +ai2Pi+a;i3 + |aiasin (a; s (Pimin — P))| (15)
i=1

when valve-point loading effects are considered, where P, is the ith unit power output (per hour),
a; 1, a;p and a;3 are the cost coefficients of unit 7, and a; 4 and q; 5 are the coefficients of unit
i reflecting valve-point loading effects (see Hardiansyah (2013); Sinha, Chakrabarti, and Chat-
topadhyay (2003)). The total power output from 7 units should be equal to the total load demand,
Pp, plus the transmission loss, Py, of the system

n
Y P=pPy+PL
i=1

where P, is calculated using the power flow coefficients B; ; by:

n n n
PL=Y Y PBiPj+ Y Bo:P,+Boy.
i=1j=1 i=1

The power output from unit i should satisfy P;in < P < Prmax, i = 1,2,...,n, where P, and
P, max are the minimum and the maximum real power outputs of the ith unit, respectively.

In practice, ramp rate limits restrict the operating range of a unit for adjusting the gener-
ator operation between two operating periods. The generation may increase or decrease with
corresponding upper and downward ramp rate limits. If the power generation increases then
P — P,y < U, otherwise P, g — P; < D;, where P, is the power generation of ith unit at the pre-
vious hour and U; and D; are the upper and lower ramp rate limits, respectively. Due to physical
limitations of machine components, the generating units may have certain zones where operation
is prohibited. Hence, for the ith generating unit, the following condition is required P; < PlL P
and P; > P”7* where P and P”"* are the lower and upper limits of a given prohibited zone for
the ith unit.

To demonstrate the performance and applicability of the proposed method an instance with
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40 generating units (ED-40), a hourly demand of 10500 MW, without power loss, ramp rate
limits and prohibited operating zones, is considered. The input data concerned with a; (k =
1,...,5), Pimin> Pimax, for i = 1,...,40 are available in Hardiansyah (2013). The Shifted-HAL
algorithm is compared with the hybrid genetic algorithm (HGA) based on differential evolution
and a sequential quadratic programming (SQP) local search, presented in He, Wang, and Mao
(2008), an evolutionary programming technique (EPT) addressed in Sinha, Chakrabarti, and
Chattopadhyay (2003), a differential evolution approach combined with chaotic sequences and
a SQP gradient-based local search (DEC(2)-SQP(1)) (Coelho and Mariani 2006), the Gaussian
and Cauchy distribution-based PSO variant (G-C-PSO) in Hardiansyah (2013), and a modified
particle swarm optimization (MPSO) algorithm presented in Park, Lee, Shin, and Lee (2005).
The best run (among 30 runs) produced a cost value of 121686.77 after 2500 iterations, 600296
function evaluations and 11.04 seconds — with kpax = 50, tmax = 50 and NFy.x = 10m — (see
other results in Table 8) and the optimal dispatch results for the 40 generators are reported in
Table 9. It should be noticed that when solving larger dimensional problems, the size of the
population may become large since both ‘master swarm’ and ‘training swarm’ should have at
least n points each to be able to provide n points for the N-M local search. It can be concluded
that the Shifted-HAL algorithm produces acceptably good results, noting that HGA outperforms
the other methods in comparison since it uses a gradient-based SQP local optimizer.

Table 8. Cost comparative results for the ED-40 problem (in $/hour)

Method Joest Jfined Jav St.d.(f) n.ite.
Shifted-HAL' 121686.77  122895.45  122966.59  5.2E+02 2500
DEC(2)-SQP(1)’ 121741.98 na. 12229513  3.9E+02 600
EPT 122624.35 n.a. 123382.00 n.a. n.a.
G-C-PSO 121649.20 n.a. n.a n.a. n.a.
HGA 121418.27 na.  121784.04 na. 30007
MPSO$ 122252.27 n.a. n.a n.a. n.a.

T The results were obtained with a population of m = 200 points and v = 10~'*; ° popula-
tion size is set to 30; ¥ A maximum of 50 DE operator iterations are done at each of the 60
hybrid GA iterations, for a population of 82 points; ¥ 53% of the runs converged to a value
in the range [122500,123000], the remaining converged to a value in [120000, 122500];
n.a. means not available.

Table 9. Dispatch results for the 40 generators (in MW) for comparison

Py —- Pio/Pi| —- Py/Pyy — P3o/P31 — Pyo

Shifted-HAL 113981 110.831 101.020  179.627 97.000 139.998  299.938  284.599 293.465 130.094

169.128 94.116  305.022  394.299 304.518 304.536 489.305 490.093 511.868 511.266
523278 523333 523.267 525.583  523.287  523.251 10.030 10.175 10.028 88.957
190.000  184.549  190.000 178.055 164.888 165219 109.973 109.942 109.986 511.494

G-C-PSO 113.997  112.652 119.426  189.000 96.871 139280 223.592 284.580 216.433  239.336

314.873  305.057 365.543 493373  280.433  432.072 435243 417.696  532.188  409.205
534.063 457.096 441.363 397362 446.418 442.116 74.862 27.543 76.831 97.000
118.378  188.752  190.000  120.703 ~ 170.240  198.990  110.000  109.341  109.924  468.169

HGA 111.379  110.928 97.410  179.733 89.219  140.000  259.620  284.657  284.659  130.000

168.821  168.850 214.752  394.285 304.536 394299  489.288  489.287 511.275 511.286
523296 523320 523.291 523301 523.268  523.279 10.000 10.000 10.000 88.638
190.000  190.000  190.000 164980 165.997 165.046 110.000 110.000  110.000  511.301

MPSO 114.000  114.000  120.000  182.222 97.000  140.000  300.000  299.021  300.000  130.000

94.000 94.000 125.000 304.485 394.607 305.323 490.272  500.000 511.404 512.174
550.000 523.655 534.661 550.000 525.057  549.155 10.000 10.000 10.000 97.000
190.000  190.000  190.000  200.000  200.000  200.000  110.000  110.000  110.000  512.964

The other instance has 15 generating units (ED-15) and a hourly demand of 2630 MW.
The objective function is smooth and the input data concerned with a;; (k =1,...,3), B; ;

(j=1,...,15), Boi, Bo.0» Pimin> Pimax, Ui, Dj, fori=1,...,15, Pl.L‘DZ and 1’-’1.UpZ (for three zones
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embedded in units 2, 5, 6 and two zones in unit 12) are available in Coelho and Lee (2008). The
results produced by the proposed algorithm are compared with those of a PSO version which is
based on Gaussian probability distribution linked with chaotic sequences (ch-G-PSO) in (Coelho
and Lee 2008), of a firefly algorithm (FA) in (Yang, Hosseini, and Gandomi 2012), of the im-
proved coordinated aggregation-based PSO (ICA-PSO) by (Vlachogiannis and Lee 2009), of the
hybrid bacterial foraging optimization with Nelder-Mead search (BFO-NM) presented in Pan-
igrahi and Pandi (2008), and of a PSO version with normalized evaluation values (norm-PSO)
(see Gaing (2003)). The best run (out of 30 runs) of the proposed algorithm produced a cost
value of 32692.64 after a total of 300 iterations, 15138 function evaluations and 0.16 seconds
(with kmax = 10, timax = 30 and NFax = 100). To obtain high quality solutions v = 10719 and

51‘(1) =0foralli=1,...,p are used. Other results of the experiment are shown in Table 10. The
optimal dispatch results for the 15 generators are reported in Table 11. It can be concluded that
the Shifted-HAL algorithm is capable of competing with other well-known metaheuristics.

Table 10. Cost comparative results for the ED-15 problem (in $/hour)

Method Soest fmed fav St.d.(f) loss n.ite.

Shifted-HAL' 32692.64  32721.78 3273994 53E+01  29.56 300
BFO-NM 32784.50 n.a. 32796.8  8.5E+01 na.  10000%
ch-G-PSO# 32508.12 na. 35122.79 1.9E+03 13.67 100
FA 32704.45 n.a. 32856.1 1.5E+02  30.66 500008
ICA-PSO’ 32393.23 na.  32400.17 na. 1145 345
norm-PSO" 32858 n.a. 33039 na. 3243 200

T The results were obtained with a population of m = 50 points; ¥ number of function evalua-
tions; ¥ population size is set to 50; ® initial population size is set to 40;  population size is
set to 100; n.a. means not available.

Table 11. Dispatch results for the 15 generators (in MW) for comparison

P —- Py/Py — Pis

Shifted-HAL 455.0000  380.0000  130.0000  130.0000  170.0000  460.0000  430.0000 60.0000
69.5554  160.0000 80.0000 80.0000 25.0000 15.0000 15.0000

ch-G-PSO 440.4990  179.5947 21.0524 87.1376  360.7675  395.8330  432.0085 168.9198
162.0000  138.4343 52.6294 66.8875 62.7471 47.5574 27.6065

FA 455.0000  380.0000  130.0000  130.0000  170.0000 460.000  430.0000 71.7450

58.9164  160.0000 80.0000 80.0000 25.0000 15.0000 15.0000

5. Conclusions

An enhanced AF-2S algorithm that is implemented within an augmented Lagrangian framework
to solve the bound constrained subproblems is presented. A new shifted hyperbolic penalty func-
tion with interesting properties is derived and it is proved that a sequence of iterates produced
by the shifted hyperbolic augmented Lagrangian algorithm converges to an £-global minimizer.
The enhanced AF-2S algorithm is based on an intensification phase that is invoked with a dy-
namically defined probability and aimed to explore the search space and to avoid local optimal
solution. The reported numerical results show the good performance of the shifted-HAL algo-
rithm. Further testing will be carried out in the future with large-dimensional problems in the
context of engineering applications. Furthermore, a deterministic and exact solver for bound
constrained global optimization problems, like the Multilevel Coordinate Search of Huyer and
Neumaier (1999), will be considered as future developments to be integrated into the Shifted-
HAL algorithm.
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