
Universidade do Minho
Escola de Engenharia

Departamento de Informática

Master Course in Computing Engineering

Vı́tor Tiago Varajão Martins

Detection of Plagiarism in Software in an Academic Environment

Master dissertation

Supervised by: Pedro Rangel Henriques

Daniela da Cruz

Braga, June 16, 2015



AC K N OW L E D G E M E N T S

We give thanks to Dr. Jurriaan Hage for the copy of the Marble tool and Bob Zeidman for the

CodeSuite licenses.

This work is funded by National Funds through the FCT - Fundação para a Ciência e a Tecnologia

(Portuguese Foundation for Science and Technology), within project PEst-OE/EEI/UI0752/2014.



A B S T R AC T

We illustrate the state of the art in software plagiarism detection tools by comparing their features

and testing them against a wide range of source codes. The source codes are copies of the same file

disguised to hide plagiarism and show the tools accuracy at detecting each type.

The decision to focus our research on plagiarism of programming languages is two fold: on one hand,

it is a challenging case-study since programming languages impose a structured writing style; on the

other hand, we are looking for the integration of such a tool in an Automatic-Grading System (AGS)

developed to support teachers in the context of Programming courses.

Based on that analysis, we set out to develop our own tool and describe the process from the architec-

ture to the implementation. With examples of how the algorithms works. Followed by the analysis of

the finished tool in terms of speed and accuracy against the ones in existence.

a



R E S U M O

Nós ilustramos o estado da arte no que toca a ferramentas de detecção de plágio de software compara-

ndo as ferramentas existentes em termos de funcionalidades e testando-as contra um leque de códigos

fonte. Os códigos são cópias do mesmo ficheiro disfarçados de forma a esconder o plágio e permitem-

nos analisar a eficácia das ferramentas na detecção de cada um dos tipos.

A decisão de focar a pesquisa no plágio de linguagens de programação teve dois objectivos: por

um lado, é um caso de estudo desafiante já que as linguagens de programação requerem uma es-

crita estruturada; por outro lado, estamos à procura de integrar uma ferramenta num Sistema de

Avaliação-Automática (AGS) desenvolvido para ajudar os professores no contexto de Disciplinas de

programação.

Com base nessa análise, prosseguimos com a construção da nossa ferramenta e descrevemos o pro-

cesso desde a arquitectura à implementação. Com exemplos de como funcionam os algoritmos. Final-

izando com a análise da ferramenta acabada em termos de velocidade e eficácia contra as existentes.

b



C O N T E N T S

Contents iii

1 I N T RO D U C T I O N 3

1.1 Objectives 4

1.2 Research Hypothesis 4

1.3 Document structure 4

2 S TAT E O F T H E A RT 5

2.1 Approaches 6

2.2 Existing tools 7

2.2.1 CodeMatch 7

2.2.2 CPD 8

2.2.3 JPlag 8

2.2.4 Marble 8

2.2.5 MOSS 8

2.2.6 Plaggie 9

2.2.7 SIM 9

2.2.8 Sydney’s Sherlock 9

2.2.9 Warwick’s Sherlock 10

2.2.10 YAP 10

2.3 Comparison of the existing tools 11

2.3.1 Timeline 11

2.3.2 Feature comparison 11

2.3.3 Comparison of the results 12

2.3.4 Strategy for testing the tools 14

2.3.5 Testing the tools 14

3 S P E C T O R A R C H I T E C T U R E 17

3.1 Requirements 17

3.2 Abstract Syntax Trees 18

3.2.1 Artificial Nodes 21

3.2.2 Identifiers 21

3.2.3 Expressions 22

3.2.4 Control structures 22

3.2.5 Blocks 22

4 S P E C T O R I M P L E M E N TAT I O N 23

iii



Contents

4.1 Development Decisions 23

4.2 Features 25

4.3 Implementation Structure 26

4.4 Methodology 26

4.4.1 Algorithm 1: Unaltered copy 27

4.4.2 Comments changed 29

4.4.3 Algorithm 2: Identifiers changed 29

4.4.4 Scope changed 34

4.4.5 Algorithm 3: Operands order switched 34

4.4.6 Algorithm 4: Variable types and control structures replaced 41

4.4.7 Statements order switched 46

4.4.8 Algorithm 5: Group of calls turned into a function call or vice versa 46

4.4.9 Main Algorithm 51

5 S P E C T O R T E S T S 53

6 C O N C L U S I O N S A N D F U T U R E W O R K 56

A S O U R C E C O D E S U S E D I N T H E T E S T S 61

A.1 Hightlights 61

A.2 The program, Calculator 61

A.2.1 Original source code for the Calculator exercise and the 1st type of plagia-

rism. 62

A.2.2 Source code for the Calculator exercise, with the 2nd type of plagiarism. 63

A.2.3 Source code for the Calculator exercise, with the 3rd type of plagiarism. 65

A.2.4 Source code for the Calculator exercise, with the 4th type of plagiarism. 67

A.2.5 Source code for the Calculator exercise, with the 5th type of plagiarism. 69

A.2.6 Source code for the Calculator exercise, with the 6th type of plagiarism. 71

A.2.7 Source code for the Calculator exercise, with the 7th type of plagiarism. 72

A.2.8 Source code for the Calculator exercise, with the 8th type of plagiarism. 74

A.3 The program, 21 Matches 76

A.3.1 Original source code for the 21 Matches exercise and the 1st type of plagia-

rism. 76

A.3.2 Source code for the 21 Matches exercise, with the 2nd type of plagiarism. 80

A.3.3 Source code for the 21 Matches exercise, with the 3rd type of plagiarism. 84

A.3.4 Source code for the 21 Matches exercise, with the 4th type of plagiarism. 88

A.3.5 Source code for the 21 Matches exercise, with the 5th type of plagiarism. 92

A.3.6 Source code for the 21 Matches exercise, with the 6th type of plagiarism. 95

A.3.7 Source code for the 21 Matches exercise, with the 7th type of plagiarism. 99

A.3.8 Source code for the 21 Matches exercise, with the 8th type of plagiarism. 103

B T E S T R E S U LT S 108

iv



Contents

B.1 CodeMatch results 108

B.1.1 Results for the Calculator source codes 108

B.1.2 Results for the 21 Matches source codes 109

B.2 JPlag results 109

B.2.1 Results for the Calculator source codes 110

B.2.2 Results for the 21 Matches source codes 110

B.3 Marble results 111

B.3.1 Results for the Calculator source codes 111

B.4 MOSS results 112

B.4.1 Results for the Calculator source codes 112

B.4.2 Results for the 21 Matches source codes 112

B.5 SIM results 113

B.5.1 Results for the Calculator source codes 113

B.5.2 Results for the 21 Matches source codes 114

B.6 Sydney’s Sherlock results 114

B.6.1 Results for the Calculator source codes 115

B.6.2 Results for the 21 Matches source codes 116

B.7 Warwick’s Sherlock results 117

B.7.1 Results for the Calculator source codes 117

B.7.2 Results for the 21 Matches source codes 119

B.8 Spector results 120

B.8.1 Results for the Calculator source codes 120

v



L I S T O F F I G U R E S

Figure 1 A timeline showing the years in which each tool was developed or refer-

enced. 11

Figure 2 An overview of the results obtained for the Calculator, Java source codes. 13

Figure 3 The structure for our application. 17

Figure 4 A tree similar to the parse tree produced from the Greet source code. 20

Figure 5 The AST for the source code. 21

Figure 6 A block diagram representing Spector’s implementation structure. 26

Figure 7 AST generated from source code 1A. 28

Figure 8 AST generated from source code 1B. 28

Figure 9 AST generated from source code 2A. 30

Figure 10 AST generated from source code 2B. 30

Figure 11 AST generated from source code 2A. 33

Figure 12 AST generated from source code 2C. 33

Figure 13 AST generated from source code 3A. 36

Figure 14 AST generated from source code 3B. 36

Figure 15 AST generated from source code 3A. 39

Figure 16 AST generated from source code 3C. 39

Figure 17 AST generated from source code 4A. 42

Figure 18 AST generated from source code 4B. 42

Figure 19 AST generated from source code 4C. 44

Figure 20 AST generated from source code 4D. 44

Figure 21 Source codes 5A and 5B, respectively. 47

Figure 22 AST generated from source code 5A. 48

Figure 23 AST generated from source code 5B. 48

Figure 24 AST generated from source code 5C. 50

Figure 25 AST generated from source code 5D. 50

Figure 26 An overview of the results obtained for the Calculator, Java source codes. 53

Figure 27 Part of the HTML presenting the results for the Calculator, Java source

codes. 54

Figure 28 Part of the HTML presenting the results for the 21 Matches, Java source

codes. 55

vi



L I S T O F TA B L E S

Table 1 Comparison of the plagiarism detection tools. 12

Table 2 The results from the CodeMatch tool for the Calculator source codes 109

Table 3 The results from the CodeMatch tool for the 21 Matches source codes 109

Table 4 The results from the JPlag tool for the Calculator source codes 110

Table 5 The results from the JPlag tool for the 21 Matches source codes 111

Table 6 The results from the Marble tool for the Calculator source codes 111

Table 7 The results from the MOSS tool for the Calculator source codes 112

Table 8 The results from the MOSS tool for the 21 Matches source codes 113

Table 9 The results from the SIM tool for the Calculator source codes 114

Table 10 The results from the SIM tool for the 21 Matches source codes 114

Table 11 The results from the Sherlock tool for the Calculator source codes 115

Table 12 The results produced by Sherlock tool for the Calculator source codes with

the -n 2 argument 115

Table 13 The results produced by Sherlock tool for the Calculator source codes with

the -z 3 argument 116

Table 14 The results from the Sherlock tool for the 21 Matches source codes 117

Table 15 The results from Warwick’s Sherlock tool for the Calculator source codes,

using the No Comments + Normalized transformation 118

Table 16 The results from the Warwick’s Sherlock tool for the Calculator source codes,

using the Tokenized transformation 118

Table 17 The results from Warwick’s Sherlock tool for the 21 Matches source codes,

using the No Comments + Normalized transformation 119

Table 18 The results from the Warwick’s Sherlock tool for the 21 Matches source

codes, using the Tokenized transformation 119

Table 19 The results from the Spector tool for the Calculator source codes 120

vii



L I S T O F L I S T I N G S

3.1 The source code for the Greet example. . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Source code 1A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Source code 1B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Source code 2A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Source code 2B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Source code 2A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Source code 2C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7 Source code 3A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.8 Source code 3B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.9 Source code 3A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.10 Source code 3C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.11 Source code 4A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.12 Source code 4B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.13 Source code 4C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.14 Source code 4D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.15 Source code 5A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.16 Source code 5B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.17 Source code 5C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.18 Source code 5D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A.1 Original source code for the Calculator exercise and the 1st type of plagiarism. . . . 62

A.2 Source code for the Calculator exercise with the 2nd type of plagiarism. . . . . . . . 63

A.3 Source code for the Calculator exercise with the 3rd type of plagiarism. . . . . . . . 65

A.4 Source code for the Calculator exercise with the 4th type of plagiarism. . . . . . . . 67

A.5 Source code for the Calculator exercise with the 5th type of plagiarism. . . . . . . . 69

A.6 Source code for the Calculator exercise with the 6th type of plagiarism. . . . . . . . . 71

A.7 Source code for the Calculator exercise with the 7th type of plagiarism. . . . . . . . 72

A.8 Source code for the Calculator exercise with the 8th type of plagiarism. . . . . . . . 74

A.9 Original source code for the 21 Matches exercise and the 1st type of plagiarism. . . . 77

A.10 Source code for the 21 Matches exercise with the 2nd type of plagiarism. . . . . . . 80

A.11 Source code for the 21 Matches exercise with the 3rd type of plagiarism. . . . . . . 84

A.12 Source code for the 21 Matches exercise with the 4th type of plagiarism. . . . . . . . 88

viii



List of Listings

A.13 Source code for the 21 Matches exercise with the 5th type of plagiarism. . . . . . . . 92

A.14 Source code for the 21 Matches exercise with the 6th type of plagiarism. . . . . . . . 95

A.15 Source code for the 21 Matches exercise with the 7th type of plagiarism. . . . . . . . 99

A.16 Source code for the 21 Matches exercise with the 8th type of plagiarism. . . . . . . . 103

ix



1

I N T RO D U C T I O N

Nowadays it is very easy to copy documents. If the source of a copy, be it partial or wholesome, is

wrongfully identified then it is plagiarism. Even when the original document was authored by the

same person (in which case it is copying).

In an academic environment, if a student plagiarizes, a teacher will be unable to properly grade his

ability. This is a problem that applies not only to text documents but to source-code as well. This

is why there is a need to recognize plagiarism. However, with a large number of documents, this

burdensome task should be computer aided.

There are many programs for the detection of source-code plagiarism. Some of them are offline

tools, like the Sherlock tools (Joy and Luck, 1999; Hage et al., 2010), YAP1 (Wise, 1996; Li and

Zhong, 2010; Hage et al., 2010), Plaggie (Ahtiainen et al., 2006; Hage et al., 2010), SIM2 (Grune

and Huntjens, 1989; Ahtiainen et al., 2006; Hage et al., 2010), Marble (Hage et al., 2010), and

CPD3 (Copeland, 2003) which, even though it was only made to detect copies, is still a useful tool.

There are also online tools like JPlag (Prechelt et al., 2000; Li and Zhong, 2010; Cui et al., 2010;

Ahtiainen et al., 2006; Hage et al., 2010; Liu et al., 2006) and MOSS (Schleimer, 2003; Li and Zhong,

2010; Cui et al., 2010; Ahtiainen et al., 2006; Hage et al., 2010; Liu et al., 2006), and even tool sets

like CodeSuite (Shay et al., 2010).

Due to the complexity of the problem itself, it is often hard to create software that accurately de-

tects plagiarism, since there are many ways a programmer can alter a program without changing its

functionality.

As we stated previously, there are two Sherlock tools, one from the University of Sydney and another

from the University of Warwick so we will distinguish them as Sydney’s Sherlock and Warwick’s

Sherlock, respectively.

Along the last years, those alterations were collected, studied and classified. At least three types where

identified: lexical changes; structural changes; and technological changes.

Many of the tools (like JPlag or MOSS) transform the programs into tokens and compare them, thus

being ineffective at detecting structural changes (Li and Zhong, 2010; Cui et al., 2010). This is why

the approach based on the usage of an abstraction, such as an Abstract Syntax Tree (AST), was proven

1 Yet Another Plague
2 software and text SIMilarity tester
3 Copy-Paste-Detector

3



1.1. Objectives

to be better at identifying a much larger scope of plagiarism cases (Parker and Hamblen, 1989; Faidhi

and Robinson, 1987).

There is a need for the production of a tool that can compare the structure of two programs in order to

accurately identify plagiarism, with the motivation of making it easy to extend to other languages and

use in other systems, such as Quimera (Fonte et al., 2012), an Automatic Grading System.

1.1 O B J E C T I V E S

Our purpose is to study the state-of-the-art of this area and analyze the advantages and disadvantages

of the existing methodologies.

The aim is to produce an improved system that will use ASTs as an abstraction, in order to detect

source-code plagiarism based on the structures of input programs.

The tool will be created in the Java language and, at a first stage, it will support Java. For its devel-

opment, ANTLR 4 (Parr and Quong, 1995) will be used to generate the front-end that reads the input

programs and produces the ASTs. Using this approach, it will be easy to extend the tool to support

other languages (creating additional front-ends).

The tool will be subjected to a variety of tests to analyze its performance in comparison to similar

tools. These tests will be done with programs developed by ourselves and with programs developed

by students.

1.2 R E S E A R C H H Y P OT H E S I S

To reach our objectives (see Section 1.1) we will study the use of the AST trees and define proce-

dures to compare those trees, according to our specifications. As seen by Baxter et al. (1998); Cui

et al. (2010); Li and Zhong (2010), the trees can be used as an effective method to detect copies and

plagiarism, which reinforces our hypothesis.

1.3 D O C U M E N T S T RU C T U R E

This document is organized using the following structure: Chapter 1 introduces the problem, context

and motivation, and our objectives (see Section 1.1). Chapter 2 presents the state of the art in the

detection of software plagiarism; It also includes several tests (see Section 2.3.5) which were made

with source code that was built using specific types of plagiarism — this will show the quality of

the results obtained with the state of the art tools. Chapters 3 and 4 detail the process behind the

development of Spector, an AST based tool, leading to its architecture and implementation. Chapter 5

shows a comparison between the results from our tool and the previous ones, along further test cases.

4 ANother Tool for Language Recognition

4



1.3. Document structure

Finally, Chapter 6 will close with the conclusions reached through this study and the possibilities for

future research and development.

5



2

S TAT E O F T H E A RT

There are several techniques for the detection of plagiarism in source code. Their objective is to stop

unwarranted plagiarism of source code in academic and commercial environments.

If a student uses existing code, it must be in conformance with the teacher and the school rules. The

student might have to build software from the ground up, instead of using existing source code or tools

that could greatly reduce the effort required to produce it but, this will allow a teacher to properly grade

the student according to his knowledge and effort.

If a company uses existing source code, it may be breaking copyright laws and be subjected to lawsuits

because it does not have its owners consent.

This need led to the development of plagiarism detectors, this is, programs that take text files (natural

language documents, programs or program components) as input and output a percentage showing

their probability of being copies of each other.

To understand the functionalities in these tools, it is necessary to understand the terms used to describe

them.

The following is a list presenting such terms:

T O K E N A word or group of characters, sometimes named n-gram where n denotes the number of

characters per token. Since white-spaces and newlines are usually ignored, the input ”while(true)

{” could produce two 5-grams: ”while(” and ”true){”.

T O K E N I Z AT I O N The conversion of a natural text into a group of tokens, as shown in the previous

definition (Token).

H A S H A number computed from a sequence of characters, usually used to speed up comparisons. If

we use the ASCII 1 values of each character, we could turn the token ”word” into 444 (119 +

111 + 114 + 100).

H A S H I N G The conversion of a sequence of tokens into their respective hash numbers.

F I N G E R P R I N T A group of characteristics that identify a program, much like physical fingerprints

are used to identify people. An example would be if we consider a fingerprint to be composed

by 3 hashes, the sum of the differences (between hashes) to be the algorithm used for matching

1 American Standard Code for Information Interchange

6



2.1. Approaches

them and a value of 10 to be the threshold. In which case, taking a pair of files with the

fingerprints: [41,582,493] and [40,585,490]. The program would match, as the sum of the

differences is 9 (|41− 40|+ |582− 585|+ |493− 490| = 1 + 3 + 3).

S T RU C T U R A L I N F O R M AT I O N This is information from the structure of a programming language.

An example would be the concept of comments, conditional controls, among others.

The implementations of these concepts is always specific to each tool and; since this process is not

usually explained, it can only be inspected by analyzing its source code.

2.1 A P P RO AC H E S

In general, this type of programs will usually build some form of fingerprint for each file, as to improve

the efficiency of the comparisons. From our research, we saw that the following methodologies were

used to produce the fingerprints.

• An attribute-based methodology, where metrics are computed from the source code and used

for the comparison. A simple example would be: using the size of the source code (number

of characters, words and lines) as an attribute to single out the source codes that had a very

different size. This methodology was mentioned by Wise (1992).

• A token-based methodology, where the source code is tokenized and hashed, creating a fin-

gerprint for each file or method. The fingerprints are then matched using hash comparison

algorithms and accepted when within a threshold. This methodology was used by Wise (1993)

and by Schleimer (2003).

• A structure-based methodology, where the source code is abstracted to an Internal Representa-

tion (IR), like an AST2 or a PDG3). The IRs are then used to compare the source codes, allowing

for an accurate comparison. This methodology was used by Baxter et al. (1998) and by Li and

Zhong (2010).

These methodologies go from the least accuracy and the highest efficiency to the highest accuracy and

the lowest efficiency.

Some examples of the metrics that could be used in an abstract-based methodology would be: files

size, number of variables, number of functions and number of classes, among others. These metrics

will usually be insufficient as students will usually solve the same exercise, which would cause a lot

of suspicion from the tool.

2 Abstract Syntax Tree
3 Program Dependency Graph

7



2.2. Existing tools

The token-based methodology came with an attempt to balance the accuracy and the efficiency, often

using RKS-GST4 Wise (1993) which is a modern tokenization and hashing algorithm. To improve

the results even further, some tools mix some structure dependent metrics and modifications such as,

removing comments (used by JPlag 2.2.3) or sorting the order of the functions (used by Marble 2.2.4).

The structure-based approach uses abstractions that maintain the structure of the source code. This

makes the technique more dependent on the language but it will also make the detection immune to

several types of plagiarism such as, switching identifier names, switching the positions of functions

and others.

2.2 E X I S T I N G T O O L S

We found several tools for the detection of software plagiarism throughout our research. Some of those

tools were downloaded, used for testing purposes and thus can be discussed hereafter. Other tools, like

Plague (Whale, 1990; Wise, 1996; Joy and Luck, 1999) and GPlag (Liu et al., 2006; Bejarano et al.,

2013) were not accounted for. Each of the tools analyzed is presented here, ordered alphabetically.

The following criteria, inspired on Hage et al. (2010) were used to compare the tools:

1 S T ) S U P P O RT E D L A N G UAG E S : The languages supported by the tool.

2 N D ) E X T E N DA B I L I T Y: Whether an effort was made to make adding languages easier.

3 R D ) Q UA L I T Y O F T H E R E S U LT S : If the results are descriptive enough to distinguish plagiary

from false positives.

4 T H ) I N T E R F AC E : If the tool has a GUI5 or presents its results in a graphical manner.

5 T H ) E X C L U S I O N O F C O D E : Whether the tool can ignore base code.

6 T H ) S U B M I S S I O N A S G RO U P S O F F I L E S : If the tool can consider a group of files as a submis-

sion.

7 T H ) L O C A L : If the tool can work without needing access to an external web service.

8 T H ) O P E N S O U R C E : If the source code was released under an open source license.

2.2.1 CodeMatch

CodeMatch (Hage et al., 2010) is a part of CodeSuite (Shay et al., 2010) and detects plagiarism

in source code by using algorithms to match statements, strings, instruction sequences and identi-

4 Running Karp-Rabin matching and Greedy String Tiling
5 Graphical User Interface

8



2.2. Existing tools

fiers. CodeSuite is a commercial tool that was made by SAFE 6, which is housed at http://www.

safe-corp.biz/index.htm. It features several tools to measure and analyze source or exe-

cutable code.

This tool is only available as an executable file (binary file) and only runs under Windows.

CodeMatch supports the following languages:

• ABAP, ASM-6502, ASM-65C02, ASM-65816, ASM-M68k, BASIC, C, C++, C#, COBOL,

Delphi, Flash ActionScript, Fortran, FoxPro, Go, Java, JavaScript, LISP, LotusScript, MASM,

MATLAB, Pascal, Perl, PHP, PL/M, PowerBuilder, Prolog, Python, RealBasic, Ruby, Scala,

SQL, TCL, Verilog, VHDL, Visual Basic

2.2.2 CPD

CPD 7 (Copeland, 2003) is a similarity detector that is part of PMD, a source code analyzer that finds

inefficient or redundant code, and is housed at http://pmd.sourceforge.net/. It uses the

RKS-GST 8 (Wise, 1993) algorithm to find similar code.

It supports the following languages:

• C, C++, C#, Java, Ecmascript, Fortran, Java, JSP, PHP, Ruby

2.2.3 JPlag

JPlag (Prechelt et al., 2000; Li and Zhong, 2010; Cui et al., 2010; Ahtiainen et al., 2006; Hage et al.,

2010; Liu et al., 2006) takes the language structure into consideration, as opposed to just comparing

the bytes in the files. This makes it good for detecting plagiarism despite the attempts of disguising it.

It supports the following languages:

• C, C++, C#, Java, Scheme, Natural language

2.2.4 Marble

Marble (Hage et al., 2010), which is described in http://www.cs.uu.nl/research/techreps/

aut/jur.html, is a modern tool (made in 2010) for plagiarism detection. It facilitates the addition

of languages by using code normalizers to make tokens that are independent of the language. A RKS

algorithm is them used to detect similarity among those tokens.

It supports the following languages:

• Java, C#, Perl, PHP, XSLT

6 Software Analysis and Forensic Engineering
7 Copy-Paste-Detector
8 Running Karp-Rabin matching and Greedy String Tiling

9

http://www.safe-corp.biz/index.htm
http://www.safe-corp.biz/index.htm
http://pmd.sourceforge.net/
http://www.cs.uu.nl/research/techreps/aut/jur.html
http://www.cs.uu.nl/research/techreps/aut/jur.html


2.2. Existing tools

2.2.5 MOSS

MOSS (Schleimer, 2003; Li and Zhong, 2010; Cui et al., 2010; Ahtiainen et al., 2006; Hage et al.,

2010; Liu et al., 2006) automatically detects similarity between programs with a main focus on detect-

ing plagiarism in several languages that are used in programming classes. It is provided as an Internet

service that presents the results in HTML 9 pages, reporting the similarities found, as well as the code

responsible. It can ignore base code that was provided to the students and focuses on discarding infor-

mation while retaining the critical parts in order to avoid false positives.

Its HTML interface was produced by the author of JPlag (Guido Malpohl) and, the results come in

both an overview and detailed forms.

It supports the following languages:

• A8086 Assembly, Ada, C, C++, C#, Fortran, Haskell, HCL2, Java, Javascript, Lisp, Matlab,

ML, MIPS Assembly, Modula2, Pascal, Perl, Python, Scheme, Spice, TCL, Verilog, VHDL,

Visual Basic

2.2.6 Plaggie

Plaggie (Ahtiainen et al., 2006; Hage et al., 2010), which is housed at http://www.cs.hut.

fi/Software/Plaggie/, detects plagiarism in Java programming exercises. It was made for an

academic environment where there was a need to ignore base code.

It supports the following languages:

• Java

2.2.7 SIM

SIM 10 (Grune and Huntjens, 1989; Ahtiainen et al., 2006; Hage et al., 2010), which is housed

at http://dickgrune.com/Programs/similarity_tester/, is an efficient plagiarism

detection tool which has a command line interface, like the Sherlock tool. It uses a custom algorithm

to find the longest common substring, which is order-insensitive.

It supports the following languages:

• C, Java, Pascal, Modula-2, Lisp, Miranda, Natural language

9 Hyper Text Markup Language
10 software and text SIMilarity tester

10

http://www.cs.hut.fi/Software/Plaggie/
http://www.cs.hut.fi/Software/Plaggie/
http://dickgrune.com/Programs/similarity_tester/


2.2. Existing tools

2.2.8 Sydney’s Sherlock

The University of Sydney’s Sherlock (Hage et al., 2010), which is housed at http://sydney.

edu.au/engineering/it/˜scilect/sherlock/, detects plagiarism in documents through

the comparison of fingerprints which, as stated in the website, are a sequence of digital signatures.

Those digital signatures are simply a hash of (3, by default) words.

It allows for control over the threshold, the number of words per digital signature and the granularity

of the comparison (which is 4, by default) by use of the respective arguments: -t, -n and -z.

It supports the following languages:

• Natural language

2.2.9 Warwick’s Sherlock

The University of Warwick’s Sherlock (Joy and Luck, 1999), which is housed at http://www2.

warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/ provides a GUI

which allows the user to choose what tests should be used (compare normalized code, ignore com-

ments, etc) as well as change the tests inner thresholds. The results are shown through a connection

graph, statistical results and the sums of the individual percentual results. One can also access the

detailed results and see a visual representation of the connections between both files contents.

It supports the following languages:

• Natural language, Java and C++

2.2.10 YAP

YAP 11 (Wise, 1996; Li and Zhong, 2010; Hage et al., 2010), which is housed at http://www.

pam1.bcs.uwa.edu.au/˜michaelw/YAP.html, is a tool that currently has 3 implementa-

tions, each using a fingerprinting methodology with different algorithms. The implementations have

a tokenizing and a similarity checking phase and just change the second phase.

The tool itself is an extension of Plague.

YA P 1 The initial implementation was done as a Bourne-shell script and uses a lot of shell utilities

such as diff, thus being inefficient. It was presented by Wise Wise (1992).

YA P 2 The second implementation was made as a Perl script and uses an external C implementation

of the Heckel (Heckel, 1978) algorithm.

11 Yet Another Plague

11

http://sydney.edu.au/engineering/it/~scilect/sherlock/
http://sydney.edu.au/engineering/it/~scilect/sherlock/
http://www2.warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
http://www2.warwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
http://www.pam1.bcs.uwa.edu.au/~michaelw/YAP.html
http://www.pam1.bcs.uwa.edu.au/~michaelw/YAP.html


2.3. Comparison of the existing tools

YA P 3 The third and latest iteration uses the RKS-GST methodology.

The tools themselves are separate from the tokenizers but packaged together. These tools are said to

be viable at the detection of plagiarism on natural language, aside from their supported languages.

It supports the following languages:

• Pascal, C and LISP

2.3 C O M PA R I S O N O F T H E E X I S T I N G T O O L S

From the information obtained and the results computed, we have produced a variety of comparisons

that highlight the tools accuracy and behavior as well as a view on the progress done in the area of

plagiarism detection in source code.

2.3.1 Timeline

A timeline was produced (see Figure 1), indicating the years when the tools were developed or, at

least mentioned in an article. This shows us the progression of source code plagiarism detection tools.

Figure 1.: A timeline showing the years in which each tool was developed or referenced.

Note that we omitted Sydney’s Sherlock since we could not ascertain the date of its creation.

2.3.2 Feature comparison

A table (see Table 1) was also produced to report the criteria defined previously (see Section 2.2) for

each tool. The values can be 3(Yes), 7(No), a ? on the cases where we could not ascertain if the

feature is present or a number, in the case of supported languages.

12



2.3. Comparison of the existing tools

Name 1 2 3 4 5 6 7 8

CodeMatch 36 7 3 3 3 7 3 7

CPD 6 3 7 3 ? ? 3 3

JPlag 6 7 3 3 3 3 7 7

Marble 5 3 3 7 3 ? 3 7

MOSS 25 7 3 3 3 3 7 7

Plaggie 1 ? ? 3 ? ? 3 3

SIM 7 ? 3 7 7 7 3 ?

Sydney’s Sherlock 1 7 7 7 7 7 3 ?

Warwick’s Sherlock 3 3 3 3 3 ? 3 3

YAP 5 ? 3 7 3 ? 3 7

Table 1.: Comparison of the plagiarism detection tools.

We can observe that both the CodeMatch and the MOSS tools support several languages, which makes

them the best choices when analyzing languages that the other tools do not support. However, others

like CPD or Marble are easily extendable to cope with more languages. Note that if the tools support

natural language, they can detect plagiarism between any text document but will not take advantage

of any structural information.

Overall, we found that GUIs are unnecessary to give detailed output, so long as the tool can produce

descriptive results that indicate the exact lines of code that caused the suspicion. This is observable

with the use of Marble, SIM and YAP tools as they do not offer GUIs but still have descriptive results.

On the other hand, tools like Sydney’s Sherlock do not present enough output information.

On academic environments, both the 5th and the 6th criteria are very important as they allow teachers

to filter unwanted source code from being used in the matches. This means that tools like JPlag and

MOSS allow for the proper filtering of the input source code.

As said in the introduction, the 7th criteria reveals that JPlag and MOSS are the only tools dependent

on online services as they are web tools.

In what concerns the availability of tools on open licenses, only CPD and Plaggie satisfy that require-

ment. For those wanting to reuse or adapt the tools, the 7th and the 8th criteria are important as the

tool would need to have a license allowing its free use, and integration would benefit from having the

tool distributed alongside the application.

2.3.3 Comparison of the results

Figure 2 sums up the results that were obtained by comparing the Calculator Java source codes (as

detailed in Section s:tests) and gives us an overview. Each number represents the type of plagiarism

that was used to hide the plagiarism on the files that were compared.

13



2.3. Comparison of the existing tools

We can see that the 1st type of plagiarism (exact copy) was easily detected by all the tools but the other

types of plagiarism always had a big impact on some of the tools. Here are the most noticeable:

• MOSS has the most trouble with a lot of the types of plagiarism as it tries very hard to avoid

false-positives, thus discarding a lot of information.

• Sydney’s Sherlock has a lot of trouble with the 2nd type of plagiarism (comments changed) as

it compares the entire source codes without ignoring the comments.

• CodeMatch has the most trouble with the 3rd type of plagiarism (identifiers changed) as its

algorithms must make some sort of match between identifiers.

Note that we used the results from Warwick’s Sherlock using the ”no comments, normalized” trans-

formation as it gave us a full table.

We can see that most tools have a hard time when comparing from the 6th to the 8th types of plagiarism

as they had a lot of small changes or movements of several blocks of source code. These are the types

of plagiarism that would be best detected with the use of a structural methodology as, despite those

changes to the structure the context remains intact.

Figure 2.: An overview of the results obtained for the Calculator, Java source codes.

We can conclude that every tool has a weakness when it comes to certain types of plagiarism but

notice that none of the results are 0%, the triangle representing some matches are just very small and

easy to miss. We also confirm that no type of plagiarism can fool all the tools at the same time.

14



2.3. Comparison of the existing tools

2.3.4 Strategy for testing the tools

Because plagiarism starts from an original file, we can construct a list of types of plagiarism showing

how complex the changes were. This allows us to measure just how versed a plagiarist is in the

language. List 2.3.4 details each type of plagiarism, ordered by complexity. This list was based on

those found in Joy and Luck (1999); Bejarano et al. (2013); Cosma and Joy (2008).

• Lexical changes

1. Unaltered copy.

2. Comments changed.

3. Identifiers changed.

4. Scope changed (making a local variable into a global one).

• Structural changes

5. Operands order switched (e.g. x < y to y >= x).

6. Variable types and control structures replaced with equivalents.

7. Statements order switched.

8. Group of calls turned into a function call or vice versa.

The two types of plagiarism listed below were also referred in the lists. However, we will not consider

them as they depend entirely on the teachers supervision since they are hard to identify.

• Generating source-code by use of code-generating software.

• Making a program from an existing program in a different language.

Based on these types of plagiarism, a few exercises where collected and edited. These exercises are all

cases of plagiarism based on an original source code and will demonstrate the accuracy of the existing

tools for each type, provided that they support the language used.

The source codes of every exercise can be found in Appendix A, along with a description indicating

their intended functionality.

2.3.5 Testing the tools

As described (see Section 2.3.4), 8 types of plagiarism were considered and a pair of source files (see

Appendix A) were created with an original file and 8 files, modified according to the type of plagia-

rism.

15



2.3. Comparison of the existing tools

1 S T T Y P E O F P L AG I A R I S M This type of plagiarism is an exact copy of the original. It is the sim-

plest type of plagiarism as no modifications were done to hide it.

2 N D T Y P E O F P L AG I A R I S M This type of plagiarism is when the comments are changed or re-

moved. It is the easiest modification as it has no risk of affecting the code.

Note that most plagiarism detectors either ignore comments or have an option to ignore them

and will not be diverted by this type of plagiarism. Of course, to do so the tools need the syn-

tactic information on how comments are defined in the language.

3 R D T Y P E O F P L AG I A R I S M This type of plagiarism is done by changing every identifier such as

variable or function names.

4 T H T Y P E O F P L AG I A R I S M This type of plagiarism is when we turn local variables into global

ones, and vice versa.

5 T H T Y P E O F P L AG I A R I S M This type of plagiarism is when the operands in comparisons and

mathematical operations are changed (e.g. x < y to y >= x).

6 T H T Y P E O F P L AG I A R I S M This type of plagiarism is when variable types and control structures

are replaced with equivalents.

Care has to be taken as to avoid breaking the codes functionality since the types will need to be

converted to have the same behavior.

7 T H T Y P E O F P L AG I A R I S M This type of plagiarism is when the order of statements (read lines) is

switched.

This is a common type of plagiarism as it only takes care to make sure that the source code will

show the same behavior.

8 T H T Y P E O F P L AG I A R I S M This type of plagiarism is when groups of calls are turned into a func-

tion call or vice versa.

To demonstrate the accuracy of the existing tools detecting the different cases of theft, two sample

programs were collected and edited based on the types of plagiarism listed above. As the selected

tools are prepared to work with Java or C programs, the exercises were written in both languages.

The following list of actions were performed to create the eight variants:

16



2.3. Comparison of the existing tools

• to produce the first case, it is a straightforward file copy operation.

• to apply the second strategy, we simply removed the comments or changed their contents.

• to create a third variant, we changed most variable and function identifiers into reasonable

replacements.

• to produce a copy of the forth type, we moved a group of local variables into a global scope

and removed them from the function arguments. The type declaration was removed but the

initialization was kept.

• to obtain a file for the fifth type, we switched the orders of several comparisons and attributions.

One of those operations was to replace x+ = y − 5 by x+ = −5 + y, which is a clear

attempt at hiding plagiarism.

• to get a file for the sixth type, we replaced variable types such as int and char with float and

string, along with the necessary modifications to have them work the same way.

• to create another copy according to the seventh type, we moved several statements, even some

which broke the behavior (write after read) to consider cases were the plagiarist was not careful.

• to produce a file exhibiting the eighth type, we applied this type of plagiarism in the easy (move

entire functions) and the hard (move specific blocks of code in to a function) ways.

All of the results obtained can be found in Appendix B.

The results are displayed in terms of percentage, representing the level of similarity. The results and re-

spective tables can be found at: http://www4.di.uminho.pt/˜gepl/Spector/paper/.

To compare any result tables, we used the following algorithm: Given two tables, we subtract the

second to the first parts and add their results. As an example, consider the tables [2,1] and [2,3]. In

this case the formula is: (2-2)+(3-1), which is equal to 2. A positive value indicates that the matches

were overall higher. We will refer to this metric as the difference metric (DM). When there are sev-

eral lines of results, their average is calculated by dividing the sum of each line by the number of lines.

Since most tools only give a percentage for each pair of files, most tables are symmetrical. For the

asymmetrical tables, the percentage must be read as the percentage of the line file that matches the

column file. As an example, if we look at Table 7, it should be read that 11% of the L6.c (6) file

matches the L8.c (8) file and that 8% of the L8.c file matches the L6.c file.

17

http://www4.di.uminho.pt/~gepl/Spector/paper/


3

S P E C T O R A R C H I T E C T U R E

As stated in Chapter 1, the objective of the work proposed is to create an application that will use

ASTs as an abstraction to detect plagiarism. This tool was named Spector (Source Inspector).

Figure 3.: The structure for our application.

First of all, let us refer to a Grammar as GL, a Parser+TreeBuilder as TBL and each input Program as

a PL. L is the programming language which they use or process.

In Figure 3 we can observe that given a GA, we can produce a TBA using ANTLR 3. This TBA can

then be used to translate a PA into an AST.

Given a pair of Programs (let us say PA,1 and PA,2), a TBA will be used to produce AST1 and AST2.

These ASTs will then be delivered to a Manager, this will send them to an Inspector and will then send

the output metrics to a Presenter.

All the information related to an input Source Code can be grouped into a Suspect, namely its AST

and its origin (the File). So we can say that an Inspector produces Metrics based on pairs of Suspects.

3.1 R E Q U I R E M E N T S

Since the program is going to detect plagiarism, we can look at the types of plagiarism (in Sec-

tion 2.3.4) as target cases.

This creates the need to identify:

• Comments (an annotation that is ignored),

18



3.2. Abstract Syntax Trees

• Identifiers (the names of classes, variables, etc),

• Scopes (if a variable was defined inside or outside a method),

• Expression elements (for ex.: x , > , 1),

• Types (int, float, etc),

• Control structures (if, while, etc),

• Statements (an action, for ex.: print ”Hello”),

• Blocks (a group of statements enclosed between {}).

We decided to focus on the items in bold as the others are unnecessary to detect similarity. Take

Identifiers for example, if we want to find similar Identifiers we do not need to check their scope or

type, we can simply see if they are used in the same places and have similar behaviors. Note that

Blocks usually follow a class or method declaration (for ex.: ”void main() . . . ”) and Statements are

inside such Blocks, even in the cases of single line Blocks where the { and } characters are optional.

3.2 A B S T R AC T S Y N TA X T R E E S

As stated, we transform each source code into an Abstract Syntax Tree (AST) and use it to measure

the similarity between two source codes.

When the parser extracts the tokens (symbols) from a source code, it produces a parse tree that is then

converted into an AST. The nodes of the AST used in this project contain information such as: the

position of the originating text; its contents and its type.

To be more concrete, a node is an object of the CommonTree class which has the following variables:

• Token token

• int startIndex

• int stopIndex

• CommonTree parent

• int childIndex

This class is mostly a Token along with the attributes required to build a tree. The start and stop indexes

have the character position from the start of the token to the end of its children and the childIndex is

the position of this node in its parents list of children.

Since the class extends a BaseTree, it gets a list of children, along with the methods to manipulate it

and a few useful methods, namely:

19



3.2. Abstract Syntax Trees

G E T F I R S T C H I L D W I T H T Y P E Returns the first child with a specific type.

R E P L AC E C H I L D R E N Replaces every child between two indexes with a new child.

G E TA N C E S T O R S Returns a list with the nodes from the root to this nodes parent.

H A S A N C E S T O R Checks whether there is an ancestor with a specific type.

G E TA N C E S T O R Gets the first ancestor with a specific type.

T O S T R I N G T R E E Returns a string representation of the entire tree.

The Token class itself has the following variables:

• int type

• String text

• int line

• int start

• int stop

The first 3 are the tokens: type, contents and line position. The start and stop variables have the char-

acter position for the start and the end of this token.

Looking at the information provided by this class, we can see that traversing, accessing and manipu-

lating a tree composed by these nodes is not a big issue. However, by controlling the transformation

from a parse tree into an AST, we can remove unnecessary nodes and manipulate its structure.

As an example, let us consider the source code in Listing 3.1.

1 package Greetings;

2 import static java.lang.System.out;

3

4 public class Greet {

5 public static String hello = "Hello World";

6

7 // This function adds two values

8 public static int sum(int a, int b) {

9 return a+b;

10 }

11

12 public static int main(String[] args) {

13 int a = 2;

14

15 if(a == 2) {

16 return 2;

17 }

20



3.2. Abstract Syntax Trees

18

19 switch(a) {

20 case 3:

21 out.println(message);

22 break;

23 }

24 }

25 }

Listing 3.1: The source code for the Greet example.

This source code contains all of the relevant information that we want to detect (seen in the previous

list of requirements).

When the parser processes that source code, it will produce a parse tree that shows the node types,

similar to Fig. 4.

Figure 4.: A tree similar to the parse tree produced from the Greet source code.

Note that the actual parse tree contains every single node that was detected and we only show the

relevant nodes and types here. This tree shows us all of the types underneath the nodes, with the

exception of primitive nodes like identifiers and literals.

21



3.2. Abstract Syntax Trees

When this tree is transformed into an AST, our rules determine which nodes are relevant and how they

are structured. Using these rules, AntLR generated the AST in Fig. 5.

Figure 5.: The AST for the source code.

As we can see, it is easy to figure out how the source code works just by looking at this AST. So long

as we can acquire and structure the relevant information, detecting similarity is a matter of choosing

what to look for and how to process that information.

Let us now look at the decisions that influenced how certain types of nodes would appear in the AST.

3.2.1 Artificial Nodes

To make the AST easier to understand, we added artificial nodes like ”CALL” and ”ARGUMENTS”

which tell us what kind of object that part of the AST refers.

3.2.2 Identifiers

We can see that some of the nodes were merged with their identifiers, as seen in the case of the

CLASS and METHOD nodes. This allows these nodes to have the identifiers content while retaining

22



3.2. Abstract Syntax Trees

their type. This means that instead of a CLASS node with an IDENTIFIER as a child node, we get

a CLASS node with ”Greet” as its contents. This also means that we need to consider several types

when looking for identifiers, which is why we created the TokenGroup class. This class enumerates

types such as ”Identifier” that are associated with a group of AntLR tokens, by a Nexus. This allows

us to specify that CLASS and METHOD nodes are also identifiers, in the sense that they have that

type of content.

While it is easier to read merged nodes, one must notice that some nodes could not do this as their

identifier may be a SEQUENCE. Meaning that it is a group of identifiers, separated by ”.” characters.

Examples can be seen by looking at the IMPORT and CASE nodes which have the identifier as their

first child node.

3.2.3 Expressions

Since expressions are mostly composed by literals we decided to structure them in the following form:

The parent node is either a literal or an operator, in which case it is followed by one or two children.

This makes the order of operators such as ”+” and ”*” irrelevant as they will always become the

parent.

3.2.4 Control structures

As we can see, a CONDITIONAL is a control structure like an ”if” or a ”while” which contains a

CONDITION. Since they can be given the same functionality, we consider them to be the same type.

The only exception is the ”case” conditional since it has an intrinsic ”==” in its condition, along with

the contents of the parent ”switch” condition.

A TokenType class was built which, similar to the TokenGroup class, enumerates types that are as-

signed to a token that was generated by AntLR. This allows us to add specific nodes to a CommonTree,

allowing for the proper comparison between a case and another conditional.

3.2.5 Blocks

Blocks are the containers of statements and can be found in relation to some nodes like the class and

method types. It is important to identify blocks as they represent the objects functionality which is a

crucial detail whenever we want to see if two objects are the same.

23



4

S P E C T O R I M P L E M E N TAT I O N

Given our past experience, we chose to use ANTLR 3 in conjunction with the Java programming lan-

guage. This would allow us to produce ASTs by getting a grammar for the target language and adding

rewrite rules. As an added benefit, we could use the ANTLR Works tool to generate and view ASTs

while editing the grammar.

We started by obtaining a few Java grammars from http://www.antlr3.org/grammar/list.

There are several grammars available, however some led to dead links, and others are for earlier ver-

sions of ANTLR or for earlier versions of Java. After a trial period, we settled with the ”Java 1.6”

grammar (dated Jan 16, 2009) as the one that was best suited to our needs. Then, we used ANTLR

Works to add rewrite rules as well as to build and view the produced ASTs.

Due to the language complexity, the grammar was quite big (over 2500 lines). This made testing and

viewing the produced ASTs with ANTLR Works a slow and error prone task. To make matters worse,

there were exceptions that were reported for unexpected reasons. Even if we were using the same test

and did not change anything before or after the occurrence.

Of course, given the aforementioned problems, we decided to bypass ANTLR Works and just use

ANTLR 3.5.2 directly from the command line. A decision that greatly improved the speed of develop-

ment but had us lose the visual ASTs. This was later resolved when we were able to use the ANTLR

DOTTreeGenerator along with the StringTemplate classes to produce DOT files within Spector. This

allowed us to once again have visual representations of the resulting ASTs without needing to use

ANTLR Works and be subjected to its quirks. We then produced an AST that followed our structure

(shown in Section 3.2).

4.1 D E V E L O P M E N T D E C I S I O N S

To keep Spector modular, we decided to split its functionality into the following packages and respec-

tive classes/enumerations:

• lang

24

http://www.antlr3.org/grammar/list


4.1. Development Decisions

N E X U S An abstract class that will be extended for each language. These classes are respon-

sible for interfacing with the Parser+TreeBuilders and produce ASTs/DOTs from source

code files.

S U S P E C T This class represents one of the files to be compared and has its AST along with

other informations.

T O K E N G RO U P An enumeration of types that are associated with one or more AntLR tokens,

to facilitate their location.

T O K E N T Y P E This is another enumeration whose types are associated with single tokens.

They are used to add artificial tokens.

• spector

F I L E H A N D L E R A class that handles input from files and/or folders.

S P E C T O R The main program responsible for receiving input and managing the other classes.

I N S P E C T O R A class that has the methods for calculating similarity measures and comparing

Suspects.

C O M PA R I S O N The class that holds a pair of Suspects and the informations calculated by an

Inspector.

P R E S E N T E R A class that generates presentations from a list of Comparisons.

Initially there was only the Spector class along with the Parser+TreeBuilder files, which were gener-

ated from a grammar. As this was not modular or easy to manage, we created the FileHandler and

Nexus classes. At this point Spector could produce ASTs from combinations of files and/or folders.

We then grouped all of the relevant information into a single Suspect class that was used by an In-

spector class to compare them. This lead to the creation of the TokenGroup and TokenType classes:

two enumerations of internal groups of types and single types, respectively. Both of these are mapped

with AntLR tokens by each Nexus, thus facilitating the location and addition of tokens to the ASTs.

We finally added the Candidate and Presenter classes which respectively contain a pair of Suspects

and results and present the results (as an example: by generating HTML files).

Note that the lang folder also contains folders named after the language, these have the necessary

parsers and lexers, as well as its Nexus. As an example: The Java language has a lang.java package

which contains:

JAVA . G The grammar used to generate the parser and lexer files.

JAVA . T O K E N S A file defining every AntLR token in the grammar.

JAVA L E X E R . JAVA The lexer that gathers the tokens.

JAVA PA R S E R . JAVA A parser that produces and restructures the ASTs.

25



4.2. Features

JAVA N E X U S . JAVA The nexus that handles the communication with these files.

With a structure designed following these decisions we could add a language by:

1. Creating or obtaining a grammar for the desired language,

2. Add the necessary rewrite rules to produce the AST,

3. Build a class that extends Nexus and implements its abstract methods,

4. Add the associations between AntLR Tokens, TokenGroups and TokenTypes.

While not entirely simple, one can look at the existing Java grammar and JavaNexus classes as exam-

ples which, combined with ANTLR Works, can speed the development up.

4.2 F E AT U R E S

Given the list of criteria that was used to compare the plagiarism detectors (in Section 2.2), we can

pinpoint the most important features (in bold) for use within Academic Environments:

1. Supported languages

2. Extendability

3. Quality of the results

4. Interface

5. Exclusion of code

6. Submission as groups of files

7. Local

8. Open source

We decided that those 4 features selected (in bold) should constitute the essential requirements for the

basic application. The remaining features, not crucial, may be implemented at a later time.

To implement the 5th and 6th features, the application should accept the following types of input:

• Many files (f?) : fA, fB, fC

• One directory (d?) with files : dX/fA, dX/fB, dX/fC

• Many directories (each a submission) : dX/fA, dY/fA, dZ/fA

26



4.3. Implementation Structure

• One or more directories (each an exercise) with subdirectories (each a submission) : e1/dX/fA,

e1/dY/fA, e2/dX/fA, e2/dY/fA

With this we have enough to build an application but we still need a Structure that brings it all together.

4.3 I M P L E M E N TAT I O N S T RU C T U R E

We can see Spector’s structure in Fig. 6. It will have a CLI 1 that will implement all of its function-

alities. A GUI is also planned as a future motivation, to show its ease of integration. We can also

see that within Spector there is a Nexus class that interacts with a Parser+TreeBuilder and produces

ASTs; Along with an Inspector class which produces measures.

Figure 6.: A block diagram representing Spector’s implementation structure.

4.4 M E T H O D O L O G Y

The actual plagiarism detection process will follow a methodology which comprises an algorithm for

each type of plagiarism (see Section 2.3.4) and a main algorithm. Each algorithm takes two Suspects

and returns a percentile measure which indicates their similarity.

Before we start, note that we will be using ”{ }” characters to represent maps and ”[ ]” for arrays. We

also use the ”( )” characters when we want to group several objects but this should be seen as ”for

every one of these items”.

1 Command Line Interface

27



4.4. Methodology

4.4.1 Algorithm 1: Unaltered copy

Starting with the first type of plagiarism, we need to match the contents of every pair of nodes. As

this is a heavy comparison, we first make sure that the ASTs are similar enough by using intermediate

metrics. Our proposed algorithm goes as follows:

1. If the number of nodes is equal,

2. And the number of types of nodes is equal,

3. And all node contents are equal,

a) (Then) Return 100%.

4. (Otherwise) Return 0%.

As we can see, this algorithm uses 3 metrics with increasing strictness to determine the similarity

between two source codes. As an example of its functionality, let us consider source codes 1A and 1B

(in Listings 4.1 and 4.2).

1 public class Example {
2 public void main() {
3 int x = 0;
4 int y = x;
5 return 369;
6 }
7 }

Listing 4.1: Source code 1A.

1 public class Example {
2 public void main() {
3 int x = 0;
4 return 369;
5 int y = x;
6 }
7 }

Listing 4.2: Source code 1B.

As we know, these will in turn generate the ASTs that are used in the comparison. Looking at those

ASTs (in Figs. 7 and 8), we can see that they represent the functionality of the previous source codes

accurately.

28



4.4. Methodology

Figure 7.: AST generated from source code 1A. Figure 8.: AST generated from source code 1B.

Now, imagine we are comparing 1A to itself. The algorithm would start by calculating the number of

nodes in each source code (19). It would then calculate the number of nodes by type:

• 1 class node (Example),

• 2 block nodes,

• 1 method node (main),

• 2 type nodes (int),

• 1 return node,

• 5 expression nodes,

• 2 assignment nodes (=),

• 5 identifier nodes (x, y, x),

• 2 primitive nodes (0, 369).

And finally, it would check if the contents are equal by comparing each pair of nodes. Since every test

would be successful, the algorithm would end by returning a measure of 100%. Which means that

these ASTs are considered exact copies of each other.

If we compare ASTs 1A to 1B, we can see that the algorithm will go through every step but will fail

in the last one since all node contents must be equal, resulting in a measure of 0%.

Note that this algorithm is the only one that either returns 100% or 0%, meaning that it does not

account for other cases; its measure must not affect the final measure unless it is 100%.

29



4.4. Methodology

4.4.2 Comments changed

As Comments are not part of our targets (see Section 3.1) we can simply ignore this type of plagiarism.

4.4.3 Algorithm 2: Identifiers changed

From this point onwards we will consider that there is a threshold that defines the strictness of the

comparisons. As an example: If we were comparing the number of nodes between two ASTs and the

first had 10 nodes, a threshold of 20% means that the second AST needs to have between 8 and 12

nodes to be considered similar.

1. Map each identifier name to its occurrence nodes (IOM1, IOM2),

2. Calculate the highest number of identifiers between the IOMs (A),

3. For each pair of identifier names between the IOMs,

a) If their number of occurrences is similar,

i. Add the pair to a map (Candidates),

4. Calculate the number of identifiers in the Candidates map (B),

5. Measure += (B/ A) ∗ 0.18,

6. For each pair of identifier names in the Candidates map,

a) If their number of occurrences by category2 is similar,

i. Add the pair to a map (Suspects),

7. Calculate the number of identifiers in the Suspects map (C),

8. Measure += (C/ B) ∗ 0.42,

9. For each pair of identifier names in the Suspects map,

a) If they have a similar behavior3,

i. Add the pair to a map (Equivalences),

10. Calculate the number of identifiers in the Equivalences map (D),

11. Measure += (D/C) ∗ 0.38,

12. For each pair of identifier names in the Equivalences map,

2 In grammatical terms, these categories are the terminals that were assigned to integers by ANTLR (in a .tokens file)
3 The behavior of a pair of identifiers is considered similar if their parent nodes have the same category and the neighboring

nodes which are not identifiers have the same contents.

30



4.4. Methodology

a) If their contents are the same,

i. Add the pair to a map (Copies),

13. Calculate the number of identifiers in the Copies map (E),

14. Measure += (E/ D) ∗ 0.02,

15. Return Measure.

Note that Identifier-Occurrence Maps (IOM) are built. These Maps associate each identifier names

to all the nodes that use it afterwards. Those maps are then merged into a map of Candidates which

associates the nodes in both IOMs that are similar. From here, a new map is built from the previous

and a metric is applied to further filter the possible suspects until we obtain a map of exact copies.

As an example of the algorithms functionality, let us consider source codes 2A and 2B (see Listings 4.3

and 4.4).

1 public class Example {
2 public void main() {
3 int x = 7;
4 int y = x*3;
5 y = -y;
6 return y;
7 }
8 }

Listing 4.3: Source code 2A.

1 public class Example {
2 public void main() {
3 int x = 7;
4 int y = 3*x;
5 y = -y;
6 return y;
7 }
8 }

Listing 4.4: Source code 2B.

Looking at the ASTs that were generated from the previous source codes (in Figs. 9 and 10) we get a

clear look at the input that the algorithm receives.

Figure 9.: AST generated from source code 2A. Figure 10.: AST generated from source code 2B.

31



4.4. Methodology

If it were to compare source codes 2A to 2B, the algorithm would start with the creation of the IOMs:

• IOM2A: ”Example”:[1], ”main”:[2], ”x”:[3,4], ”y”:[4,5,5,6],

• IOM2B: ”Example”:[1], ”main”:[2], ”x”:[3,4], ”y”:[4,5,5,6].

From here, it would calculate the higher number of identifiers between the IOMs (A = 4). The algo-

rithm would then check if each pair of identifiers had the same number of occurrences and adds it to

a map:

Candidates: {

• ”Example”:[”Example”, ”main”],

• ”main”:[”Example”, ”main”],

• ”x”:[”x”],

• ”y”:[”y”].

}
The number of identifiers in that map (B = 4) would then be used to calculate the first addition to the

measure: Measure = (B/ A = 4/4 = 1) ∗ 0.18 = 0.18,

Traversing the map of Candidates, it would then calculate the number of types of occurrence for each

entry and add the pairs with an equal number to a map:

Suspects {

• ”Example”:[”Example”],

• ”main”:[”main”],

• ”x”:[”x”],

• ”y”:[”y”].

}
Once again, it will calculate the number of identifiers in this map (C = 4) and use that value to add to

the measure: Measure += (C/ B = 4/4 = 1) ∗ 0.42 = 0.42.

Then, looking at the map of Suspects, it would check each node to its occurrences and add the ones

with similar behaviors to a map:

Equivalences {

• ”Example”:[”Example”],

• ”main”:[”main”],

• ”x”:[”x”],

32



4.4. Methodology

• ”y”:[”y”].

}
It will calculate the number of identifiers in this map (D = 4) and use that value to add to the measure:

Measure += (D/C = 4/4 = 1) ∗ 0.38 = 0.38.

Finally, the map of Equivalent nodes will be filtered according to its contents and a map will retain

the pairs that are exact copies:

Copies {

• ”Example”:[”Example”],

• ”main”:[”main”],

• ”x”:[”x”],

• ”y”:[”y”].

}
Followed by calculating its number of identifiers (E = 4) and making a final addition to the measure:

Measure += (E/ D = 4/4 = 1) ∗ 0.02 = 0.02,

This gives a resulting measure of 0.18 + 0.42 + 0.38 + 0.02 = 1.0 (100%). Meaning that the

source codes are exact copies in terms of identifiers.

As we can see, this strategy is built by comparing both ASTs with metrics that get more detailed as

they add to the measure.

Let us now consider the comparison between source codes 2A and the new 2C (see Listings 4.5

and 4.6).

1 public class Example {
2 public void main() {
3 int x = 7;
4 int y = x*3;
5 y = -y;
6 return y;
7 }
8 }

Listing 4.5: Source code 2A.

1 public class Copy {
2 public void main() {
3 int a = 7;
4 int b = a+1;
5 int c = a*3;
6 return c;
7 }
8 }

Listing 4.6: Source code 2C.

Looking at these source codes, we can see that: The x and y variables were changed with a and c,

respectively; the b=a+1 node was added and the ”y=-y” node was removed. This shows us that the

similarity between these source codes will be harder to find.

If we look at the ASTs that were generated (in Figs. 11 and 12), we can see that the structure changed

quite a bit.

33



4.4. Methodology

Figure 11.: AST generated from source code 2A. Figure 12.: AST generated from source code 2C.

Once again, we start by building the IOMs:

• IOM2A: ”Example”:[1], ”main”:[2], ”x”:[3,4], ”y”:[4,5,5,6]

• IOM2C: ”Copy”:[1], ”main”:[2], ”a”:[3,4,5], ”b”:[4], ”c”:[5,6]

Then we calculate the higher number of identifiers in the IOMs (A = 5).

Once again, we compare the number of occurrences and produce a map from the pairs of nodes that

are similar:

Candidates {

• (”Example”, ”main”):[”Copy”, ”main”, ”b”],

• ”x”:[”c”],

}
Note that due to the changes, some of the identifiers were not associated. This could still be changed

by setting a threshold bigger than the default (0.0).

Moving along, we get the maps size and set it to a variable B (3) and use it to calculate the measure,

we can see that it is not affected by the extra pairs, just by the extra identifier in the IOMs (b): Measure

= ((B/ A = 3/5 = 0.6) ∗ 0.18) = 0.108.

Now, the algorithm will add the Candidates with a similar number of occurrences by category to a

map:

Suspects {

• ”main”:[”main”],

34



4.4. Methodology

}
Of course, since the source codes are quite different, most of the pairings were removed. From here,

we calculate its number of identifiers (C = 1) and make another addition to the measure: Measure =

((C/ B = 1/3 = 0.333) ∗ 0.42) = 0.14.

The algorithm will now verify the node behaviors and add the similar ones to a new map:

Equivalences {

• ”main”:”main”,

}
We can see that, both variables ”x” and ”y” are not equivalent between the source codes as they both

have one more and one less occurrences, respectively. This results in a lower value for the number of

identifiers in the Equivalences map (D = 1). That number is then used to calculate one more addition

to the measure: Measure = ((D/C = 1/1 = 1) ∗ 0.38) = 0.38.

Finally, the algorithm will compare the contents of the pairs in the Equivalences map and add the

exact copies to another map:

Copies {

• ”main”:”main”.

}
We now set a variable to this maps size (E = 1) and make a final addition of: Measure += ((F/E =

1/1 = 1) ∗ 0.02) = 0.02,

This gives us a final measure of 0.108 + 0.14 + 0.38 + 0.02 = 0, 648 for this algorithm, which

is a similarity measure indicating there are several differences between the ways identifiers were used

in both ASTs.

4.4.4 Scope changed

Since Scope is not a part of our targets (see Section 3.1) we will also ignore it.

4.4.5 Algorithm 3: Operands order switched

Similar to the ”Identifiers changed” type (see Section 4.4.3) we make a pair of maps and filter the

information to compare them. However, this time we are looking for expressions and their respective

parts.

1. Map each expression element to its occurrences (EOM1, EOM2),

2. Calculate the highest number of expressions between the EOMs (A),

3. For each pair of expression elements between the EOMs,

35



4.4. Methodology

a) If their number of occurrences is similar,

i. Add the pair to a map (Candidates),

4. Calculate the number of expression elements in the Candidates map (B),

5. Measure += (B/ A) ∗ 0.18,

6. For each pair of expression elements in the Candidates map,

a) If their number of occurrences by category is similar,

i. Add the pair of expression nodes to a map (Suspects),

7. Calculate the number of expression elements in the Suspects map (C),

8. Measure += (C/B) ∗ 0.42,

9. For each pair of expression elements in the Suspects map,

a) If they have a similar behavior,

i. Add the pair of to a map (Equivalences),

10. Calculate the number of expression elements in the Equivalences map (D),

11. Measure += (D / C) * 0.38,

12. For each pair of expression elements in the Equivalences map,

a) If their contents are the same,

i. Add the pair of to a map (Copies),

13. Calculate the number of expression elements in the Copies map (E),

14. Measure += (E / D) * 0.02,

15. Return Measure.

In this case, we map expression elements to their occurrence Node(s). This allows us to sort the ex-

pression elements and compare them regardless of their order. The similarity is verified by checking if

the occurrence nodes have non-identifier neighbors with the same contents. To illustrate the algorithm,

let us consider a comparison between source codes 3A and 3B (see Listings 4.7 and 4.8).

1 public class Example {
2 public void main() {
3 int x = 2;
4 int y = x+5;
5 return y;
6 }
7 }

Listing 4.7: Source code 3A.

1 public class Example {
2 public void main() {
3 int x = 2;
4 int y = 5+x;
5 return y;
6 }
7 }

Listing 4.8: Source code 3B.

36



4.4. Methodology

Looking at the ASTs that were generated from the previous source codes (in Figs. 13 and 14) we get

a clear look at the input that the algorithm receives.

Figure 13.: AST generated from source code 3A. Figure 14.: AST generated from source code 3B.

We can see that the only change was from ”x+5” to ”5+x”, meaning that the source codes have the

same functionality.

The algorithm starts by creating a map between an expression element and its occurrences (EOM):

• EOM3A: ”=”:[3,4], ”y”:[4,5], ”x”:[3,4], ”2”:[3], ”+”:[4], ”5”:[4],

• EOM3B: ”=”:[3,4], ”y”:[4,5], ”x”:[3,4], ”2”:[3], ”+”:[4], ”5”:[4].

Note that expressions can have: logical operators (such as AND), relational operators (such as >) or

primitives (identifiers or values).

In this case, it is clear that both ASTs have nodes with the same contents with 2 of them switched

(namely: a ”x” and ”5” node).

The next step is calculating the size of the bigger EOM which, in this case, is the same for both of

them (A = 6).

The algorithm will calculate the number of occurrences for each pair of expressions between the

EOMs and add the similar ones to a map. The contents of the Candidates map would be as follows:

Candidates {

• (”=”, ”x”, ”y”):[”=”, ”x”, ”y”],

• (”2”, ”+”, ”5”):[”2”, ”+”, ”5”]

}
The number of expressions (on the left side) is then calculated (B = 6) and the measure is set to an

initial value of (B/ A = 6/6 = 1) ∗ 0.18 = 0.18.

37



4.4. Methodology

At this point, each pair in the list of Candidates is compared by the number of occurrences by type

and those that match are added to a new map:

Suspects {

• ”=”:[”=”],

• ”x”:[”x”],

• ”2”:[”2”],

• ”y”:[”y”],

• ”+”:[”+”],

• ”5”:[”5”]

}
The number of copies is later calculated (C = 6) and the measure is increased by (C/B = 6/6 =

1) ∗ 0.42 = 0.42.

Now each pair of nodes is checked for similarity by comparing some of their contents and the structure

beneath them. These nodes are added to a new map:

Equivalences {

• ”=”:[”=”],

• ”x”:[”x”],

• ”2”:[”2”],

• ”y”:[”y”],

• ”+”:[”+”],

• ”5”:[”5”]

}
As we can see, this map still has the ”+” nodes associated. This is because operations of addition

(+) or multiplication (*) have the commutative property, meaning that swapping their values will not

change the result.

The number of equivalences is later calculated (D = 6) and the measure is increased by (D/C =

6/6 = 1) ∗ 0.38 = 0.38.

Finally, the names and values of each pair are checked to see if they are exact copies and the matching

pairs are added to a map:

Copies {

• ”=”:[”=”],

38



4.4. Methodology

• ”x”:[”x”],

• ”2”:[”2”],

• ”y”:[”y”],

• ”+”:[”+”],

• ”5”:[”5”]

}
As we can see, the ”=” and ”+” nodes are not exact copies. This was due to the fact that their children

are also checked and must maintain their order.

From here, the number of equations in the map of Copies is calculated (E = 6) and it is used to make

a final addition of (E/D = 6/6 = 1) ∗ 0.02 = 0.02 to the measure.

Finally, the similarity measure calculated by this algorithm is produced which resulted in a value of

0.18 + 0.42 + 0.38 + 0.02 = 1.0. This value clearly shows that there are hardly any differences

between the source codes in terms of expressions.

This algorithm used several metrics, with each of them being stricter which resulted in an accurate

final measure indicating that they are similar but not the same.

To try something harder, let’s compare the previous source code 3A to a new source code 3C (see

Listings 4.9 and 4.10).

1 public class Example {
2 public void main() {
3 int x = 2;
4 int y = x+5;
5 return y;
6 }
7 }

Listing 4.9: Source code 3A.

1 public class Copy {
2 public void main() {
3 int a = 2;
4 int c = 5;
5 int b = 5+a;
6 return b;
7 }
8 }

Listing 4.10: Source code 3C.

Once again, we will also show the ASTs that were generated from source codes 3A and 3C (see

Figs. 15 and 16).

39



4.4. Methodology

Figure 15.: AST generated from source code 3A. Figure 16.: AST generated from source code 3C.

As we can see, a ”c=5” was added and the identifiers were changed but the functionality is the same.

The algorithm would, once again, start by creating a map between each expression element and its

occurrences (EOM):

• EOM3A: {”=” : [3,4], ”y” : [4,5], ”x” : [3,4], ”2” : [3], ”+” : [4], ”5” : [4]}

• EOM3C: {”=” : [3,4,5], ”b”:[5,6], ”a” : [3,5], ”2” : [3], ”c”:[4], ”5”:[4,5], ”+”:[5]}

As expected, the higher number of expressions between the EOMs increased to (A =) 7 due to the

extra ”c=5”.

This adds more pairs when verifying and adding the nodes with the same number of occurrences to a

map:

Candidates {

• (”2”, ”5”, ”+”):[”2”, ”c”, ”+”],

• (”y”, ”=”, ”x”):[”b”, ”5”, ”a”]

}
Since some nodes now have additional occurrences, we can see that pairs such as ”y”:”c” are not

similar enough, which would result in less matches and a lower measure overall. If we do not want

the comparison to be so strict we could set the threshold to 0,67 (2/3) which would have changed the

map into the following:

Candidates {

• (”2”, ”5”, ”+”):[”2”, ”c”, ”+”],

• (”y”, ”=”, ”x”):[”2”, ”b”, ”c”, ”5”, ”a”, ”+”, ”=”]

40



4.4. Methodology

}
As we can see, the number of elements is still 6 but they are associated to far more nodes.

Let us carry on with the first map of Candidates. We set the number of expression elements (6) to

variable B. Note that if we were to compare source code 3C with 3A instead , the value of B would

increase, which makes results asymmetrical.

The measure would then be set to an initial value of (B/ A = 6/7 = 0.857) ∗ 0.18 = 0.154.

At this point, each pair in the list of Candidates is compared by the number of occurrences by category

and those that match are added to a new map:

Suspects {

• ”y”:[”b”] (Identifier, Under ”=” and ”return”),

• ”x”:[”a”] (Identifier, Under ”=” and ”+”),

• ”2”:[”2”] (Number, Under ”=”),

• ”+”:[”+”] (Operation, Under ”=”)

}
Note that, since this comparison is ”one to many” we also check the parents types to make sure that

the expressions are under the same context.

The number of Suspects (C = 4) is then used to calculate an increase of the measure of (C/B =

4/6 = 0.667) ∗ 0.42 = 0.28.

Once again the next step is comparing the similarity between each pair of Suspect nodes by checking

some of their contents and behavior. Which leads to a new map:

Equivalences {

• ”y”:[”b”],

• ”x”:[”a”],

• ”2”:[”2”],

• ”+”:[”+”]

}
Note that, the information from the previous algorithm would be used along with the comparison of

some contents like primitives or operations to reach this result.

Looking at the list of Equivalences, we can use its size (D = 4) to make yet another addition to the

measure: (D/C = 4/4 = 1) ∗ 0.38 = 0.38.

Finally, we check if the nodes contents are exact copies. In which case we add them to a map (Copies):

• ”2”:[”2”],

41



4.4. Methodology

• ”+”:[”+”]

Which has a total of 2 expressions elements (E = 2) and gives an addition of (E/D = 2/4 =

0.5) ∗ 0.02 = 0.01 to the measure.

We can see that it uses the same strategy: filter the data several times to get accurate results. This

gives us a final measure of 0.1548 + 0.28 + 0.38 + 0.01 = 0.825.

4.4.6 Algorithm 4: Variable types and control structures replaced

In this case we can ignore variable types as they are not our targets (see Section 3.1) but must still

check control structures.

1. Map control structures to their conditions (CCM1, CCM2),

2. Calculate the highest number of conditionals between the CCMs (A),

3. For each pair of conditional nodes between the CCMs,

a) If the number of nodes in their conditions is similar,

i. Add the pair to a map (Candidates),

4. Calculate the size of the Candidates map (B),

5. Measure += (B/ A) ∗ 0.18,

6. For each pair of conditional nodes in the Candidates map,

a) If they have the same number of nodes by category,

i. Add the pair of expression nodes to a map (Suspects),

7. Calculate the size of the Suspects map (C),

8. Measure += (C/ B) ∗ 0.42,

9. For each pair of conditional nodes in the Suspects map,

a) If they have a similar behavior,

i. Add the pair of to a map (Equivalences),

10. Calculate the size of the Equivalences map (D),

11. Measure += (D / C) * 0.38,

12. For each pair of expression nodes in the Equivalences map,

a) If their contents are the same,

42



4.4. Methodology

i. Add the pair of to a map (Copies),

13. Calculate the size of the Copies map (E),

14. Measure += (E / D) * 0.02,

15. Return Measure.

In this case, Conditional nodes are considered similar if their children nodes have (non-identifier)

nodes with the same contents.

We want to map each Conditional (control structure) node to its conditions nodes.

Let us start by defining two source codes with an equivalent functionality (see Listings 4.11 and 4.12).

1 public class Example {
2 public void main() {
3 int a = 5;
4 if(a == 5) {
5 return a;
6 }
7 return 0;
8 }
9 }

Listing 4.11: Source code 4A.

1 public class Example {
2 public void main() {
3 int a = 5;
4 while(5 == a) {
5 return a;
6 }
7 return 0;
8 }
9 }

Listing 4.12: Source code 4B.

As usual, ASTs are generated from the source codes, which gives us an abstract perspective (see

Figs. 17 and 18).

Figure 17.: AST generated from source code 4A. Figure 18.: AST generated from source code 4B.

We can see that this time, the ”if” conditional was replaced with a ”while” but the functionality is the

same, this is due to their block only having a ”return” node, which stops the loop.

43



4.4. Methodology

If we now use this algorithm to compare source codes 4A to 4B, we start by mapping the control

structure nodes to their respective conditions (CCM):

• CCM4A: {if:[a, ==, 5]},

• CCM4B: {while:[5, ==, a]}

We can see that, unlike the previous maps, these maps are small (A = 1) since there is only 1 condi-

tional in each source code.

Looking their conditions, we can see that they are exact copies, meaning that we add them to a map

of Candidates:

• if:[while]

As expected, it is a map with a single element (B = 1). This gives the measure an initial increment of

(B/ A = 1/1 = 1) ∗ 0.18 = 0.18.

These conditions are then compared in terms of the number of nodes per type which is similar, thus

being added to a map of Suspects:

• if:[while]

Once again, as these conditions are exact copies, they have the same number of nodes by type (C = 1).

This results in an increase of (C/B = 1/1 = 1) ∗ 0.42 = 0.42 to the measure.

At this point, the nodes are checked for similarity, meaning that some of their contents are compared

as well as the functionality. As this switch (if to while) can break the functionality, it is important to

note that the block that follows must be checked for calls to ”return” and/or ”break”. This is what

allows the ”while” loop to run a single time, which is what an ”if” conditional does.

The map of Equivalences will therefore be the same as the previous maps:

• if:[while]

Using the previous maps size (D = 1), another addition is made to the measure: (D/C = 1/1 =

1) ∗ 0.38 = 0.38.

Which leaves us with one final target: exact copies. For each pair in the Equivalences map, the

contents of the conditionals and the conditions are compared, leaving us with an empty map of exact

copies. This means that the size of the Copies map (E = 0) is zero, as well as the last increment to the

measure: (E/ D = 0/1 = 0) ∗ 0.02 = 0.

This results in a measure of 0.18 + 0.42 + 0.38 + 0 = 0.98. This result was to be expected

considering how close the source codes were but we must note that unless the sources are exact

copies, the measure will never reach 100%.

44



4.4. Methodology

To make things interesting, let us consider a comparison between ”if” conditionals and ”case” condi-

tionals, as seen in Listings 4.13 and 4.14.

1 public class Example {
2 public void main() {
3 int a = 5;
4 if(a == 5) {
5 System.out.println("Hello");
6 }
7 if(a == 7) {
8 System.out.println("World");
9 }

10 }
11 }

Listing 4.13: Source code 4C.

1 public class Example {
2 public void main() {
3 int a = 5;
4 switch(a) {
5 case 5:
6 System.out.println("Hello");
7 break;
8 case 7:
9 System.out.println("World");

10 break;
11 }
12 }
13 }

Listing 4.14: Source code 4D.

Once again, an AST is generated from each source codes (see Figs. 19 and 20).

Figure 19.: AST generated from source code 4C.
Figure 20.: AST generated from source code 4D.

As stated, we are comparing a source code with two ”if” conditionals to a ”switch” node with two

”case” conditionals. Note that the condition associated to a ”case” conditional equates to: switch con-

dition == case condition. Meaning that they are a special type of conditional.

Using the algorithm to compare source code 4C to 4D, we would once again start by building the

CCMs:

• CCM4C: {if:[a, ==, 5], if:[a, ==, 7]}

• CCM4D: {case:[5], case:[7]}

45



4.4. Methodology

We can see that the ”case” conditionals were only associated to 5 and 7 instead of the ”if” conditionals.

This is because, whenever we compare things to Case conditionals we build an artificial condition

which has a ”==” node and the switch and case conditions as its children.

The highest number of nodes in the CCMs is now evaluated (A = 2) and, each pair of conditionals

between them is checked. If their conditions have an equal number of nodes, then we add them to a

new map:

Candidates {

• if:[case], if:[case],

• if:[case], if:[case]

}
In this case, there is a need for the removal of any break nodes since they are mandatory for a ”case”

to be equivalent to an ”if”. This results in this map having all of the previous nodes (B = 2), which is

used in the calculations to increase the measure: (B/ A = 2/2 = 1) ∗ 0.18 = 0.18.

We now compare the number of nodes (in each condition) per type and add the similarities to a new

map:

Suspects {

• if:[case], if:[case],

• if:[case], if:[case]

}
Once again, the conditions in the ”if”s are compared to artificial conditions which have the ”switch”

and ”case” conditions, along with a parent ”==” node. This allows for the comparison to recognize

that these conditionals are indeed equivalent. Resulting in a number of nodes by type of (C =) 2.

Which leads to an increase of (C/B = 2/2 = 1) ∗ 0.42 = 0.42 in the measure.

We now check the nodes for similarity, this includes comparing the contents of some nodes and check-

ing the previous maps when necessary. Of course, this time we can see that this is the point where

the map will be smaller since we know that two of the conditionals have a ”5” node and the other two

have a ”7”. The resulting map gives us a good estimate of the similar nodes:

Equivalences {

• if:[case], if:[case],

• if:[case], if:[case]

}
We are left with a map that accurately associates conditionals in both source codes. The number of

comparisons is then calculated (D = 2) and the measure is increased once again: (D/C = 2/2 =

1) ∗ 0.38 = 0.38.

46



4.4. Methodology

At this point, we already detected that the ”if” and ”case” nodes are equivalent but they are not equal.

Either way, the algorithm has this final step for the cases where they are indeed exact copies by

checking if the conditionals and their conditions have the same contents and adding those that do to a

map (Copies).

This map will be empty (E = 0) and the final increment will be if (E/D = 0/2 = 0) ∗ 0.02 = 0,

which results in a final measure of: 0.18 + 0.42 + 0.38 + 0 = 0.98.

4.4.7 Statements order switched

As Statements are not a part of our targets (see Section 3.1) we will ignore them and let the next

method handle such cases.

4.4.8 Algorithm 5: Group of calls turned into a function call or vice versa

This algorithm was made to detect the similarities between functions and blocks of source code (usu-

ally between a ”{” and a ”}”). To do so, the algorithm has to analyze all the child nodes within the

blocks.

1. Map blocks to their header name4 (BNM1, BNM2),

2. Map block nodes to their children5 (BCM1, BCM2),

3. For each block node in the BCM,

a) If the number of children (from both BCMs) is similar,

i. Add the block node to a map (Candidates),

4. Calculate the size of the Candidates map (B),

5. Measure += (B/ A) ∗ 0.18,

6. For each pair in the Candidates map,

a) If the number of nodes by category inside the blocks is similar,

i. Add the pair to a map (Suspects),

7. Calculate the size of the Suspects map (C),

8. Measure += (C/B) ∗ 0.42,

9. For each call node in the Suspects map,

4 This is the name of the blocks parent, in other words, the name of the class/method which owns this block (for ex.: The
block in ”main...” has ”main” as its header name).

5 The children are: every node inside the block along with the nodes from called blocks.

47



4.4. Methodology

a) If the associated blocks have a similar behavior,

i. Add the pair to a map (Equivalences),

10. Calculate the size of the Equivalences map (D),

11. Measure += (D / C) * 0.38,

12. For each call node in the Equivalences map,

a) If the calls are exact copies,

i. Add the pair to a map (Copies),

13. Calculate the size of the Copies map (E),

14. Measure += (E / D) * 0.02,

15. Return Measure.

Note that the BNMs are only used to build the BCMs as any call node to a local method that they have

will have its block added to the children.

As a test case, let us consider the source codes in Listings 4.15 and 4.16.

1 public class Hello {
2 public void main() {
3 int b = 7;
4 int a = 5;
5 System.out.println("Hello World");
6 }
7 }

Listing 4.15: Source code 5A.

1 public class Hello {
2 public void hello() {
3 int a = 5;
4 System.out.println("Hello World");
5 }
6

7 public void main() {
8 int b = 7;
9 hello();

10 }
11 }

Listing 4.16: Source code 5B.

Figure 21.: Source codes 5A and 5B, respectively.

The ASTs that were generated from them can be seen in Figs. 22 and 23.

48



4.4. Methodology

Figure 22.: AST generated from source code 5A. Figure 23.: AST generated from source code 5B.

This time, we start by making a map of blocks and their names (BNM) and then a map of blocks and

their children (BCM).

• BNM5A: {Hello:”Hello”, main:”main”}

• BNM5B: {Hello:”Hello”, main:”main”, hello:”hello”}

• BCM5A: {

– Hello:[main, int, =, b, 7, int, =, a, 5, System.out.printlncall, ”Hello World”],

– main:[int, =, b, 7, int, =, a, 5, System.out.printlncall, ”Hello World”]

}

• BCM5B: {

– Hello:[hello, int, =, a, 5, System.out.printlncall, ”Hello World”, main, int, =, b, 7, int, =, a,

5, CALL (System.out.println), ”Hello World”],

– main:[int, =, b, 7, int, =, a, 5, System.out.printlncall, ”Hello World”]

– hello:[int, =, a, 5, System.out.printlncall, ”Hello World”]

}

Note that the ”Hello” blocks (representing Classes) have every single node except for themselves as

children. Also, the ”main” block in BNM5B calls ”hello” but the call node was replaced with the

children of its block. Of course, if it is a call to an external method like System.out.println we simply

leave the call node.

We then calculate the total number of blocks in both BCMs (A = 3).

Now, we compare the number of children in each pair of blocks and add the similarities to a map:

Candidates {

49



4.4. Methodology

• main:[main]

}
We then calculate the size of the Candidates map (B = 1) and make an addition of (B/ A = 1/3 =

0.667) ∗ 0.18 = 0.12 to the measure.

The algorithm then proceeds as usual, by comparing the number of nodes by category and adding the

similar pairs to a map:

Suspects {

• main:[main]

}
Then calculating the size of the map (C = 1) and making another addition to the measure: (C/B =

1/1 = 1) ∗ 0.42 = 0.42
Proceeding with the comparison of the nodes similarity and adding the similar ones to a map:

Equivalences {

• main:[main]

}
And making another addition to the measure using the maps size (D = 1): (D/C = 1/1 = 1) ∗
0.38 = 0.38
Finally, we check each pair of blocks has the same name and add it to a map:

Copies {

• main:[main]

}
(D/C = 1/1 = 1) ∗ 0.02 = 0.02
Finally, we calculate the full measure and get 0.18 + 0.42 + 0.38 + 0.02 = 0.88. Which means

that some of the blocks in these source codes are equal.

Now, let us consider a case where the calculations inside a return are replaced with a function and its

arguments are used to pass the parameters (see Listings 4.17 and 4.18).

1 public class Addition {
2 public void main() {
3 return 5 + 10;
4 }
5 }

Listing 4.17: Source code 5C.

1 public class Addition {
2 public int sum(int a, int b) {
3 return a + b;
4 }
5

6 public void main() {
7 return sum(5, 10);
8 }
9 }

Listing 4.18: Source code 5D.

50



4.4. Methodology

Observing the source codes it does not look like a big change but, when we look at the ASTs that

are generated (see Figs. 24 and 25) from those source codes, we can see how much changed in the

structure.

Figure 24.: AST generated from source code 5C.

Figure 25.: AST generated from source code 5D.

The algorithm starts by building maps that associate blocks to names (BNM) and uses them to build

the maps that associate blocks to their children (BCM):

5: Have Suspicious Blocks ? Yes (88

• BNM5A: {Addition:”Addition”, main:”main”}

• BNM5B: {Addition:”Addition”, main:”main”, sum:”sum”}

• BNM5A: {

– Addition:[main, return, +, 5, 10],

– main:[return, +, 5, 10]

}

• BNM5B: {

– Addition:[sum, int, a, int, b, int, return, +, a, b, main, return, return, +, a, b],

– main:[return, return, +, a, b],

– sum:[return, +, a, b]

}

In this case, we can see that source code 5C has no calls and that 5D calls the sum method once.

51



4.4. Methodology

We then calculate the higher number of blocks in the BCMs and set it to variable A (= 1). Then add

each pair of blocks that has the same number of children to a map:

Candidates {

• main:sum,

• Addition:main

}
Note that the map is missing the pairs that are actually similar. This is, once again, due to the compar-

isons strictness and could be changed by setting a threshold.

We set this maps size (2) to a variable B and make an addition to the measure of (B/ A = 2/3 =

0.667) ∗ 0.18 = 0.12
We then compare the number of nodes by category and add the blocks with similarities to a map. Of

course, looking at the BCMs we can tell that none of the pairs have the same number of nodes by

category so we do not get any additions as all of the following maps is empty.

We end with a total measure of 0.12 + 0 + 0 + 0 = 0.12 which shows that these blocks are quite

different.

4.4.9 Main Algorithm

As stated at the beginning of this Section, each method produces a measure which is used to calculate

a final measure. This measure is an overall similarity measure that compares a pair of Suspects.

Let us consider that each algorithm was implemented in a method Methodi, where i is a number from

1 to 5. Let us also consider that this algorithm takes 2 Suspects that will be represented as Sa and Sb.

The main algorithm would work as follows:

1. M = Array with 5 elements,

2. M[1] = Method1(Sa,Sb),

3. M[2] = Method2(Sa,Sb),

4. M[3] = Method3(Sa,Sb),

5. M[4] = Method4(Sa,Sb),

6. M[5] = Method5(Sa,Sb),

7. If M[1] is different from 0,

a) Return M[1].

8. Otherwise

52



4.4. Methodology

a) Calculate the number of Ms that are not 0 (A),

b) Measure = (
M [2 ] + M [3 ] + M [4 ] + M [5 ]

A
) ∗ 100,

c) Return Measure.

As we can see, the algorithm either returns the M[1] measure (which is either 0% or 100%) or the

computation done using the other results (M[2] to M[5]) that were not 0%. We only consider the

measure if it was able to calculate a result.

53



5

S P E C T O R T E S T S

The resulting Spector tool is housed in http://www.di.uminho.pt/˜gepl/Spector/ and

is open source in an effort to make an AST tool available.

It supports the following languages:

• Java

Like the previous tools, we tested it against the Calculator Java source codes (see Appendix B.8.1)

and added the resulting measures to the overview which you can see in Fig. 26.

Figure 26.: An overview of the results obtained for the Calculator, Java source codes.

The results are good for all of the smaller changes (from 1 to 4) and the remaining results are close to

the ones returned by Code Match.

To test how long the operations take, we also used the ”-u sdhai” arguments, which makes Spector

produce every output possible as well as time (the i output) each one of them. The following were the

times reported:

54

http://www.di.uminho.pt/~gepl/Spector/


• Listing the input files took 0.039s

• Parsing and transforming input into ASTs took 1.306s

• Building visual ASTs took 30.179s

• Comparing suspects while printing details took 3.767s

• Producing HTML results took 0.048s

• Printing the summary took 0.036s

As we can see, Spector took less than 6 seconds (5.148s) to list, parse+transform, compare the suspects

and print the details and summary. If we consider the fact that it compared 36 pairs of source codes,

and that its code is not optimized, we could say that it is reasonably fast. Of course, the whole

operation took around half a minute (35.375s) but the time sink was the creation of the visual ASTs.

Among the results, an HTML (the h output) file was produced which presents the summary (see

Fig. 27). Its a simple but effective presentation and much like the textual results, it shows the results

sorted in an order. Note that the order was set to ascending, to show some variety in the results.

Figure 27.: Part of the HTML presenting the results for the Calculator, Java source codes.

If we inspect the more complex 21 Matches, Java source codes using the same options we get larger

delays:

• Listing the input files took 0.011s

55



• Parsing and transforming input into ASTs took 1.521s

• Building visual ASTs took 53.036s

• Comparing suspects while printing details took 14.251s

• Producing HTML results took 0.009s

• Printing the summary took 0.038s

But, once again, we can see that the visual ASTs took the longest to produce. This time, the operation

took around 1 minute (1m8.866s) but if we take away the AST and HTML results, we get a runtime

of 16 seconds (15.821s) which is expectable considering that these source codes are about 2.5 times

bigger than the Calculator ones.

Looking at Fig. 28, we can see the resulting HTML from the previous test.

Figure 28.: Part of the HTML presenting the results for the 21 Matches, Java source codes.

All of these results can be found at the dissertations website: http://www.di.uminho.pt/

˜gepl/Spector/paper/.

56

http://www.di.uminho.pt/~gepl/Spector/paper/
http://www.di.uminho.pt/~gepl/Spector/paper/


6

C O N C L U S I O N S A N D F U T U R E W O R K

In this dissertation, plagiarism in software was introduced and characterized as a problem.

We observed the existing tools and saw that they usually have problems with code where plagiarism

was dissimulated in certain ways. This proved that there is a need for a new tool and gave us the moti-

vation to build a tool capable of detecting plagiarism. We chose to use a structure based methodology

with ASTs as the abstract structure and found some papers about such tools that showed promising

results. Our purpose is not to build a tool that will detect plagiarism in every case as that is implau-

sible, but instead to build a tool that will help teachers find cases of plagiarism and dissuade students

from plagiarizing. However, as the algorithms were aimed at detecting similarities, the tool inevitably

produces false positives in cases like when a group of students does the same exercise, for instance.

Looking back at the algorithms (see Section 4.4), we can see that this tool is more of a source code

similarity detector. It does not avoid false positives, it simply has a total measure for each step/level of

similarity (candidates, suspects, equivalences, copies). Our contribution is therefore not a plagiarism

detector which, in our opinion, depends on the teachers/schools interpretation of what plagiarism is

but a structure-based similarity detector that is open source and can be extended to execute different

tests, tailored to a desired paradigm.

Future work could involve the following improvements for the tool:

• Detection of additional cases (for example: do-while conditionals)

• Showing the matched pairs directly on the source codes

• Excluding base code from the inspection

• Production of HTMLs presenting detailed results

• Options for modifying the weights used in the comparisons

• Support for other programming languages

• A GUI to facilitate interaction with the tool

• Testing different cases to optimize the threshold and weights

57



Naturally, as ANTLR evolves, the tools can be updated to use newer versions and the updated gram-

mars (for newer versions and additional languages) associated. Note however that tree reconstruction1

in ANTLR4 requires more implementations to work.

Looking at the architecture (in Fig. 3), we can see that this methodology can also be used for different

detections, such as:

• Detecting plagiarism while trying to avoid false positives

• Detecting copies within the same source codes (similar to CPD Copeland (2003))

• Detecting similarity between source codes using different programming languages

In conclusion, the results have shown that using a structure-based AST comparison is feasible in terms

of accuracy and time and that, given further tests and adjustments, the tool will do a good job when

we need to check how similar a pair of Java source codes are.

1 As seen in http://stackoverflow.com/questions/14565794/antlr-4-tree-inject-rewrite-operator.

58

http://stackoverflow.com/questions/14565794/antlr-4-tree-inject-rewrite-operator


B I B L I O G R A P H Y

Aleksi Ahtiainen, Sami Surakka, and Mikko Rahikainen. Plaggie: GNU-licensed source code pla-

giarism detection engine for java exercises. In Proceedings of the 6th Baltic Sea conference on

Computing education research: Koli Calling 2006, Baltic Sea ’06, pages 141–142, New York, NY,

USA, 2006. ACM. doi: 10.1145/1315803.1315831. URL http://doi.acm.org/10.1145/

1315803.1315831.

I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract syntax

trees. In Software Maintenance, 1998. Proceedings., International Conference on, pages 368–377,

1998. doi: 10.1109/ICSM.1998.738528.

Andrés M. Bejarano, Lucy E. Garcı́a, and Eduardo E. Zurek. Detection of source code similitude in

academic environments. Computer Applications in Engineering Education, 2013. ISSN 1099-0542.

doi: 10.1002/cae.21571. URL http://dx.doi.org/10.1002/cae.21571.

Tom Copeland. Detecting duplicate code with PMD’s CPD, 2003. URL http://www.onjava.

com/pub/a/onjava/2003/03/12/pmd_cpd.html.

G. Cosma and M. Joy. Towards a definition of source-code plagiarism. IEEE Trans. on Educ., 51(2):

195–200, May 2008. ISSN 0018-9359. doi: 10.1109/TE.2007.906776. URL http://dx.doi.

org/10.1109/TE.2007.906776.

Baojiang Cui, Jiansong Li, Tao Guo, Jianxin Wang, and Ding Ma. Code comparison system based

on abstract syntax tree. In Broadband Network and Multimedia Technology (IC-BNMT), 2010 3rd

IEEE International Conference on, pages 668–673, 2010. doi: 10.1109/ICBNMT.2010.5705174.

J. A. W. Faidhi and S. K. Robinson. An empirical approach for detecting program similarity and pla-

giarism within a university programming environment. Computers & Education, 11:11–19, 1987.

doi: 10.1016/0360-1315(87)90042-X.

Daniela Fonte, Ismael Vilas Boas, Daniela da Cruz, Alda Lopes Gançarski, and Pedro Rangel Hen-

riques. Program analysis and evaluation using quimera. In José Cordeiro, Lesvek Maciazek, and

Alfredo Cuzzocrea, editors, ICEIS’2012 — 14th International Conference on Enterprise Informa-

tion Systems, pages 209–219. INSTICC – Institute for Systems and Technologies of Information,

Control and Communication, June 2012. doi: 10.4320/OASIcs.SLATE.2012.I. also available from

SciTePress Digital Library.

Dick Grune and Matty Huntjens. Het detecteren van kopieën bij informatica-practica. Informatie, 31

(11):864–867, 1989.

59

http://doi.acm.org/10.1145/1315803.1315831
http://doi.acm.org/10.1145/1315803.1315831
http://dx.doi.org/10.1002/cae.21571
http://www.onjava.com/pub/a/onjava/2003/03/12/pmd_cpd.html
http://www.onjava.com/pub/a/onjava/2003/03/12/pmd_cpd.html
http://dx.doi.org/10.1109/TE.2007.906776
http://dx.doi.org/10.1109/TE.2007.906776


Bibliography

Jurriaan Hage, Peter Rademaker, and Nike van Vugt. A comparison of plagiarism detection tools.

Utrecht University. Utrecht, The Netherlands, page 28, 2010.

Paul Heckel. A technique for isolating differences between files. Communications of the ACM, 21(4):

264–268, 1978.

Mike Joy and Michael Luck. Plagiarism in programming assignments. IEEE TRANSACTIONS ON

EDUCATION, 42(2):129–133, May 1999. URL http://wrap.warwick.ac.uk/14558/.

Xiao Li and Xiao Jing Zhong. The source code plagiarism detection using AST. In Intelligence

Information Processing and Trusted Computing (IPTC), 2010 International Symposium on, pages

406–408, 2010. doi: 10.1109/IPTC.2010.90.

Chao Liu, Chen Chen, Jiawei Han, and Philip S. Yu. GPLAG: Detection of software plagiarism by

program dependence graph analysis. In In the Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’06, pages 872–881. ACM Press,

2006.

A. Parker and J. O. Hamblen. Computer algorithms for plagiarism detection. Education, IEEE Trans-

actions on, 32(2):94–99, 1989. ISSN 0018-9359. doi: 10.1109/13.28038.

Terence J. Parr and Russell W. Quong. ANTLR: A predicated-LL(k) parser generator. Software—

Practice and Experience, 25(7):789–810, 1995. URL http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.15.70.

Lutz Prechelt, Guido Malpohl, and Michael Phlippsen. JPlag: Finding plagiarisms among a set of

programs. Technical report, Fakultät für Informatik, Universität Karlsruhe, 2000.

Saul Schleimer. Winnowing: Local algorithms for document fingerprinting. In Proceedings of the

2003 ACM SIGMOD International Conference on Management of Data 2003, pages 76–85. ACM

Press, 2003.

Ilana Shay, Nikolaus Baer, and Robert Zeidman. Measuring whitespace patterns as an indication

of plagiarism. In Proceedings of the ADFSL Conference on Digital Forensics, Security and Law,

pages 63–72, 2010.

Geoff Whale. Software metrics and plagiarism detection. Journal of Systems and

Software, 13(2):131–138, 1990. ISSN 0164-1212. doi: http://dx.doi.org/10.1016/

0164-1212(90)90118-6. URL http://www.sciencedirect.com/science/article/

pii/0164121290901186. ¡ce:title¿Special Issue on Using Software Metrics¡/ce:title¿.

Michael J Wise. Detection of similarities in student programs: YAP’ing may be preferable to

plague’ing. In ACM SIGCSE Bulletin, volume 24, pages 268–271. ACM, 1992.

60

http://wrap.warwick.ac.uk/14558/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.70
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.15.70
http://www.sciencedirect.com/science/article/pii/0164121290901186
http://www.sciencedirect.com/science/article/pii/0164121290901186


Bibliography

Michael J. Wise. Running Karp-Rabin matching and greedy string tiling. Basser Dept. of Computer

Science, University of Sydney, Sydney, 1993. ISBN 0-86758-669-9.

Michael J. Wise. YAP3: Improved detection of similarities in computer program and other texts. In

SIGCSEB: SIGCSE Bulletin (ACM Special Interest Group on Computer Science Education, pages

130–134. ACM Press, 1996.

61



A
S O U R C E C O D E S U S E D I N T H E T E S T S

This chapter presents the source files used in the tests. This includes both the tests built from an

original source file (L0) and its variants (from L1 to L8) where each one corresponds to a different

type of plagiarism (see section 2.3.4). As all the files are based on the same original, from a theoretical

view every test would be a 100% match.

Source codes were made in both the Java and the C languages and are available online but only the

Calculator, Java and the 21 Matches, C source codes will be presented in this document.

A.1 H I G H T L I G H T S

The following highlights were used to show the changes that were done:

R E D Text that was removed

Y E L L O W Text that was added or changed

B L U E , G R E E N Text that was moved between the blue position and the following green position.

C YA N A N D M AG E N TA Block (for ex.: entire function) that was moved between the cyan position

and the following magenta position.

A.2 T H E P RO G R A M , C A L C U L AT O R

The goal in this program is to implement a simple calculator with the basic operations (addition, sub-

traction, division and multiplication) and a textual interface.

Only the Java version of the file was used to produce the results presented.

The following metrics characterise the original file:

• Number of lines: 82

• Number of functions: 1

62



A.2. The program, Calculator

• Number of variables: 6

The Java source codes files displayed here are available online at https://tinyurl.com/dopisiae/

source/calculator_java.zip, as well as the C source code files, at https://tinyurl.

com/dopisiae/source/calculator_c.zip.

A.2.1 Original source code for the Calculator exercise and the 1st type of plagiarism.

The 1st type of plagiarism (see Section 2.3.4) is an exact copy of the original.

1 // Import necessary Libraries

2 import java.util.Scanner;

3

4 class Calculator {

5 public static void main(String args[])

6 {

7 // Operation (on) and Operands (od)

8 char on = ’ ’;

9 double od1 = 0.0, od2 = 0.0;

10

11 // Prepare a scanner to read the input

12 Scanner input = new Scanner(System.in);

13

14 // Show the program title

15 System.out.println("Calculator");

16

17 // Repeat until the user chooses to exit (x)

18 do {

19 on = ’ ’;

20 od1 = 0.0;

21 od2 = 0.0;

22

23 // Show the Menu

24 System.out.println();

25 System.out.println("+) Add");

26 System.out.println("-) Subtract");

27 System.out.println("*) Multiply");

28 System.out.println("/) Divide");

29 System.out.println("x) Exit");

30 System.out.println();

31

32 // Ask for the users choice

33 System.out.print("Choice:\t\t");

34

35 // Read the input (a single character)

36 String temp;

37 try {

38 temp = input.nextLine();

39 on = temp.charAt(0);

40 } catch(Exception x) {

63

https://tinyurl.com/dopisiae/source/calculator_java.zip
https://tinyurl.com/dopisiae/source/calculator_java.zip
https://tinyurl.com/dopisiae/source/calculator_c.zip
https://tinyurl.com/dopisiae/source/calculator_c.zip


A.2. The program, Calculator

41 on = ’ ’;

42 }

43

44 if(on == ’+’ || on == ’-’ || on == ’/’ || on == ’*’) {

45 // Ask for and read the operands if the user chose an operation

46 System.out.print("Operand 1:\t");

47 od1 = input.nextDouble();

48 System.out.print("Operand 2:\t");

49 od2 = input.nextDouble();

50 input.nextLine();

51 } else if(on == ’x’ || on == ’X’) {

52 // Do nothing if the user wants to exit

53 } else {

54 // Give an error if its not a valid operation

55 System.out.println("Unknown Operation!");

56 }

57

58 // Execute operation and report result

59 switch(on) {

60 case ’+’: // Add

61 System.out.println("Result:\t\t"+(od1+od2));

62 break;

63

64 case ’-’: // Subtract

65 System.out.println("Result:\t\t"+(od1-od2));

66 break;

67

68 case ’/’: // Divide

69 if(od2 == 0.0) { // Stop divisions by zero

70 System.out.println("You can’t divide by zero.");

71 } else {

72 System.out.println("Result:\t\t"+(od1/od2));

73 }

74 break;

75

76 case ’*’: // Multiply

77 System.out.println("Result:\t\t"+(od1*od2));

78 break;

79 }

80 } while(on != ’x’);

81 }

82 }

Listing A.1: Original source code for the Calculator exercise and the 1st type of plagiarism.

A.2.2 Source code for the Calculator exercise, with the 2nd type of plagiarism.

The 2nd type of plagiarism (see Section 2.3.4) is when comments are changed.

1 // Import necessary Libraries

64



A.2. The program, Calculator

2 import java.util.Scanner;

3

4 class Calculator {

5 public static void main(String args[])

6 {

7 /* Operation and operands */

8 char on = ’ ’;

9 double od1 = 0.0, od2 = 0.0;

10

11 // Prepare a scanner to read the input

12 Scanner input = new Scanner(System.in);

13

14 // Show the program title

15 System.out.println("Calculator");

16

17 /* Repeat until exit is choosen */

18 do {

19 on = ’ ’;

20 od1 = 0.0;

21 od2 = 0.0;

22

23 // Show the Menu

24 System.out.println();

25 System.out.println("+) Add");

26 System.out.println("-) Subtract");

27 System.out.println("*) Multiply");

28 System.out.println("/) Divide");

29 System.out.println("x) Exit");

30 System.out.println();

31

32 // Ask for the users choice

33 System.out.print("Choice:\t\t");

34

35 /* Read choice */

36 String temp;

37 try {

38 temp = input.nextLine();

39 on = temp.charAt(0);

40 } catch(Exception x) {

41 on = ’ ’;

42 }

43

44 if(on == ’+’ || on == ’-’ || on == ’/’ || on == ’*’) {

45 /* Get operands */

46 System.out.print("Operand 1:\t");

47 od1 = input.nextDouble();

48 System.out.print("Operand 2:\t");

49 od2 = input.nextDouble();

50 input.nextLine();

51 } else if(on == ’x’ || on == ’X’) {

52 // Do nothing if the user wants to exit

53 } else {

54 // Give an error if its not a valid operation

55 System.out.println("Unknown Operation!");

56 }

65



A.2. The program, Calculator

57

58 /* Do the math */

59 switch(on) {

60 case ’+’: // Add

61 System.out.println("Result:\t\t"+(od1+od2));

62 break;

63

64 case ’-’: // Subtract

65 System.out.println("Result:\t\t"+(od1-od2));

66 break;

67

68 case ’/’: // Divide

69 if(od2 == 0.0) { // Stop divisions by zero

70 System.out.println("You can’t divide by zero.");

71 } else {

72 System.out.println("Result:\t\t"+(od1/od2));

73 }

74 break;

75

76 case ’*’: // Multiply

77 System.out.println("Result:\t\t"+(od1*od2));

78 break;

79 }

80 } while(on != ’x’);

81 }

82 }

Listing A.2: Source code for the Calculator exercise with the 2nd type of plagiarism.

A.2.3 Source code for the Calculator exercise, with the 3rd type of plagiarism.

The 3rd type of plagiarism (see Section 2.3.4) is when identifiers (variable and function names) are

changed.

1 // Import necessary Libraries

2 import java.util.Scanner;

3

4 class SuperCalculator {

5 public static void main(String args[])

6 {

7 // Operation (on) and Operands (od)

8 char oper = ’ ’;

9 double first = 0.0, second = 0.0;

10

11 // Prepare a scanner to read the input

12 Scanner in = new Scanner(System.in);

13

14 // Show the program title

15 System.out.println("Calculator");

16

66



A.2. The program, Calculator

17 // Repeat until the user chooses to exit (x)

18 do {

19 oper = ’ ’;

20 first = 0.0;

21 second = 0.0;

22

23 // Show the Menu

24 System.out.println();

25 System.out.println("+) Add");

26 System.out.println("-) Subtract");

27 System.out.println("*) Multiply");

28 System.out.println("/) Divide");

29 System.out.println("x) Exit");

30 System.out.println();

31

32 // Ask for the users choice

33 System.out.print("Choice:\t\t");

34

35 // Read the input (a single character)

36 String t;

37 try {

38 t = in.nextLine();

39 oper = \ch{t}.charAt(0);

40 } catch(Exception x) {

41 oper = ’ ’;

42 }

43

44 if(oper == ’+’ || oper == ’-’ || oper == ’/’ || oper == ’*’) {

45 // Ask for and read the operands if the user chose an operation

46 System.out.print("Operand 1:\t");

47 first = in.nextDouble();

48 System.out.print("Operand 2:\t");

49 second = in.nextDouble();

50 in.nextLine();

51 } else if(oper == ’x’ || oper == ’X’) {

52 // Do nothing if the user wants to exit

53 } else {

54 // Give an error if its not a valid operation

55 System.out.println("Unknown Operation!");

56 }

57

58 // Execute operation and report result

59 switch(oper) {

60 case ’+’: // Add

61 System.out.println("Result:\t\t"+(first+second));

62 break;

63

64 case ’-’: // Subtract

65 System.out.println("Result:\t\t"+(first-second));

66 break;

67

68 case ’/’: // Divide

69 if(second == 0.0) { // Stop divisions by zero

70 System.out.println("You can’t divide by zero.");

71 } else {

67



A.2. The program, Calculator

72 System.out.println("Result:\t\t"+(first/second));

73 }

74 break;

75

76 case ’*’: // Multiply

77 System.out.println("Result:\t\t"+(first*second));

78 break;

79 }

80 } while(oper != ’x’);

81 }

82 }

Listing A.3: Source code for the Calculator exercise with the 3rd type of plagiarism.

A.2.4 Source code for the Calculator exercise, with the 4th type of plagiarism.

The 4th type of plagiarism (see Section 2.3.4) is when scopes are changed (making a local variable or

function into a global one or vice versa).

1 // Import necessary Libraries

2 import java.util.Scanner;

3

4 class Calculator {

5 // Operation (on) and Operands (od)

6 private static char on = ’ ’;

7 private static double od1 = 0.0, od2 = 0.0;

8

9 // Prepare a scanner to read the input

10 public static Scanner input = new Scanner(System.in);

11

12 public static void main(String args[])

13 {

14 // Operation (on) and Operands (od)

15 char on = ’ ’;

16 double od1 = 0.0, od2 = 0.0;

17

18 // Prepare a scanner to read the input

19 Scanner input = new Scanner(System.in);

20

21 // Show the program title

22 System.out.println("Calculator");

23

24 // Repeat until the user chooses to exit (x)

25 do {

26 on = ’ ’;

27 od1 = 0.0;

28 od2 = 0.0;

29

30 // Show the Menu

31 System.out.println();

68



A.2. The program, Calculator

32 System.out.println("+) Add");

33 System.out.println("-) Subtract");

34 System.out.println("*) Multiply");

35 System.out.println("/) Divide");

36 System.out.println("x) Exit");

37 System.out.println();

38

39 // Ask for the users choice

40 System.out.print("Choice:\t\t");

41

42 // Read the input (a single character)

43 String temp;

44 try {

45 temp = input.nextLine();

46 on = temp.charAt(0);

47 } catch(Exception x) {

48 on = ’ ’;

49 }

50

51 if(on == ’+’ || on == ’-’ || on == ’/’ || on == ’*’) {

52 // Ask for and read the operands if the user chose an operation

53 System.out.print("Operand 1:\t");

54 od1 = input.nextDouble();

55 System.out.print("Operand 2:\t");

56 od2 = input.nextDouble();

57 input.nextLine();

58 } else if(on == ’x’ || on == ’X’) {

59 // Do nothing if the user wants to exit

60 } else {

61 // Give an error if its not a valid operation

62 System.out.println("Unknown Operation!");

63 }

64

65 // Execute operation and report result

66 switch(on) {

67 case ’+’: // Add

68 System.out.println("Result:\t\t"+(od1+od2));

69 break;

70

71 case ’-’: // Subtract

72 System.out.println("Result:\t\t"+(od1-od2));

73 break;

74

75 case ’/’: // Divide

76 if(od2 == 0.0) { // Stop divisions by zero

77 System.out.println("You can’t divide by zero.");

78 } else {

79 System.out.println("Result:\t\t"+(od1/od2));

80 }

81 break;

82

83 case ’*’: // Multiply

84 System.out.println("Result:\t\t"+(od1*od2));

85 break;

86 }

69



A.2. The program, Calculator

87 } while(on != ’x’);

88 }

89 }

Listing A.4: Source code for the Calculator exercise with the 4th type of plagiarism.

A.2.5 Source code for the Calculator exercise, with the 5th type of plagiarism.

The 5th type of plagiarism (see Section 2.3.4) is when operands orders are switched (e.g. x < y to y

>= x).

1 // Import necessary Libraries

2 import java.util.Scanner;

3

4 class Calculator {

5 public static void main(String args[])

6 {

7 // Operation (on) and Operands (od)

8 char on = ’ ’;

9 double od1 = 0.0, od2 = 0.0;

10

11 // Prepare a scanner to read the input

12 Scanner input = new Scanner(System.in);

13

14 // Show the program title

15 System.out.println("Calculator");

16

17 // Repeat until the user chooses to exit (x)

18 do {

19 on = ’ ’;

20 od1 = 0.0;

21 od2 = 0.0;

22

23 // Show the Menu

24 System.out.println();

25 System.out.println("+) Add");

26 System.out.println("-) Subtract");

27 System.out.println("*) Multiply");

28 System.out.println("/) Divide");

29 System.out.println("x) Exit");

30 System.out.println();

31

32 // Ask for the users choice

33 System.out.print("Choice:\t\t");

34

35 // Read the input (a single character)

36 String temp;

37 try {

38 temp = input.nextLine();

39 on = temp.charAt(0);

70



A.2. The program, Calculator

40 } catch(Exception x) {

41 on = ’ ’;

42 }

43

44 if(on == ’/’ || on == ’*’ || on == ’+’ || on == ’-’) {

45 // Ask for and read the operands if the user chose an operation

46 System.out.print("Operand 1:\t");

47 od1 = input.nextDouble();

48 System.out.print("Operand 2:\t");

49 od2 = input.nextDouble();

50 input.nextLine();

51 } else if(on == ’X’ || on == ’x’) {

52 // Do nothing if the user wants to exit

53 } else {

54 // Give an error if its not a valid operation

55 System.out.println("Unknown Operation!");

56 }

57

58 // Execute operation and report result

59 switch(on) {

60 case ’+’: // Add

61 System.out.println("Result:\t\t"+(od2+od1));

62 break;

63

64 case ’-’: // Subtract

65 System.out.println("Result:\t\t"+(-od2+od1));

66 break;

67

68 case ’/’: // Divide

69 if(0.0 == od2) { // Stop divisions by zero

70 System.out.println("You can’t divide by zero.");

71 } else {

72 System.out.println("Result:\t\t"+(od1/od2));

73 }

74 break;

75

76 case ’*’: // Multiply

77 System.out.println("Result:\t\t"+(od2*od1));

78 break;

79 }

80 } while(’x’ != on);

81 }

82 }

Listing A.5: Source code for the Calculator exercise with the 5th type of plagiarism.

71



A.2. The program, Calculator

A.2.6 Source code for the Calculator exercise, with the 6th type of plagiarism.

The 6th type of plagiarism (see Section 2.3.4) is when variable types and control structures are re-

placed with equivalents (e.g. if else to switch case).

1 // Import necessary Libraries

2 import java.util.Scanner;

3

4 class Calculator {

5 public static void main(String args[])

6 {

7 // Operation (on) and Operands (od)

8 String on = " ";

9 float od1 = 0.0f, od2 = 0.0f;

10

11 // Prepare a scanner to read the input

12 Scanner input = new Scanner(System.in);

13

14 // Show the program title

15 System.out.println("Calculator");

16

17 // Repeat until the user chooses to exit (x)

18 do {

19 on = " ";

20 od1 = 0.0f;

21 od2 = 0.0f;

22

23 // Show the Menu

24 System.out.println();

25 System.out.println("+) Add");

26 System.out.println("-) Subtract");

27 System.out.println("*) Multiply");

28 System.out.println("/) Divide");

29 System.out.println("x) Exit");

30 System.out.println();

31

32 // Ask for the users choice

33 System.out.print("Choice:\t\t");

34

35 // Read the input (a single character)

36 String temp;

37 try {

38 on = input.nextLine();

39 on = temp.charAt(0);

40 } catch(Exception x) {

41 on = " ";

42 }

43

44 if(on.charAt(0) == ’+’ || on.charAt(0) == ’-’ || on.charAt(0) == ’/’ || on.charAt(0)

== ’*’) {

45 // Ask for and read the operands if the user chose an operation

46 System.out.print("Operand 1:\t");

47 od1 = input.nextFloat();

72



A.2. The program, Calculator

48 System.out.print("Operand 2:\t");

49 od2 = input.nextFloat();

50 input.nextLine();

51 } else if(on.charAt(0) == ’x’ || on.charAt(0) == ’X’) {

52 // Do nothing if the user wants to exit

53 } else {

54 // Give an error if its not a valid operation

55 System.out.println("Unknown Operation!");

56 }

57

58 // Execute operation and report result

59 switch(on.charAt(0)) {

60 case ’+’: // Add

61 System.out.println("Result:\t\t"+(od1+od2));

62 break;

63

64 case ’-’: // Subtract

65 System.out.println("Result:\t\t"+(od1-od2));

66 break;

67

68 case ’/’: // Divide

69 if(od2 == 0.0f) { // Stop divisions by zero

70 System.out.println("You can’t divide by zero.");

71 } else {

72 System.out.println("Result:\t\t"+(od1/od2));

73 }

74 break;

75

76 case ’*’: // Multiply

77 System.out.println("Result:\t\t"+(od1*od2));

78 break;

79 }

80 } while(on.charAt(0) != ’x’);

81 }

82 }

Listing A.6: Source code for the Calculator exercise with the 6th type of plagiarism.

A.2.7 Source code for the Calculator exercise, with the 7th type of plagiarism.

The 7th type of plagiarism (see Section 2.3.4) is when statement orders are switched.

1 // Import necessary Libraries

2 import java.util.Scanner;

3

4 class Calculator {

5 public static void main(String args[])

6 {

7 // Operation (on) and Operands (od)

8 double od1 = 0.0, od2 = 0.0;

73



A.2. The program, Calculator

9 char on = ’ ’;

10

11 // Show the program title

12 System.out.println("Calculator");

13

14 // Prepare a scanner to read the input

15 Scanner input = new Scanner(System.in);

16

17 // Repeat until the user chooses to exit (x)

18 do {

19 od1 = 0.0;

20 on = ’ ’;

21 od2 = 0.0;

22

23 // Show the Menu

24 System.out.println();

25 System.out.println("+) Add");

26 System.out.println("-) Subtract");

27 System.out.println("*) Multiply");

28 System.out.println("/) Divide");

29 System.out.println("x) Exit");

30 System.out.println();

31

32 // Ask for the users choice

33 System.out.print("Choice:\t\t");

34

35 // Read the input (a single character)

36 String temp;

37 try {

38 temp = input.nextLine();

39 on = temp.charAt(0);

40 } catch(Exception x) {

41 on = ’ ’;

42 }

43

44 if(on == ’x’ || on == ’X’) {

45 // Do nothing if the user wants to exit

46 } else if(on == ’+’ || on == ’-’ || on == ’/’ || on == ’*’) {

47 // Ask for and read the operands if the user chose an operation

48 System.out.print("Operand 1:\t");
49 od1 = input.nextDouble();

50 System.out.print("Operand 2:\t");
51 od2 = input.nextDouble();

52 input.nextLine();

53 } else {

54 // Give an error if its not a valid operation

55 System.out.println("Unknown Operation!");

56 }

57

58 // Execute operation and report result

59 switch(on) {

60 case ’/’: // Divide

61 if(od2 == 0.0) { // Stop divisions by zero

62 System.out.println("You can’t divide by zero.");

63 } else {

74



A.2. The program, Calculator

64 System.out.println("Result:\t\t"+(od1/od2));
65 }
66 break;

67

68 case ’*’: // Multiply

69 System.out.println("Result:\t\t"+(od1*od2));
70 break;

71

72 case ’+’: // Add

73 System.out.println("Result:\t\t"+(od1+od2));
74 break;

75

76 case ’-’: // Subtract

77 System.out.println("Result:\t\t"+(od1-od2));
78 break;

79 }

80 } while(on != ’x’);

81 }

82 }

Listing A.7: Source code for the Calculator exercise with the 7th type of plagiarism.

A.2.8 Source code for the Calculator exercise, with the 8th type of plagiarism.

The 8th type of plagiarism (see Section 2.3.4) is when groups of calls are turned into a function call

or vice versa.

1 // Import necessary Libraries

2 import java.util.Scanner;

3

4 class Calculator {

5 public static double add(double op1, double op2) { return op1+op2; }
6 public static double sub(double op1, double op2) { return op1-op2; }
7 public static double mul(double op1, double op2) { return op1*op2; }
8 public static double div(double op1, double op2) { return op1/op2; }
9

10 public static char readChar() {
11 Scanner input = new Scanner(System.in);

12 String temp;

13 temp = input.nextLine();

14 return temp.charAt(0);

15 }
16

17 public static double readDouble() {
18 Scanner input = new Scanner(System.in);

19 double temp;

20 temp = input.nextDouble();

21 return temp;

22 }
23

75



A.2. The program, Calculator

24 public static void printMenu() {
25 System.out.println();

26 System.out.println("+) Add");

27 System.out.println("-) Subtract");

28 System.out.println("*) Multiply");

29 System.out.println("/) Divide");

30 System.out.println("x) Exit");

31 System.out.println();

32 }
33

34 public static void main(String args[])

35 {

36 // Operation (on) and Operands (od)

37 char on = ’ ’;

38 double od1 = 0.0, od2 = 0.0;

39

40 // Prepare a scanner to read the input

41 Scanner input = new Scanner(System.in);

42

43 // Show the program title

44 System.out.println("Calculator");

45

46 // Repeat until the user chooses to exit (x)

47 do {

48 on = ’ ’;

49 od1 = 0.0;

50 od2 = 0.0;

51

52 // Show the Menu

53 printMenu();

54

55 // Ask for the users choice

56 System.out.print("Choice:\t\t");

57

58 // Read the input (a single character)

59 on = readChar();

60

61 if(on == ’+’ || on == ’-’ || on == ’/’ || on == ’*’) {

62 // Ask for and read the operands if the user chose an operation

63 System.out.print("Operand 1:\t");

64 od1 = readDouble();

65 System.out.print("Operand 2:\t");

66 od2 = readDouble();

67 } else if(on == ’x’ || on == ’X’) {

68 // Do nothing if the user wants to exit

69 } else {

70 // Give an error if its not a valid operation

71 System.out.println("Unknown Operation!");

72 }

73

74 // Execute operation and report result

75 switch(on) {

76 case ’+’: // Add

77 System.out.println("Result:\t\t"+add(od1,od2));

78 break;

76



A.3. The program, 21 Matches

79

80 case ’-’: // Subtract

81 System.out.println("Result:\t\t"+sub(od1,od2));

82 break;

83

84 case ’/’: // Divide

85 if(od2 == 0.0) { // Stop divisions by zero

86 System.out.println("You can’t divide by zero.");

87 } else {

88 System.out.println("Result:\t\t"+div(od1,od2));

89 }

90 break;

91

92 case ’*’: // Multiply

93 System.out.println("Result:\t\t"+mul(od1,od2));

94 break;

95 }

96 } while(on != ’x’);

97 }

98 }

Listing A.8: Source code for the Calculator exercise with the 8th type of plagiarism.

A.3 T H E P RO G R A M , 2 1 M AT C H E S

The objective was to make an interactive implementation of the 21 matches game where, starting with

21 matches, each player takes 1 to 4 matches until there are no more. The one getting the last match

will lose the game. The game can be played against another player or against the computer.

The following metrics characterise the original file:

• Number of lines: 191

• Number of functions: 4

• Number of variables: 13

The C source code files are available online at https://tinyurl.com/dopisiae/source/

21matches_c.zip, as well as the Java source code files, at https://tinyurl.com/dopisiae/

source/21matches_java.zip.

A.3.1 Original source code for the 21 Matches exercise and the 1st type of plagiarism.

The 1st type of plagiarism (see Section 2.3.4) is an exact copy of the original.

77

https://tinyurl.com/dopisiae/source/21matches_c.zip
https://tinyurl.com/dopisiae/source/21matches_c.zip
https://tinyurl.com/dopisiae/source/21matches_java.zip
https://tinyurl.com/dopisiae/source/21matches_java.zip


A.3. The program, 21 Matches

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 int CompTurn(int f, char e, int d)

5 { /* Function that handles a Computer turn and returns his choice */

6 /* Saves the number of matches that the Comp. will take */

7 int r = 1;

8

9 /* If its the Comp. turn, he uses the following algorithm */

10 if (e == ’n’)

11 {

12 /* If all the matches are left, the Computer takes 4 matches */

13 if (f == 21)

14 r = 4;

15 else

16 {

17 if (f > 11)

18 r = 5-d + ((f-1) % 5);

19 else

20 r = 5-d;

21 }

22 }

23

24 /* Ensures that the Computer never takes more than 4 matches */

25 if (r > 4)

26 r = 4;

27

28 /* If it is not the First Player, use the following algorithm */

29 if (e == ’y’)

30 r = 5-d;

31

32 /* If there are only 5 matches or less, the Computer makes the smart choice */

33 if ((f <= 5) && (f>1))

34 r = f-1;

35

36 /* Return the number of matches that the Comp. takes */

37 return r;

38 }

39

40 int PlayTurn(int f)

41 { /* Function that handles a Player turn and returns his choice */

42 /* Player Play */

43 int j = 1;

44

45 /* Is a valid Play (0 = No) */

46 int ok = 0;

47

48 do {

49 /* Asks how many Matches the Player wants to take ? */

50 printf("How many Matches will you take (1 to 4) : ");

51

52 /* Gets the number of Matches that the Player wants to take */

53 scanf(" %d",&j);

54

78



A.3. The program, 21 Matches

55 /* Verifies if the value is valid */

56 if(j < 1)

57 printf("\nNumber too Low!\n\n");

58 else if(j > 4)

59 printf("\nNumber too High!\n\n");

60 else if((f < 4) && (j > f))

61 printf("\nThere aren’t that many matches left!\n\n");

62 else

63 ok = 1;

64 } while(ok == 0);

65

66 /* Returns the number of Matches that the Player takes */

67 return j;

68 }

69

70 void Game(int Type)

71 { /* Game Loop, ends when there are no matches left */

72 /* Says how many matches are left */

73 int f = 21;

74

75 /* Says if Game is versus Player or Computer */

76 char e = ’ ’;

77

78 /* Says whose turn it is (Player number) */

79 int v = 1;

80

81 /* Number of matches taken */

82 int d = 0;

83

84 /* On games versus Computer, ask who starts */

85 if(Type == 1)

86 {

87 do {

88 /* Ask and get the choice of the Player */

89 printf("\nDo you want to be the First Player (y or n) : ");

90 scanf(" %c",&e);

91

92 /* Warn the Player if the choice is invalid */

93 if ((e != ’y’) && (e != ’n’))

94 printf ("\nInvalid Choice !\n");

95 } while ((e != ’y’) && (e != ’n’));

96 }

97

98 /* Main Game Loop */

99 while(f > 1)

100 {

101 /* Show matches left */

102 printf("\nMatches : %d\n",f);

103

104 /* Say whose turn it is */

105 printf("Player Turn : %d\n",v);

106

107 /* Who should play, according to Game type */

108 if(Type == 1)

109 { /* Hum. versus Comp. */

79



A.3. The program, 21 Matches

110 /* See who should play */

111 if (((e == ’n’) && (v == 1)) || ((e == ’y’) && (v != 1)))

112 { /* Comp. turn */

113 /* Run the CompTurn function and get his play */

114 d = CompTurn(f,e,d);

115

116 /* Shows the question and the Comp. choice */

117 printf("How many matches do you want to take (1 to 4) : %d\n",d);

118 }

119 else

120 { /* Its the Hum. turn */

121 /* Run the PlayTurn function and get the Play. choice */

122 d = PlayTurn(f);

123 }

124 }

125 else

126 { /* Human versus Human */

127 /* Run the PlayTurn function and get the Player choice */

128 d = PlayTurn(f);

129 }

130

131 /* Take matches from the total */

132 f -= d;

133

134 /* If no one won, Go to next turn */

135 if(f > 1)

136 {

137 v++;

138 if (v > 2)

139 v = 1;

140 }

141 }

142

143 /* Show who Won */

144 printf("\nThe Winner is Player %d!\n", v);

145 }

146

147 int main()

148 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

149 /* Player Option */

150 int op = 0;

151

152 /* Presentation of the Game and its Rules */

153 printf("Game of the 21 Matches\n");

154 printf("\nRules:\n");

155 printf("\tThere are 21 Matches.\n");

156 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");

157 printf("\tThe Player that takes the last Match loses.\n");

158

159 /* Beginning of the Main Loop */

160 do {

161 /* Initial Menu */

162 printf("\n1) Play, Human versus Computer\n");

163 printf("2) Play, Human versus Human\n");

164 printf("0) Exit\n\n");

80



A.3. The program, 21 Matches

165

166 /* Get and Interpret the Choice */

167 printf("Choice: ");

168 scanf(" %d",&op);

169

170 switch(op)

171 {

172 case 0:

173 /* Exit the Game */

174 break;

175 case 1:

176 /* Run the Game */

177 Game(op);

178 break;

179 case 2:

180 /* Run the Game */

181 Game(op);

182 break;

183 default:

184 /* Tell the User that he made an Invalid Choice */

185 printf("\nInvalid Number !\n");

186 }

187 } while(op != 0);

188

189 /* End of the Loop and the Game */

190 return 0;

191 }

Listing A.9: Original source code for the 21 Matches exercise and the 1st type of plagiarism.

A.3.2 Source code for the 21 Matches exercise, with the 2nd type of plagiarism.

The 2nd type of plagiarism (see Section 2.3.4) is when comments are changed.

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 int CompTurn(int f, char e, int d)

5 { /* Function that handles a Computer turn and returns his choice */

6 /* Number of matches that the Comp. will take */

7 int r = 1;

8

9 /* Computer Turn */

10 if (e == ’n’)

11 {

12 /* If all the matches are left, the Computer takes 4 matches */

13 if (f == 21)

14 r = 4;

15 else

16 {

81



A.3. The program, 21 Matches

17 if (f > 11)

18 r = 5-d + ((f-1) % 5);

19 else

20 r = 5-d;

21 }

22 }

23

24 /* Never take more than 4 matches */

25 if (r > 4)

26 r = 4;

27

28 /* If it is not the First Player, use the following algorithm */

29 if (e == ’y’)

30 r = 5-d;

31

32 /* If there are only 5 matches or less, the Computer makes the smart choice */

33 if ((f <= 5) && (f>1))

34 r = f-1;

35

36 /* Return the number of matches taken */

37 return r;

38 }

39

40 int PlayTurn(int f)

41 { /* Function that handles a Player turn and returns his choice */

42 /* Number of matches that the Play. will take */

43 int j = 1;

44

45 /* Is the play valid ? */

46 int ok = 0;

47

48 do {

49 printf("How many Matches will you take (1 to 4) : ");

50

51 scanf(" %d",&j);

52

53 /* Control matches taken */

54 if(j < 1)

55 printf("\nNumber too Low!\n\n");

56 else if(j > 4)

57 printf("\nNumber too High!\n\n");

58 else if((f < 4) && (j > f))

59 printf("\nThere aren’t that many matches left!\n\n");

60 else

61 ok = 1;

62 } while(ok == 0);

63

64 /* Returns the number of Matches that the Player takes */

65 return j;

66 }

67

68 void Game(int Type)

69 { /* Game Loop, ends when there are no matches left */

70 /* Number of matches left */

71 int f = 21;

82



A.3. The program, 21 Matches

72

73 /* Type of game */

74 char e = ’ ’;

75

76 /* Whose turn is it ? */

77 int v = 1;

78

79 /* Number of matches taken */

80 int d = 0;

81

82 /* On games versus Computer, ask who starts */

83 if(Type == 1)

84 {

85 do {

86 /* Ask and get the choice of the Player */

87 printf("\nDo you want to be the First Player (y or n) : ");

88 scanf(" %c",&e);

89

90 /* Warn the Player if the choice is invalid */

91 if ((e != ’y’) && (e != ’n’))

92 printf ("\nInvalid Choice !\n");

93 } while ((e != ’y’) && (e != ’n’));

94 }

95

96 /* Main Game Loop */

97 while(f > 1)

98 {

99 /* Show matches left */

100 printf("\nMatches : %d\n",f);

101

102 /* Say whose turn it is */

103 printf("Player Turn : %d\n",v);

104

105 /* Who should play, according to Game type */

106 if(Type == 1)

107 { /* Hum. versus Comp. */

108 /* Who plays ? */

109 if (((e == ’n’) && (v == 1)) || ((e == ’y’) && (v != 1)))

110 { /* Comp. turn */

111 /* Run the CompTurn function and get his play */

112 d = CompTurn(f,e,d);

113

114 /* Shows the question and the Comp. choice */

115 printf("How many matches do you want to take (1 to 4) : %d\n",d);

116 }

117 else

118 { /* Its the Hum. turn */

119 /* Run the PlayTurn function and get the Play. choice */

120 d = PlayTurn(f);

121 }

122 }

123 else

124 { /* Human versus Human */

125 /* Run the PlayTurn function and get the Player choice */

126 d = PlayTurn(f);

83



A.3. The program, 21 Matches

127 }

128

129 /* Take matches from the total */

130 f -= d;

131

132 /* If no one won, repeat */

133 if(f > 1)

134 {

135 v++;

136 if (v > 2)

137 v = 1;

138 }

139 }

140

141 /* Show who Won */

142 printf("\nThe Winner is Player %d!\n", v);

143 }

144

145 int main()

146 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

147 /* Player Option */

148 int op = 0;

149

150 /* Presentation of the Game and its Rules */

151 printf("Game of the 21 Matches\n");

152 printf("\nRules:\n");

153 printf("\tThere are 21 Matches.\n");

154 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");

155 printf("\tThe Player that takes the last Match loses.\n");

156

157 /* Beginning of the Main Loop */

158 do {

159 /* Initial Menu */

160 printf("\n1) Play, Human versus Computer\n");

161 printf("2) Play, Human versus Human\n");

162 printf("0) Exit\n\n");

163

164 /* Get and Interpret the Choice */

165 printf("Choice: ");

166 scanf(" %d",&op);

167

168 switch(op)

169 {

170 case 0:

171 /* Quit game */

172 break;

173 case 1:

174 /* Human versus Computer game */

175 Game(op);

176 break;

177 case 2:

178 /* Human versus Human game */

179 Game(op);

180 break;

181 default:

84



A.3. The program, 21 Matches

182 /* Tell the User that he made an Invalid Choice */

183 printf("\nInvalid Number !\n");

184 }

185 } while(op != 0);

186

187 /* End of the Loop and the Game */

188 return 0;

189 }

Listing A.10: Source code for the 21 Matches exercise with the 2nd type of plagiarism.

A.3.3 Source code for the 21 Matches exercise, with the 3rd type of plagiarism.

The 3rd type of plagiarism (see Section 2.3.4) is when identifiers (variable and function names) are

changed.

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 int CoTu(int left, char first, int taken)

5 { /* Function that handles a Computer turn and returns his choice */

6 /* Saves the number of matches that the Comp. will take */

7 int play = 1;

8

9 /* If its the Comp. turn, he uses the following algorithm */

10 if (first == ’n’)

11 {

12 /* If all the matches are left, the Computer takes 4 matches */

13 if (left == 21)

14 play = 4;

15 else

16 {

17 if (left > 11)

18 play = 5-taken + ((left-1) % 5);

19 else

20 play = 5-taken;

21 }

22 }

23

24 /* Ensures that the Computer never takes more than 4 matches */

25 if (play > 4)

26 play = 4;

27

28 /* If it is not the First Player, use the following algorithm */

29 if (first == ’y’)

30 play = 5-taken;

31

32 /* If there are only 5 matches or less, the Computer makes the smart choice */

33 if ((left <= 5) && (left>1))

34 play = left-1;

85



A.3. The program, 21 Matches

35

36 /* Return the number of matches that the Comp. takes */

37 return play;

38 }

39

40 int PlTu(int left)

41 { /* Function that handles a Player turn and returns his choice */

42 /* Player Play */

43 int play = 1;

44

45 /* Is a valid Play (0 = No) */

46 int ok = 0;

47

48 do {

49 /* Asks how many Matches the Player wants to take ? */

50 printf("How many Matches will you take (1 to 4) : ");

51

52 /* Gets the number of Matches that the Player wants to take */

53 scanf(" %d",&play);

54

55 /* Verifies if the value is valid */

56 if(play < 1)

57 printf("\nNumber too Low!\n\n");

58 else if(play > 4)

59 printf("\nNumber too High!\n\n");

60 else if((left < 4) && (play > left))

61 printf("\nThere aren’t that many matches left!\n\n");

62 else

63 ok = 1;

64 } while(ok == 0);

65

66 /* Returns the number of Matches that the Player takes */

67 return play;

68 }

69

70 void Ga(int t)

71 { /* Game Loop, ends when there are no matches left */

72 /* Says how many matches are left */

73 int left = 21;

74

75 /* Says if Game is versus Player or Computer */

76 char first = ’ ’;

77

78 /* Says whose turn it is (Player number) */

79 int turn = 1;

80

81 /* Number of matches taken */

82 int taken = 0;

83

84 /* On games versus Computer, ask who starts */

85 if(t == 1)

86 {

87 do {

88 /* Ask and get the choice of the Player */

89 printf("\nDo you want to be the First Player (y or n) : ");

86



A.3. The program, 21 Matches

90 scanf(" %c",&first);

91

92 /* Warn the Player if the choice is invalid */

93 if ((first != ’y’) && (first != ’n’))

94 printf ("\nInvalid Choice !\n");

95 } while ((first != ’y’) && (first != ’n’));

96 }

97

98 /* Main Game Loop */

99 while(left > 1)

100 {

101 /* Show matches left */

102 printf("\nMatches : %d\n",left);

103

104 /* Say whose turn it is */

105 printf("Player Turn : %d\n",turn);

106

107 /* Who should play, according to Game type */

108 if(t == 1)

109 { /* Hum. versus Comp. */

110 /* See who should play */

111 if (((first == ’n’) && (turn == 1)) || ((first == ’y’) && (turn != 1)))

112 { /* Comp. turn */

113 /* Run the CompTurn function and get his play */

114 taken = CoTu(left,first,taken);

115

116 /* Shows the question and the Comp. choice */

117 printf("How many matches do you want to take (1 to 4) : %d\n",taken);

118 }

119 else

120 { /* Its the Hum. turn */

121 /* Run the PlayTurn function and get the Play. choice */

122 taken = PlTu(left);

123 }

124 }

125 else

126 { /* Human versus Human */

127 /* Run the PlayTurn function and get the Player choice */

128 taken = PlTu(left);

129 }

130

131 /* Take matches from the total */

132 left -= taken;

133

134 /* If no one won, Go to next turn */

135 if(left > 1)

136 {

137 turn++;

138 if (turn > 2)

139 turn = 1;

140 }

141 }

142

143 /* Show who Won */

144 printf("\nThe Winner is Player %d!\n", turn);

87



A.3. The program, 21 Matches

145 }

146

147 int main()

148 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

149 /* Player Option */

150 int op = 0;

151

152 /* Presentation of the Game and its Rules */

153 printf("Game of the 21 Matches\n");

154 printf("\nRules:\n");

155 printf("\tThere are 21 Matches.\n");

156 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");

157 printf("\tThe Player that takes the last Match loses.\n");

158

159 /* Beginning of the Main Loop */

160 do {

161 /* Initial Menu */

162 printf("\n1) Play, Human versus Computer\n");

163 printf("2) Play, Human versus Human\n");

164 printf("0) Exit\n\n");

165

166 /* Get and Interpret the Choice */

167 printf("Choice: ");

168 scanf(" %d",&op);

169

170 switch(op)

171 {

172 case 0:

173 /* Exit the Game */

174 break;

175 case 1:

176 /* Run the Game */

177 Ga(op);

178 break;

179 case 2:

180 /* Run the Game */

181 Ga(op);

182 break;

183 default:

184 /* Tell the User that he made an Invalid Choice */

185 printf("\nInvalid Number !\n");

186 }

187 } while(op != 0);

188

189 /* End of the Loop and the Game */

190 return 0;

191 }

Listing A.11: Source code for the 21 Matches exercise with the 3rd type of plagiarism.

88



A.3. The program, 21 Matches

A.3.4 Source code for the 21 Matches exercise, with the 4th type of plagiarism.

The 4th type of plagiarism (see Section 2.3.4) is when scopes are changed (making a local variable or

function into a global one or vice versa).

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 /* Says how many matches are left */

5 int f = 21;

6

7 /* Says if Game is versus Player or Computer */

8 char e = ’ ’;

9

10 /* Says whose turn it is (Player number) */

11 int v = 1;

12

13 /* Number of matches taken */

14 int d = 0;

15

16 int CompTurn(int f, char e, int d)

17 { /* Function that handles a Computer turn and returns his choice */

18 /* Saves the number of matches that the Comp. will take */

19 int r = 1;

20

21 /* If its the Comp. turn, he uses the following algorithm */

22 if (e == ’n’)

23 {

24 /* If all the matches are left, the Computer takes 4 matches */

25 if (f == 21)

26 r = 4;

27 else

28 {

29 if (f > 11)

30 r = 5-d + ((f-1) % 5);

31 else

32 r = 5-d;

33 }

34 }

35

36 /* Ensures that the Computer never takes more than 4 matches */

37 if (r > 4)

38 r = 4;

39

40 /* If it is not the First Player, use the following algorithm */

41 if (e == ’y’)

42 r = 5-d;

43

44 /* If there are only 5 matches or less, the Computer makes the smart choice */

45 if ((f <= 5) && (f>1))

46 r = f-1;

47

48 /* Return the number of matches that the Comp. takes */

89



A.3. The program, 21 Matches

49 return r;

50 }

51

52 int PlayTurn(int f)

53 { /* Function that handles a Player turn and returns his choice */

54 /* Player Play */

55 int j = 1;

56

57 /* Is a valid Play (0 = No) */

58 int ok = 0;

59

60 do {

61 /* Asks how many Matches the Player wants to take ? */

62 printf("How many Matches will you take (1 to 4) : ");

63

64 /* Gets the number of Matches that the Player wants to take */

65 scanf(" %d",&j);

66

67 /* Verifies if the value is valid */

68 if(j < 1)

69 printf("\nNumber too Low!\n\n");

70 else if(j > 4)

71 printf("\nNumber too High!\n\n");

72 else if((f < 4) && (j > f))

73 printf("\nThere aren’t that many matches left!\n\n");

74 else

75 ok = 1;

76 } while(ok == 0);

77

78 /* Returns the number of Matches that the Player takes */

79 return j;

80 }

81

82 void Game(int Type)

83 { /* Game Loop, ends when there are no matches left */

84 /* Says how many matches are left */

85 int f = 21;

86

87 /* Says if Game is versus Player or Computer */

88 char e = ’ ’;

89

90 /* Says whose turn it is (Player number) */

91 int v = 1;

92

93 /* Number of matches taken */

94 int d = 0;

95

96 f = 21;

97 e = ’ ’;

98 v = 1;

99 d = 0;

100

101 /* On games versus Computer, ask who starts */

102 if(Type == 1)

103 {

90



A.3. The program, 21 Matches

104 do {

105 /* Ask and get the choice of the Player */

106 printf("\nDo you want to be the First Player (y or n) : ");

107 scanf(" %c",&e);

108

109 /* Warn the Player if the choice is invalid */

110 if ((e != ’y’) && (e != ’n’))

111 printf ("\nInvalid Choice !\n");

112 } while ((e != ’y’) && (e != ’n’));

113 }

114

115 /* Main Game Loop */

116 while(f > 1)

117 {

118 /* Show matches left */

119 printf("\nMatches : %d\n",f);

120

121 /* Say whose turn it is */

122 printf("Player Turn : %d\n",v);

123

124 /* Who should play, according to Game type */

125 if(Type == 1)

126 { /* Hum. versus Comp. */

127 /* See who should play */

128 if (((e == ’n’) && (v == 1)) || ((e == ’y’) && (v != 1)))

129 { /* Comp. turn */

130 /* Run the CompTurn function and get his play */

131 d = CompTurn(f,e,d);

132

133 /* Shows the question and the Comp. choice */

134 printf("How many matches do you want to take (1 to 4) : %d\n",d);

135 }

136 else

137 { /* Its the Hum. turn */

138 /* Run the PlayTurn function and get the Play. choice */

139 d = PlayTurn(f);

140 }

141 }

142 else

143 { /* Human versus Human */

144 /* Run the PlayTurn function and get the Player choice */

145 d = PlayTurn(f);

146 }

147

148 /* Take matches from the total */

149 f -= d;

150

151 /* If no one won, Go to next turn */

152 if(f > 1)

153 {

154 v++;

155 if (v > 2)

156 v = 1;

157 }

158 }

91



A.3. The program, 21 Matches

159

160 /* Show who Won */

161 printf("\nThe Winner is Player %d!\n", v);

162 }

163

164 int main()

165 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

166 /* Player Option */

167 int op = 0;

168

169 /* Presentation of the Game and its Rules */

170 printf("Game of the 21 Matches\n");

171 printf("\nRules:\n");

172 printf("\tThere are 21 Matches.\n");

173 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");

174 printf("\tThe Player that takes the last Match loses.\n");

175

176 /* Beginning of the Main Loop */

177 do {

178 /* Initial Menu */

179 printf("\n1) Play, Human versus Computer\n");

180 printf("2) Play, Human versus Human\n");

181 printf("0) Exit\n\n");

182

183 /* Get and Interpret the Choice */

184 printf("Choice: ");

185 scanf(" %d",&op);

186

187 switch(op)

188 {

189 case 0:

190 /* Exit the Game */

191 break;

192 case 1:

193 /* Run the Game */

194 Game(op);

195 break;

196 case 2:

197 /* Run the Game */

198 Game(op);

199 break;

200 default:

201 /* Tell the User that he made an Invalid Choice */

202 printf("\nInvalid Number !\n");

203 }

204 } while(op != 0);

205

206 /* End of the Loop and the Game */

207 return 0;

208 }

Listing A.12: Source code for the 21 Matches exercise with the 4th type of plagiarism.

92



A.3. The program, 21 Matches

A.3.5 Source code for the 21 Matches exercise, with the 5th type of plagiarism.

The 5th type of plagiarism (see Section 2.3.4) is when operands orders are switched (e.g. x < y to y

>= x).

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 int CompTurn(int f, char e, int d)

5 { /* Function that handles a Computer turn and returns his choice */

6 /* Saves the number of matches that the Comp. will take */

7 int r = 1;

8

9 /* If its the Comp. turn, he uses the following algorithm */

10 if (’n’ == e)

11 {

12 /* If all the matches are left, the Computer takes 4 matches */

13 if (21 == f)

14 r = 4;

15 else

16 {

17 if (11 > f)

18 r = ((-1+f) % 5) + -d+5;

19 else

20 r = -d+5;

21 }

22 }

23

24 /* Ensures that the Computer never takes more than 4 matches */

25 if (4 < r)

26 r = 4;

27

28 /* If it is not the First Player, use the following algorithm */

29 if (’y’ == e)

30 r = -d+5;

31

32 /* If there are only 5 matches or less, the Computer makes the smart choice */

33 if ((5 >= f) && (1>f))

34 r = -1+f;

35

36 /* Return the number of matches that the Comp. takes */

37 return r;

38 }

39

40 int PlayTurn(int f)

41 { /* Function that handles a Player turn and returns his choice */

42 /* Player Play */

43 int j = 1;

44

45 /* Is a valid Play (0 = No) */

46 int ok = 0;

47

48 do {

93



A.3. The program, 21 Matches

49 /* Asks how many Matches the Player wants to take ? */

50 printf("How many Matches will you take (1 to 4) : ");

51

52 /* Gets the number of Matches that the Player wants to take */

53 scanf(" %d",&j);

54

55 /* Verifies if the value is valid */

56 if(1 > j)

57 printf("\nNumber too Low!\n\n");

58 else if(4 < j)

59 printf("\nNumber too High!\n\n");

60 else if((f < j) && (4 > f))

61 printf("\nThere aren’t that many matches left!\n\n");

62 else

63 ok = 1;

64 } while(ok == 0);

65

66 /* Returns the number of Matches that the Player takes */

67 return j;

68 }

69

70 void Game(int Type)

71 { /* Game Loop, ends when there are no matches left */

72 /* Says how many matches are left */

73 int f = 21;

74

75 /* Says if Game is versus Player or Computer */

76 char e = ’ ’;

77

78 /* Says whose turn it is (Player number) */

79 int v = 1;

80

81 /* Number of matches taken */

82 int d = 0;

83

84 /* On games versus Computer, ask who starts */

85 if(1 == Type)

86 {

87 do {

88 /* Ask and get the choice of the Player */

89 printf("\nDo you want to be the First Player (y or n) : ");

90 scanf(" %c",&e);

91

92 /* Warn the Player if the choice is invalid */

93 if ((’n’ != e) && (’y’ != e))

94 printf ("\nInvalid Choice !\n");

95 } while ((’n’ != e) && (’y’ != e));

96 }

97

98 /* Main Game Loop */

99 while(1 < f)

100 {

101 /* Show matches left */

102 printf("\nMatches : %d\n",f);

103

94



A.3. The program, 21 Matches

104 /* Say whose turn it is */

105 printf("Player Turn : %d\n",v);

106

107 /* Who should play, according to Game type */

108 if(1 == Type)

109 { /* Hum. versus Comp. */

110 /* See who should play */

111 if (((1 == v) && (’n’ == e)) || ((1 != v) && (’y’ == e)))

112 { /* Comp. turn */

113 /* Run the CompTurn function and get his play */

114 d = CompTurn(f,e,d);

115

116 /* Shows the question and the Comp. choice */

117 printf("How many matches do you want to take (1 to 4) : %d\n",d);

118 }

119 else

120 { /* Its the Hum. turn */

121 /* Run the PlayTurn function and get the Play. choice */

122 d = PlayTurn(f);

123 }

124 }

125 else

126 { /* Human versus Human */

127 /* Run the PlayTurn function and get the Player choice */

128 d = PlayTurn(f);

129 }

130

131 /* Take matches from the total */

132 f -= d;

133

134 /* If no one won, Go to next turn */

135 if(1 < f)

136 {

137 v++;

138 if (2 < v)

139 v = 1;

140 }

141 }

142

143 /* Show who Won */

144 printf("\nThe Winner is Player %d!\n", v);

145 }

146

147 int main()

148 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

149 /* Player Option */

150 int op = 0;

151

152 /* Presentation of the Game and its Rules */

153 printf("Game of the 21 Matches\n");

154 printf("\nRules:\n");

155 printf("\tThere are 21 Matches.\n");

156 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");

157 printf("\tThe Player that takes the last Match loses.\n");

158

95



A.3. The program, 21 Matches

159 /* Beginning of the Main Loop */

160 do {

161 /* Initial Menu */

162 printf("\n1) Play, Human versus Computer\n");

163 printf("2) Play, Human versus Human\n");

164 printf("0) Exit\n\n");

165

166 /* Get and Interpret the Choice */

167 printf("Choice: ");

168 scanf(" %d",&op);

169

170 switch(op)

171 {

172 case 0:

173 /* Exit the Game */

174 break;

175 case 1:

176 /* Run the Game */

177 Game(op);

178 break;

179 case 2:

180 /* Run the Game */

181 Game(op);

182 break;

183 default:

184 /* Tell the User that he made an Invalid Choice */

185 printf("\nInvalid Number !\n");

186 }

187 } while(0 != op);

188

189 /* End of the Loop and the Game */

190 return 0;

191 }

Listing A.13: Source code for the 21 Matches exercise with the 5th type of plagiarism.

A.3.6 Source code for the 21 Matches exercise, with the 6th type of plagiarism.

The 6th type of plagiarism (see Section 2.3.4) is when variable types and control structures are re-

placed with equivalents (e.g. if else to switch case).

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 char CompTurn(char f, char e, char d)

5 { /* Function that handles a Computer turn and returns his choice */

6 /* Saves the number of matches that the Comp. will take */

7 char r = 1;

8

9 /* If its the Comp. turn, he uses the following algorithm */

96



A.3. The program, 21 Matches

10 if (e == ’n’)

11 {

12 /* If all the matches are left, the Computer takes 4 matches */

13 if (f == 21)

14 r = 4;

15 else

16 {

17 if (f > 11)

18 r = 5-d + ((f-1) % 5);

19 else

20 r = 5-d;

21 }

22 }

23

24 /* Ensures that the Computer never takes more than 4 matches */

25 if (r > 4)

26 r = 4;

27

28 /* If it is not the First Player, use the following algorithm */

29 if (e == ’y’)

30 r = 5-d;

31

32 /* If there are only 5 matches or less, the Computer makes the smart choice */

33 if ((f <= 5) && (f>1))

34 r = f-1;

35

36 /* Return the number of matches that the Comp. takes */

37 return r;

38 }

39

40 char PlayTurn(char f)

41 { /* Function that handles a Player turn and returns his choice */

42 /* Player Play */

43 char j = 1;

44

45 /* Is a valid Play (0 = No) */

46 char ok = 0;

47

48 do {

49 /* Asks how many Matches the Player wants to take ? */

50 printf("How many Matches will you take (1 to 4) : ");

51

52 /* Gets the number of Matches that the Player wants to take */

53 scanf(" %c",&j);

54 j -= ’0’;

55

56 /* Verifies if the value is valid */

57 if(j < 1)

58 printf("\nNumber too Low!\n\n");

59 else if(j > 4)

60 printf("\nNumber too High!\n\n");

61 else if((f < 4) && (j > f))

62 printf("\nThere aren’t that many matches left!\n\n");

63 else

64 ok = 1;

97



A.3. The program, 21 Matches

65 } while(ok == 0);

66

67 /* Returns the number of Matches that the Player takes */

68 return j;

69 }

70

71 void Game(char Type)

72 { /* Game Loop, ends when there are no matches left */

73 /* Says how many matches are left */

74 char f = 21;

75

76 /* Says if Game is versus Player or Computer */

77 char e = ’ ’;

78

79 /* Says whose turn it is (Player number) */

80 char v = 1;

81

82 /* Number of matches taken */

83 char d = 0;

84

85 /* On games versus Computer, ask who starts */

86 if(Type == ’1’)

87 {

88 do {

89 /* Ask and get the choice of the Player */

90 printf("\nDo you want to be the First Player (y or n) : ");

91 scanf(" %c",&e);

92

93 /* Warn the Player if the choice is invalid */

94 if ((e != ’y’) && (e != ’n’))

95 printf ("\nInvalid Choice !\n");

96 } while ((e != ’y’) && (e != ’n’));

97 }

98

99 /* Main Game Loop */

100 while(f > 1)

101 {

102 /* Show matches left */

103 printf("\nMatches : %d\n",f);

104

105 /* Say whose turn it is */

106 printf("Player Turn : %d\n",v);

107

108 /* Who should play, according to Game type */

109 if(Type == ’1’)

110 { /* Hum. versus Comp. */

111 /* See who should play */

112 if (((e == ’n’) && (v == 1)) || ((e == ’y’) && (v != 1)))

113 { /* Comp. turn */

114 /* Run the CompTurn function and get his play */

115 d = CompTurn(f,e,d);

116

117 /* Shows the question and the Comp. choice */

118 printf("How many matches do you want to take (1 to 4) : %d\n",d);

119 }

98



A.3. The program, 21 Matches

120 else

121 { /* Its the Hum. turn */

122 /* Run the PlayTurn function and get the Play. choice */

123 d = PlayTurn(f);

124 }

125 }

126 else

127 { /* Human versus Human */

128 /* Run the PlayTurn function and get the Player choice */

129 d = PlayTurn(f);

130 }

131

132 /* Take matches from the total */

133 f -= (int) d;

134

135 /* If no one won, Go to next turn */

136 if(f > 1)

137 {

138 v++;

139 if (v > 2)

140 v = 1;

141 }

142 }

143

144 /* Show who Won */

145 printf("\nThe Winner is Player %d!\n", (int) v);

146 }

147

148 int main()

149 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

150 /* Player Option */

151 char op = 0;

152

153 /* Presentation of the Game and its Rules */

154 printf("Game of the 21 Matches\n");

155 printf("\nRules:\n");

156 printf("\tThere are 21 Matches.\n");

157 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");

158 printf("\tThe Player that takes the last Match loses.\n");

159

160 /* Beginning of the Main Loop */

161 do {

162 /* Initial Menu */

163 printf("\n1) Play, Human versus Computer\n");

164 printf("2) Play, Human versus Human\n");

165 printf("0) Exit\n\n");

166

167 /* Get and Interpret the Choice */

168 printf("Choice: ");

169 scanf(" %c",&op);

170

171 if(op == ’0’)

172 {

173 case ’0’:

174 /* Exit the Game */

99



A.3. The program, 21 Matches

175 break;

176 }
177 else if(op == ’1’)

178 {
179 case ’1’:

180 /* Run the Game */

181 Game(op);

182 break;

183 }
184 else if(op == ’2’)

185 {
186 case ’2’:

187 /* Run the Game */

188 Game(op);

189 break;

190 }
191 else

192 {
193 default:

194 /* Tell the User that he made an Invalid Choice */

195 printf("\nInvalid Number !\n");

196 }

197 } while(op != ’0’);

198

199 /* End of the Loop and the Game */

200 return 0;

201 }

Listing A.14: Source code for the 21 Matches exercise with the 6th type of plagiarism.

A.3.7 Source code for the 21 Matches exercise, with the 7th type of plagiarism.

The 7th type of plagiarism (see Section 2.3.4) is when statement orders are switched.

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 int PlayTurn(int f)

5 { /* Function that handles a Player turn and returns his choice */

6 /* Is a valid Play (0 = No) */

7 int ok = 0;

8

9 /* Player Play */

10 int j = 1;

11

12 do {

13 /* Asks how many Matches the Player wants to take ? */

14 printf("How many Matches will you take (1 to 4) : ");

15

16 /* Gets the number of Matches that the Player wants to take */

100



A.3. The program, 21 Matches

17 scanf(" %d",&j);

18

19 /* Verifies if the value is valid */

20 if((f < 4) && (j > f))

21 printf("\nThere aren’t that many matches left!\n\n");

22 else if(j > 4)

23 printf("\nNumber too High!\n\n");

24 else if(j < 1)

25 printf("\nNumber too Low!\n\n");

26 else

27 ok = 1;

28 } while(ok == 0);

29

30 /* Returns the number of Matches that the Player takes */

31 return j;

32 }
33

34 int CompTurn(int f, char e, int d)

35 { /* Function that handles a Computer turn and returns his choice */

36 /* Saves the number of matches that the Comp. will take */

37 int r = 1;

38

39 /* If its the Comp. turn, he uses the following algorithm */

40 if (e == ’n’)

41 {

42 /* If all the matches are left, the Computer takes 4 matches */

43 if (f != 21)

44 {
45 if (f > 11)

46 r = 5-d + ((f-1) % 5);

47 else

48 r = 5-d;

49 }
50 else

51 r = 4;

52 }

53

54 /* Ensures that the Computer never takes more than 4 matches */

55 if (r > 4)

56 r = 4;

57

58 /* If it is not the First Player, use the following algorithm */

59 if (e == ’y’)

60 r = 5-d;

61

62 /* If there are only 5 matches or less, the Computer makes the smart choice */

63 if ((f <= 5) && (f>1))

64 r = f-1;

65

66 /* Return the number of matches that the Comp. takes */

67 return r;

68 }
69

70 void Game(int Type)

71 { /* Game Loop, ends when there are no matches left */

101



A.3. The program, 21 Matches

72 /* Says whose turn it is (Player number) */

73 int v = 1;

74

75 /* Number of matches taken */

76 int d = 0;

77

78 /* Says how many matches are left */

79 int f = 21;

80

81 /* Says if Game is versus Player or Computer */

82 char e = ’ ’;

83

84 /* On games versus Computer, ask who starts */

85 if(Type == 1)

86 {

87 do {

88 /* Ask and get the choice of the Player */

89 printf("\nDo you want to be the First Player (y or n) : ");

90 scanf(" %c",&e);

91

92 /* Warn the Player if the choice is invalid */

93 if ((e != ’y’) && (e != ’n’))

94 printf ("\nInvalid Choice !\n");

95 } while ((e != ’y’) && (e != ’n’));

96 }

97

98 /* Main Game Loop */

99 while(f > 1)

100 {

101 /* Show matches left */

102 printf("\nMatches : %d\n",f);

103

104 /* Say whose turn it is */

105 printf("Player Turn : %d\n",v);

106

107 /* Who should play, according to Game type */

108 if(Type == 1)

109 { /* Hum. versus Comp. */

110 /* See who should play */

111 if (!(((e == ’n’) && (v == 1)) || ((e == ’y’) && (v != 1))))

112 { /* Its the Hum. turn */

113 /* Run the PlayTurn function and get the Play. choice */

114 d = PlayTurn(f);

115 }

116 else

117 { /* Comp. turn */

118 /* Run the CompTurn function and get his play */

119 d = CompTurn(f,e,d);

120

121 /* Shows the question and the Comp. choice */

122 printf("How many matches do you want to take (1 to 4) : %d\n",d)
123 }

124 }

125 else

126 { /* Human versus Human */

102



A.3. The program, 21 Matches

127 /* Run the PlayTurn function and get the Player choice */

128 d = PlayTurn(f);

129 }

130

131 /* Take matches from the total */

132 f -= d;

133

134 /* If no one won, Go to next turn */

135 if(f > 1)

136 {

137 v++;

138 if (v > 2)

139 v = 1;

140 }

141 }

142

143 /* Show who Won */

144 printf("\nThe Winner is Player %d!\n", v);

145 }

146

147 int main()

148 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

149 /* Player Option */

150 int op = 0;

151

152 /* Presentation of the Game and its Rules */

153 printf("Game of the 21 Matches\n");

154 printf("\nRules:\n");

155 printf("\tThere are 21 Matches.\n");

156 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");

157 printf("\tThe Player that takes the last Match loses.\n");

158

159 /* Beginning of the Main Loop */

160 do {

161 /* Initial Menu */

162 printf("\n1) Play, Human versus Computer\n");

163 printf("2) Play, Human versus Human\n");

164 printf("0) Exit\n\n");

165

166 /* Get and Interpret the Choice */

167 printf("Choice: ");

168 scanf(" %d",&op);

169

170 switch(op)

171 {

172 case 2:

173 /* Run the Game */

174 Game(op);

175 break;

176 case 1:

177 /* Run the Game */

178 Game(op);

179 break;

180 case 0:

181 /* Exit the Game */

103



A.3. The program, 21 Matches

182 break;

183 default:

184 /* Tell the User that he made an Invalid Choice */

185 printf("\nInvalid Number !\n");

186 }

187 } while(op != 0);

188

189 /* End of the Loop and the Game */

190 return 0;

191 }

Listing A.15: Source code for the 21 Matches exercise with the 7th type of plagiarism.

A.3.8 Source code for the 21 Matches exercise, with the 8th type of plagiarism.

The 8th type of plagiarism (see Section 2.3.4) is when groups of calls are turned into a function call

or vice versa.

1 /* Library(s) used by the Program */

2 #include <stdio.h>

3

4 int CalcPlay(int r, int f, int d)

5 {
6 int x = r;

7

8 /* If all the matches are left, the Computer takes 4 matches */

9 if (f == 21)

10 x = 4;

11 else

12 {
13 if (f > 11)

14 x = 5-d + ((f-1) % 5);

15 else

16 x = 5-d;

17 }
18

19 return x;

20 }
21

22 int CompTurn(int f, char e, int d)

23 { /* Function that handles a Computer turn and returns his choice */

24 /* Saves the number of matches that the Comp. will take */

25 int r = 1;

26

27 /* If its the Comp. turn, he uses the following algorithm */

28 if (e == ’n’)

29 {

30 r = CalcPlay(r, f, d);

31 }

32

104



A.3. The program, 21 Matches

33 /* Ensures that the Computer never takes more than 4 matches */

34 if (r > 4)

35 r = 4;

36

37 /* If it is not the First Player, use the following algorithm */

38 if (e == ’y’)

39 r = 5-d;

40

41 /* If there are only 5 matches or less, the Computer makes the smart choice */

42 if ((f <= 5) && (f>1))

43 r = f-1;

44

45 /* Return the number of matches that the Comp. takes */

46 return r;

47 }

48

49 int AskMatches(int f)

50 {
51 /* Player Play */

52 int j = 1;

53

54 /* Is a valid Play (0 = No) */

55 int ok = 0;

56

57 do {
58 /* Asks how many Matches the Player wants to take ? */

59 printf("How many Matches will you take (1 to 4) : ");

60

61 /* Gets the number of Matches that the Player wants to take */

62 scanf(" %d",&j);

63

64 /* Verifies if the value is valid */

65 if(j < 1)

66 printf("\nNumber too Low!\n\n");
67 else if(j > 4)

68 printf("\nNumber too High!\n\n");
69

70 else if((f < 4) && (j > f))

71 printf("\nThere aren’t that many matches left!\n\n");
72 else

73 ok = 1;

74 } while(ok == 0);

75

76 return j;

77 }
78

79 int PlayTurn(int f)

80 { /* Function that handles a Player turn and returns his choice */

81 /* Returns the number of Matches that the Player takes */

82 return AskMatches(f);

83 }

84

85 char AskFirst() {
86 char e = ’ ’;

87

105



A.3. The program, 21 Matches

88 /* Ask and get the choice of the Player */

89 printf("\nDo you want to be the First Player (y or n) :");

90 scanf(" %c",&e);

91

92 /* Warn the Player if the choice is invalid */

93 if ((e != ’y’) && (e != ’n’))

94 printf ("\nInvalid Choice !\n");
95

96 return e;

97 }
98

99 void Game(int Type)

100 { /* Game Loop, ends when there are no matches left */

101 /* Says how many matches are left */

102 int f = 21;

103

104 /* Says if Game is versus Player or Computer */

105 char e = ’ ’;

106

107 /* Says whose turn it is (Player number) */

108 int v = 1;

109

110 /* Number of matches taken */

111 int d = 0;

112

113 /* On games versus Computer, ask who starts */

114 if(Type == 1)

115 {

116 do {

117 e = AskFirst();

118 } while ((e != ’y’) && (e != ’n’));

119 }

120

121 /* Main Game Loop */

122 while(f > 1)

123 {

124 /* Show matches left */

125 printf("\nMatches : %d\n",f);

126

127 /* Say whose turn it is */

128 printf("Player Turn : %d\n",v);

129

130 /* Who should play, according to Game type */

131 if(Type == 1)

132 { /* Hum. versus Comp. */

133 /* See who should play */

134 if (((e == ’n’) && (v == 1)) || ((e == ’y’) && (v != 1)))

135 { /* Comp. turn */

136 /* Run the CompTurn function and get his play */

137 d = CompTurn(f,e,d);

138

139 /* Shows the question and the Comp. choice */

140 printf("How many matches do you want to take (1 to 4) : %d\n",d);

141 }

142 else

106



A.3. The program, 21 Matches

143 { /* Its the Hum. turn */

144 /* Run the PlayTurn function and get the Play. choice */

145 d = PlayTurn(f);

146 }

147 }

148 else

149 { /* Human versus Human */

150 /* Run the PlayTurn function and get the Player choice */

151 d = PlayTurn(f);

152 }

153

154 /* Take matches from the total */

155 f -= d;

156

157 /* If no one won, Go to next turn */

158 if(f > 1)

159 {

160 v++;

161 if (v > 2)

162 v = 1;

163 }

164 }

165

166 /* Show who Won */

167 printf("\nThe Winner is Player %d!\n", v);

168 }

169

170 void PrintMenu() {
171 /* Initial Menu */

172 printf("\n1) Play, Human versus Computer\n");
173 printf("2) Play, Human versus Human\n");
174 printf("0) Exit\n\n");
175 }
176

177 void PrintRules() {
178 /* Presentation of the Game and its Rules */

179 printf("Game of the 21 Matches\n");
180 printf("\nRules:\n");
181 printf("\tThere are 21 Matches.\n");
182 printf("\tEach Player can take 1 to 4 Matches in his turn.\n");
183 printf("\tThe Player that takes the last Match loses.\n");
184 }
185

186 int main()

187 { /* Main Loop,the Menu is a Loop that only stops when the User asks to Exit */

188 /* Player Option */

189 int op = 0;

190

191 /* Presentation of the Game and its Rules */

192 PrintRules();

193

194 /* Beginning of the Main Loop */

195 do {

196 /* Initial Menu */

197 PrintMenu();

107



A.3. The program, 21 Matches

198

199 /* Get and Interpret the Choice */

200 printf("Choice: ");

201 scanf(" %d",&op);

202

203 switch(op)

204 {

205 case 0:

206 /* Exit the Game */

207 break;

208 case 1:

209 /* Run the Game */

210 Game(op);

211 break;

212 case 2:

213 /* Run the Game */

214 Game(op);

215 break;

216 default:

217 /* Tell the User that he made an Invalid Choice */

218 printf("\nInvalid Number !\n");

219 }

220 } while(op != 0);

221

222 /* End of the Loop and the Game */

223 return 0;

224 }

Listing A.16: Source code for the 21 Matches exercise with the 8th type of plagiarism.

108



B
T E S T R E S U LT S

This chapter contains the results obtained from using the tools with each of the source codes (see

Appendix A), in the languages that are supported by the tool.

The following measures were taken to get more results, regardless of how low the match was:

J P L AG ”minimal similarity of matches” was set to 1% while the ”minimum match length” was

left at the default value (12 for C files and 8 for Java files); item[Marble]Placed the files in a

”exercise/language/year/grader/group.#/L#.extension” format, with # being the plagiarism type

(from 0 to 8).

M O S S The ”-m” parameter (maximum number of times a given passage may appear before it is

ignored) was set to 10000; item[W. Sherlock]Got the results from the ”Examine stored matches”

window for the ”no comments & normalized” pre-processing.

B.1 C O D E M AT C H R E S U LT S

The CodeMatch tool produces a database file (.cdb) with the results that can be exported into an

HTML file.

B.1.1 Results for the Calculator source codes

CodeMatch returned good results (see Table 2) for the Calculator, Java source codes (see Section A.2).

Note that the files were compared with themselves since CodeMatch compares the files in two folders

and the same folder was used. This is a moot point as those cases got 100% matches.

109



B.2. JPlag results

0 1 2 3 4 5 6 7 8
0 100 100 94 71 95 97 83 87 79
1 100 100 94 71 95 97 83 87 79
2 94 94 100 62 89 91 76 80 71
3 71 71 62 100 70 71 70 69 67
4 95 95 89 70 100 92 81 85 76
5 97 97 91 71 92 100 81 83 78
6 83 83 76 70 81 81 100 78 73
7 87 87 80 69 85 83 78 100 76
8 79 79 71 67 76 78 73 76 100

Table 2.: The results from the CodeMatch tool for the Calculator source codes

B.1.2 Results for the 21 Matches source codes

The results (see Table 3) for the 21 Matches source code (see Appendix Appendix A.3) look similar

to the results for the Calculator source codes but are in fact lower (DM=-29.778). The biggest factor

for this decrease was the 3rd type of plagiarism (Identifiers changed). This is probably due to the fact

that the 21 Matches source codes have more identifiers than the Calculator ones.

0 1 2 3 4 5 6 7 8
0 100 100 93 59 89 93 79 86 87
1 100 100 93 59 89 93 79 86 87
2 93 93 100 46 81 85 69 77 78
3 59 59 46 100 57 59 56 57 56
4 89 89 81 57 100 82 79 84 85
5 93 93 85 59 82 100 75 80 80
6 79 79 69 56 79 75 100 77 77
7 86 86 77 57 84 80 77 100 85
8 87 87 78 56 85 80 77 85 100

Table 3.: The results from the CodeMatch tool for the 21 Matches source codes

B.2 J P L AG R E S U LT S

The JPlag tool gives us results organized by the average and maximum similarities, without repeated

values (see Table 4). It produces an HTML file presenting the result and allows the user to view the

110



B.2. JPlag results

detailed comparison of what code is suspected to be plagiarism.

B.2.1 Results for the Calculator source codes

Note that, despite our efforts, some of the results (the ones missing from the table) where not reported,

indicating that there is hardly anything matching between those files. Despite the blanks, the results

(see Table 4) were good since there where a lot of exact matches (100%), showing that JPlag was

impervious to several types of plagiarism.

0 1 2 3 4 5 6 7 8
0 — 100 100 100 94.2 100 71.7 71.4 21.4
1 100 — 100 100 94.2 100 71.7 71.4 21.4
2 100 100 — 100 94.2 100 71.7 71.4 21.4
3 100 100 100 — 94.2 100 71.7 71.4 21.4
4 94.2 94.2 94.2 94.2 — 94.2 66.2 57.1 11.9
5 100 100 100 100 94.2 — 71.7 71.4 21.4
6 71.7 71.7 71.7 71.7 66.2 71.7 — 55.1 9.2
7 71.4 71.4 71.4 71.4 57.1 71.4 55.1 — 10.7
8 21.4 21.4 21.4 21.4 11.9 21.4 9.2 10.7 —

Table 4.: The results from the JPlag tool for the Calculator source codes

B.2.2 Results for the 21 Matches source codes

JPlag was better (DM=39.822) at detecting the plagiarism for this set of source codes since the results

(see Table 5) are similar in relation to the exact matches and got better matches on the harder cases

like the 6th, 7th and 8th types of plagiarism.

111



B.3. Marble results

0 1 2 3 4 5 6 7 8
0 — 100 100 100 90.1 100 51.9 66.9 73.8
1 100 — 100 100 90.1 100 51.9 66.9 73.8
2 100 100 — 100 90.1 100 51.9 66.9 73.8
3 100 100 100 — 90.1 100 51.9 66.9 73.8
4 90.1 90.1 90.1 90.1 — 90.1 51.9 66.0 53.9
5 100 100 100 100 90.1 — 51.9 66.9 73.8
6 51.9 51.9 51.9 51.9 51.9 51.9 — 25.1 16.2
7 66.9 66.9 66.9 66.9 66.0 66.9 25.1 — 56.3
8 73.8 73.8 73.8 73.8 53.9 73.8 16.2 56.3 —

Table 5.: The results from the JPlag tool for the 21 Matches source codes

B.3 M A R B L E R E S U LT S

The results are presented through a suspects.nf file which has several lines in the following structure:

”echo M1 S1 S2 M2 U/S && edit File 1 && edit File 2”. The M1 and M2 values indicate the match per-

centages, S1 and S2 give us the size of the matches and the U/S flag indicates if the largest percentage

was found before (U) or after (S) ordering the methods.

Note that only the Calculator results are available since Marble does not support the C language.

B.3.1 Results for the Calculator source codes

The results (see Table 6) from this tool give an asymmetrical table. As expected, a few source codes

accuse the movement of methods (have an S flag). This is verified in the case of the 5th, 6th and 7th

types of plagiarism as they had operations, variables and statements moved, respectively.

0 1 2 3 4 5 6 7 8
0 — 100 U 100 S 100 S 95 U 97 U 87 S 85 S 66 U
1 100 U — 100 U 100 S 95 U 97 U 87 S 85 S 66 U
2 99 S 100 U — 100 U 95 U 97 U 87 S 85 S 66 U
3 99 S 99 S 100 U — 96 U 97 U 87 S 85 S 66 U
4 89 U 89 U 89 U 89 U — 93 U 79 U 78 U 62 U
5 97 U 97 U 97 U 97 U 87 U — 85 U 84 S 66 U
6 86 S 86 S 86 S 86 S 79 U 85 U — 75 U 61 U
7 84 S 84 S 84 S 84 S 77 U 83 S 75 U — 60 U
8 55 U 55 U 55 U 55 U 56 U 54 U 50 U 48 U —

Table 6.: The results from the Marble tool for the Calculator source codes

112



B.4. MOSS results

B.4 M O S S R E S U LT S

The MOSS tool gives us the number of lines matching between each pair of files and calculates the

match percentages by dividing it by the number of lines in the file though it ignores code that it finds

repeatedly, thus reducing the percentages. As indicated (see Section 2.2.5), the detailed results are

similar to JPlags and show the lines that match between the files.

B.4.1 Results for the Calculator source codes

As we can see in Table 7, the results are reasonable but the strategies used to avoid false positives

decreased the matches (ex.: 100% to 99%). We can also notice that some types of plagiarism, namely

the 6th, 7th and 8th had low matches due to their high complexity.

0 1 2 3 4 5 6 7 8
0 — 99 99 99 83 90 51 67 57
1 99 — 99 99 83 90 51 67 57
2 99 99 — 99 83 90 51 67 57
3 99 99 99 — 83 90 51 67 57
4 82 82 82 82 — 73 50 66 39
5 90 90 90 90 74 — 39 54 47
6 48 48 48 48 48 36 — 43 10
7 67 67 67 67 67 54 46 — 22
8 44 44 44 44 31 37 12 17 —

Table 7.: The results from the MOSS tool for the Calculator source codes

B.4.2 Results for the 21 Matches source codes

As expected the increase in the size of the source codes translated into the variance of the results (see

Table 8) but, since the increases were far less than the decreases it got a large negative metric value

(DM=-66.889). We believe that the blank spaces indicate that the matches are very close to 0% so we

considered them as 0 on the calculations.

113



B.5. SIM results

0 1 2 3 4 5 6 7 8
0 — 99 99 99 90 35 62 40 79
1 99 — 99 99 90 35 62 40 79
2 99 99 — 99 90 35 62 40 79
3 99 99 99 — 90 35 62 40 79
4 89 89 89 89 — 25 61 40 60
5 35 35 35 35 25 — 7 11 16
6 61 61 61 61 61 7 — 27 37
7 40 40 40 40 40 12 27 — 15
8 68 68 68 68 52 14 33 13 —

Table 8.: The results from the MOSS tool for the 21 Matches source codes

B.5 S I M R E S U LT S

SIM is an interesting tool, despite not having a GUI since its results are quite detailed. The -P ar-

gument can be used to report the results in a ”File 1 consists for Match% of File 2 material” format

giving a quick rundown of the results. It has a few arguments that change its behavior. Unlike Sherlock

however its default values seem to work well for most cases of plagiary.

B.5.1 Results for the Calculator source codes

The results for this tool are similar to the ones from MOSS in that the results are calculated in consid-

eration of the file sizes. This gives us an asymmetrical table. We can notice a few odd details in the

results (see Table 9), namely the fact that a few files match the entirety of other files but not the other

way around. An example for this is any of the 100% matches for the 8th type of plagiarism (Group of

calls turned into a function call or vice versa) which are matched back by 89%. This shows how SIM

is great at identifying source code that is taken from other files without missing the fact that the copy

does not account for the whole thing.

114



B.6. Sydney’s Sherlock results

0 1 2 3 4 5 6 7 8
0 — 100 100 100 99 99 99 99 99
1 100 — 100 100 99 99 99 99 99
2 100 100 — 100 99 99 99 99 99
3 100 100 100 — 99 99 99 99 99
4 98 98 98 98 — 97 97 98 97
5 100 100 100 100 99 — 99 99 99
6 99 99 99 99 99 99 — 99 99
7 99 99 99 99 99 99 98 — 99
8 91 91 91 91 91 91 91 91 —

Table 9.: The results from the SIM tool for the Calculator source codes

B.5.2 Results for the 21 Matches source codes

On Table 10, we can see that SIM was able to detect all types of plagiarism, given bigger source codes

(DM=5.444). While we do not know which factors led to such great results, we believe that SIM is

suited for larger projects where there is plenty of information accessible.

0 1 2 3 4 5 6 7 8
0 — 100 100 100 99 100 94 99 100
1 100 — 100 100 99 100 94 99 100
2 100 100 — 100 99 100 94 99 100
3 100 100 100 — 99 100 94 99 100
4 99 99 99 99 — 99 94 99 99
5 100 100 100 100 99 — 94 99 100
6 98 98 98 98 98 98 — 98 99
7 100 100 100 100 99 100 94 — 100
8 100 100 100 100 98 100 94 100 —

Table 10.: The results from the SIM tool for the 21 Matches source codes

B.6 S Y D N E Y ’ S S H E R L O C K R E S U LT S

The Sherlock tool is an interesting case as its results (see Table 11) are a list of sentences in a ”File

1 and File 2: Match%” format. This format does not help the user find the highest matches, it just

makes the results easy to post-process. Some of the results are quite poor as the default settings are

meant for fast computations. As we know (see Section 2.2.8), those settings can be tweaked in order

to improve the results and must be considered alongside the results with the default settings. The

115



B.6. Sydney’s Sherlock results

results presented are all the combinations of the settings from -n 1 to 4 and -z 0 to 5 but we will only

show a few as examples.

B.6.1 Results for the Calculator source codes

With the default settings (equivalent to -n 3 -z 4), we can see that some of the results (see Ta-

ble 11) where good between the 1st (Unaltered copy), 4th (Scope changed) and 7th (Statements order

switched) types of plagiarism. Seeing as Sherlock is a tool for matching text documents, it makes

sense that it is mostly unaffected by the movement of code but will not handle changes very well.

0 1 2 3 4 5 6 7 8
0 — 100 31 52 100 70 64 100 63
1 100 — 31 52 100 70 64 100 63
2 31 31 — 8 31 15 10 31 20
3 52 52 8 — 52 50 52 52 40
4 100 100 31 52 — 70 64 100 63
5 70 70 15 50 70 — 61 70 45
6 64 64 10 52 64 61 — 64 47
7 100 100 31 52 100 70 64 — 63
8 63 63 20 40 63 45 47 63 —

Table 11.: The results from the Sherlock tool for the Calculator source codes

To demonstrate the effect of tweaking the -n and -z parameters, two more tables (see Tables 12 and

13) are presented each with the results of Sherlock when the arguments ”-n 2” and ”-z 3” were applied

to it, respectively.

0 1 2 3 4 5 6 7 8
0 — 100 57 55 94 94 77 100 76
1 100 — 57 55 94 94 77 100 76
2 57 57 — 23 55 55 42 57 40
3 55 55 23 — 52 52 55 55 52
4 94 94 55 52 — 88 73 94 72
5 94 94 55 52 88 — 73 94 72
6 77 77 42 55 73 73 — 77 66
7 100 100 57 55 94 94 77 — 76
8 76 76 40 52 72 72 66 76 —

Table 12.: The results produced by Sherlock tool for the Calculator source codes with the -n 2 argument

116



B.6. Sydney’s Sherlock results

Table 12 shows us that using the -n parameter can greatly improve the results (DM = 106.889). The

parameter changed the number of words per digital signatures, Meaning that with a smaller value,

Sherlock will find plagiarism in smaller sections of source code. This translates into better matches

in small changes and source code movements, but worse matches on longer modifications (as seen for

the 2nd type of plagiarism).

0 1 2 3 4 5 6 7 8
0 — 100 57 55 94 94 77 100 76
1 100 — 57 55 94 94 77 100 76
2 57 57 — 23 55 55 42 57 40
3 55 55 23 — 52 52 55 55 52
4 94 94 55 52 — 88 73 94 72
5 94 94 55 52 88 — 73 94 72
6 77 77 42 55 73 73 — 77 66
7 100 100 57 55 94 94 77 — 76
8 76 76 40 52 72 72 66 76 —

Table 13.: The results produced by Sherlock tool for the Calculator source codes with the -z 3 argument

The -z argument changes Sherlocks ”granularity”, a parameter that serves to discard part of the hash

values. By having a value of 3, the results will be more sensitive to any changes, which resulted in

small negative metric value (DM = -9.333).

Overall, we can see that Sherlock is a very specific tool and that further studies would have to be made

in order to ascertain the adequate parameters to use for specific situations.

B.6.2 Results for the 21 Matches source codes

For the 21 Matches source codes, the results (see Table 14) seem more accurate (DM = 63.556) than

the results for the Calculator source codes (see Table 11). This was likely due to the increased size of

the source codes which made the similarities overweight the changes.

117



B.7. Warwick’s Sherlock results

0 1 2 3 4 5 6 7 8
0 — 100 38 63 93 66 85 95 84
1 100 — 38 63 93 66 85 95 84
2 38 38 — 21 35 22 29 35 30
3 63 63 21 — 62 52 63 60 56
4 93 93 35 62 — 62 83 89 83
5 66 66 22 52 62 — 61 63 59
6 85 85 29 63 83 61 — 81 71
7 95 95 35 60 89 63 59 — 80
8 84 84 30 56 83 59 71 80 —

Table 14.: The results from the Sherlock tool for the 21 Matches source codes

B.7 WA RW I C K ’ S S H E R L O C K R E S U LT S

The Sherlock tool from the University of Warwick is quite different from Sydney’s. It has a GUI and

allows for the selection of several options such as: The types of source code transformations used in

the detection (such as Normalized and Tokenized) as well as several thresholds. It also shows results

in text formats, statistics and a graph of matches (as detailed in (Joy and Luck, 1999)). The free-text

results present a summary with each file and a measure that is calculated from the internal measures.

Note that these show a 90% to 100% match for most of the pairs except for the L2 files (comments

changed) which had 5% to 20%. Since the ”no comments” transformation was selected, we believe

that this decrease in the measure was because some of the comments were cut.

The following results will have the inner measures for the ”no comments, normalized” and the ”to-

kenized” source code transformations, which gives us a good idea of what is detected with each

transformation behind the free-text measures.

B.7.1 Results for the Calculator source codes

Table 15 shows us what the ”No Comments + Normalized” transformation on the source codes was

able to detect. While these measures are not optimal, we must remember that they are internal and

lead to some promising measures except for the second case (L2).

118



B.7. Warwick’s Sherlock results

0 1 2 3 4 5 6 7 8
0 — 98 98 56 93 82 63 88 61
1 98 — 98 56 93 82 63 88 61
2 98 98 — 56 93 82 63 88 61
3 56 56 56 — 56 56 57 41 35
4 93 93 93 56 — 77 62 83 58
5 82 82 82 56 77 — 63 70 39
6 63 63 63 57 62 63 — 59 37
7 88 88 88 41 83 70 59 — 49
8 61 61 61 35 58 39 37 49 —

Table 15.: The results from Warwick’s Sherlock tool for the Calculator source codes, using the No Comments +
Normalized transformation

With the Tokenized transformation, the results (see Table 16) suffer a big change which is both good

(for the cases involving L0 to L5) and bad (for the results which are either lower or missing). We

can see that it provides no benefit over the previous results, especially with missing values (DM =

-119.333).

0 1 2 3 4 5 6 7 8
0 — 100 100 100 100 95 19 42
1 100 — 100 100 100 95 19 42
2 100 100 — 100 100 95 19 42
3 100 100 100 — 100 95 28
4 100 100 100 100 — 91 19 28
5 95 95 95 95 91 — 25
6 19 19 19 19 — 48
7 —
8 42 42 42 28 28 25 48 —

Table 16.: The results from the Warwick’s Sherlock tool for the Calculator source codes, using the Tokenized
transformation

We can clearly see that this transformation was great for detecting plagiarism in the first 5 types of

plagiarism but did a lot worse on the ones after it. This is especially true for the seventh type (statement

order changed) that did not have any results presented.

119



B.7. Warwick’s Sherlock results

B.7.2 Results for the 21 Matches source codes

For the 21 Matches source codes we can see that the No Comments + Normalized results (see Table 17)

are a bit lower (DM = -25.556) but the Tokenized results are much better. This is likely due to the

source codes being bigger.

0 1 2 3 4 5 6 7 8
0 — 100 100 31 91 72 67 85 72
1 100 — 100 31 91 72 67 84 78
2 100 100 — 31 91 72 67 85 72
3 31 31 31 — 31 30 17 29 22
4 91 91 91 31 — 64 40 55 69
5 72 72 72 30 64 — 40 55 46
6 67 67 67 17 40 40 — 57 45
7 85 84 85 29 55 55 57 — 65
8 72 78 72 22 69 46 45 65 —

Table 17.: The results from Warwick’s Sherlock tool for the 21 Matches source codes, using the No Comments
+ Normalized transformation

As we can see on Table 18, the Tokenized transformation got a lot more results and actually went

beyond 100% on several cases. These results are overall better than the previous (DM = 109.556).

0 1 2 3 4 5 6 7 8
0 — 121 121 121 72 99 82 101 72
1 121 — 121 121 67 99 82 96 73
2 121 121 — 121 72 99 82 119 72
3 121 121 121 — 59 99 82 96 73
4 72 67 72 59 — 40 52 67 86
5 99 99 99 99 40 — 56
6 82 82 82 82 52 — 54 32
7 101 96 119 96 67 56 54 — 23
8 72 73 72 73 86 32 23 —

Table 18.: The results from the Warwick’s Sherlock tool for the 21 Matches source codes, using the Tokenized
transformation

We could say that similar to Sydney’s Sherlock, Warwick’s is also better at detecting similarities in

bigger source codes. But, even though it still has some rough cases, since these results are internal and

most final results have measures from 90 to 100% it is still a great improvement to the other Sherlock.

120



B.8. Spector results

B.8 S P E C T O R R E S U LT S

This tool can inspect files/directories and has an option (–output c) to print the result(s) in the console

as: ”File 1 - File 2 : calculation = resulting similarity measure” per line.

Note that only the Calculator results are available since this tool does not support the C language.

B.8.1 Results for the Calculator source codes

The results (see Table 19) from this tool give an asymmetrical table. We can see that several cases had

great similarity (0 to 4 and 7) measures and that the remaining ones were close to the results from the

Code Match tool (in Table 2).

0 1 2 3 4 5 6 7 8
0 — 100 100 100 100 94.928 77.363 100 82.494
1 100 — 100 100 100 94.928 77.363 100 82.494
2 100 100 — 100 100 94.928 77.363 100 82.494
3 100 100 100 — 100 89.573 80.142 100 77.119
4 100 100 100 100 — 94.928 77.363 100 82.494
5 95.386 95.386 95.386 90.02 95.386 — 76.578 95.386 79.643
6 70.022 70.022 70.022 69.801 70.022 68.808 — 70.022 59.954
7 100 100 100 100 100 94.928 77.363 — 82.494
8 80.86 80.86 80.86 75.519 80.86 80.171 64.002 80.86 —

Table 19.: The results from the Spector tool for the Calculator source codes

These results are mostly good indications of suspicious similarity between the files albeit some (below

70) are not strong indications.

121


	Contents
	1 Introduction
	1.1 Objectives
	1.2 Research Hypothesis
	1.3 Document structure

	2 State of the art
	2.1 Approaches
	2.2 Existing tools
	2.2.1 CodeMatch
	2.2.2 CPD
	2.2.3 JPlag
	2.2.4 Marble
	2.2.5 MOSS
	2.2.6 Plaggie
	2.2.7 SIM
	2.2.8 Sydney's Sherlock
	2.2.9 Warwick's Sherlock
	2.2.10 YAP

	2.3 Comparison of the existing tools
	2.3.1 Timeline
	2.3.2 Feature comparison
	2.3.3 Comparison of the results
	2.3.4 Strategy for testing the tools
	2.3.5 Testing the tools


	3 Spector Architecture
	3.1 Requirements
	3.2 Abstract Syntax Trees
	3.2.1 Artificial Nodes
	3.2.2 Identifiers
	3.2.3 Expressions
	3.2.4 Control structures
	3.2.5 Blocks


	4 Spector Implementation
	4.1 Development Decisions
	4.2 Features
	4.3 Implementation Structure
	4.4 Methodology
	4.4.1 Algorithm 1: Unaltered copy
	4.4.2 Comments changed
	4.4.3 Algorithm 2: Identifiers changed
	4.4.4 Scope changed
	4.4.5 Algorithm 3: Operands order switched
	4.4.6 Algorithm 4: Variable types and control structures replaced
	4.4.7 Statements order switched
	4.4.8 Algorithm 5: Group of calls turned into a function call or vice versa
	4.4.9 Main Algorithm


	5 Spector Tests
	6 Conclusions and future work
	A Source Codes used in the tests
	A.1 Hightlights
	A.2 The program, Calculator
	A.2.1 Original source code for the Calculator exercise and the 1st type of plagiarism.
	A.2.2 Source code for the Calculator exercise, with the 2nd type of plagiarism.
	A.2.3 Source code for the Calculator exercise, with the 3rd type of plagiarism.
	A.2.4 Source code for the Calculator exercise, with the 4th type of plagiarism.
	A.2.5 Source code for the Calculator exercise, with the 5th type of plagiarism.
	A.2.6 Source code for the Calculator exercise, with the 6th type of plagiarism.
	A.2.7 Source code for the Calculator exercise, with the 7th type of plagiarism.
	A.2.8 Source code for the Calculator exercise, with the 8th type of plagiarism.

	A.3 The program, 21 Matches
	A.3.1 Original source code for the 21 Matches exercise and the 1st type of plagiarism.
	A.3.2 Source code for the 21 Matches exercise, with the 2nd type of plagiarism.
	A.3.3 Source code for the 21 Matches exercise, with the 3rd type of plagiarism.
	A.3.4 Source code for the 21 Matches exercise, with the 4th type of plagiarism.
	A.3.5 Source code for the 21 Matches exercise, with the 5th type of plagiarism.
	A.3.6 Source code for the 21 Matches exercise, with the 6th type of plagiarism.
	A.3.7 Source code for the 21 Matches exercise, with the 7th type of plagiarism.
	A.3.8 Source code for the 21 Matches exercise, with the 8th type of plagiarism.


	B Test Results
	B.1 CodeMatch results
	B.1.1 Results for the Calculator source codes
	B.1.2 Results for the 21 Matches source codes

	B.2 JPlag results
	B.2.1 Results for the Calculator source codes
	B.2.2 Results for the 21 Matches source codes

	B.3 Marble results
	B.3.1 Results for the Calculator source codes

	B.4 MOSS results
	B.4.1 Results for the Calculator source codes
	B.4.2 Results for the 21 Matches source codes

	B.5 SIM results
	B.5.1 Results for the Calculator source codes
	B.5.2 Results for the 21 Matches source codes

	B.6 Sydney's Sherlock results
	B.6.1 Results for the Calculator source codes
	B.6.2 Results for the 21 Matches source codes

	B.7 Warwick's Sherlock results
	B.7.1 Results for the Calculator source codes
	B.7.2 Results for the 21 Matches source codes

	B.8 Spector results
	B.8.1 Results for the Calculator source codes



