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Yarn Periodical Errors Determination Using
Three Signal Processing Approaches

Vitor H. Carvalho, Michael S. Belsley, Rosa M. Vasconcelos and Filomena O. Soares

Abstract— This paper presents a study developed for identifying
the type and location of yarn periodical errors applying three
different signal processing approaches based on FFT - Fast
Fourier Transform, FWHT-Fast Walsh-Hadamard Transform
and FDFI — Fast Impulse Frequency Determination. Commercial
equipment uses exclusively a FFT approach which is not able to
clearly detect other yarn periodical fypes of errors, especially
impulse errors. The theoretical description of each signal
processing technique is presented, as well as their application to
several simulated errors, namely, sinusoidal errors, rectangular
errors, pulse errors and impulse errors.

Index Terms— Yarn Periodical Errors, Yarn Irregularities,
Yarn Hairiness, Walsh — Hadamard, Impulse Frequency
Determination

I. YARN PERIODICAL ERRORS

he existence of yarn irregularities occurring with a

constant frequency is a dominant source of imperfections

in. fabrics. These defects appear as high energy peaks in
the frequency analysis [1-3] of yarn characteristics. So, with
spectral analysis, it is possible to detect periodic errors in the
yarn production process. Hairiness [4-7] (protruding fibers
released from the main body of the yarn) (fig. 1) and
irregularities [1-3] (fig. 2), (classified as thin places - a
decrease in the mass during a short length (4 mm), thick places
-an increase in the mass, usually greater than 100% , and
lasting more than 4 mm and neps - huge amount of yarn mass
in a short length (typically from 1 to 4 mm)), are the major
yarn parameters to be analyzed for the occurrence of
periodical errors.
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Figure 1 — Yarn Hairiness
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Figure 2 — Yarn irregularities
However, there are two other types of errors |3, 8, 9]:

The first type (fig. 3) typically occurs due to the accumulated
dirt at the stretching rollers in the drafting systems, or the
displacement of the roller axis, producing a sinusoidal
imperfection in the spun yarn diameter.

Figure 3 - Accumulated dirt error

The second type (fig. 4) is generally due to imperfections in
the surface of the rollers, generating a periodic impulse fault
(imperfections in the raw material are seldom periodic).
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Figure 4 - Imperfection in the surface rollers error

To detect these yarn errors we have used three different signal
processing approaches [3] based on FFT (Fast Fourier
Transform), FWHT (Fast Walsh Hadamard Transform) and
FDFI (Fast Impulse Frequency Determination), instead of a
single strategy, based on FFT, as is the case in all present

commercial solutions.

II. SIGNAL PROCESSING APPROACHES THEORETICAL
CONSIDERATIONS

The results obtained are shown in terms of wavelengths (A
(m)), calculated according to equation (1) [1], as they give a
more meaningful result to the yarn producer.

P/ Sy
1000 7,
Where,
1 = step sample length (mm)
% = acquisition frequency (Hz)
fy = detected faults frequencies (Hz)

2 FET Approacs

The first approach is based on the FFT transform [10-12] with
a narrow bands definition to aggregate the harmonics, due to
the highly concentrated information of the spectrum. This can
be considered a periodogram. Equation (2) defines the DFT
(Discrete Fourier Transform) one-dimensional determination.
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where,

f —frequency (Hz)
The multiplicative constants can be grouped arbitrary, so the
DFT expression can be written as (3).

AR=D - A #=0.... /-1 3)

Where,

2 7
%,Kw — (1//‘/)3 / /1// (4)

From (3) it is necessary to carry out N complex multiplications
and N complex sums, which results effectively in 2N* complex
arithmetic operations. FFT algorithm is based on the
decomposition of the DFT calculus, in a sequence of longitude
N, decreasing each step by half.

Figure 5 shows the FFT algorithm for 8 samples.

DFT of 2 points

OFT of 4 points
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Figure 5- FFT algorithm for 8 samples based on DFT

Considering figure 5, the first step consists of calculating four
DFTs of 2 points, the second step, two DFTs of four points
and the last step one DFT of 8 points, always based on the
previous results.

The final analysis is performed considering the magnitude
spectrum (5) using energy bands.

Magnitude spectrum= |F (K)| 5

The intervals of the energy bands, for each decade, are
calculated by (6) [3].

, wl
int( /)= ""10" ©)

Where,
n= number of intervals
i= decade index (-3,..., 4) for [I mm, 10km}
i= interval index (0,..., n)

Then, all the wavelengths detected, at the corresponding
energy band, are summed and then multiplied by its number,
obtaining the final value of the energy band (7).

=4

a)) = /72 A(w) (7

=1
Where,
k= number of detected wavelengths in the band
w= index of detected wavelength
A (w)= wavelength amplitude at the index w

2 FHHT auoroach
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The Walsh functions create an ordered set of rectangular
waves presenting only two possible amplitudes, +1 and -1
[13,14]. They are dcfined over a limited interval and, as in the
case of trigonometric functions, two parameters are necessary
for its complete identification. Walsh functions are denoted by
WAL (n,t), where 7 represents the position in the defined
interval and # is the order number which is related to the
frequency and is equal to the number of sign changes.

Walsh functions are commonly classified using a notation in
terms of odd and even symmetries. Two series are presented,
the CAL series (odd) and the SAL series (even), which are
very similar to the trigonometric series COSIN and SIN,
respectively. The CAL (k,t) are symmetric in relation to the
mean point of the definition interval, while the SAL functions
SAL(k,t) are anti-symmetrical in relation to that point. They
are defined by (8) and (9):

CAU K D) = WAL(2A, D) (8)
SHLA, D) = WALQRA-1,7) ©)

where the k parameter is defined as the largest integer less or
equal to (n+1)/2.

Three main types of ordering the Walsh functions are known:
the sequential, the natural or Hadamard and the dyadic or
Paley. In the sequential order, functions are ordered in terms of
the sign changes of each wave (fig. 6); in the natural or
Hadamard order, the Walsh functions display a nested
structure; in the dyadic or Paley order, a Gray Code reordering
of the rows is followed. The Hadamard order is the one used in
this work, as it is computationally the most efficient. The
smallest Hadamard matrix that can be generated is shown in
(10). All the other matrices are formed recursively using
relation (11), where # is the number of bits in the sample to
analyse (2" samples).
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Figure 6 - The first 8 Walsh functions
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Figure 7 shows the first 8 Walsh functions ordered by the
natural or Hadamard form.

HAD(O 1)
HAD( 1)
HAD(2 1)

HAD(3 1)
HAD(4 1)
HAD(S 1)
HAD(E 1)
HAD(7 1)

Figure 7 - Hadamard or natural order for 8 samples

The result is an 8x8 matrix, presented in figure 8.

1 1 1 1

-1 1 -1 1 -1 1 -1
r -1 -1 1

-1 -1 1 r -1 -1 1
1 1 1 -1 -1 -1 -1
-1 I -1 -1 -1 1
1 -1 -1 -1 - 1 1
-1 -1 1 -1 1 1 -1

1
1
1
1
1
1
1
1

Figure 8 -Hadamard matrix for 8 samples

Finally, the Walsh-Hadamard transform is given by (12).

FWHT=[H0) A1) Hn-Dwr (12)
Where,

x= array of mass variation (0, 1,...., n-1)

n= 2" samples

3 DF Approacsk

The impulse frequency determination (DFI) is useful in the
detection of impulse errors [3, 8, 9]. Furthermore, the
sinusoidal, rectangular or pulse errors, are clearly detected by
the FFT and FWHT. However, impulse errors are not detected
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by the FFT and in the FWHT is not possible to distinguish
them from the other referred types. With the DFI they are
clearly identified. In the impulse error presented in figure 4, if
they exist stretching rollers in addition to those responsible for
the error, the error will be extended, causing an impulse error
with a longer width. So the DFI Transform was developed [3,
8, 9] to detect this kind of situation, following an approach
which consists in the multiplication of an error signal with a
coefficient matrix.

The error signal is obtained comparing each sample with a
predefined threshold. If the sample amplitude is ouiside the
threshold, the error signal takes the ‘1’ value, otherwise, it
takes the value ‘0’. Afterwards, a matrix is generated, where
all the admissible error periods are tested (from n/2 to (n/4)+1,
where n represents the number of samples) and phases (initial
points). As the n/4 period is multiple of the n/2 period, it is not
necessary to test it. In this matrix (R1), the error samples are
denoted by ‘1’ or by ‘0. It has a total number of rows (nl)
calculated by equation 13 and a number of columns similar to
the number of samples [3, 8, 9].

£/+~/1—/+1
,,/:;4_(/1_/_‘/)

13
2 2 4 ()

Figure 9 presents an example of a R1 matrix for 8 samples.

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0

Figure 9 - R1 matrix for eight samples

After generating the R1 matrix, the next step is to create a row
matrix which corresponds to the inverse of the number of
errors considered in each line of the R1 matrix, multiplied by
the number of samples.

Figure 10 presents the R2 matrix derived from matrix R1of
figure 9.

8/2 8/2 8/2 82 8/3 8/3 8/2

Figure 10 - R2 matrix for eight samples

Finally, the DFI is obtained by multiplying the error signal,
Y(n), with the matrixes R1 and R2, as specified in equation 14.

DI = () A .x 2 (14)

Where, 2(#2) Al = ZC,/ and ¢ is a coefficient which takes
/=1

0 or 1 for a certain row error multiplication (i).

A DFI analysis results in a column matrix, whose row indexes
indicate which sample segment contained an error signal. The
result can also be represented in terms of a presence function
in the interval [0,100] %, from equation 15.

A7 100 (15)
Vi

y,
Where «is an integer which varies from 0 to N, for a certain
tested error row (n)

As an example of the DFI determination, considering the error
signal y(n)=[1 00 10 1 1 1], the belonging percentage results
are described in table L.

Table I - Belonging percentage results for each R1 matrix line

a(l)
50%

a(0)
50%

a(2) a(3) a(4)

100%

a(5) a(6)

50% 100% 33.3% 50%

From table I, it is possible to conclude that rows 3 and 4
totally belong to the error (100%), rows 0, 1, 2 and 6 belong in
50% and row 5 belong in 33.3 %. So, the error signal can be
decomposed as presented by figure 11.

1 23 4 5 6 7

Tin) l
0

d
T 1

7

a(4)!::!:
01 2 3 4

_n 4
[ea}

Figure 11 - Error signal decomposition

Although good results were obtained, the previous described
algorithm causes computer memory problems if the number of
samples is considerable. So, a new version of the algorithm
was developed, considering that only the lines which have an
index from the error signal are analyzed. This approach is
called FDFI, Fast Impulse Frequency Determination.

& LDE Approact
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The FDFI is based on the determination of a matrix, R3,
containing the row indexes that have amplitude 1. This matrix
has a number of columns equal to the number of samples and a
number of rows equal to the number of periods contained in
the R1 matrix.. It is build by placing for each period (matrix
row), in a sequential and repetitive form, the indexes of the
rows which belong to it [3, 8, 9].

Table 1I presents an example of the R3 matrix for an 8 samples
signal, based on the R1 matrix (Fig. 9)

Table II - R3 matrix for a signal of 8 samples

0 | i) | i@ | i3 | i@ | K5 | e | i7

3(0) 0 1 2 3 0 ] 2 3

i) 4 5 6 4 5 6 4 5

To obtain, the line indexes to analyze, it is only necessary to
save in computer memory the first column of matrix R3. Using
equation 16 it is possible to obtain the results for the other
columns.

(16)

Where, MOD is the remainder of an integer division.

If it was necessary to generate the complete R1 matrix and use
the matrix R3 only as pointer indicator for the rows to be
analysed, there would be little gain in memory usage. However
the matrix R3 can be used to indicate the index of the row to
be analysed, as well as to generate the respective row on
demand, eliminating the need to save to memory the entire R1
matrix. Furthermore, it is only necessary to generate a number
of rows equal to the product of the number of errors detected
by the number of generated periods. As an example, for a 16
sample signal in which are detected 8 errors, there are
generated 32 rows (eight errors and 4 periods (8, 7, 6, and 5));
all the others have a null value.

The R1 matrix lines, for the indexes considered under matrix
R3, are generated under the following algorithm:

Period < w2-R3 row index (fron O to nl/4)
/
7y &= MOLX 7 )+/;0

=/

2

Litial Position —r,+;q
Forf—7l o< n je j + Period
M1y, J x dnirial Position] «—/

Lirial Posirion— 7/

In this algorithm, Jzza/ Position corresponds to the column
index where the first error ‘1’ is encountered, Aervod]
corresponds to the number of columns between errors, Row
Jidex, corresponds to the row index of matrix R3 to analyse,
#/, corresponds to the number of rows of matrix RI, 7
corresponds to the number of samples, being 47'the generated
row.

Considering the error signal previously presented, y(m)={100
1011 1], under FDFI it is only necessary to analyze the rows
described in table III.

Table III - R1 matrix line indexes to analyse

Sample index Rows to analyse
0 Oand 4
3 3and 4
5 1 and 6
6 2 and 4
7 3and5

The final result is a column vector with the number of rows of
matrix R1.

[11. EXPERIMENTAL RESULTS

In order to test the signal processing approaches we considered
a real acquired hairiness variation in reference to the average
yarn signal (figure 12 — original signal). Figures 13 and 14,
present the results obtained with the FFT and FWHT
techniques respectively. Then, four types of simulated errors
(periodical sinusoidal error, periodical rectangular error, pulse
error and periodical impulse error) were added to the original
signal and the spectrograms compared (only a single type of
error is considered for each case). A step length acquisition of
Imm was used.
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Figure 12 - Original signal Sirusoidal Enror

Sinnsoidal Erer 7

The adding result signal is px'esented by ﬁguxje 17.

nal= Sinu; or:

result for the or 1gmél signa

Any relevant protruding peaks are not observed in the FFT
diagram of figure 13, implying that no clear sinusoidal errors
were detected. However, considering the FWHT (fig. 14), a
very clear peak appears at 8mm, indicating that a periodic
rectangular pattern occurred at that wavelength.

7 Orjginal Signal with a Siusoidal £rror Adaed Analysis Figure n of sinusoidal error to the original signal
Figures 18 and 19 present the results of FFT and FWHT

A periodic sinusoidal error with amplitude of 20 %, over 128  approach for this situation, respectively.

cycles (figures 15 and 16) was added to the initjal signal (fig.

12).
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Fi§ure 18 — FFT result for the original signal with the
sinusoidal error

'IT i

Figure 19 — FWHT result for the original signal with the
sinusoidal error

Analysing figure 18 (FFT), it is verified that a relevant
protruding peak is now observed around 3 cm, detecting as
expected, a clear sinusoidal error at this wavelength. The
FWHT spectrogram (fig. 19) also presents, mainly, two new
protruding peaks around 3mm and 6 cm. So, as expected, we
can verify that a sinusoidal error is also detected by the
FWHT, but over several narrow bands. As we know when an
error does not match a tested waveform of the applied signal
processing technique, it is reflected over several waveforms at
different (usually harmonic) wavelengths (decomposition).

2 Orfginal Sigral with a Rectangular Lrvor Added Analysis

A positive periodic rectangular error with amplitude of 40 %,
over 256 cycles (figure 20 and 21) was added to the initial
signal (figure 12).

| signal

— Zoomed rectangular error adde
signal

Figure 21

The adding result signal is presented in figure 22.

” e,
Figure 22 - Addition of the rectangular error to the original
signal

Figures 23 and 24, present the results of FFT and FWHT
approach for this situation, respectively.
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Figure 23 — FFT result for the original signal with the
rectangular error

|

— FWHT result for the original
rectangular error

Figure 23 (FFT), contains a relevant protruding peak at around
2 c¢m and three others peaks, with minor amplitudes at
wavelengths near 2,3 and 5 mm. As expected, we can verify
that a rectangular error is also detected by the FFT over
several narrow bands in which the main error component
clearly protrudes over the spectrogram. The FWHT
spectrogram (fig. 24) also presents several new protruding
peaks around 3 and 5 mm, 3, 5, 7, 10 and 25 cm. However, the
more relevant new protruding peaks are at wavelengths 3mm,
5 and 25 cm. So, we can verify that a periodic rectangular
error is also detected over several bands by the FWHT as in
the EFT, probably because the added rectangular error does
not completely match a tested FWHT waveform. However, in
the FWHT the protruded peaks which are also detected in the
FFT have higher amplitudes, due to its close similarity to the
FWHT waveforms.

with the

Figﬁ;e g

3 Origrnal Signal with a Single Pulse Livor Adaed Analysis

A pulse error with amplitude of 100 %, over 256 samples at
the beginning (figure 25), was added to the initial signal
(figure 12).

: Pulse Error

ﬁigure 25 - Pulse error a(ﬁd to the original signal

ctangular error to the original
signal

Fig‘{n e

Figures 27 and 28, present the results of FFT and FWHT
approach for this situation, respectively.
§i =N
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Figure 27 — FFT result for the original signal with the pulse
error

crror

No new protruding peaks are observed in figure 27 (FFT),
highlighting that this technique is not at all sensitive to pulse
errors. This situation was expected because this is a non
periodical error. In FWHT (fig. 28) a new protruding peak is
observed around Smm probably because the simulated error
matched a tested waveform of the FWHT technique. It can be
concluded that the FWHT could be useful to detect pulse
eITors.

& Original Signal with a Periodical lnpulse Lrror Added
Aerlysis

A periodic impulse error with amplitude of 400 % every 384
samples, was added to the initial signal (figure 12), as
presented in figure 29.

'ﬁgure 29 - Impulse error added to the original signal

The resulting signal is presented in figure 30.

Figure 30 - Addition of the impulse error to the original signal

Figures 31 and 32 present the results of FFT and FWHT
approach for this situation, respectively.

Figur€31 —FFT result for the original signal with the impulse
error

™

F iéure 32 — FWHT result for the original signal with the
impulse error
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As no new protruding peaks are observed in figure 31 (FFT),
this technique seems to be unhelpful to detect impulse errors.
In FWHT (fig. 32), several alterations are observed: the main
protruding peak of the spectrogram around 8 mm as well as
several other ones, were severely reduced while a new
protruding peak is observed around 2.5 mm. Finally a
reinforcement of the amplitude of the protruding peak around
8 cm occurred. We can thus conclude that although the FWHT
detects this type of error, it is impossible to distinguish it, in
the spectrogram, from the pulse error. Therefore we turn to the
use of the FDFI.

Figures 33 and 34 present the signal processing results based
on FDF], tested for impulse errors with a threshold of 300%.

Figure 33 presents the error signal generated.
L F

Figure 33 - Error signal generated.
In figure 33 the error signal is distributed over the full range of
tested samples in accordance to the threshold defined, because
the source signal (fig. 12) as variations of 300% or greater
over the identified error signal samples. The considered error
samples are 0, 384, 768, 1152, 1536, 1920, 2304, 2688, 3072,
3456 and 3840.

The error signal was subsequently tested with 1573376
periodical impulse errors, resulting from (12) [6, 7],

considering a error sample length of 4096.

The signal of row error belongs is presented in figure 34¢

v

Figure 34 - FDFI row error belongs

Observing figure 34 we can verify that there are identified
periodic impulse errors as a result from the 100% row error
belongings detection (indicated with arrows in figure 34).
These errors are clearly identified in table IV, showing also
their initial position, period and number of impulses.

Table IV Description of the detected impulse errors

100 % row Initial position Period Nux:)lfl?er

error lines (sample) (sample) impulses
254016 0 1920 3
254400 384 1920 2
254784 768 1920 2
255168 1152 1920 2
255552 1536 1920 5
917760 0 1536 3
918144 384 1536 3
918528 768 1536 3
918912 1152 1536 2
1434048 0 1152 4
1434432 384 1152 4
1434816 768 1152 3

As it can be seen in table IV, it is verified that the signal error
is decomposed in 12 error lines, with initial positions in
indexes 0, 384, 768, 1152 and 1536, containing periods of
1152, 1536 and 1920 samples, resulting in a number of
impulses between 2 and 4.

IV. CONCLUSIONS AND FUTURE WORK

Different signal processing techniques based on FFT, FWHT
and FDFI were tested in a experimental hairiness spectrogram
for error detections. Sinusoidal, rectangular, pulse or
periodical impulse errors were added to the original signal.

The previously described analysis allows us to conclude that:

e Periodic sinusoidal errors are clearly distinguished
using the FFT approach over a narrow band and in
the FWHT over several bands where the main
components clearly rise over the spectrum.

e Periodic rectangular error is distinguished in the FFT
approach over several bands, where the main error
component clearly extends above the spectrum and in
the FWHT, also over several bands, if the error does
not match the tested waveforms of the technique (if a
match is verified a clearly narrow band will protrude).

s Pulse or periodic impulse errors are not detected by
the FET approach but are detected by the FWHT over
a narrow band, considering the pulse error and over
several bands considering the periodic impulse error.
However, it is difficult to distinguish, an impulse



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

error from a pulse error. For this it is best to use an
FDFI analysis.

e Periodic impulse errors are clearly detected by the
FDFI approach.

Then, considering the obtained results, we can affirm that a
detailed analysis of a detected error requires the use of all
three signal processing techniques.

Future work will include the development of new optimized
FDFI algorithms in order to reduce the associated
computational effort.
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