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Abstract Industrial lignocellulosic bioethanol processes are
exposed to different environmental stresses (such as inhibitor
compounds, high temperature, and high solid loadings). In
this study, a systematic approach was followed where the liq-
uid and solid fractions were mixed to evaluate the influence of
varied solid loadings, and different percentages of liquor were
used as liquid fraction to determine inhibitor effect. Ethanol
production by simultaneous saccharification and fermentation
(SSF) of hydrothermally pretreatedEucalyptus globuluswood
(EGW) was studied under combined diverse stress operating
conditions (30–38 °C, 60–80 g of liquor from hydrothermal
treatment or autohydrolysis (containing inhibitor com-
pounds)/100 g of liquid and liquid to solid ratio between 4
and 6.4 g liquid in SSF/g unwashed pretreated EGW) using an
industrial Saccharomyces cerevisiae strain supplemented with
low-cost byproducts derived from agro-food industry.
Evaluation of these variables revealed that the combination
of temperature and higher solid loadings was the most signif-
icant variable affecting final ethanol concentration and cellu-
lose to ethanol conversion, whereas solid and autohydrolysis
liquor loadings had the most significant impact on ethanol
productivity. After optimization, an ethanol concentration of

54 g/L (corresponding to 85% of conversion and 0.51 g/Lh of
productivity at 96 h) was obtained at 37 °C using 60 % of
autohydrolysis liquor and 16 % solid loading (liquid to solid
ratio of 6.4 g/g). The selection of a suitable strain along with
nutritional supplementation enabled to produce noticeable
ethanol titers in quite restrictive SSF operating conditions,
which can reduce operating cost and boost the economic fea-
sibility of lignocellulose-to-ethanol processes.
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Introduction

Nowadays, the use of renewable biomass to supply the in-
creasing energetic needs and to partially replace fossil fuels
is recognized as a suitable alternative to attain a sustainable
growth based on a bioeconomy. Liquid fuel (as bioethanol)
from lignocellulosic biomass is a promising solution since this
raw material is renewable, widespread, and with a huge po-
tential for the manufacture of products, without competing
with food crops [1]. In order to achieve a cost-effective ligno-
cellulosic bioethanol production process, industrial lignocel-
lulosic fermentations depend on overcoming specific chal-
lenges that differ from conventional food fermentations [2].
These limiting conditions are related with the stages involved
in the lignocellulosic process to produce ethanol.

Firstly, a pretreatment is necessary to break down the re-
calcitrant structure of lignocellulosic feedstock. Hydrothermal
treatment, as autohydrolysis or liquid hot water, uses water as
the only reaction medium and is considered an environmen-
tally friendly pretreatment that improves enzymatic sacchari-
fication of lignocellulosic biomass and solubilizes the
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hemicellulosic fraction into oligosaccharides [3, 4].
Nevertheless, the autohydrolysis liquor (liquid phase after pre-
treatment) from hydrothermal processing also comprises
sugar- and lignin-derived compounds (furans, weak acids,
and phenolic compounds), considered inhibitors of enzymes
and microorganisms used on saccharification and fermenta-
tion processes, respectively [5, 6].

Secondly, the whole slurry (liquor and pretreated biomass
altogether) can be submitted to simultaneous enzymatic sac-
charification and fermentation (SSF) process. The saccharifi-
cation and fermentation carried out in one stage presents more
advantages than in separate steps, such as the risk of contam-
ination and sugar inhibition effect are lower and the use of one
reactor reduces operational cost [7]. In SSF process, thermo-
tolerance is one of the most desired features of the fermenta-
tive microorganism, as high temperature (50 °C) is required
for efficient enzymatic saccharification of cellulose to glucose,
being the optimal operating temperature for Saccharomyces
cerevisiae (main yeast used in ethanol fermentation) in the
range of 25–30 °C [8]. In addition, the use of high-
temperature in industrial fermentation processes can also lead
to energy saving by (i) the reduction of cooling costs (mainly
in tropical countries where the temperature varies between
30–40 °C throughout the year), (ii) reducing the viscosity
leading to lower energy requirements for the homogenization
of the fermentation medium, and (iii) facilitating ethanol re-
covery [2, 9, 10].

Finally, a distillation of the SSF medium, for ethanol puri-
fication, is required as the last stage of the process. An indus-
trial process that operates at high solid loading leads to a final
ethanol concentration higher than moderate-low loadings, re-
ducing distillation cost and water consumption [11]. For this
purpose, ethanol concentration should be >4 % (w/w) which
corresponds to a lignocellulosic biomass loading of >20 %
(w/w) for saccharification and fermentation [12].
Nevertheless, the high solid loadings hamper substrate mixing
and consequently lead to poor mass transfer.

Together, the combination of these process challenges (in-
hibitor compounds, high temperature, and solid loadings) can
lead to synergistic effects on enzyme and yeast with consid-
erable impact on overall process performance. These
synergistic effects could have a higher negative effect than a
single factor on ethanol production being a necessary robust
microorganism with a stress-tolerant ethanologenic back-
ground, which could make the difference to attain feasibility
of lignocellulosic bioethanol process [13, 14].

In recent works, S. cerevisiae industrial strain PE-2, isolat-
ed fromBrazilian fuel ethanol industry, has shown noteworthy
fermentation efficiency and stress tolerance during industrial
fermentation [15–18], showing high ethanol tolerance for very
high gravity fermentation [19, 20], inhibitor resistance [16],
and high cell viability at temperatures above 35 °C [21].
Moreover, optimized nutritional fermentation media can

minimize the toxic effects of inhibitor compounds [22]. The
previous work improved the slurry fermentation yield by nu-
tritional supplementation using agro-industrial byproducts
(corn steep liquor, cheese whey, and yeast extract supplement-
ed with urea and K2O5S2), increasing 2.4 and 7.4-fold ethanol
production on separate and simultaneous saccharification and
fermentation, respectively [23].

This work aims to investigate and optimize lignocellulosic
simultaneous saccharification and fermentation under limiting
process conditions (high temperature, inhibitor compounds,
and high solid loadings) following the experimental procedure
scheme proposed in Fig. 1. For that, the whole slurry from
hydrothermal treatment of Eucalyptus globulus wood (EGW)
was used at different proportions for addressing the solid load-
ing and inhibitor effect. Autohydrolysis liquor (AL) from hy-
drothermal pretreatment (containing inhibitor compounds) at
different percentages (60–80 g of AL/100 g of liquid in SSF)
was mixed with unwashed and not dried pretreated EGW at
different liquid/solid ratios (4–6.4 g of liquid in SSF (contain-
ing different percentage of AL)/g of pretreated EGW) under
temperatures in the range 30–38 °C using an industrial robust
S. cerevisiae strain (PE2) and supplemented with optimized
low-cost agro-industrial byproducts in a simultaneous sac-
charification and fermentation process.

Materials and Methods

Raw Material

EGWwas collected in a local paper and pulp factory, milled to
pass an 8-mm screen, homogenized and stored in a dark and
dry place until use. EGW was assayed for extractives
(NREL/TP-510-42618), ashes (NREL/TP-510-42622), and
structural carbohydrate and lignin (NRL/TP-510-42618).
The composition of raw material (expressed in g/100 g
EGW oven-dry basis) was previously analyzed by Pereira
et al. [16] and listed in Table 1.

Autohydrolysis Pretreatment of EGW

The whole slurry (constituted by autohydrolysis liquor and
pretreated EGW solid) used in this study was obtained from
hydrothermal pretreatment of EGW (Fig. 1). For that, 800 g of
water was mixed with 100 g of wood (corresponding to initial
solid loading of 12.5 % w/w) in a stainless pressurized reactor
at maximal temperature (Tmax) of 210 °C under non-
isothermal conditions [24]. The percent of solid loading after
treatment was 8.65 g of pretreated EGW solid/100 g of AL.
After treatment, pretreated EGW solid was separated from
liquid phase (autohydrolysis liquor) by vacuum filtration and
washed for characterization of chemical composition and sol-
id yield (SY) determination. The glucan, xylan, and acetyl
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groups and Klason lignin content of solid fraction were quan-
tified following the procedures described above. One aliquot
of liquid phase or autohydrolysis liquor was filtered through
0.45-μm membranes to measure the glucose, xylose, acetic

acid, furfural, and hydroxymethylfurfural (HMF) by high-
performance liquid chromatography (HPLC). Other aliquot
was used for oligosaccharide quantification by acid
posthydrolysis (4 % of H2SO4, 121 °C for 20 min), filtered
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Mixing at different proportions to evaluate its effect on SSF* process

*SSF: Simultaneous Saccharification and Fermentation

**Liquid was composed by different percentages of autohydrolysis liquor

WATER

Fig. 1 Schematic representation
of the experimental procedure
followed in this work

Table 1 Composition of
Eucalyptus globulus wood, EGW
(g/100 g of wood in oven-dry
basis), hydrothermally pretreated
EGW (g/100 g of pretreated wood
in oven-dry basis), and
autohydrolysis liquor (g/L)

Solid yield, SY (g of pretreated EGW/100 g of EGW) 71.66

Nonvolatile compounds (g/100 g of EGW) 18.63

a. Chemical composition of EGWand pretreated EGWor solid phase after treatment (g/100 g, oven dry basis)

EGW Pretreated EGW (Tmax 210 °C)

Glucan 44.7 59.26

Xylan 16.01 1.95

Arabinan 1.09 0

Acetyl groups 2.96 0.29

Klason lignin 27.7 33.6

Extractives 2.1 –

Ash 0.2 –

b. Chemical composition of liquid phase or autohydrolysis liquor (g/L)

Glucooligosaccharides 1.15

Xylooligosaccharides 8.97

Arabinoologosaccharides 0

Acetyl groups 2.55

Glucose 0.64

Xylose 8.85

Arabinose 0.18

Acetic acid 3.11

HMF 0.33

Furfural 1.66
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through 0.45 μm and analyzed by HPLC. The oligomer con-
centration was determined by difference before and after
posthydrolysis. A third aliquot was dried at 105 °C to constant
weight for non-volatile compound (NVC) determination.

Evaluation of Stress Conditions on Simultaneous
Saccharification and Fermentation Assays: Experimental
Plan

The evaluation of ethanol production in SSF process was car-
ried using a Box-Behnken design (3 factors and central point
with 3 replicates, accounting for 15 total experiments). Three
independent variables related with stress conditions were stud-
ied: temperature (T, °C), percentage of autohydrolysis liquor
(AL, g of liquor/100 g of liquid in SSF or %), and liquid-to-
solid ratio (LSR, g of liquid in SSF/g of pretreated EGW solid
on dry basis). The variable LSR is inversely proportional to
percentage of solids and it can be calculated as follows:

% solid loading ¼ 1

LSR
⋅100 ð1Þ

Table 2 shows the fixed, independent, and dependent var-
iables used in this work, as well as the range studied. The
values of LSR and percentage of AL analyzed in this work
were chosen in basis of previous experience. Thereby, lower
level of LSR was chosen because it was previously shown to
be feasible even though in different process conditions
(washed pretreated EGW solid was used as substrate by itself
without the addition of autohydrolysis liquor as liquid in SSF
[25]). On the other hand, 60 % of AL was selected as mini-
mum level of inhibitor loading since this was successfully
assayed by Kelbert et al. [23]. Taking into account that the
temperature could have synergetic effect on the other two
variables, a wide range of temperature between 30 and
38 °C was assayed.

Microorganism and Yeast Cultivation

The strain used in this work was S. cerevisiae PE-2, isolated
from Brazilian bioethanol industry [16]. The industrial yeast
was maintained at 4 °C in agar YPD (2 % of peptone, 2 % of
glucose, 2 % of agar, and 1 % of yeast extract) plates. For
inoculum preparation, cells were pitched in 1-L Erlenmeyer
flasks (containing 400 mL of medium composed by 50 g/L of
glucose, 20 g/L of peptone, and 10 g/L of yeast extract) and
grown at 30 °C and 150 rpm for 24 h. After that, cells were
aseptically collected by centrifugation for 15 min at 8500 g
and 4 °C and resuspended in 0.9 % NaCl to achieve a concen-
tration of 200-mg fresh yeast/mL. The SSF experiments were
started with an initial inoculum concentration of 8-mg fresh
yeast/mL.

Simultaneous SSF Process

Pretreated EGW solid (unwashed and not dried) and
autohydrolysis liquor were mixed at varying LSRs, the calcu-
lations were performed in dry basis (Table 2). Different liquor
percentages were applied as liquid fraction (AL 60–80 %;
Table 2). Liquor was sterilized by filtration (0.22 μm) to avoid
additional sugar degradation, and pretreated EGW was steril-
ized by autoclave (121 °C, 20 min). pH was adjusted to 4.8,
using 0.05 N of sodium citrate buffer. SSF assays were carried
out in 100-mL Erlenmeyer flasks in an orbital incubator
(150 rpm). The enzymes Cellic Ctec2 and HTec2 (kindly sup-
plied by Novozymes, Bagsvaerd, Denmark) were added to
SSF assays at moderate enzyme to substrate ratio of 22.5
FPU/g and 500 UI/g for cellulase and xylanase, respectively
[24]. Enzyme activities of cellulase (120 FPU/mL), β-
glucosidase (779.8 UI/mL), and xylanase (1690 UI/mL) were
measured following standard procedures [26–28].

SSF experiments were supplemented with agro-industrial
byproducts (corn steep liquor, cheese whey, yeast extract,
urea, and K2O5S2) optimized previously [23]. Raw yeast ex-
tract (kindly provided by Fermentum Lda. microbrewery,
Portugal) was dried at 60 °C until no weight variation,
crushed, sieved, and supplemented to SSF experiments with
concentration of 4.1 g/L. Cheese whey was kindly provided
by Quinta dos Ingleses (Agro-Livestock Company, Portugal)
and used directly in a concentration of 16.5 g/L. Cheese whey
and yeast extract were pasteurized at 60 °C for 60 min and
added aseptically to the SSF experiments. Corn steep liquor
and K2O5S2 solution were autoclaved (121 °C, 20 min) and
added to achieve a final concentration in SSF experiments of
5.8 and 0.33 g/L, respectively. Urea was sterilized by filtration
(0.22 μm) and added to the SSF experiment (0.86 g/L).

SSF assays were conducted in Erlenmeyer flasks with per-
forated rubber stoppers enclosing glycerol-filled air locks to
allow exhaustion of CO2 while avoiding entrance of air.
Samples were withdrawn at 0, 7, 23, 31, 47, 71, 96, 122,
and 143 h, centrifuged (8000 for 10 min) and analyzed by
HPLC for glucose, xylose, acetic acid, and ethanol
concentration.

In order to evaluate the pretreatment and SSF process, sev-
eral parameters were determined to enable data interpretation.
Cellulose to ethanol conversion (CEC, g of ethanol/ 100 g of
ethanol potential) was calculated as follows (NREL/TP-510-
42630):

Cellulose to Ethanol Conversion

¼ EtOH½ � f− EtOH½ �0
0:51 � f Biomass½ � � 1:111 ⋅100% ð2Þ

where [EtOH]f is the ethanol concentration at the end of the
fermentation (g/L); [EtOH]0 is the ethanol concentration at the
beginning of the fermentation (g/L) which should be zero;
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[Biomass] is dry biomass or LCM concentration (corrected by
the solubilization of glucan and xylan during the enzymatic
saccharification) at the beginning of the fermentation (g/L); f
is the cellulose fraction of dry biomass (g/g); 0.51 is the factor
for glucose to ethanol based on stoichiometric biochemistry of
yeast; and 1.111 is the conversion factor of cellulose into
equivalent glucose.

Ethanol productivity (Qpt, g/Lh) was defined as the ratio
between ethanol concentration at time t (Et) and total SSF
time, and it was calculated as follows:

Qpt ¼
Et

t
ð3Þ

Fitting of Data and Modeling

To obtain the responses of ethanol production, cellulose to
ethanol conversion, and ethanol productivity, experimental
data were fitted to the proposed models using commercial
software (STATISTICA 7 and Statgraphics Plus 5.1).
Response surface methodology (RSM) was used for optimi-
zation of studied variables.

Analytical Methods

Samples from analytical composition of raw material,
pretreated EGW solid, autohydrolysis liquor, and SSF assays
were analyzed for glucose , xylose , acet ic acid ,
hydroxymethylfurfural (HMF), furfural and ethanol by high-
performance liquid chromatography (HPLC) using a Varian
MetaCarb 87H column (300x7.8 mm), eluent H2SO4 0.005M
at 60 °C, at a flow rate of 0.7 mL/min with a Jasco 830-IR

refractive-index detector (for sugars and acetic acid) and UV
detector JASCO set at 210 nm (for furfural and HMF).

Results and Discussion

Hydrothermal Pretreatment of Eucalyptus globulus
Wood: Chemical Composition

Conditions of hydrothermal treatment were chosen in ba-
sis of previous work in which the highest recovery of
polysaccharides (measured as glucose from enzymatic
hydrolysis of cellulose and as sum of xylose and
xylooligosaccharides from liquid phase after pretreat-
ment) was attained [4]. Table 1 shows the chemical com-
position of raw material, pretreated EGW solid, and
autohydrolysis liquor. After treatment, 95 % of cellulose
and 87 % of lignin were recovered quantitatively in solid
phase and 81.1 % of xylan was solubilized into xylose
and xylooligosaccharides achieving a concentration of
8.89 and 8.97 g/L, respectively. As consequence of pre-
treatment hardness, hexoses and pentoses were
dehydrated to HMF and furfural (0.66 and 1.66 g/L),
respectively. In addition, the acetyl groups were released
to autohydrolysis liquor in the form of acetic acid
achieving a concentration of 3.11 g/L. These inhibitor
degradation products represented 25 % (w/w) of total
non-volatile compounds in the autohydrolysis liquor.
Chromatogram of autohydrolysis liquor is shown in
Fig. S1 of supplementary data. The chemical composi-
tion of autohydrolysis liquor and pretreated EGW solid is
typically of hardwoods and is comparable with previous
reported data [29]. The pretreated EGW was directly

Table 2 Operational conditions
used on study of simultaneous
saccharification and fermentation
(SSF) of hydrothermally
pretreated EGW

a. Operational conditions of SSF study

Abbreviated name Values or range

Fixed variables

pH of SSF assays 5

Agitation (rpm) 150

Enzyme loadings

Cellic Ctec2 (FPU/g) 22.5

Cellic Htec2 (UI/g) 500

Independent variables

Temperature (°C) T or x1 30–38

Percentage of autohydrolysis Liquor (g of liquor/100 g of liquid in
SSF or %)

AL or x2 60–80

Liquid-to-solid ratio (g of liquid in SSF/g of pretreated EGW solid) LSR or x3 4–6.4

Dependent variables

Ethanol concentration at 122 h (g/L) EC122 or y1
Cellulose to ethanol conversion at 122 h (g/100 g) CEC122 or y2
Ethanol productivity at 96 h (g/Lh) Qp96 or y3

754 Bioenerg. Res. (2016) 9:750–762



used as substrate in an SSF process without washing and
drying steps avoiding additional processing cost which
would improve the implementation of a large-scale in-
dustrial process.

Simultaneous Saccharification and Fermentation Assays
of Pretreated EGW Solid Using Autohydrolysis Liquor
as Liquid Medium

In order to evaluate operational conditions of SSF process,
pretreated EGW solid (unwashed and not dried) was mixed
with autohydrolysis liquor under conditions described in
Tables 2 and 3. This substrate while having carbon source is
nutritionally deprived compromising the good performance of
the yeast strain that has to deal simultaneously with different
stress factors. Currently, byproducts from agro-food industries
are generated in considerable quantities worldwide [30], being
their use as nutritional source an attractive alternative to attain
more cost-effective process. Corn steep liquor (byproduct of
cornwet milling) is a clear example of this, used commercially
as a supplement to growth media. In this context, low-cost
nutritional supplementation (composed by corn steep liquor,
cheese whey, raw yeast extract, urea, and K2O5S2), previously
optimized [23], was added to improve fermentation rates.
Industrial S. cerevisiae PE2 strain was chosen on the basis of
previous screening using the same autohydrolysis liquor at
30 °C [16], since it showed higher fermentation performance
comparing to other strains isolated from industrial environ-
ments (cachaça, first-generation bioethanol and cacao indus-
tries) and to laboratorial strains.

Glucose concentration (data not shown) was consumed
within the first 8 h for experiments carried out at 30 °C

independently of inhibitor loading (autohydrolysis liquor)
and at 34 °C for the 60 % of AL. On the other hand, the
glucose was consumed within 48 h in the experiments per-
formed at 34 °C for the other percentages of AL at LSR >4 g/g
and at 38 °C for 60 and 70% of AL. It is important to highlight
that the glucose was not totally consumed in SSF assays at
38 °C, for the 70 and 80 % AL and LSR of 4 and 5.2 g/g
(intermediate and extreme conditions of the experimental de-
sign) in which the glucose was accumulated to 58 and 80 g/L
in the late fermentation phase. This low fermentation perfor-
mance was also observed by Zhu et al. [31] using diluted acid
pretreated corn stover at 38 °C probably due to low viability of
the yeast strain. On the other hand, in this work, glucose was
consumed before 96 h of saccharification and fermentation
when the temperature was 34 °C and the autohydrolysis liquor
was 80%. These results show a clear influence of temperature
on glucose consumption by the industrial strain in presence of
high percentage of autohydrolysis liquor. More inhibitory ef-
fect of ethanol concentration with an increase of temperature
has been reported by different authors [32, 33]. The same
synergistic effect pattern of autohydrolysis liquor percentage
and temperature has been previously reported in which an
increase of the inhibitor liquor effect could be observed with
the rise of temperature [34]. High temperature and presence of
inhibitor compounds induce common stress responses to pro-
tect yeast cell from damage associated with them [35].

Xylose concentration (data not shown) varied in the range
of 10.3–23.1 g/L, achieving a complete hydrolysis of
xylooligosaccharides into xylose. The highest values of xy-
lose were obtained in experiments 4, 8, and 12 where the
temperature (34 and 38 °C) and autohydrolysis liquor percent-
age (70 and 80 %) were higher. This fact can be related with

Table 3 Box-Behnken
experimental design employed to
assess the simultaneous
saccharification and fermentation
of hydrothermally pretreated
EGW under stress conditions of
temperature (T), presence of
inhibitors (AL), and high solid
loadings (LSR)

Run T (°C), x1 ALa (%), x2 LSRb (g/g), x3 EC122 (g/L), y1 CEC122 (g/100g), y2 Qp96 (g/Lh), y3

1 30 (−1) 60 (−1) 5.2 (0) 46.0 79.8 0.427

2 38 (1) 60 (−1) 5.2 (0) 47.3 82.0 0.478

3 30 (−1) 80 (1) 5.2 (0) 44.5 77.2 0.413

4 38 (1) 80 (1) 5.2 (0) 12.4 21.5 0.111

5 30 (−1) 70 (0) 6.4 (1) 38.2 79.8 0.332

6 38 (1) 70 (0) 6.4 (1) 41.0 85.6 0.373

7 30 (−1) 70 (0) 4 (−1) 53.6 74.1 0.519

8 38 (1) 70 (0) 4 (−1) 10.3 14.2 0.092

9 34 (0) 60 (−1) 6.4 (1) 46.2 96.5 0.440

10 34 (0) 80 (1) 6.4 (1) 42.9 89.7 0.398

11 34 (0) 60 (−1) 4 (−1) 59.2 81.9 0.614

12 34 (0) 80 (1) 4 (−1) 48.5 67.0 0.072

13 34 (0) 70 (0) 5.2 (0) 47.8 82.9 0.464

14 34 (0) 70 (0) 5.2 (0) 46.5 80.6 0.467

15 34 (0) 70 (0) 5.2 (0) 48.1 83.5 0.492

a Percentage of autohydrolysis liquor: g of liquor/100 g of liquid in SSF
bRatio between g of liquid (composed by different percentages of AL)/g of pretreated EGW
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higher autohydrolysis liquor percentage (containing xylose
and xylooligosaccharides) and favorable conditions for en-
zyme activity (temperature>30 °C), contributing to the hy-
drolysis of the enduring xylan in the pretreated EGW biomass
by cellulases and hemicellulases. Regarding acetic acid, the
concentration was almost constant during SSF process, with
concentrations in the range of 2.97–3.95 g/L.

Figure 2 displays the time course of ethanol produc-
tion for all conditions studied in this work, in which
different lag phases of SSF assays can be observed,
directly related with the glucose uptake discussed previ-
ously. Furan compounds (furfural and HMF) are re-
duced to less inhibitor alcohols by yeast, being the main
cause for different lag phase times in ethanol fermenta-
tions at different percentages of autohydrolysis liquor
(containing inhibitor compounds) [36]. Variation in the
lag phases between 1.5 and 25 h were also reported for
fermentation of spruce hydrolysate at 0, 25, and 50 %
and 35 °C, as well as absence of growth with 80 % of
hydrolysate after 140 h [36].

In this work, most experiences entered stationary phase at
96 h of saccharification and fermentation (Fig. 2), in which the
ethanol productivity (Qp96) was calculated and listed in
Table 3. Results show that the highest productivity value
(0.614 g/Lh) was obtained at intermediate temperatures
(34 °C), low inhibitory loading (60 % of AL) and the highest
solid loading (LSR=4 g/g). Low liquid-to-solid ratio (corre-
sponding to high solid loading) and low percentage of
autohydrolysis liquor allowed good yeast performance due
to higher substrate availability and reduced furan compound
inhibition, alongside with intermediate temperature which al-
lows good enzymatic performance without compromising
yeast viability. As a general trend, ethanol productivities
>0.4 g/Lh were achieved at 30 and 34 °C using LSR of 4
and 5.2 g/g.

In this work, the maximal concentration of ethanol for each
SSF assay was achieved at 143 h and varied in the range of
13.7–61.1 g/L (CEC of 18.9 and 84.4 %) corresponding to
experiments 8 and 11, respectively. Maximal ethanol concen-
tration was obtained for the highest solid loading (LSR=4 g/
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g), intermediate temperature (34 °C) and lowest percentage of
autohydrolysis liquor, corresponding to better performing
conditions previously discussed regarding productivity. In
comparison with results obtained at 30 °C, the difference in
the ethanol concentration could be due to a deficient enzymat-
ic hydrolysis taking into account the low temperature. Ethanol
concentration higher than 55 g/L was obtained in experiments
7, 11, and 12 in which the LSR was 4 g/g or 25 % of solids.
Moreover, ethanol concentration >40 g/L was obtained at
143 h in all studied conditions except for experiments 4 and
8, carried out at 38 °C with 70 and 80 % of AL.
Chromatogram of the sample from the SSF experiment (run
9 at 47 h) is shown in S2 of supplementary data.

Regarding the cellulose to ethanol conversion, the highest
values were achieved for the lowest solid loading
(LSR=6.4 g/g) independently of temperature and percentage
of autohydrolysis liquor. This effect of the solid loading on
cellulose to ethanol conversion can be linked to a reduction on
enzymatic efficiency. Higher solid loadings can influence neg-
atively the mixing properties in the fermentation medium,
reducing enzymatic access to the cellulose and conversion
efficiency.

Response Surface Methodology Assessment

Screening studies for tolerant S. cerevisiae are generally
aimed at individual stresses, while the resistance to mul-
tiple stresses has received less attention [37–39]. This
integrated approach should be considered since the com-
bined effect of stresses is the great challenge of sacchar-
ification and fermentation process for industrial ligno-
cellulosic ethanol production. Moreover, when taking
into account SSF processes, the imposed stresses can
affect simultaneously the enzyme and yeast perfor-
mance, amplifying the need for an integrated study tak-
ing into account multiple inhibitions during the whole
cellulose to ethanol conversion process. The influence
of SSF operational conditions on ethanol production,
ethanol conversion, and ethanol productivity presents
an elevate grade of complexity due to the variable in-
teraction, as it can be seen in Tables 3 and 4. In this
sense, the RSM is a useful tool for the easy visualiza-
tion of independent variable effects on dependent vari-
ables as well as for the prediction of results within the
studied range [40]. Table 3 recollected the dependent
variables studied in this work: ethanol concentration at
122 h (EC122 in g/L), cellulose to ethanol conversion at
122 h (CEC122 in g/100 g), and ethanol productivity at
96 h (Qp96 in g/Lh). Ethanol concentration and conver-
sion were chosen at 122 h of saccharification and fer-
mentation as in the next time point, the ethanol concen-
tration started to decrease in some experiments. These
experimental variables were correlated with independent

variables (T, AL, and LSR) by a second-order polyno-
mial equation, as follows:

y j ¼ b0 j þ
X3

i¼1

bi jxi þ
X3

i¼1

X3

k ≥ i
bik jxixk

where yj (j= 1 to 3) is the dependent variable; xi or xk (i
or k: 1 to 2, k≥ i) are the normalized, independent var-
iables (defined in Table 3), and b0j…bikj are regression
coefficients calculated from experimental data by multi-
ple regression using the least-squares method.

Table 4 recollects the regression coefficients (b0j…b23j),
the statistical significance (based in the Student’s t test), and
the statistical significance of the model (based on Fischer’s F
parameter). The parameters summarized in Table 4 verified
the good fitting of dependent and independent variables by
the empirical models. The average coefficient (R2) of the
models was >0.96 for studied dependent variables, which
shows that the model is suitable to represent the correlation
among selected variables.

Figure 3 shows a graphic representation of the interaction
of temperature, percentage of autohydrolysis liquor, and liquid
solid loading on ethanol concentration, fixing three levels (−1,
0, and 1). The linear coefficient was significant at p≤0.05 for
the temperature and percentage of autohydrolysis liquor
(Table 4). On the other hand, the quadratic coefficient was
significant for temperature and LSR and interaction coeffi-
cient for the combination of temperature and LSR (Table 4).
Figure 3a shows the different behaviors obtained at 30, 34,
and 38 °C for LSR and percentage of autohydrolysis liquor on
ethanol production. The reported results at 38 °C showed the
clear influence of temperature on ethanol concentration, lead-
ing to higher concentration between 30 and 50 g/L comparing
to results obtained at 30 °C, where concentration of ethanol
was in the range of 30–38 g/L at high solid loadings
(LSR = 4 g/g) and percentage of autohydrolysis liquor
<76 %. This performance is probably due to a lower enzyme
activity at 30 °C, showing that the temperature was a more
limiting variable than low LSR (or high solid loading) and
percentage of autohydrolysis liquor on ethanol concentration.
In fact, Mutturi and Lidén [34] reported a decrease of glucose
release (18 %) of saccharification of pretreated arundo 32 °C
comparing to 39 °C, indicating that yield of ethanol at 32 °C
on SSF process could be significantly lower than at 39 °C. At
34 °C, an ethanol concentration higher than 40 g/L was ob-
tained under all conditions. This pattern is in agreement with
reported works in which the selected temperature for SSF
process is usually 35 °C [36, 41]. Results indicate that the
inhibitor effect is more expressive at higher temperatures.
High temperature stress has great influence on cellular pro-
cesses: inhibition of cell division, imbalance of protein ho-
meostasis, and difficulty on coupling of oxidative
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Table 4 Regression coefficients
and statistical parameters
measuring the correlation and
significance of models for
independent variables: liquid/
solid ratio (LSR), temperature
(T), and percentage of
autohydrolysis liquor (AL)

Model parameters E122h or y1 (g/L) CEC122h or y2 (g/100 g) Qp96h or y3 (g/Lh)

b0 (Intercept) 47.447 82.335 0.474

Linear

T (b1) −8.926b −13.453a −0.080a

AL (b2) 0.4118b −10.599b −0.121a

LSR (b3) 1.769 −14.282a −0.031c

Quadratic

T (b11) −6.298b −18.766b −0.085b

AL (b22) −11.675c 1.575 −0.033
LSR (b33) −0.003 −0.150 −0.061b

Interaction

T ×AL (b12) −8.342 −14.476b −0.088a

T ×LSR (b13) −11.540b −16.436b −0.117a

AL×LSR (b23) −1.872 −2.015 −0.125a

F 5.846 9.628 24.075

R2 0.913 0.945 0.977

Significance level >96 >98 >99

a Coefficient significant at ≥ 99 % confidence level
b Coefficient significant at ≥ 95 % confidence level
c Coefficient significant at ≥ 90 % confidence level

0

10

20

30

40

50

60

70

4.0

4.5

5.0

5.5

6.0

60

65

70

75

80

E
t
h

a
n

o
l
 
C

o
n

c
e
n

t
r
a
t
i
o

n
,

 
E

C
1
2
0
 
(
g

/
L

)

L
S
R
 (g

 o
f liq

u
id

/

g
 o

f p
re

tre
a
te

d
 E

G
W

)
Perc

enta
ge o

f A
L (%

)

a)

T=30 ºC

T=34 ºC

T=38 ºC 

0

10

20

30

40

50

60

70

4.0

4.5

5.0

5.5

6.0

30
31

32

33

34

35

36

37

38

E
t
h

a
n

o
l
 
C

o
n

c
e
n

t
r
a
t
i
o

n
,
 

E
C

1
2
2
 
(
g

/
L

)

L
S
R
 (g

 o
f liq

u
id

/

g
 o

f p
re

tre
a
te

d
 E

G
W

)

Tem
pera

tu
re

 (º
C

)

b)

60 % H

70 % H

80 % H

0

10

20

30

40

50

60

70

60

65

70

75

80

30

31

32

33

34

35

36

37

38

E
t
h

a
n

o
l
 
C

o
n

c
e
n

t
r
a
t
i
o

n
,

E
C

1
2
2
 
(
g

/
L

)

P
e
rc

e
n
ta

g
e
 o

f A
L
 (%

)

Tem
pera

tu
re

 (º
C

)

c)

LSR = 4 g/g 

LSR = 5.2 g/g

LSR = 6.4 g/g

Fig. 3 Response surface of ethanol concentration at 122 h (EC122) of
simultaneous saccharification and fermentation process on a percentage
of autohydrolysis liquor (AL) and LSR (fixed temperature at 30, 34, and

38 °C); b autohydrolysis liquor and temperature (fixed percentage of AL
at 60, 70, and 80 %); and c temperature and autohydrolysis liquor (fixed
LSR at 4, 5.2, and 6.4 g/g)

758 Bioenerg. Res. (2016) 9:750–762



phosphorylation [41] which could hinder the biological detox-
ification of inhibitor compounds. Studies related with temper-
ature tolerance of S. cerevisiae have demonstrated that differ-
ences of less than 1 °C have great influence on growth, non-
growth, and death of yeast at temperature range of 37–43 °C
[42]. Figure 3b, c show ethanol concentration as function of
temperature and LSR (fixing the percentage of autohydrolysis
liquor at 60, 70, and 80 %) and temperature and percentage of
autohydrolysis liquor (fixing LSR at 4, 5.2, and 6.4 g/g), re-
spectively. At 38 °C, ethanol concentration increased slightly
with a decrease of LSR. On the other hand, ethanol concen-
tration decreased for increasing of autohydrolysis liquor per-
centage. At fixed percentage of autohydrolysis liquor of 60%,
ethanol concentration was 1.7-fold higher at 38 °C compared
to 30 °C. On the other hand, ethanol concentration was 1.4-
fold higher at 30 °C than 38 °C with 80 % of autohydrolysis
liquor. In addition, differences in the autohydrolysis liquor
loading of 5 % (60 to 65 % of AL) implied a decrease of
ethanol concentration of 39.2 % (34 to 24.4 g/L). Favaro
et al. [38] also reported a decrease of ethanol concentration
(43.4 to 18.6 g/L) with 50 and 75% of sugarcane hydrolysate,
respectively, using a thermotolerant S. cerevisiae Fm17 strain
isolated from grape marc.

Figure 3c shows that ethanol concentration for LSR of
6.4 g/g had an almost linear behavior regarding variation of
temperature and percentage of autohydrolysis liquor.
Nevertheless, LSR of 4 and 5.2 g/g show a maximum at
34 °C. The optimal conditions for maximal concentration of
ethanol were calculated and predicted a concentration of
58.6 g/L under the following conditions: 30 °C, 60 % of
AL, and LSR=6.4 g/g.

Cellulose to ethanol conversion correlation with indepen-
dent variables was represented in Fig. 4a in which LSR was
fixed at 4 g/g (higher solid loadings). As it can be seen, cel-
lulose to ethanol conversion higher than 90% was obtained in
a wide range of operating conditions at temperatures above
31.5 °C. In addition, cellulose to ethanol conversion of 100 %
was also achieved for a percentage of autohydrolysis liquor
lower than 70 %. These results show an interesting range of
limiting process conditions (high solid and autohydrolysis li-
quor loadings) in which ethanol conversion achieves compet-
itive values. This aspect is important from the industrial point
of view since the reduction of additional washing steps (using
the autohydrolysis liquor) and water consumption (with low
liquid-to-solid ratios) without losses on ethanol yield has a
direct impact in the economic efficiency of lignocellulosic
ethanol processes. A remarkable decrease on ethanol yield
was reported by Liu et al. [43] when increasing the solid
loading from 20 to 25 % of whole slurry from steam-
exploded corn cob at 39 °C. For the results hereby presented,
the empirical model predicted a maximal ethanol conversion
of 100 % using 60 % of autohydrolysis liquor, liquid/solid
ratio of 4 g/g (or 25 % solids) and temperature of 35.9 °C.

The presence of inhibitors seems more harming at high LSR.
This result can be due to lignocellulosic biomass ability to
absorb or react with compounds present in the autohydrolysis
liquor. Considering that SSF has a solid (lignocellulosic bio-
mass) and a liquid (autohydrolysis liquor) phase, interaction
between phases can occur. Compounds present in the
autohydrolysis liquor can be absorbed or react with the ligno-
cellulosic biomass, making them less available in the liquid
phase and therefore less harmful for the yeast. Liu et al. [43]
also observed this behavior at high glucan loading for enzy-
matic saccharification. However such relation cannot be di-
rectly established given that the coefficient for interaction be-
tween percentage of autohydrolysis liquor and LSR was not
considered statistically significant considering the empirical
model for cellulose to ethanol conversion. According to
Table 4, linear, quadratic, and interaction coefficients were
significant at p≤ 0.05 for temperature. Linear coefficients
were also significant for variables: percentage of AL and
LSR. Moreover, Fig. 4b represents the predicted values of
ethanol conversion (CEC) as function of temperature and
LSR at fixed 80 % of autohydrolysis liquor (the highest inhib-
itor loading). Eighty percent of ethanol conversion was
achieved at temperature <36 °C and LSR of 4 g/g. These data
reveal the influence of autohydrolysis liquor percentage on
SSF process since, with washed pretreated EGW (without
autohydrolysis liquor) under same conditions of pretreatment
(Tmax of 210 °C), the ethanol conversion increases with rise of
LSR [25], showing a different behavior.

Figure 5a, b represents the ethanol productivity fixing the
percentage of autohydrolysis liquor in 60 % (in which the
ethanol productivity was more elevated) and LSR=4 g/g
(the highest solid loading). The interaction of all studied var-
iables had a significant effect (p ≤ 0.01) (see Table 4).
Maximal ethanol productivity (Qp96=0.631 g/Lh) was pre-
dicted by the empirical models for the following operational
conditions: 31.4 °C, 60 % of AL, and LSR=6.4 g/g.

Currently, literature collects few studies of lignocellulosic
ethanol production with the evaluation of more than one stress
factor on simultaneous saccharification and fermentation pro-
cess [13, 14, 38, 43, 44]. Most of them follow strategies as
screening of industrial strains and/or improvement of strain
robustness tools such as evolutionary engineering and/or ge-
nome shuffling [35, 36]. Results obtained in this work with
high solid and autohydrolysis liquor loadings can be favorably
compared to previously reported data [38, 43].

Optimization of Ethanol Production: Operational
Conditions Selection and Model Validation

Ethanol concentration and conversion were maximized by
multiple response optimization models. The predicted condi-
tion (55.8 g/L and 100 % of conversion) was obtained under
the following conditions: temperature of 37 °C, 60 % of AL,
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and LSR of 6.4 g/g. In order to validate this optimal condition,
an additional experiment was carried out. The experimental
validation results were as follows: 53.8 g/L, 85 %, and 0.51 g/
Lh, respectively (relative error ≤10 %). In order to compare

with separate hydrolysis and fermentation (SHF) process, an
additional assay was carried out under optimal conditions.
First step of hydrolysis was performed at 50 °C to favor the
enzyme action and the second step of fermentation at 37 °C.
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After 96 h of enzymatic hydrolysis, 86 g/L of glucose was
obtained which was used for fermentation. Ethanol concentra-
tion was 39.7 g/L (corresponding to 74 % of cellulose to
ethanol conversion). Data were displayed in supplementary
data Fig. S3.

Besides this optimization, in a wide range of restraining
conditions of SSF process, suitable results of cellulose to eth-
anol conversion (60–80 %) were obtained for a temperature
range between 36 and38 °C using 80 % of AL at LSR=4 g/g
(or 25 % solid loading). In this study, the complete separation
of the liquid and solid phases of the whole slurry was carried
out to study the effect of the different stress factors. In a pro-
cess perspective, partial separation by a simple operation unit
like for instance decantation could be conducted to adjust the
whole slurry to reach the optimal LSR and percentage of
autohydrolysis liquor hereby determined.

Conclusion

The integrated approach followed in this work addresses the
real requirements of lignocellulosic ethanol industry.
Synergistic effects between temperature, percentage of
autohydrolysis liquor, and liquid/solid ratio and their effect
on the responses studied were shown, by the empirical
models, as having negative impact on ethanol production,
taking into account the whole SSF process. These results in-
dicate a significant influence of temperature on yeast tolerance
to inhibitor compounds present in the autohydrolysis liquor.
Interestingly, at high solid loadings (LSR of 4 g/g), ethanol
conversion is enhanced at high percentage of autohydrolysis
liquor compared to results at lower solid loadings (LSR of
6.4 g/g). Overall, the strategy followed in this work (robust
industrial S. cerevisiae and low-cost nutritional supplementa-
tion) to tackle the challenges identified in lignocellulose-to
ethanol processes allowed noticeable results of cellulose to
ethanol conversion (>90 %) under quite restrictive SSF pro-
cess conditions (80 % of AL, LSR=4 g/g, and temperatures
between 32 and 33.6 °C), representing a step forward for the
realization of a cost-effective lignocellulose-to-ethanol
process.
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