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Abstract

Stroke and spinal cord injury (SCI) are the most common causes of paresis and paralysis.

Disabilities that follow stroke (hemiparesis, hemiplegia) or SCI (paraplegia, tetraplegia)

are the result of an inappropriate muscle coordination and activation, leading to impaired

motor functions (e.g., walking, cycling) and, thereby, preventing affected people from

healthy-like participation in daily activities.

The assessment of sensorimotor impairments has been mainly performed with qualitative

methods (classical clinical scales) or subjective assessment from clinical personnel (based

on visual observation). These techniques may lead to low inter-rater reliability and, as a

consequence, to inadequate interventions. Gait training must have the ability to adapt

to individual progression of each patient. Therefore, it is necessary to quantitatively

assess locomotor responses after neurological diseases.

The main goal of this Ph.D. Thesis is to generate meaningful quantitative metrics to as-

sess sensorimotor impairments of patients that suffered a stroke or an incomplete spinal

cord injury (iSCI). To achieve this main goal, it is necessary to advance neurophysi-

ological and biomechanical conceptual foundations underlying gait function. Further

design of appropriate protocols and the generation of these metrics may improve future

rehabilitation treatments tailored to each of the aforementioned patients.

Recent researches on pathological conditions strongly recommend gait analysis to ade-

quately assess and follow-up patients and to support clinical decision on the best treat-

ment. Measures derived from gait analysis provide detailed and quantitative description

of motor impairments. On the other hand, a technique called analysis of muscle syner-

gies (groups of co-activated muscles responsible for the control of motor tasks), which

is based on statistical analysis of electromyographic (EMG) features, has emerged as a

promising tool that can offer the clinician a better view of the neural structure under-

lying motor behaviors and how they change during the rehabilitation process. Thus, a

combination of metrics informing about biomechanical and neuromuscular performance

in realistic conditions should lead to a better assessment of motor impairments. To

achieve the main goal of this Ph.D. Thesis, four distinct and complementary studies

were performed.

The first study investigated similar features of walking and cycling under the muscle syn-

ergies hypothesis. This study was motivated by the need for novel tools to measure and

predict motor performance of neural injured patients. This need has emerged because

some patients who suffered neural injuries do not have sufficient muscle force to walk



during the early stage of rehabilitation and, as a consequence, cannot be assessed prop-

erly during walking tasks. Due to similarities in kinematics and muscle control, cycling

might be explored as a possible framework. Results of this study provided evidences for

common neuromuscular mechanisms of the two motor tasks.

The results of study 1 supported the hypothesis of using cycling to assess gait-related

motor performance. Thus, the second study of this research aimed to test this hypothesis

on subjects affected by iSCI. First of all, results showed that iSCI patients preserved a

synergistic control of muscles during cycling and the similarity of synergies with respect

to healthy controls correlated with the degree of impairment. Second, muscle syner-

gies outcomes extracted during cycling correlated with clinical measurements of gait

performance and/or spasticity caused by abnormal spatiotemporal muscle co-activation.

After iSCI, both body sides may be affected differently, resulting in asymmetric motor

control and functional behavior. The third study of this Thesis used some biomechanical

features, as well as the analysis of muscle synergies to differentiate most and less affected

sides. Results showed that biomechanical analysis was more effective than the analysis

of muscle synergies to detect differences between the most and the less affected sides of

iSCI patients.

Based on the findings of studies 2 and 3, which showed the usefulness of muscle synergies

and biomechanical features to assess iSCI patients, the fourth and last study of this

Thesis tested whether the combination of a small set of gait features and the analysis of

muscle synergies could better predict walking function poststroke than the gold-standard

scale (Fugl-Meyer Assessment, FMA). It was possible to find some variables (from both

the most and the less affected side) that correlated better with walking function than

FMA.

In conclusion, this Thesis presented novel methodologies and metrics that allow for a

quantitative assessment of sensorimotor impairments in patients that suffered an iSCI

or a stroke. In particular, the use of metrics based on EMG and biomechanical features

gave a new insight into the motor recovery mechanisms as well as the performance after

neural damage. These metrics may be explored in the future as a complement to the

current clinical assessment procedures.



Resumo

Os acidentes vasculares cerebrais (AVCs) e as lesões medulares são a causa mais co-

mum de paresia e paralisia. As incapacidades resultantes de um AVC (hemiparesia,

hemiplegia) ou de uma lesão medular (paraplegia, tetraplegia) são o resultado de uma

coordenação e ativação muscular inadequadas, conduzindo a funções motoras (marcha,

ciclismo, por exemplo) inadequadas e, desse modo, impedindo as pessoas afetadas de

terem uma participação saudável em atividades diárias.

A avaliação das deficiências sensoriais e motoras tem sido efetuada sobretudo com base

em métodos qualitativos (escalas cĺınicas clássicas) ou avaliações subjetivas de pessoal

cĺınico (com base na observação visual). Estas técnicas podem resultar numa baixa

confiabilidade entre avaliadores e, como consequência, a intervenções inadequadas. O

treino da marcha deve ter a capacidade de se adaptar à progressão individual de cada

paciente. Portanto, é necessário avaliar quantitativamente as respostas locomotoras após

doenças neurológicas.

O principal objetivo desta Tese de Doutoramento é gerar métricas quantitativas para

avaliar deficiências sensoriais e motoras de pacientes que sofreram um AVC ou uma

lesão medular incompleta. Para atingir este objetivo principal, é necessário desenvolver

os prinćıpios neurofisiológicos e biomecânicos subjacentes à marcha. A conceção adi-

cional de protocolos adequados e a geração destas métricas pode melhorar os futuros

tratamentos de reabilitação.

As investigações mais recentes sobre condições patológicas aconselham vivamente a

análise da marcha para poder avaliar e acompanhar adequadamente os pacientes e

também para apoiar decisões cĺınicas sobre o melhor tratamento a executar. As medidas

auferidas através da análise da marcha fornecem uma descrição detalhada e quantita-

tiva de deficiências motoras. Por outro lado, uma técnica chamada análise de sinergias

musculares (grupos de músculos co-ativados responsáveis pelo controlo de tarefas mo-

toras), que se baseia na análise estat́ıstica das caracteŕısticas eletromiográficas (EMG),

tem emergido como um instrumento promissor que pode oferecer ao pessoal cĺınico uma

melhor visão das estruturas neuronais subjacentes às tarefas motoras e como estas mu-

dam durante o processo de reabilitação. Sendo assim, uma combinação de métricas que

forneçam informação sobre o desempenho biomecânico e neuromuscular em condições

reais poderá levar a uma melhor avaliação de deficiências motoras. Para atingir o obje-

tivo principal desta Tese de Doutoramento, foram realizados quatro estudos distintos e

complementares.



O primeiro estudo investigou caracteŕısticas semelhantes da marcha e do ciclismo sob a

hipótese das sinergias musculares. Este estudo foi motivado pela necessidade de novos

instrumentos de medida e predição do desempenho motor de pacientes que sofreram

lesões neuronais. Esta necessidade surgiu visto que alguns pacientes que sofreram lesões

neuronais não têm a força muscular suficiente para caminhar durante a fase inicial de

reabilitação e, por conseguinte, não pode ser avaliados adequadamente durante tarefas de

marcha. Devido às semelhanças cinemáticas e de controlo muscular, o ciclismo pode ser

explorado como uma posśıvel solução. Os resultados deste estudo forneceram evidências

de que estas duas tarefas motoras apresentam mecanismos neuromusculares comuns.

Os resultados do estudo 1 sustentaram a hipótese de utilizar o ciclismo para avaliar o de-

sempenho motor relacionado com a marcha. Assim, o segundo estudo desta investigação

teve como objetivo testar essa hipótese em pacientes afetados por uma lesão medular

incompleta. Em primeiro lugar, os resultados mostraram que estes pacientes preservam

um controlo sinérgico dos músculos durante o ciclismo e também que que a similaridade

destas mesmas sinergias com as sinergias apresentadas por sujeitos controlo saudáveis

se correlaciona com o grau de debilidade apresentado pelo paciente. Em segundo lugar,

alguns valores da análise de sinergias correlacionaram-se com medidas cĺınicas de desem-

penho da marcha e/ou espasticidade causada pela ativação espaciotemporal anormal.

Após uma lesão medular incompleta, ambos os lados do corpo podem ser afetados de

forma distinta, o que resulta num controlo motor e comportamento funcional distinto. O

terceiro estudo desta Tese utilizou algumas variáveis biomecânicas, bem como a análise

das sinergias musculares para diferenciar os lados mais e menos afetados. Os resulta-

dos mostraram que a análise biomecânica foi mais eficaz que a análise das sinergias

musculares para detetar diferenças os lados mais e menos afetados destes pacientes.

Baseado nas descobertas apresentadas nos estudos 2 e 3, o quarto e último estudo desta

Tese testou se a combinação de um pequeno conjunto de variáveis da marcha e da

análise das sinergias musculares poderia predizer melhor a função de marcha após um

AVC do que utilizando a escala cĺınica padrão (Avaliação de Fugl-Meyer). Foi posśıvel

encontrar algumas variáveis (tanto do lado mais afetado como do lado menos afetado)

que se correlacionaram melhor com a função de marcha do que os resultados de predição

apresentados pela Avaliação de Fugl-Meyer.

Em conclusão, esta Tese apresenta novas metodologias e métricas que permitem uma

avaliação quantitativa de danos sensoriais e motores em pacientes que sofreram uma

lesão medular ou um AVC. A utilização de métricas baseadas em EMG e variáveis

biomecânicas possibilitaram a avaliação dos mecanismos de recuperação motora, bem

como o desempenho após danos neuronais. Estas métricas podem ser exploradas no

futuro como um complemento para os procedimentos atuais de avaliação cĺınica.
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Chapter 1
Introduction

This thesis presents the work developed during the past four years and three months in

the scope of the Doctoral Program in Biomedical Engineering at University of Minho,

Portugal. This work addresses the field of neurorehabilitation and its ultimate goal is to

generate meaningful quantitative metrics to assess gait disorders in the clinical setting,

with particular interest in stroke and spinal cord injury (SCI) patients. To achieve that

goal, it is first necessary to advance neurophysiological and biomechanical conceptual

foundations to understand motor control of human walking. The successful design of

appropriate protocols and the generation of novel quantitative metrics for the assessment

of sensorimotor impairments may improve future rehabilitation treatments tailored to

individual unique needs of the aforementioned patients.

The Ph.D. project was mostly conducted in the framework of the HYPER and

BETTER projects, both coordinated by CSIC’s (Consejo Superior de Investigaciones

Cient́ıficas, Madrid, Spain) Neural Rehabilitation Group. Trials with patients were per-

formed at National Paraplegia Hospital (Toledo, Spain) and Faculty of Health Sciences -

Rey Juan Carlos University (Madrid, Spain), which worked as partners in these projects.

1.1 Motivations and problem statement

Nowadays there is a high percentage of elderly people (Barroso, 2011) and the world

population is aging at a at fast rate (Nations, 2013). Since 1950 the average age of

population has increased from 28 to 32 years old and is expected to be 42 years old by

2100 (Nations, 2013). This rise of population aging rate has profound implications on

healthcare, namely the inherent risks associated with the aging, like the occurrence of a

stroke (Russo et al., 2011) or SCI (associated with falls) (Jain et al., 2015). Stroke and

1



Chapter 1. Introduction 2

SCI are the most common causes of paralysis and paresis, with an estimated prevalence of

12,000 per million and 800 per million, respectively (De Mauro et al., 2011). Neurological

disabilities after stroke or SCI events may result in impaired walking, preventing patients

from having healthy-like participation in daily activities.

Walking is a very complex function, as it involves the coordination of several mus-

cles and its correct activation (Rosa et al., 2014). Walking functioning is usually affected

in people with impairments of central nervous system (CNS) (Rosa et al., 2014). Conse-

quently, one of the prime goals of people recovering from stroke or SCI is to recover the

ability to walk again (Nadeau et al., 2011). Motor neurorehabilitation is an iterative,

continuous and active process, which can be divided into four main steps: assessment,

goals setting, intervention and evaluation of the results. The assessment step of neu-

rorehabilitation has traditionally been done based on qualitative methods (classic clini-

cal scales) or subjective assessment from physiotherapists (based on visual observation)

(Safavynia et al., 2011). Despite being less time-consuming and cheaper than techniques

requiring instrumentation (e.g., 3D gait analysis), these assessment techniques may lead

to low inter-rater reliability and, as a consequence, to inadequate interventions. In addi-

tion, clinical tests focused on behavioral outcomes provide little information about the

underlying differences between healthy and impaired nervous system (Safavynia et al.,

2011). The correct understanding of the specific patient’s impairments is crucial to pre-

scribe effective customized treatments. To improve diagnostic procedures and treatment

options, motor neurorehabilitation should be driven by more reliable metrics that allow

a quantitative assessment of patients’ performance and recovery.

Recent researches on pathological conditions strongly recommend gait analysis to

adequately assess and follow up patients and to support clinical decision on the best

treatment (Nadeau et al., 2011). Clinical gait analysis involves a variety of techniques

including kinematic or joint motion measurements, kinetic or joint torque assessment,

electromyographic (EMG) measurements and video analysis (DeLisa and States, 1998).

Measures derived from gait analysis provide detailed and quantitative description. This

might further be used to extract important information to select a task-oriented ap-

proach that might enhance therapeutic response, which cannot be provided by clinical

evaluation alone (Nadeau et al., 2011).

Some researchers may argue that behavioral outcomes like function or quality of life

are sufficient outcomes. Others may argue that improvements in gait are more important

clinical outcomes (Wright and Theologis, 2015). The main assumption behind this Ph.D.

research is that improvements in gait should be a main goal in patients’ rehabilitation.

In that sense, measures derived from gait analysis will be explored as potential metrics

to objectively assess gait impairments.
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In the past ten years, the idea that EMG features provide useful information con-

cerning brain motor control strategies has emerged (Barroso et al., 2013). Specifically,

muscle synergies extracted with computational techniques have been proposed as a po-

tential technique to measure motor recovery following therapeutic interventions (Rout-

son et al., 2013). Muscle synergies, also known as motor modules, are groups of co-

activated muscles responsible for the control of a task in different conditions by adapt-

ing a small number of neural parameters (d’Avella and Lacquaniti, 2013) (Steele et al.,

2013). In the past decade, experimental results in animals and humans (Cheung et al.,

2012) (d’Avella and Bizzi, 2005) (De Marchis et al., 2013) (Dominici et al., 2011) (Gizzi

et al., 2012) (Hug et al., 2011) (Ivanenko et al., 2005) (Moreno et al., 2013) (Ting and

Macpherson, 2005), as well as simulations (Allen and Neptune, 2012) (Neptune et al.,

2009) supported the hypothesis that biomechanical tasks reflect synergistic control of

muscles.

According to Safavynia et al. (2011), muscle synergies may offer new insight into

the underlying motor strategies responsible for impaired locomotion. This can be done

after identifying a set of muscle synergies responsible for the control of walking in healthy

people (Clark et al., 2010). If muscle synergies are the responsible for specific biome-

chanical functions, it is critical to understand if patients with impaired walking have

access to the same muscle synergies of healthy subjects or if these muscle synergies are

also impaired (Ting and McKay, 2007). Thus, muscle synergies will be also explored

in this work as potential metrics to objectively assess sensorimotor impairments in SCI

and stroke patients.

Frequently, patients lack the required muscle strength to walk during the early

stage of rehabilitation, even with an amount of body weight support. Modern electron-

ically braked cycle ergometers provide the necessary assistance and allow for unlimited

repetitions, which enables the training to be executed at home. Thus, cycling can be a

potential tool to deliver therapies from the acute rehabilitation phase. Rehabilitation

treatments based on cycling exercise alone and combined with feedback have shown

promising results (Barbosa et al., 2015). Due to similarities in kinematics and muscle

control with walking (both are cyclical tasks, with flexion and extension movements of

hip, knee and ankle joints, requiring activation of agonists and antagonists muscles), cy-

cling may be explored as a novel framework for the assessment of motor performance. In

fact, Zehr et al. (2007) proposed a “common core hypothesis” suggesting that different

forms of rhythmic movements such as cycling, stepping and walking may share common

neuromuscular patterns.
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Given the aforementioned limitations and drawbacks of traditional techniques used

to assess sensorimotor impairments, the general motivation for this work is to develop

novel tools and metrics to continuously assess patients’ rehabilitation. In particular,

cycling will be explored as a novel framework and a combination of neurophysiological

and biomechanical measurements will also be explored toward the design of quantitative

metrics. The main goal can be split into two sub-goals: 1) advancing neurophysiological

and biomechanical understanding of motor control principles of locomotor functions;

2) generating meaningful metrics to quantitatively assess gait disorders in the clinical

setting. Due to their major prevalence among the causes of paralysis and paresis, two

main groups of patients were detected as potential participants to be evaluated with this

approach:

1. Poststroke patients (either ischemic or hemorrhagic), with a motor disability, typ-

ically hemiparesis affecting lower (and upper) limbs.

2. Incomplete spinal cord injury (iSCI) patients, presenting walking disabilities but

maintaining acceptable upper limb control.

1.2 Hypotheses and Research Questions

The Ph.D. Thesis is guided by the conceptual hypothesis that the use of quantitative

metrics based on electromyography and biomechanical features will give a new insight

into the motor recovery mechanisms and performance outcomes after neural damage.

To tackle the conceptual hypothesis, four distinct but complementary studies were per-

formed, being each one associated to a specific hypothesis:

Hypothesis I. In healthy participants, walking and pedaling tasks share common

neural mechanisms. The confirmation of this hypothesis will justify the use of pedaling

exercise as a novel tool to assess walking in people with impaired neuromotor control.

In this study, muscle synergies were used as the main indicators of neuromotor activity.

The scientific questions associated to this hypothesis are:

• How does the nervous system control human walking and cycling?

• Do pedaling and walking share similar synergies?

Hypothesis II. Novel metrics based on the analysis of muscle synergies during ped-

aling can provide detailed quantitative assessment of sensorimotor impairments after

iSCI. In particular, muscle synergies components can predict the scores of traditional
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clinical scales. As in the case of Study 1, the confirmation of this hypothesis will also

contribute to justify the use of cycling as a novel and convenient tool to assess walking in

iSCI patients, specially at the first stages of recovery. The scientific questions associated

to this hypothesis are:

• Do iSCI patients preserve a synergistic control of pedaling?

• Do healthy controls and iSCI patients share some common synergies during ped-

aling?

• Can synergies give new insight on the sensorimotor impairments of iSCI patients?

Hypothesis III. Muscle synergies and biomechanics are distinct in iSCI patients if

compared with healthy controls, and are also different between sides. The confirmation

of this hypothesis will support the importance of studying bilateral control of lower limb

functions in iSCI patients, as well as the use of muscle synergies as a complementary

tool to clinical scales. The scientific questions associated to this hypothesis are:

• Do healthy controls and iSCI patients have similar synergies during walking?

• Do iSCI patients present similar muscle synergies and biomechanical features be-

tween the two lower limbs during walking?

Hypothesis IV. The combination of gait features with the analysis of muscle syn-

ergies will improve the assessment of stroke-related disorders. Specifically, these set of

measures will correlate better with walking performance indicators than the gold stan-

dard clinical scales like Fugl-Meyer Assessment (FMA), which is one of the most used

measures of motor impairment. The scientific questions associated to this hypothesis

are:

• Do biomechanical and synergistic variables differentiate between the affected and

unaffected side?

• Which of these variables predict the score of walking performance indicators?

• Is this prediction better than the prediction made by FMA?

1.3 Thesis Organization

This PhD Thesis is composed by eight chapters and is organized as follows:
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• Chapter One introduces the reader to the main limitations and drawbacks of tradi-

tional techniques used in the clinical setting to assess sensorimotor impairments in

patients who suffered a stroke or iSCI. This Chapter continues with the overview

of the research work, as well as the hypotheses and research questions presented

by each of the four distinct studies performed.

• Chapter Two presents the main neurophysiological mechanisms underlying human

walking, which is fundamental to understand the effects of neural injury for the

impaired walking. This Chapter includes the description of the hypothesis of

muscle synergies, which will be the basis of the four studies presented in this

Thesis.

• Chapter Three gives an overview on the biomechanics of normal gait, as well as

the most used instrumented gait analysis systems. This Chapter also presents

the clinical scales used for the assessment of sensorimotor mechanisms underlying

impaired walking in patients that suffered a stroke or a iSCI.

• Chapter Four presents the first study of this Thesis, in which similar features

of walking and cycling were investigated under the muscle synergies hypothesis.

Results provide evidences for common neuromuscular mechanisms of the two motor

tasks. Due to similarities in kinematics and muscle control, cycling was explored

as a novel framework.

• Chapter Five presents the second study of this Thesis, in which cycling was ex-

plored as a novel tool to assess sensorimotor impairments in iSCI patients, based

on the findings presented in the previous Chapter. Results show that the analysis

of muscle synergies during pedaling can provide detailed quantitative assessment

of sensorimotor impairments after iSCI. This analysis can complement current

assessment procedures.

• Chapter Six presents the research performed on Study 3, in which the analysis

of muscle synergies was combined with the study of biomechanics of each side of

iSCI patients, in order to detect differences between the most and less affected

side. The results may be used to improve customized therapy delivered to iSCI

patients.

• Chapter Seven presents the research performed on Study 4, which tested whether

the combination of a small set of gait features and the analysis of muscle syner-

gies could better predict walking function poststroke than the gold-standard scale

(Fugl-Meyer Assessment, FMA). By using some predictors from each side (most

and less affected side), it was possible to better predict walking function than by

using FMA.
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• Finally, Chapter Eight summarizes the main conclusions of the present work. This

Chapter also provides some suggestions for future research. The final part of the

Chapter presents the main scientific and technical contributions resulting from this

Ph.D. Thesis.





Chapter 2
Insight into sensorimotor control

The accurate execution of activities of daily living (ADLs), including walking, strongly

relies on the proper functioning of the nervous and the musculoskeletal system. In order

to understand gait control after a neurological injury, it is of primary importance to

study and understand how the nervous system controls normal gait, and in particular

how it copes with the redundancy of the musculoskeletal system.

When we perform a movement, as simple as it may seem, there is always a co-

ordinated activation of a large set of muscles. The apparent simplicity of movement

execution may hide the complexity of its control. The activation of each muscle pro-

duces a torque in one or more joints. Given that there are more muscles than joints, a

variety of combinations of muscle activation patterns can produce the same functional

movement. That is, the system is redundant. A long-standing idea is that the central

nervous system (CNS) controls muscle activation by using a synergistic organization

constituted by basic control elements, called synergies. The main neurophysiological

mechanisms underlying human walking, as well as the hypothesis of muscle synergies

are described in this chapter.

2.1 The Nervous System

The nervous system is the part of human body responsible for the coordination of vol-

untary and involuntary actions, as well as the maintenance and regulation of body

functions, through the transmission of signals between different parts of the body (See-

ley et al., 2008). Nervous system can be divided into central nervous system (CNS) and

peripheral nervous system (PNS).

9
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The CNS consist of the brain and the spinal cord, in continuity one with the other

by the occipital bone (Tortora and Bryan, 2006). The CNS plays a major role on the

proper functioning of mammal locomotion.

The PNS is the part of nervous system outside the CNS. It comprises sensory re-

ceptors1, nerves2 and ganglia3, and its main role is the connection between the CNS and

the different parts of human body. The PNS comprises two main divisions: the afferent

or sensory division, responsible for transmitting electrical signals (called action poten-

tials) from the sensory receptors to the CNS; the efferent or motor division, responsible

for transmitting action potentials from the CNS to organs, such as muscles and glands.

2.1.1 Neurons

The nervous system is constituted by neurons and non-neural cells. The basic structural

units of the nervous system are the neurons, which receive stimuli and transmits action

potentials to other neurons or organs. They are organized as complex networks responsi-

ble for performing the functions of the nervous system (Seeley et al., 2008). Each neuron

is constituted by a cell body (or soma) and two types of cell elongations: dendrites and

axons.

Dendrites are filaments of the neurons that receive information in the form of

nervous stimulus. When stimulated, they generate small electrical current which is then

conducted to the cell body. The axon is the part of the neuron responsible for conducting

action potentials from the cell body to the axon terminals, where they stimulate the

release of neurotransmitters (Seeley et al., 2008).

Neurons are classified according to their function, considering the direction of the

action potentials they conduct. Thus, afferent (or sensory) neurons conduct action

potentials to the CNS and efferent (or motor) neurons conduct action potentials from

the CNS to muscles or glands. Interneurons conduct action potentials from one neuron

to another, within the CNS (Sherwood, 2008).

There are two types of motor neurons: upper motor neurons and lower motor

neurons. Upper motor neurons are present in the motor cortex. These neurons connect

with lower motor neurons in the brain and the spinal cord. Lower motor neurons connect

with the muscles on face, chest and limbs, exerting direct control over muscle contraction.

1Sensory receptors are specialized nerve endings cells, which may detect light, sound, pressure, pain,
among other stimuli. These receptors may be located in the skin, muscles, joints, eyes and ears, for
example.

2Nerves are sets of axons and dendrites, linking the CNS to the sensory receptors, muscles and glands.
Definitions and descriptions of axons and dendrites are given in subsection 2.1.1.

3Agglomerations of neural cellular bodies located outside the CNS.
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Thus, upper motor neurons are involved in the initiation of voluntary movements and

the maintenance of appropriate muscle tone. If the upper motor neurons are damaged,

the limbs will become spastic and the reflexes will be exaggerated. On the other hand,

if the lower motor neurons are damaged, muscles will become weak and reflexes may

disappear (Mitsumoto, 2009).

2.1.2 Spinal cord and central pattern generators

Spinal cord is of main importance for the global functioning of the nervous system, being

the link between the brain and the PNS below the head level, integrating information

the PNS receives and producing responses through reflex mechanisms. Spinal cord is

also of great clinical importance, because it is a typical site of traumatic injury and a

locus for many disease processes (Seeley et al., 2008).

Two consecutive lines of nerve roots (one for each side of the body) are present in

the spinal cord and there are 31 pairs of spinal nerves. Spinal cord is divided into four

regions, designated according to the spine location at which their nerves enter and leave:

cervical (C), thoracic (T), lumbar (L) and sacral (S).

The role of the spinal cord in locomotor control has been mainly studied in animals

(Verma et al., 2012). Mammals’ locomotion is achieved by rhythmic activity of the

central pattern generators (CPGs). CPGs have been described as networks of nerve

cells that generate movements and include the required information to activate different

motor neurons sequentially and with the necessary magnitude to generate motor patterns

(Belda-Lois et al., 2011). CPGs are considered innate, despite the existence of further

adaptation and improvement with experience.

The three fundamental principles that characterize CPGs are:

• (I) ability to generate rhythmic activity independent of sensory inputs;

• (II) the presence of a well-defined neuronal circuit;

• (III) the existence of influences from central and peripheral system capable of

modulating these patterns.

Bipedal locomotion, typical of humans, is quite different from quadrupedal locomo-

tion. However, CPGs are also hypothesized to exist in humans, as they are influenced

by peripheral and central inputs (Pons et al., 2013).
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2.1.3 Brain

Despite the considerable scientific progress made during the last years, we are still far

from understanding in detail how human brain works.

It is common sense that brain injuries profoundly affect human gait (Reisman et al.,

2007), which demonstrate the great cortical involvement in human walking. For example,

in those patients who suffer a stroke, functions of cortex become weakened, while the

spinal cord functions remain preserved. Thus, it can be argued that brain plays an

extremely important role in the control of human gait, when compared with animals.

As so, experimental data obtained in animals studies have to be analyzed with caution

when it comes to studying the mechanisms controlling human gait (Verma et al., 2012).

Current researches do not suggest any exclusive control of gait by the spinal cord neither

that motor cortex alone is responsible to activate muscles during walking (Bowden et al.,

2010).

It has been demonstrated the importance of peripheral sensory information (Field-

Fote and Dietz, 2007) and inputs from motor cortex (Yang and Gorassini, 2006) to

modulate CPGs’ functions and particularly to lead to plasticity mechanisms after a brain

injury. Thus, the hypothesis headed by scientific community is that human locomotion

is the result of an interplay between the brain and the spinal cord (see Figure 2.1).

Basic motor patterns of locomotion seem to be generated in the spinal cord, while the

refinement of the control of those patterns is performed by different brain areas (Pons

et al., 2013) (Belda-Lois et al., 2011).

2.2 Muscle activation

CNS controls human movements by generating central commands that activate muscles.

The resulting muscle activation is directed to tendons, which, in turn, transmit forces

to the connecting bones, pulling on them and causing movement.

2.2.1 Human Locomotor System

Locomotor system (also known as musculoskeletal system) is formed by the skeletal

system and the muscular system. This system is highly optimized for efficient locomotion

(Pons et al., 2013).

Skeletal system, made of 206 bones in adults, provides support to the body and

protection for vital organs. It works together with the muscular system to move the
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Figure 2.1: Role of brain and the spinal cord in human walking. Adapted from Verma
et al. (2012).

body (Haywood, 2008). Skeletal muscles are those used for locomotion, for example,

and their main function is to move the bones of the skeleton, which turn them into the

“engines of the gait”. There are more than 600 skeletal muscles in humans (Lippincott,

2002), allowing us to move and stand erect. From all the skeletal muscles, there are 28

major muscles involved in the human gait (Bogey et al., 1992). Most of these major

muscles for locomotion are represented in Appendix A.

2.2.2 Motor unit action potential

Central commands are sent to motor neurons innervating muscles through descending

pathways. Motor units, made up of a motor neuron and the muscle fibers it inner-

vates, are the smallest elements than can be controlled to produce muscle activation

(Soderberg, 1992).
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Every time a motor neuron is activated, an action potential goes in direction to the

neuromuscular junctions, being propagated in both directions of muscle fibers towards

the tendons (Barroso et al., 2013). The resulting muscle force is the result of the sum

of small forces individually generated in each muscle fiber. Motor unit action potential

(MUAP) is the sum of these muscle fiber action potentials. Neural drive is the ensemble

of action potentials fired by spinal motor neurons (Farina et al., 2010).

2.3 Muscle synergies hypothesis

Motor coordination involves several regions of the CNS, including the motor cortex,

red nucleus, basal ganglia, brainstem, cerebellum, peripheral sensory system and spinal

neurons. The neural drive ultimately converge onto motor neuron pools that are each

dedicated to controlling a single muscle of the body (Levine et al., 2014). However,

the musculoskeletal system is redundant, as different combinations of muscle activation

patterns may produce the same functional movements. The final result of individual

muscle activation depends on the dynamic state of all body segments. Therefore, muscle

activation must be thought as task-specific, i.e., muscles activated in a coordinate way

to execute a given task (Kirtley, 2006) (Bogey et al., 1992) (Prilutsky, 2000).

Given the redundancy of the musculoskeletal system, a long-standing idea is that

CNS controls muscle activation by using a synergistic organization constituted by basic

control elements, called synergies (also known as motor modules), which are combina-

tions of motor neurons activation (Ivanenko et al., 2004) (Clark et al., 2010) (Neptune

and McGowan, 2011) (Gizzi et al., 2011) (Levine et al., 2014) (Ting et al., 2015).

2.3.1 General concepts

In 1967, Nikolai Bernstein proposed the existence of muscle synergies as a simplified

strategy of motor control (Bernstein, 1967). A muscle synergy is defined as a functional

set formed by the co-activation of different muscles recruited by a common activation

signal. Every muscle can belong to different synergies (Ivanenko et al., 2004) (Clark

et al., 2010) (Gizzi et al., 2011). This synergistic control is represented in Figure 2.2.

Muscle synergies can be thought of as neural networks organized at the spinal or

brainstem level, with each synergy specifying a weighted profile of activation for a set

of muscles. Depending on the sensory information received, activation signals generated

in higher neural centers selectively activate a repertoire of muscle synergies, resulting in

a weighted distribution of the neural drive to different muscles (Barroso et al., 2014).
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Figure 2.2: Conceptual model of motor coordination, in which motor neurons repre-
sent the motor output of the nervous system and activate muscles. Muscle activation
patterns appear to be a superposition of muscle synergies activation and local circuitry,
both subject to modulation dependent on the task and the context. Adapted from

Safavynia et al. (2011).

The concept of muscle synergy has been used with different meanings, depending

on the context. In neurorehabilitation, it refers to the stereotyped muscle activation ob-

served after lesions and due to a loss of independent control, which results in abnormal

and less flexible movement repertoires (Howle, 2002). In contrast, in motor neuroscience

it indicates a strategy to simplify the motor control, in which a set of muscles are orga-

nized in functional groups (Clark et al., 2010). In the last fifteen years, the neuroscientific

perspective has gained more and more relevance and will also be adopted along this The-

sis. More specifically, this Thesis will adopt the hypothesis of “synchronous synergies”

(Tresch and Jarc, 2009), in which groups of muscles are activated in a fixed balance to

produce motor tasks. Within this hypothesis, every time a synergy is activated, all the

muscles within that same synergy will be active.

Ting et al. (2015) proposed five neuromechanical principles underlying muscle syn-

ergies:

• (1) Motor abundance. There are several motor solutions that can produce simi-

lar or functionally equivalent behaviors. Thus, there is no better motor pattern,
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but different solutions. This ability underlies the adaptability and robustness of

biological systems.

• (2) Motor structure. For the same task, there are preferable movements than oth-

ers. For instance, movements requiring less energy or neural control to be executed

will be preferred. These movements, which are facilitated by body structure, shape

the permissible structure and variability of muscle synergies.

• (3) Motor variability. If the effect on motor output is low, then the repertoire of

solutions for motor control will be higher, i.e., high variability in motor control will

be found for those tasks without many constraints and biomechanical affordances.

• (4) Individuality. For the same task, each person may have his/her own synergies,

shaped by experience and depending on evolutionary, developmental, and learn-

ing processes. This explains the inter-individual variability observed in muscle

synergies among healthy subjects.

• (5) Multifunctionality. Muscle synergies may be combined in different ways to

produce a wide range of motor tasks. Trial-by-trial variability can be explained

by combining muscle synergies in different ways, which facilitates adaptation and

learning.

2.3.2 The case for and against synergies

Several studies have examined the hypothesis that CNS produces movement through

the flexible combination of muscles synergies, providing evidence both in support and in

opposition to it (Tresch and Jarc, 2009). Whether muscle synergies are directly related to

specific kinematic or kinetic goals (Ivanenko et al., 2003) or are shared between different

motor tasks is still under investigation. In fact, it is very difficult to prove or challenge

the muscle synergies hypothesis.

Low dimensionality of electromyography (EMG) signals may reflect factors such

as biomechanical and task constraints, reflex control, or experimental protocols, rather

than a neural control strategy (Kutch and Valero-Cuevas, 2012). These constraints

requiere some groups of muscles to be co-activated to execute a given task (Steele et al.,

2015). Based on analyses of the variability in motor patterns, some studies have provided

evidence against muscle synergies. For instance, by analyzing the endpoint fingertip force

fluctuations during isometric force generation at a multiple degree-of-freedom joint to

examine muscle recruitment properties, Kutch et al. (2008) suggested an independent

recruitment of individual muscles within the task, rather than the control of muscle

synergies. According to Valero-Cuevas et al. (2009), muscle synergies cannot accurately
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describe muscle activity when applying force with the index finger. These findings can

be explained by the motor variability principle described by Ting et al. (2015). For

isometric force production tasks like those analyzed by Kutch et al. (2008) and Valero-

Cuevas et al. (2009), the degree of variation in muscle activity in the finger is relatively

constrained, allowing for little variability.

On the other hand, evidence for the hypothesis of muscle synergies has been mainly

indirect, based on the observation of low dimensionality in the muscle activity patterns

recorded during a variety of motor behaviors (Bizzi and Cheung, 2013) (Cheung et al.,

2012) (Chvatal and Ting, 2013) (Clark et al., 2010) (Moreno et al., 2013) (Routson

et al., 2013) (Torres-Oviedo and Ting, 2007). Studies performed in animal models with

monkeys (Overduin et al., 2012), cats (Yakovenko et al., 2011) and frogs (Hart and

Giszter, 2010) support that activation signals are expressions of neural activities. Bizzi

et al. (1991) found that the co-stimulation of two different loci in frogs produced a force

field very similar to the summation of the resulting force fields from independent stimulus

of each locus. Additional evidence for the muscle synergies hypothesis has been given

by using biomechanical models to demonstrate that complex behaviors can be produced

using combinations of muscle synergies (Pons et al., 2013). For instance, Neptune et al.

(2009) used muscle synergies extracted from real EMG data from human locomotion

to drive a complex musculoskeletal simulation of the human leg during locomotion,

obtaining effective locomotion with only minor adjustments. Using these biomechanical

models, Neptune et al. (2009), Neptune and McGowan (2011) and McGowan et al. (2010)

demonstrated that four muscle synergies are capable of producing different locomotion

activities, such as normal walking, walking with body weight support (BWS), walking

with body mass increased/decreased, kicking and stepping. Each synergy was found to

be associated with specific biomechanical task. Interestingly, some of these synergies are

available at birth, with additional synergies being created throughout development and

refined with age (Dominici et al., 2011). Additionally, muscle synergies are very similar

between body sides (Clark et al., 2010) (Gizzi et al., 2011).

More direct evidence for the muscle synergies hypothesis might come by testing

an experimental manipulation that can distinguish a synergistic control from a non-

synergistic one (d’Avella and Pai, 2010). In this regard, Berger et al. (2013) manipu-

lated the mapping between muscle activations and hand forces that could make such a

distinction. Results showed that learning to perform a novel task is faster if it can be

achieved by altering recruitment of a smaller number of muscle synergies rather than

learning new control strategies for individual muscles, which support the existence of

muscle synergies.
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2.3.3 EMG factorization into muscle synergies

Researches on muscle synergies are usually based on statistical analysis of surface elec-

tromyography (sEMG) during specific behaviors (Tresch and Jarc, 2009). First, EMGs

are recorded from a large number of muscles during the behavior (or more than one

behavior) under analysis (e.g., walking or cycling); secondly, it is performed a computa-

tional analysis using some factorization algorithm to identify a set of muscle synergies

from EMGs; thirdly, it is usual to evaluate whether the recorded EMGs can be well

described as a combination of the identified synergies; and fourthly, muscle synergies

can be associated with specific biomechanical tasks (Tresch and Jarc, 2009).

2.3.3.1 Recording EMG

Surface EMG is the electrical recording of muscle activity using surface electrodes. As

muscle fibers of a given motor unit are scattered randomly on the muscle, the recorded

signal is reasonably representative of total muscle activity (Farina et al., 2004). It has

been demonstrated that the structure of the extracted synergies depends on the muscles

selected for analysis (Steele et al., 2013). As the analysis of muscle synergies intends to

unveil motor control strategies, it is important to record the muscular activation of as

many muscles as possible. It is recommended to at least record those muscles that play

an important role in the studied motor task (Hug, 2011).

The SENIAM project developed recommendations for sEMG recordings, including

the placement of electrodes on each muscle, and also the appropriate skin preparation to

optimize the quality of the EMG signal (Hermens et al., 1999) (Hermens, 2000). After

placing the electrodes, it is of main importance do perform some preliminary tests to

check for cross talk and artifacts to ensure electrodes are correctly positioned. If needed,

electrodes should be repositioned.

2.3.3.2 Processing the EMG

Recorded EMG signals consist of muscle activation signal affected by disturbances that

do not relate to muscle activation. An example of a recorded raw EMG signal of gas-

trocnemius medialis during cycling is represented in Figure 2.3-(A).

Although it is impossible to guarantee a perfect removal of all these undesired

disturbances without affecting the signal, a series of methodologies can be adopted to

minimize them. A digital high-pass filter can eliminate most of the the associated motion

artifacts (disturbances derived either from movements between the electrodes and the
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Figure 2.3: Example of sEMG signal processing. Panel (A) depicts a raw sEMG
signal recorded from the gastrocnemius medialis during pedaling. The linear envelope
is computed by rectification and low-pass filtering (at 5 Hz) (panel (B)). All pedaling
cycles are determined based on the crank position. Dashed lines represent the beginning
of a cycle (angle 0o, corresponding to the lowest position of the crank). Linear envelope

is then amplitude and time normalized.

skin, or movements of the cables connecting the electrodes to the EMG amplifier). For

the cutoff frequency of the filter, there must be a trade-off, because the higher the cutoff

frequency, the higher the likelihood of degrade the signal (Hug, 2011). When the raw

signal contains significant electromagnetic noise, a Notch filter might be used to remove

part of the signal composed by frequencies near the power line frequency (usually 50 or

60 Hz).

After filtering the raw EMG signal, the next step is to obtain the EMG envelope,

which is a more useful way of representing the level of muscle activation. This is done

by first rectifying the filtered signal and then applying a digital low-pass filter to smooth

the signal. The smoothness of the EMG envelope depends on the cutoff frequency of

the filter, which must be adjusted to the analyzed task (e.g., walking) and its speed of
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execution. Depending on the desired smoothness, a cutoff frequency of 4-10 Hz is often

used (Neptune et al., 2009) (Clark et al., 2010) (Gizzi et al., 2011) (Hug, 2011) (Routson

et al., 2014). An example of an EMG envelope of gastracnemius medialis, obtained after

using a low-pass filter of 5Hz, is represented in Figure 2.3-(B).

For the same task under analysis, the amplitude of the EMG signal changes from

person to person, between different measurements for the same person and between

different muscles. Factors such as the electrical impedance of the skin or the amount of

subcutaneous fat also interfere with the signal amplitude. For this reason, it is important

to normalize the amplitude of the EMG signal to allow for comparisons between muscles,

subjects and different studies. Notwithstanding, there is still no consensus on the best

way to normalize the amplitude of EMG envelopes. Different methods described in

literature range from isometric maximal voluntary contraction to sub-maximal isometric

efforts (Hug, 2011). Nevertheless, to extract muscle synergies, it is sufficient to just

normalize the envelope amplitude with respect to the peak or the mean of different

cycles or trials (Hug, 2011).

For a given cyclical task like walking, each cycle will have different duration, espe-

cially if considering trials at different times or executed by different people. To eliminate

inherent variability, a method called time normalization is applied. The first step is to

define biomechanical events that may be considered the beginning or the end of a cycli-

cal task (e.g., heel strike in walking). After that, each cycle is interpolated to a defined

number of points. Thus, it is possible to obtain cycles with the same number of points

and also their corresponding mean and standard deviation.

2.3.3.3 Algorithms to extract muscle synergies

Most of the computational methods for the extraction of muscle synergies assume that

individual muscle activation is the result of a linear combination of weighted activation

coming from each synergy (Tresch et al., 2006) (Ting et al., 2015). These computa-

tional techniques are useful but may not fully capture the true complexity of muscle

synergies (Ting et al., 2015). Advances in computational methods are ongoing and can

bring new insight in the future. Among the actual algorithms used, there are principal

component analysis (PCA) (Krishnamoorthy et al., 2003) (Weiss and Flanders, 2004),

factor analysis (FA) (Ivanenko et al., 2003) (Ivanenko et al., 2004), independent compo-

nent analysis (ICA) (Hart and Giszter, 2004) (Kargo and Nitz, 2003) and nonnegative

matrix factorization (NNMF) (Clark et al., 2010) (Dominici et al., 2011) (Gizzi et al.,

2011) (Hug et al., 2011) (Routson et al., 2013). Although each of these algorithms has
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different restrictions on the outcomes, they all converge on a similar output related to

the temporal structure of the EMG activity pattern (Hug et al., 2010).

The most frequently used algorithm is the NNMF (Lee and Seung, 1999), which

will also be used in the studies performed in this Thesis. Before running the NNMF, it

is first necessary to combine the normalized EMG envelopes from each recorded muscle

into an m x t matrix (EMG0), where m indicates the number of recorded muscles and

t is the time base (see Figure 2.4-A).

Figure 2.4: Representation of (A) matrix EMG0, (B) matrix W and (C) matrix H.

Mathematically, the output of the NNMF algorithm is represented in Equation 2.1.

EMG0 = WH + e = EMGr + e (2.1)

, where W is an m x n matrix (n is the number of synergies) that specifies the

relative weighting of each muscle within each synergy (hereafter, each column of matrix

W will be referred to as muscle synergy vector - see Figure 2.4-B); H is an n x t matrix
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that specifies the time-varying activation coefficients of each synergy (relative contribu-

tion of each synergy for each muscular pattern - see Figure 2.4-C); EMGr is an m x t

matrix that represents the reconstructed EMG envelopes of each muscle, as a result of

the multiplication of W by H; e is the residual error between EMG0 and EMGr. NNMF

assumes that both synergy vectors and activation coefficients are non-negative. At each

iteration, NNMF updates matrices W and H in order to minimize the residual Frobenius

norm between EMG0 and EMGr, assuming a Gaussian distribution of error (Lee and

Seung, 1999). As input for the NNMF, the number of synergies (n) has to be defined.

One can start by using one synergy and increasing up to a maximum number, which is

the number of recorded muscles. All this process of extracting muscle synergies from

very basic raw EMG is schematically represented in Figure 2.5.

Figure 2.5: Process of estimating the activation coefficients (matrix H) and synergy
vectors (matrix W) from eight experimental EMG signals.

In summary, each muscle synergy receives as input a modulation signal (activation

coefficients) from higher neural centers, and gives as output a weighted activation signal

to a set of muscles. The activation of each muscle is the sum of the weighted activa-

tion signals coming from each synergy. This mechanism eases the control of the high

dimensional space of muscle activation by means of a lower dimensional set of neural

commands.
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2.3.3.4 Reconstruction goodness scores

At last, it is necessary to assess the quality of the reconstructed EMG envelopes, i.e.,

whether the recorded EMGs can be well described as a combination of the identified syn-

ergies. For a given number of synergies, the similarity between EMG0 and EMGr is usu-

ally assessed with one of the following metrics: the variability accounted for (VAFtotal)

(Clark et al., 2010) or the coefficient of determination (r2) (Torres-Oviedo et al., 2006).

Low values of similarity cast doubt on the extracted synergies, indicating that they do

not explain a large part of of EMG variance, suggesting that additional synergies are

used. Different thresholds of similarity can be found in the literature, which makes the

comparison of studies a difficult task.

2.3.4 Implications for the clinical setting

During the last fifteen years, the analysis of muscles synergies has received consider-

able attention from the neuroscience community as a way to interpret, in a quantitative

way, the neural strategy adopted by the CNS to simplify the coordination of muscles.

Experimental evidences has shown that the synergistic control is visibly affected in neu-

rologically impaired people, leading to the verified impaired walking performance. For

instance, according to Clark et al. (2010), poststroke patients need less muscle synergies

to account for global muscle activation during walking at their preferred speed compared

with healthy subjects. Participants requiring fewer muscle synergies present more mus-

cle co-activation, resulting in less locomotor output complexity and impaired walking

performance. Thus, the analysis of muscle synergies can be explored as a novel tool for

the assessment of underlying neural strategies of movement and functional outcomes of

muscle activity (Safavynia et al., 2011).





Chapter 3
Assessment of spinal cord injury and

stroke

Walking is a very complex task, which needs to be objectively assessed in people with gait

impairments. A proper diagnosis and assessment of motor impairments is important to

prescribe appropriate rehabilitation strategies (DeLisa and States, 1998). To understand

impaired gait, it is first required to understand the basic biomechanics of the normal

gait. Recent researches on pathological conditions strongly recommend gait analysis to

adequately assess and follow-up patients and to support clinical decision on the best

treatment (Nadeau et al., 2011).

There are two main groups of patients that suffered neurological damages and, as

a consequence, present pathological gait: poststroke survivors and spinal cord injured

(SCI). These two main groups of patients are the focus of this Ph.D. Thesis.

This Chapter starts by introducing the main biomechanical mechanisms underly-

ing human walking, as well as the most used instrumented gait analysis systems. It

continues by presenting general concepts of SCI and stroke, as well as the assessment of

sensorimotor mechanisms underlying impaired walking in these neurological diseases.

3.1 Biomechanics of normal gait

Human gait refers to the locomotion achieved through the forward movement of limbs, in

which the body moves from one place to another, changing alternately and repetitively

the location of the feet (Perry, 1992). There are many types of human gait, like the

walking, the skipping, and the running, among others. This Thesis focus on human

25
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walking. A simplified diagram of the human gait during normal walking is represented

in Figure 3.1.

Figure 3.1: Main divisions of the human gait cycle. Gait cycle has two main phases:
stance and swing. Swing phase is where the action takes place: toes are cleared; limbs

move forward.

The gait cycle is the interval of time spent between the occurrence of two similar

locomotion movements. Usually, the first contact (often called heel strike) of one foot

represents the beginning (0%) of gait cycle, so that the final of the cycle (100%) happens

when the same (ipsilateral) foot contacts the ground, which will also be the initial contact

of the next cycle. Gait cycle can be divided in two global periods: stance and swing.

Stance is the period in which the ipsilateral foot is on the ground (weight bearing) and

lasts approximately 60% of the gait cycle at an average walking speed. Swing is the

period in which the ipsilateral foot is in the air (limb is not weight bearing) (Perry,

1992) and lasts approximately 40% of the gait cycle. Since there are two lower limbs,

alternating their movements in a sinusoidal way, the events of the opposite (contralateral)

limb are offset by 50% in non-injured people, in a way that initial contact of contralateral

limb occurs at 50% of the cycle.

As stance phase lasts approximately 60% of the gait cycle in a normal person,

and 2 (legs) x 60 = 120, it follows that both feet are on the ground during 20% of the

cycle. This period is called double support and is divided into two parts: initial and final

double support (see Figure 3.1). The remaining part of the stance phase, when only the

ipsilateral foot is on the ground, is called single support.
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Depending on the author, human gait can be divided into different number of

phases. According to Perry (Perry, 1992), gait can be divided into eight phases, each

one presenting a typical pattern and a functional objective. Those phases are:

• Phase 1 - Initial contact (or heel strike), occurring at 0-2% of the gait cycle. In

this phase, it is done the initial contact of the ipsilateral foot with the ground and

the goal is to obtain the correct alignment of the lower limb in order to begin the

stance (Perry, 1992).

• Phase 2 - Loading response, occurring at 2-10% of the gait cycle. In this phase,

both feet are on the ground (initial double support). The main events of this phase

are the shock absorption and progress of the walking. This phase ends when the

contralateral foot leaves the ground and starts its swing movement.

• Phase 3 - Mid-stance, which takes place at the 10-30% interval. The aim of this

phase is the progression of the foot on the ground as well as to keep the stability

of the limb and the trunk. This phases ends when the body weight is aligned with

the forefoot.

• Phase 4 - Terminal stance, which happens at 30-50% gait cycle. The support of

the limb ends in this phase and the goal is to progress the body in addition to the

foot support. This phase starts with heel lifting and ends when the contralateral

foot strikes the ground.

• Phase 5 - Pre-swing, which involves the 50-60% interval of gait cycle. The aim of

this phase is to prepare the lower limb for the swing phase. This is the final phase

of stance (final double support): it begins with the initial strike of the contralateral

foot with the floor and ends when the ipsilateral leaves the floor.

• Phase 6 - Initial swing, which happens at 60-73% gait cycle. The aim of this

phase is to lift the foot from the ground and move the lower limb. This phase

starts when the ipsilateral foot lifts the ground and ends when it is opposite to the

contralateral.

• Phase 7 - Mid-swing, which involves the 73-87% interval of gait. This second phase

of the swing has the aim of moving the ipsilateral limb and free the foot from the

ground. This phase starts when the ipsilateral limb is opposite to the contralateral

limb and ends when the tibia of this limb in swing is in a vertical position (the

moment when the knee and hip flexion are similar).

• Phase 8 - Terminal swing, which involves the 87-100% interval of gait cycle. This

phase starts when the tibia is in vertical position and ends when the foot strikes

the ground.
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3.1.1 Spatio-temporal parameters

Spatio-temporal parameters of gait are important functional measures used to describe

gait.

Every time the leg moves forward, it produces a step (Kirtley, 2006). If the left

leg moves forward, it is a left step. Contrariwise, a right step happens when the right

leg is the one that moves forward. Step time is the time spent from the moment the

contralateral foot hit the ground until the ipsilateral foot hit the ground too, and the

step length is the distance between the heel of the trailing limb to the heel of the leading

one (Kirtley, 2006) (see Figure 3.2). When two steps occur (one left and one right), it

makes a stride (or gait cycle).

Figure 3.2: Representation of step length and step width.

Stride time is the time spent to execute two steps (one stride). Step width is the

mediolateral distance between the midpoints of the two heels while in double support

(see Figure 3.2). Another important spatio-temporal parameter is the cadence, which

is usually the name given to the number of steps per minute. Natural cadence is about

120 steps/minute, which is the same of 60 strides/minute. Cadence usually does not

change with age (Kirtley, 2006).

At last, another important spatio-temporal variable to describe gait is speed. Nat-

ural walking speed is relatively constant until age 70, after which it decreases about 15%

per decade (Kirtley, 2006).

3.1.2 Kinematics

When it comes to the study of the gait, kinematics is the description of angles, positions,

velocities and accelerations of body segments and joints (Kirtley, 2006). It is very

important to measure kinematic patterns, as they are the basis for interpreting other
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data like electromyography (EMG), force and stride characteristics, for example (DeLisa

and States, 1998).

To describe kinematic patterns, a system of planes and axes is usually used. Three

cardinal planes, intersected at the center of mass of the body, are represented in Figure

3.3-(A). Movement takes place in these planes (Hamill and Knutzen, 2006).

Figure 3.3: References for human kinematics. (A) Human planes and axes of refer-
ence. Three main planes originate at the center of gravity: the sagittal plane, which
divides the body into right and left; the coronal plane, dividing the body into front and
back; the transverse plane, dividing the body into top and bottom. Movement takes
place in or parallel to the planes about a mediolateral axis (sagittal plane), an antero-
posterior axis (coronal plane), or a longitudinal axis (transverse plane). (B) Diagram
of the leg (lateral vision) shown in the rest position (0o at all joints) with the positive
direction of movement indicated. (C) Diagram of both legs (frontal vision) shown in
the rest position (0o at all joints) with the positive direction of movement indicated.

Sagittal plane virtually divides the body into right and left halves. Movements in

this plane occur around the mediolateral axis, which goes side to side, passing through

the center of mass of the body. The coronal (or frontal) plane divides the body in two

halves: front and back. Movement on this plane occurs around the anteroposterior axis,

which runs anterior and posterior from the plane. Transverse plane divides the body

into upper and lower halves. Movement on this plane occurs around the longitudinal

axis (Hamill and Knutzen, 2006).

Movements around the joints can be classified into different types, depending on

the joint and the plane of movement. Most common movements are:

• Flexion and extension. In these movements, there is a decrease (positive direction

in 3.3-(B)) or increase of the angle between the limb’s segment that moves and the

segment that stays fixed, respectively, in the sagittal plane. In relation to the ankle
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joint, the decrease of the angle between the segments is usually called dorsiflexion

and the increase of the angle is called plantarflexion (Barroso, 2011).

• Adduction and abduction, which are movements in the coronal plane. Abduction

(positive direction in 3.3-(C)) is the motion of the hip away from the center of the

body and adduction is the motion of the hip in direction to the center of the body

(Barroso, 2011).

• Medial and lateral rotation in the transverse plane. Medial rotation happens to-

wards the midline of the body, while lateral rotation is the movement away from

the midline.

Kinematic patterns of normal gait in the sagittal plane are very well documented

and studied (Perry, 1992) (Nymark et al., 2005) (Hidler et al., 2008) (van Asseldonk

et al., 2008). Examples from an healthy subject are represented in Figure 3.4 and angles

were obtained in relation to the joints references represented in Figure 3.3-(B) sagittal

plane.

Hip joint is usually in flexion at the beginning of the gait cycle. Then it extends

until approximately the end of terminal stance (50% of the gait cycle) and it finally

flexes until the end of the gait cycle, performing a sinusoidal movement during the gait

cycle (Barroso, 2011).

The movement of knee joint present two peaks of flexion along the gait cycle: one

in stance and the other during swing phase, with the second peak being much larger

than the former. Knee is always in a positive position (angle higher than 0o).

Ankle joint is usually at neutral position (0o) at the initial contact, after which it

slightly dorsiflexes. After that, it plantarflexes through the remaining of stance phase.

Approximately at the end of terminal stance, the ankle dorsiflexes again. During swing,

it plantarflexes until reaching the neutral position.

3.1.3 Kinetics

Kinetics is the study of forces and moments that cause a movement, like ground reaction,

gravitation, or forces produced by muscle contractions, for example (Rueterbories et al.,

2010).

According to Newton’s Third Law, if one body exerts a force on another body,

there is a simultaneous force equal in magnitude and opposite in direction applied in

the first body by the other body. Ground Reaction Force (GRF) is a force equal in
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Figure 3.4: Comparison of time-normalized kinematics between the right and left side
of a healthy subject, for the hip, knee and ankle joints in the sagittal plane. Thick black
lines indicate the meand and the standard deviation (SD) is indicated in dashed black
lines. Mean stance phase is indicated in red vertical lines, while dashed red vertical

lines indicate the SD of the stance phase.

magnitude and opposite in direction to the applied by the foot on the ground. The

understanding of GRF is very important in the clinical setting, as this force acts in the

body during walking (DeLisa and States, 1998). The only other external force acting on

the body in movement (if we do not consider the wind resistance) is the gravity force.

3D components of GRF are represented in Figure 3.5-A, whereas 3D components of the

force applied by the body to the ground are represented in Figure 3.5-B.

According to Newton’s Second Law, the vector sum of the forces F acting on an

object is equal to its mass m multiplied by its acceleration vector a: F = m.a. In Figure

3.5-C, vector F = ma represents the instantaneous inertial force acting on an object. On

the contrary, F=mg is the vector representing the force of gravity acting on an object.

The sum of gravitational and inertial forces is the resultant vector (Fr). Therefore, GRF
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Figure 3.5: 3D representation of ground reaction forces (GRF). (A) 3D components
of GRF. (B) 3D components of the force applied by the body to the ground. (C)

Instantaneous inertial force and force of gravity acting on an object.

combines both body’s movement and acceleration, as well as gravity’s effect on the body,

in three dimensions.

The largest component of GRF is the vertical and is related to the body’s center of

mass in the vertical direction of walking. In Figure 3.6-A, it is represented an example

of the GRF vertical component of an healthy subject in motion. The force is normalized

in relation to the weight of the subject. At the beginning of stance, force magnitude

amounts to 120% of the BW during the double support. During this sub-phase of stance,

vertical GRF is superior than gravity force due to body acceptance, which lowers the

center of mass and consequently, the acceleration of the body (human body in this case)

increases. After that, contralateral leg starts swing phase and vertical GRF decreases

during this single period support. It may seem strange that this force decrease to less

than the body weight when there is only one foot on the ground. Again, this is explained

by the displacement of center of mass. This center of mass, which is located around the

center of the pelvis, performs a sinusoidal movement and falls about 10 cm in space

during gait (DeLisa and States, 1998).

Another component of the GRF is the anteroposterior (AP) component (see Figure

3.6-B). Initially it is a braking force and then it is a propulsion force, presenting a

sinusoidal motion of about 25% BW (50% peak-to-peak) amplitude in healthy people.
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Figure 3.6: GRF acting on a healthy subject during walking. (A) Vertical GRF. (B)
Anteroposterior (AP) GRF.

Typically, the first 50% of the stance phase correspond to braking and the remaining

50% of stance correspond to propulsion. The integral of each phase represents the force

impulse. The braking impulse should be approximately equal to the propulsion impulse

in a balanced gait. Thus, the integral of the forces must be equal to 0.

The third component of GRF is the mediolateral, which is the smallest of the three

components. It is usually related to the balance while walking. This force acts usually

towards medial direction during initial stance, with a magnitude of about 10% BW and

then acts laterally during the balance of stance phase (DeLisa and States, 1998).

3.2 Instrumented gait analysis systems

Gait parameters are difficult to be assessed by naked eye. Thus, reliable instruments

should be used to measure these variables accurately. The measurement of human gait

has come a long way in the past decades. Modern gait analysis started with the work of

Inman et al. (1952) in the 1950s and became a useful clinical tool after the pioneering

efforts of Perry (1967) and Sutherland (1964).

Modern technology has provided clinicians and researchers a wide variety of gait

outcomes, most of them in real time, allowing for the possibility of critical judgments

about an individual’s gait. This section provides information on the types of gait in-

strumentation that are commercially available and are usually used to assess patients’

impairments.
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3.2.1 Spatio-temporal parameters

Footswitches are force sensitive resistors that present good sensibility and can be inte-

grated with other platforms for the analysis of gait. They may be placed on the heel,

toe or metatarsal region, detecting different gait events according to their location on

the foot. These instruments usually work on a binary mode, being on or off, depending

if the detected force surpasses or not a predefined threshold, respectively. The main

problems of footswitches are the ideal threshold values for each person and also the

impossibility of measuring spatial variables like step/stride length.

To measure spatial variables, other devices have to be used. Recently, instrumented

walkways have gained popularity to assess spatio-temporal variables in gait labs (Kirt-

ley, 2006). GaitMat IITM and GAITRITETM are two examples of popular instrumented

walkways, made of switches or pressure-sensing arrays, respectively. The major draw-

back of walkways are the impossibility of measuring long-distance locomotion.

At last, the most complex instruments to measure spatio-temporal variables are

video motion systems, usually incorporated in gait analysis laboratories. Commercially

available systems include Vicon Motion Systems (Oxford, UK), CODA mpx30 (Charn-

wood Dynamics Ltd, Loughborough, UK), BTS (Milan, Italy) and Motion Analysis

Corp. (Santa Rosa, CA, USA), among others. The working principle of most of the

video motion systems relies on video-based photogrammetry (Kirtley, 2006). Bright

markers placed over several locations on the person being tested are then tracked by

video cameras. This way, it is possible to obtain 3D coordinates and each individual

spatio-temporal parameter.

3.2.2 Kinematics

There are several types of measurement systems to assess human kinematics. Two

of them are probably the most used nowadays: electrogoniometers and video motion

systems (DeLisa and States, 1998).

Electrogoniometers are the simplest (can be used in different environments and

outside the laboratories or clinics) and cheapest method to assess human kinematics,

despite presenting limitations to obtain accurate results. The most basic model consists

in a potentiometer mounted on two brackets strapped to the body segments either side

of the joint. On the other hand, modern versions are more flexible, without the need

for alignment with joint center. With these modern electrogoniometers, it is possible to
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obtain three-dimensional information, despite they have been used mainly for 2D anal-

ysis. The main drawback of electrogoniometers is the impossibility to record absolute

motion of the body segments, but simply the relative motion of body segments.

If the purpose of some research study is to measure absolute motion of body seg-

ments, measurements must be taken with respect to a fixed global reference system.

Video motion systems (like those already mentioned in subsection 3.2.1) are the most

popular for kinematic analysis. To obtain angles from position data, each body seg-

ment must be defined by at least three markers and joint centers have to be defined.

Therefore, these systems compute inverse dynamics, which may introduce some errors

due to markers position. Due to digitization noise of the markers position, kinematics

data need to be filtered. Digitization noise tends to be high frequency, whereas markers

position is usually low frequency. Therefore, a low pass filtered should be used. The

choice of the cutoff frequency of the low pas filter is empirical. There is no consensus

on the optimal value, ranging from 6 Hz to 20 Hz, depending on the authors (Allen and

Neptune, 2012) (Sinclair et al., 2013) (Hidler et al., 2008) (Moreno et al., 2008). If the

cutoff frequency is too high, much of the noise will remain; contrariwise, a low cutoff

value will over-smooth the signal.

3.2.3 Kinetics

GRF is usually assessed using force platforms, which are devices used for measuring the

force between and object or a body and the ground. Thus, force platforms are the most

used force transducers in biomechanics (Robertson et al., 2013) and may be used to

assess gait and balance, for example. More advanced platforms measure 3D components

and its point of application, as well as moment of force and center of pressure.

Raw GRF data recorded by force platforms is usually filtered offline using a low-pass

filter. Also, it should be normalized by each individual’s body weight (BW) (Bowden

et al., 2010). After this processing, the three components of GRF (vertical, anteropos-

terior and mediolateral) can be studied.

3.3 General Concepts of Stroke

Stroke, which may also be referred to as cerebrovascular accident (CVA), is a sudden

dysfunction in the cerebral blood flow, which alters the function of a given brain region.

There are two main types of stroke: ischemic and hemorrhagic. Ischemic strokes are

caused by a significant decrease of blood flow in a part of the brain due to an occlusion
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of a cerebral artery through a clot or other particle (Bendok and Naidech, 2011). These

are the most common type of stroke (appoximately 85%), whose the main consequence

is the death of brain cells that did not receive enough oxygen and nutrients carried by

the blood. Hemorrhagic stroke occur when the brain is filled with blood due to rupture

of a cerebral vessel. These are less common but have a much higher mortality rate.

However, patients who survive to this type of stroke usually present less serious sequelae

in long term.

Stroke disproportionally affects the elderly, where it is more likely to be fatal or lead

to long-term supportive care (Sohrabji et al., 2013). Stroke has an important impact

in patients’ life and also represents considerable costs for social and health care systems

associated with patients’ hospitalization and treatment. It is the the world’s second

most common cause of death (Gradil and Sá, 2015), being a major cause of mortality

and morbidity in adults all over the world (Baghshomali and Bushnell, 2014). Moreover,

it is expected that stroke incidence will increase 25% by 2030 (Ramsay et al., 2014).

About 80% of the patients survive to the acute phase poststroke. The period of

greatest potential for recovery seems to be between the second and the fifth month post-

stroke, where patients may regain and learn new functions, as well as compensate for

impairments. After the sixth month, functional changes are more limited (Jørgensen

et al., 1995). It has been demonstrated that motor recovery poststroke is related to

neural plasticity, which is the mechanism responsible for developing new neuronal inter-

connections (Takeuchi and Izumi, 2013).

After the first 6 months of evolution, between 70% to 85% of stroke survivors

present a residual hemiparesis (slight paralysis or weakness on one side of the body)

or impaired motor control on one side of the body, as well as a variety of neurological

deficits, communication disorders, cognitive deficits or even impaired spatial-visual per-

ception (Belda-Lois et al., 2011). Hemiplegia (paralysis of one side of the body) is a very

common poststroke dysfunction and contributes significantly to reduce walking perfor-

mance. Thus, hemiplegic gait has been a matter of enormous research during the last

decades, with researchers aiming at developing novel methods of rehabilitation (Olney

and Richards, 1996). After completing a traditional rehabilitation program, approxi-

mately 50%- 60% of poststroke patients remain with some degree of motor impairment

and approximately 50% are at least partially dependent or restricted in daily activities

(Schaechter, 2004).



Chapter 3. Assessment of spinal cord injury and stroke 37

3.3.1 Abnormal gait after stroke

As a consequence of the neurological injury, ambulatory poststroke patients usually

present muscle weakness and poor balance, which lead to reduced walking ability and

mobility restrictions (Eng and Tang, 2007), mainly on the side of the body contralateral

to the injured hemisphere (Molina Rueda et al., 2012), usually called the hemiparetic

side. Patients frequently develop compensatory motor strategies to overcome limita-

tions of paretic side movement, but the repetitive use of these strategies may cause

musculoskeletal disorders.

Problems in muscular activation are often associated with abnormal kinematics and

kinetics. For instance, ambulatory poststroke patients with abnormal muscular coordi-

nation, reduced activation of hip flexors and extensors, as well as ankle plantarflexors

(necessary for the propulsion) eventually walk slower (Nadeau et al., 2011). In fact,

individuals frequently exhibit reduced walking speed after stroke. While healthy pop-

ulation usually walks with a mean speed of 1.3 m/s, poststroke patients walk within

the range from 0.23 to 0.73 m/s (Verma et al., 2012). Stride length and cadence are

also decreased in ambulatory poststroke patients (Roche et al., 2015) (Bonnyaud et al.,

2014). Duration of double support is longer in post stroke patients (Olney and Richards,

1996). These spatiotemporal parameters are often related to kinematic alterations (e.g.,

decreased active range of motion around lower limb joints and increased step width, if

compared with healthy controls) (Bonnyaud et al., 2014) (Reissman and Dhaher, 2015).

Poststroke patients usually present a very asymmetrical and unstable gait (Nadeau

et al., 2011), with affected temporal and kinematic parameters between the paretic and

non-paretic side (Reissman and Dhaher, 2015). For instance, non-paretic side usually

has increased stance phase if compared with the paretic side (Olney and Richards, 1996)

(DeLisa and States, 1998). Decreased peak hip flexion, peak knee flexion and ankle

dorsiflexion on the paretic side are frequently described (Roche et al., 2015) (Bonnyaud

et al., 2014). In fact, decreased peak ankle dorsiflexion seems to be a key parameter

affecting the quality of walking (Lamontagne et al., 2002). Hyperextension of the paretic

leg during stance is usually associated with different types of impairments in motor

control. If the main cause is muscle weakness, there is a tendency for this hyperextension

to occur throughout the entire stance phase, which is accompanied by compensatory

circumduction of the leg to achieve toe clearance in the swing phase (Nadeau et al.,

2011). In the case of decreased peak ankle dorsiflexion during swing, compensatory

mechanisms such as increasing peak hip flexion may be adopted as a strategy to increase

foot clearance (Roche et al., 2015). Kinetic asymmetries have been also described in

these patients (Bonnyaud et al., 2014). For instance, hemiparetic poststroke patients

present decreased propulsion force generated by the paretic leg during walking (Clark
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et al., 2010) (Bowden et al., 2010) (Awad et al., 2014). All these asymmetries lead to

inefficient energy expenditure, joint damage, pain and falls (Verma et al., 2012) (Gaviria

et al., 1996).

Spasticity syndrome is a very common disorder that may contribute to motor im-

pairment after neurological injury (Bravo-Esteban et al., 2013). Despite the ease to

recognize spasticity by a trained clinician, it has been difficult to achieve consensus on

its definition and quantification (Gómez-Soriano et al., 2012). Perhaps the most com-

mon definition of spasticity is the one proposed by Lance (1980), defining spasticity as

a “motor disorder characterized by a velocity dependent increase in tonic stretch re-

flexes (muscle tone) with exaggerated tendon jerks, resulting from hyper-excitability of

the stretch reflexes, as one component of the upper motor neuron syndrome”. More

recently, spasticity syndrome has been considered a complex set of clinical conditions

including hypertonia1, spasms2, clonus3, hyperreflexia4 and muscle co-activation5 (Bur-

ridge et al., 2005) (Dietz and Sinkjaer, 2007) (Bennett, 2008) (Arene and Hidler, 2009).

Co-activation is usually increased in people suffering from CNS disorders, in order to

walk longer (Rosa et al., 2014). Nevertheless, this abnormal muscle activation may

provoke fatigue and muscle pain (Rosa et al., 2014). In the case of poststroke pa-

tients, spasticity is characterized by high levels of muscle tone and a relative absence of

spasms(Bennett, 2008).

Spasticity that occurs after stroke may alter walking patterns and, consequently,

reduce walking ability. For instance, spasticity of rectus femoris is one of the main causes

of residual peak knee flexion in swing in poststroke patients (Roche et al., 2015). Also,

when the plantarflexion angle in the transition from stance to swing is low, it can be

associated with spasticity of plantarflexors muscles (soleus, gastrocnemius medialis or

gastrocnemius lateralis) (Nadeau et al., 2011).

3.3.2 Assessment of sensorimotor impairments poststroke

It is difficult to quantify motor recovery poststroke (Bowden et al., 2010). Traditionally,

motor impairments poststroke have been assessed using clinical scales, which have been

used to quantify the level of impairment, to predict further improvements, to assess the

effectiveness of a given therapy or treatment and to support the clinical practice. More

recently, emerging measures based on biomechanical and electromyographic features

1Abnormal increase of muscle tone (Gómez-Soriano, 2012).
2Sudden involuntary muscle contraction (Gómez-Soriano, 2012).
3Involuntary rhythmic muscle contraction that causes oscillations in the distal joints, usually at a

characteristic frequency of between 4 to 8 Hz (Gómez-Soriano, 2012).
4Exaggerated reflex of the muscles (Gómez-Soriano, 2012).
5Unintentional and simultaneous contraction of opposing muscle groups (Gómez-Soriano, 2012).
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have been proposed to overcome some of the drawbacks of clinical scales (Bowden et al.,

2010) (Routson et al., 2013). The following subsections present the most used clinical

scales for the assessment of poststroke patients, as well as emerging measures that have

been proposed as the key step toward a better quantitative assessment of this group of

patients.

3.3.2.1 Clinical scales

Some of the most used scales in the clinical setting to assess functional walking poststroke

are: Fugl-Meyer Assessment (FMA), Functional Ambulatory Classification (FAC) and

Timed Up and Go (TUG) test.

Fugl-Meyer (Fugl-Meyer et al., 1975) is the gold standard in the assessment and

classification of poststroke patients. For studies of walking, it is recommended to use

the Lower Extremity subscale of the FMA (Fugl-Meyer assessment for lower extremity,

FMA-LE). This assessment method is a cumulative numerical scoring system composed

by four domains: motor function of the lower extremity (maximum score = 34 points),

sensory function (maximum of 12 points), joint range of motion (maximum of 20 points)

and joint pain (maximum of 20 points), resulting in a maximum motor score of 86

points for the lower extremity (Fugl-Meyer et al., 1975). For each item assessed, there

is a 3-point ordinal scale: 0) the task cannot be performed, 1) the task can be partially

performed, and 2) the task can be fully performed.

FMA-LE relies almost on isolated voluntary tasks performed in the bedside, which

are not always representative of the walking performance. For instance, walking is

a complex motor behavior, highly dependent on sensory feedback, which cannot be

evaluated through FMA. For those reasons, it has been shown some concern with the

ability of the FMA scale to evaluate the performance and the underlying impairments

of such a complex activity like walking (Bowden et al., 2010).

FAC is a functional test that evaluates the walking ability and can be used to

assess any motor disorder (Holden et al., 1986). It is a 6-point scale scored from 0 (no

functional / unable) to 5 (patient can walk independently anywhere), determining the

level of support required by the patient when walking, regardless of whether or not they

use a personal assistive device. It presents excellent test-retest and inter-rater reliability

in acute poststroke patients (Mehrholz et al., 2007).

TUG test was designed as a screening tool to detect balance problems. This test

incorporates a series of tasks, all of which are critical for independent mobility: stand

up from a seated position on a chair, walk three meters, turn around, return to the
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chair and sit down (Wall et al., 2000). The final score depends on the time required to

perform the test.

In relation to the assessment of spasticity, the difficulty to classify a subject as spas-

tic or not is a well-known problem (Reichenfelser et al., 2012). The modified Ashworth

scale (MAS) (Bohannon and Smith, 1987) is commonly used to measure spasticity, al-

though this scale specifically measures hypertonia (Gómez-Soriano et al., 2012), which

is one of the clinical conditions of spasticity. The major drawbacks of MAS scale are the

qualitative and subjective information provided as output, which raises concerns about

its validity and reliability (Ansari et al., 2006).

3.3.2.2 Emerging measures of sensorimotor impairments poststroke

It is crucial to understand specific patient’s impairments to prescribe effective customized

treatments and target a reduction of compensatory motor strategies (Molina Rueda

et al., 2012). Setting goals according to the rehabilitation objectives for a particular

patient may also improve results (Belda-Lois et al., 2011). To do that, there is a need

for reliable assessment and prognosis techniques that may detect and analyze early

phenomenon of neuroplasticity, both adaptive and maladaptive.

Muscle coordination for task execution is compromised in poststroke patients (Reiss-

man and Dhaher, 2015). As introduced in Section 2.3.4, the analysis of muscle synergies

may be used to assess sensorimotor impairments specific to an individual and define

targets for the rational development of novel rehabilitation therapies (Ting et al., 2015).

According to Clark et al. (2010), poststroke patients need less muscle synergies to ac-

count for global muscle activation during walking at their preferred speed compared

with healthy subjects. In addition, the number of muscle synergies seems to be a su-

perior predictor of walking performance than the FMA (Bowden et al., 2010) (Clark

et al., 2010), especially in the case of low intermuscular coordination, resulting from the

co-activation of different muscle groups that are usually independently activated (Clark

et al., 2010) (Routson et al., 2013). Very recently, the analysis of muscle synergies has

been also used to measure motor recovery following therapeutic interventions. Accord-

ing to Routson et al. (2013), the combination of the analysis of the synergistic muscle

control with the application of functional metrics could represent the key step toward

a better quantitative assessment of stroke-related diseases. Notwithstanding, the anal-

ysis of muscles synergies has not been recommended yet as an outcome of these clinical

conditions, being confined to the research environment.
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Gait analysis is also a powerful tool to adequately assess and follow-up the patient

and to support clinical decision on the best treatment (Wren et al., 2009). Some param-

eters derived from gait analysis may be useful to assess hemiparetic gait. For instance,

meaningful gait speed improvement (Tilson et al., 2010), which is the meaningful in-

crease of gait speed, has been used and proposed as an outcome of walking performance

(Bowden et al., 2013). Responders (those patients with meaningful gait speed improve-

ment) usually present higher FMA scores (Bowden et al., 2013). Metrics like paretic

step ratio (PSR), i.e., the percentage of the stride length performed by the paretic leg,

has been proposed to assess patient’s progress along the rehabilitation process (Bowden

et al., 2010), being closer to 50% as the gait improves (right step length should be equal

to left step length in healthy people). Paretic propulsion (PP), which is the percentage

of propulsion performed by the paretic leg, has been also used to assess motor control

poststroke (Bowden et al., 2010). This metric is based on the fact that hemiparetic

poststroke patients usually present decreased propulsion force generated by the paretic

leg during walking (Clark et al., 2010) (Bowden et al., 2010) (Awad et al., 2014).

The emerging measures presented in this section should be explored as novel metrics

to assess walking poststroke. In particular, the analysis of muscle synergies, combined

with behavioral and biomechanical measures, can give clinically relevant evidence on

the cause-effect relationships between impaired neuromuscular activity and pathological

movement (Safavynia et al., 2011).

3.4 General Concepts of Spinal Cord Injury

Spinal cord inury (SCI) is defined as any disturbance of the spinal cord that interrupt

the normal transmission of nerve impulses from the brain to the PNS and vice versa

(Finnerup, 2013). A trauma to the spinal cord may result in serious functional conse-

quences affecting the health and quality of life of patients, including sensorimotor and

autonomic functions below the level of injury, sexual function, bowel and bladder con-

trol, pain and spasticity syndrome (Bravo-Esteban et al., 2013) (Gómez-Soriano et al.,

2012) (Kennedy et al., 2012) (van Middendorp et al., 2014).

SCI can be classified according to the degree of severity: it can be complete (when

the spinal cord below the lesion is completely disconnected to the higher centers of the

Nervous System) or incomplete (when part of the spinal cord preserves, to some extent,

its continuity across the lesion) (Gómez-Soriano et al., 2012). In the case of incomplete

spinal cord injury (iSCI), some level of motor recovery has been observed (Fawcett et al.,

2007) (Duffell et al., 2015), although little is known about the sensorimotor mechanisms

driving this improvement (Bravo-Esteban et al., 2014).
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With the modernization of society, SCI incidence increases year after year (Yang

et al., 2014). SCI incidence changes from country to country and from different regions,

with higher prevalence in people between 18 and 32 years old, in both developed and

developing countries (Lee et al., 2014) (Yang et al., 2014). For instance, it has been

reported an estimated annual incidence of 40 per million in North America, 16 per

million in Western Europe and 15 per million in Australia (Lee et al., 2014). Wirz

(2013) reported that the proportion of incomplete SCI (iSCI) incidents was 52.8% in

Europe and 44.3% in North America. One of the most important milestones in the

rehabilitation process of iSCI patients is to improve gait function (Benito-Penalva et al.,

2012). To improve customized therapy of iSCI patients, it is important to understand

the neuromuscular and biomechanical features underlying abnormal gait after spinal

cord injury.

3.4.1 Abnormal gait after spinal cord injury

There is a great variability in walking patterns across different iSCI subjects with am-

bulation capacity (Ting et al., 2015), with subjects presenting an impaired walking. For

instance, iSCI patients tend to walk slowly, with poor balance and with the knee and

hip hyperflexed in the stance phase (Gil-Agudo et al., 2013). Some iSCI patients also

remain with the ankle dorsiflexed through the stance phase, which compromises an ef-

fective push-off (Ditunno and Scivoletto, 2009). Other iSCI patients walk with excessive

plantarflexion and present impaired foot contact (van der Salm et al., 2005).

According to Krawetz and Nance (1996), the quality of gait in SCI patients with

ambulation capacity is related to the level and completeness of the injury, as well as the

spasticity affecting them. Moreover, symptoms like muscular weakness, co-activation

of antagonist muscles and altered muscle mechanics also provoke abnormal gait and

postural movements (Dietz, 2008). However, the relationship between hypertonia and

gait function is still controversial (Duffell et al., 2015). Spasticity in SCI patients is

mainly associated with the presence of flexor and extensor spasms triggered by cutaneous

stimulation (Bennett, 2008).

3.4.2 Assessment of sensorimotor impairments after spinal cord injury

Nowadays, the assessment of SCI patients is based on physical examination and comple-

mentary tests, aiming to define the level, extent and evolutionary phase of injury. On

the other hand, emerging measures have been proposed as the key step toward a bet-

ter quantitative assessment of this group of patients. The following subsections present

the most used clinical scales for the assessment of SCI patients, as well as these novel
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Table 3.1: American Spinal Injury Association (ASIA) Impairment Scale (AIS).

ASIA grade Description

A Complete . No sensory or motor function is preserved
in the sacral segments S4-S5.

B Sensory incomplete. Sensory but not motor function is
preserved below the neurological level and includes the
sacral segments S4-S5. No motor function is preserved
more than three levels below the motor level on either
side of the body.

C Motor incomplete. Motor function is preserved be-
low the neurological level, and more than half of key
muscle functions below the single neurological level of
injury have a muscle grade less than 3 (Grades 0–2).

D Motor incomplete. Motor function is preserved below
the neurological level, and at least half of key muscle
functions below the neurological level of injury have a
muscle grade > 3.

E Normal motor and sensory function. Someone without
a SCI does not receive an AIS grade.

proposed measures to quantitatively assess gait functioning, as well as spasticity and

related symptoms of iSCI patients.

3.4.2.1 Clinical scales

Despite the existence of several functional scales to assess SCI patients, the American

Spinal Injury Association (ASIA) Impairment Scale (AIS) is the gold standard to assess

and quantify the neurologic level and the extension (complete or incomplete) of the

lesion (see Appendix B). To quantify the sensory level, ASIA proposes the bilateral

assessment of twenty-eight dermatomes using pinprick and light touch sensation. To

quantify the motor level, ASIA proposes the bilateral assessment of ten key muscles

with manual muscle testing. Figure B.1 shows how this sensory and motor assessment is

done. The sum of the motor and sensory scores, used in combination with evaluation of

anal sensory and motor function, determines the overall degree of functional impairment

(AIS classification). AIS is an ordinal 5-point scale, ranging from A (no motor or sensory

function is preserved in the sacral segments S4-S5) to E (normal motor and sensory

function) (see Table 3.1) (Kirshblum et al., 2011). A major drawback of AIS scale is

its inability to detect small changes in neurophysiological improvements (Awai, 2014)

(Bravo-Esteban et al., 2014).



Chapter 3. Assessment of spinal cord injury and stroke 44

Apart from AIS scale, some of the most used scales in the clinical setting to assess

functional walking after SCI are: Walking Index for Spinal Cord Injury (WISCI II), the

aforementioned TUG test, the 10-Meter Walk Test (10MWT) and the 6-Minute Walk

Test (6MWT).

WISCI II is SCI-specific test. It is used to assess the amount of physical assistance

needed by the patient to walk 10 meters. This is a 21-point scale that ranges from 0

(patient unable to stand and/or participate in assisted walking) to 20 (patient ambulates

10 meters with no devices, no braces and no physical assistance) (Dittuno and Ditunno,

2001).

10MWT measures the time a person takes to walk 10 meters (with or without

assistive devices). For that, the person walks 14 meters and the time spent in the

intermediate 10 meters is counted. This test can be administered in iSCI patients the

first, third, sixth and twelfth month after the injury (van Hedel et al., 2005) (Forrest

et al., 2014).

6MWT is a sub-maximal test of endurance initially proposed by Balke (1963),

measuring the total distance covered by a person to walk over a total of six minutes on

a hard, flat surface (Jackson et al., 2008).

In addition, comprehensive rating scales like the Spinal Cord Independence Measure

(SCIM), which is a disability scale specific for SCI (Benito-Penalva et al., 2012) (Gil-

Agudo et al., 2013) (Kapadia et al., 2014), measure the ability of SCI patients to perform

everyday tasks according to their value for the patient (Catz and Itzkovich, 2007). This

scale can be used as a compact guide for determining certain treatment goals and for

outcome assessment following interventions designed to promote recovery after SCI (Catz

and Itzkovich, 2007).

In addition to the aforementioned modified Ashworth scale (MAS), other scales are

usually used to assess clinical conditions of spasticity in SCI patients. Those scales are

the Penn scale and the Spinal Cord Assessment Tool for Spastic Reflexes (SCATS). Penn

scale is a self-report measure that assess a patient’s perception of spasticity frequency

and severity by assessing the frequency of spasms (Penn et al., 1989). On the other

hand, SCATS scale measures three types of spastic reflexes in SCI patients: clonus,

flexor spasms and extensor spasms, each of them rated from 0 (no reaction) to 3 (severe)

(Benz et al., 2005).
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3.4.2.2 Emerging measures of sensorimotor impairments after spinal cord

injury

Novel metrics for a more detailed comprehension of neuromuscular control in terms

of degree of voluntary motor control have been recently proposed. Those include the

analysis of EMG coherence and muscle synergies.

Lower limb EMG coherence analysis has been used as an indirect measure of vol-

untary motor control, gait function (Hansen et al., 2005) and spasticity (Bravo-Esteban

et al., 2014) after iSCI. This is a frequency-domain measure of the similarity between

two independent EMG signals, having the potential to assess the descending motor drive

(Boonstra, 2013). The fact that it just needs EMG recording to be calculated makes

it suitable for clinical applications. Despite its ability to provide information about

disturbances and changes in motor control, which can be very valuable to understand

compensation strategies and for further rehabilitation processes, EMG is still rarely

employed in the clinical setting to assess SCI patients (Wang et al., 2013).

On the other hand, the analysis of muscle synergies may be also used to assess

sensorimotor impairments after SCI. For instance, Hayes et al. (2014) showed that the

muscle synergy responsible for eccentric braking was absent in all individuals with iSCI,

which is consistent with foot drop or slap that is often observed clinically. In general,

muscle synergies of iSCI also exhibit abnormal co-activation of muscles and much broader

temporal recruitment across the gait cycle (Hayes et al., 2014) (Ting et al., 2015), which

may also be explored as a measure of sensorimotor impairment.





Chapter 4
Study 1 - Shared synergies in human

walking and cycling

Abstract

Background. Biomechanical tasks may reflect synergistic control of muscles (i.e.,

groups of muscles are co-activated to perform a given task). Due to similarities in kine-

matics and muscle control with walking, cycling may be explored as a novel framework

for the assessment of motor performance.

Objective. The main goal of this Chapter is to investigate similar features of

walking and cycling in healthy subjects, using the muscle synergies hypothesis. Thus,

three hypotheses were tested: I) muscle synergies extracted from walking are similar

to those extracted during cycling; II) muscle synergies extracted from one of these two

motor tasks can be used to mathematically reconstruct the EMG patterns of the other

task; III) muscle synergies of cycling can result from merging synergies of walking.

The secondary goal of this study was to identify at what speed (and cadence) higher

similarities emerged.

Methods. The EMG of eight muscles of the dominant leg was recorded in eight

healthy participants while they walked and cycled at four matching cadences. NNMF

algorithm was applied to extract individual muscle synergies.

Results. Results corroborated hypothesis II, showing that four synergies from

walking and cycling can successfully explain most of the EMG variability of cycling

and walking, respectively; and also corroborated hypothesis III, showing that two out

of four synergies from walking appear to merge together to reconstruct one individual

synergy of cycling, with best reconstruction values found for higher speeds. The direct

47
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comparison of the synergies of walking and synergies of cycling (hypothesis I) produced

moderated values of similarity.

Conclusion. This first study of the Ph.D. Thesis provides supporting evidences

to the hypothesis that cycling and walking share common neuromuscular mechanisms.

These results support the use of cycling as a novel tool to assess walking in people with

impaired neuromotor control.

4.1 Introduction

Recent experimental results in animals and humans (Cheung et al., 2012) (De Marchis

et al., 2013) (Dominici et al., 2011) (Gizzi et al., 2012) (Hug et al., 2011) (Moreno et al.,

2013) (Routson et al., 2013), as well as simulations (Allen and Neptune, 2012) (Neptune

et al., 2009) have supported the idea that motor system uses a synergistic organization

to control biomechanical tasks.

There is still no agreement on the origin of muscle synergies: whether they are

neurophysiological entities orchestrated by both supraspinal and afferent pathways to

facilitate motor control (Berger et al., 2013) (Bizzi and Cheung, 2013) (Cheung et al.,

2012) (Chvatal and Ting, 2013) (Clark et al., 2010) (Moreno et al., 2013) (Routson

et al., 2013) (Torres-Oviedo and Ting, 2007) or muscular co-activation is rather a result

of biomechanical constraints (Kutch and Valero-Cuevas, 2012) (Valero-Cuevas et al.,

2009) (Kutch et al., 2008).

Some authors have provided evidence that the same muscle synergies are shared

across different biomechanical conditions, such as speed (Cappellini et al., 2006) and

loads (Ivanenko et al., 2004) in human walking, and multidirectional postural responses

in humans and cats (Torres-Oviedo et al., 2006) (Torres-Oviedo and Ting, 2007). Addi-

tional evidence for the hypothesis that movement is a result of the synergistic control of

the nervous system can be obtained by extracting similar synergies in different kinematic

and biomechanical motor tasks (Tresch and Jarc, 2009). Hug et al. (2010) highlighted

that two of the three synergies extracted during cycling in trained cyclists were similar

to two of the four synergies presented by Neptune et al. (2009) in a simulation study

of the motor control in human walking. Also, Chvatal and Ting (2013) showed that a

common set of muscle synergies mediate reactive balance and walking. At the beginning

of the Ph.D. Thesis, it was performed a preliminary study, where muscle synergies of

cycling and walking of seven healthy subjects were compared at one matching speed,

showing that these two motor tasks may in fact share similar muscle synergies (Barroso

et al., 2013). However, the processes underlying this similarity must be studied in more
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detail. For instance, as pedaling has fewer mechanical degrees-of-freedom (Raasch and

Zajac, 1999) with respect to walking (Zajac et al., 2002), it is expected that the number

of synergies in cycling may in fact be lower than in walking.

4.2 Goals

The first goal of this chapter is to provide additional evidences for the hypothesis that

human walking and cycling share similar muscle synergies. The similarity analysis was

investigated across four different speeds, using a threefold methodology. First, muscle

synergies were extracted independently for each tested speed and motor task (walking

and cycling), to be further compared. Second, it was tested if the EMG patterns from

one motor task (e.g. walking) could be reconstructed by using the synergies of the other

motor task (e.g. cycling). Finally, it was tested if reference set of matrices W0 from

cycling could be obtained by merging different walking synergies.

The secondary goal of this chapter is to identify the condition (cadence) at which

similarity between tasks mostly emerged. This secondary goal is motivated by the idea

of using cycling as a new scenario for the diagnosis and neurorehabilitation of walking

in neurologically injured people.

4.3 Materials and Methods

4.3.1 Subjects

Eight healthy subjects (6 men and 2 women, age 27.3±1.3, height 1.77±0.07 m, weight

75.9±7.4 Kg) volunteered to participate in this study. They were informed about all

the procedures and possible discomforts before giving their informed consent. A local

committee provided ethical approval for this research.

4.3.2 Experimental protocol

Each participant was instructed to refrain from intense physical activities during the

two days before the experiments. For each participant, the experiment was divided into

three sessions.

In the first session, participants walked on a treadmill (DOMYOS TC-450 Mo-

torised Treadmill, Decathlon, Villeneuve d’Ascq, France) in order to determine four

specific speeds. These speeds were: maximum walking speed (MWS, set as 0.1 Km/h



Chapter 4. Study 1 - Shared synergies in human walking and cycling 50

less than the transition speed from walking to running); the speed at which each par-

ticipant walked with a cadence of 42 strides per minute (S42); and two intermediate

speeds at which each participant walked with a cadence of 70% (70%MWS) and 80%

(80%MWS) of the MWS cadence. S42 condition was included to allow for an absolute

comparison across subjects. Except for MWS condition, a metronome was used to syn-

chronize participants’ cadence in the other three conditions (70%MWS, 80%MWS and

S42).

In the second session, each participant performed four walking trials, each one at

the speeds previously determined. In the third session, each participant performed four

pedaling trials on an electronically braked cycle ergometer (MOTOmed viva2, RECK,

Betzenweiler, Germany - see Figure 4.1) in the passive mode, each one at matching

cadences with respect to walking. For the pedaling trials, a metronome was used to help

participants to synchronize with the target cycling frequency.

Figure 4.1: MOTOmed viva2, Reck, Betzenweiler, Germany.
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To match cycling and walking cadences, the walking cadence (strides per minute)

corresponding to each speed was calculated and then applied to the corresponding cycling

trial, in terms of cycling frequency (expressed in rpm, revolutions per minute). To avoid

biased results, the order of walking and cycling sessions, as well as the order of intra-

session trials, was randomized.

The three sessions were performed during the same day. In the second and third

sessions, each subject was first asked to warm-up during five minutes at a self-selected

speed, and then to execute each trial during 30s (see Figure 4.2), with 30s resting between

trials (Hidler and Wall, 2005). The first session took approximately 5 minutes, while

the other two sessions lasted approximately 15 minutes each. A 15 minutes rest between

sessions was respected, in order to prevent muscle fatigue.

Figure 4.2: EMG recordings during a A) walking trial and a B) pedaling trial.

In the second and third sessions, an EMG amplifier (EMG-USB, OT Bioelettronica,

Torino, Italy) with recording bandwidth of 10Hz - 750Hz, overall gain of 1000 V/V and

acquisition frequency of 2048 Hz was used to record surface electromyography (sEMG)

activity of eight muscles of the dominant leg. Before starting the sEMG recordings, the

skin was shave and cleaned with alcohol, to minimize the skin impedance. Bipolar EMG

electrodes (Ag-AgCl, Ambur Neuroline 720, Ambu, Ballerup, Denmark) were placed

on the following muscles, according to the SENIAM recommendations (Hermens et al.,

1999): Gluteus Medius (GMed), Rectus Femoris (RF), Vastus Lateralis (VL), Biceps

Femoris (BF), Semitendinosus (Sem), Gastrocnemius Medialis (GaM), Soleus (Sol) and

Tibialis Anterior (TA). A 2-cm inter-electrode distance was ensured, as recommenden

by SENIAM (Hermens et al., 1999). After being placed, electrodes were wrapped with

bandages to ensure that the wires did not impede participants’s movements and also to

avoid movement-induced artifacts. Some preliminary tests were performed to check for

crosstalk and and artifacts. When needed, electrodes and cables were repositioned. One
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footswitch (NORAXON c©, Scottsdale, Arizona, U.S.A.) was placed beneath the heel of

the dominant leg, in order to record heel strike moments during walking.

The cycling resistance (gear) was set to a constant and comfortable value for all

the trials performed by each subject, so that they could cycle with some resistance. A

potentiometer (Vishay, Malvern, PA, U.S.A.) was mounted on the crank to allow for

pedal angle measurement. Data from potentiometer (acquisition frequency of 50 Hz)

and footswitch (acquisition frequency of 1000 Hz) were used for further segmentation

of pedaling and stride cycles, respectively. As the participants of this study were all

right-leg dominant, each pedaling cycle started at the lowest pedal position (BDC) of

the right crank and finished after completing a revolution. On the other hand, each

walking cycle started at each right heel strike. EMG, potentiometer and footswitch data

were synchronized by applying a trigger signal. Data were analyzed offline with Matlab

R2011a (The Mathworks, Natick, MA) and IBM SPSS Statistics 20 software (IBM).

4.3.3 EMG analysis

A user-friendly GUI called SynergiesLAB (see Appendix C) was created to extract mus-

cle synergies from raw EMG. SynergiesLAB is Matlab-based software tool developed

along the Ph.D. period, which contains functions that allow for the detailed analysis

and comprehension of all the computational steps to process multiple EMG channels,

from the raw EMG processing, up to the calculation of activation coefficients and syn-

ergy vectors. This software can be customized to a wide range of motor tasks, different

algorithms for synergies extraction, filtering options and number of muscles.

Using SynergiesLAB, for each trial, ten continuous non-corrupted stride/cycling

cycles were selected for analysis. Raw EMG signals were high-pass filtered (cutoff fre-

quency of 20Hz) (Moreno et al., 2013). Trials contaminated with 50Hz electromagnetic

interference were additionally filtered by a 50Hz notch filter. After that, all the filtered

signals were demeaned, rectified and low pass filtered at 5Hz, resulting in the EMG

envelopes (Clark et al., 2010) (Hug et al., 2010) (Moreno et al., 2013).

For each participant, EMGs from each muscle were normalized by the average of

its peaks from the ten cycles, and resampled at each 1% of the stride/cycling cycle. For

each cycle, we subtracted the minimum of that cycle, in order to obtain a minimum value

of zero for all the cycles. For each subject, motor task and speed, normalized EMGs

were combined into an m x t matrix (EMG0), where m indicates the number of muscles

(eight in this case) and t is the time base (t = no. of strides (10) x 100 samples)).
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Differences between mean EMG envelopes of iSCI patients and the mean EMG

envelopes of the healthy group were assessed using two criteria proposed by Hug et al.

(2011): the lag time and rmax coefficient. The lag time quantifies the time shift between

EMG patterns and is calculated as the time shift needed to get the maximum (rmax)

of the cross correlation between two signals. The cross correlation is calculated by the

Matlab xcorr function for centered data (option = “coeff”), and the output values as the

maximum of the cross-correlation function, which gives an indication on the similarity

of shape of the EMG envelopes.

4.3.4 Muscle synergies analysis

The NNMF algorithm (see equation 2.1) (Lee and Seung, 1999) was chosen in Synergies-

LAB (see the Matlab code in Appendix D) to extract the muscle synergy vectors and

the corresponding activation coefficients. NNMF was applied over the 10 consecutive

walking/pedaling cycles of the EMG envelopes, for each subject and speed. The algo-

rithm was run from two to seven synergies. For each number of synergies and to avoid

local minima, NNMF was run 40 times and the run with the lowest reconstruction error

was selected.

Muscle synergy vectors (columns of matrix W) were normalized by the maximum of

each column, and the corresponding activation coefficients (lines of matrix H) were scaled

by the same quantity. The similarity between EMG0 and EMGr was calculated using

the variability accounted for (VAFtotal) as reconstruction goodness score coefficient, as

represented in Equation 4.1.

VAFtotal = 1−
∑m

i=1

∑t
j=1(EMG0(i, j))− EMGr(i, j))

2∑m
i=1

∑t
j=1(EMG0(i, j))2

(4.1)

The quality of reconstruction was also computed for each muscle individually using

VAFmuscle. A minimum value of 90% for VAFtotal (Hug et al., 2010) and 75% for

VAFmuscle were defined to consider the quality of reconstruction acceptable (Hug et al.,

2011).

A reference set of matrices (hereafter called W0 and H0) were obtained for each

speed and motor task, by concatenating the EMG envelopes from all the subjects and

then applying the NNMF algorithm. W0 corresponding to the MWS condition was also

used as the reference to order the synergies extracted independently from each subject.

This was done by comparing each individual muscle synergy vector (column of matrix

W) with muscle synergy vectors from matrix W0, by using normalized scalar product

(Gizzi et al., 2011), with the less similar being the last ordered.
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Data analysis was divided in 3 sections: I) Independent analysis of walking, II)

Independent analysis of cycling, and III) Comparison between walking and cycling. Sec-

tions I and II aimed to compare the results with literature on walking and cycling,

respectively. Section III aimed to test the hypotheses of this study. To this aim, section

III consisted on a threefold analysis. The first analysis was done by comparing mus-

cle synergy vectors of walking with those of cycling, using normalized scalar product.

Normalized scalar products = 0.75 were taken as similarity threshold, as proposed by

Cheung et al. (2012). The second analysis was done by testing the hypothesis that EMG

envelopes of cycling could be reconstructed using synergy vectors (columns of matrix

W) extracted from walking, and vice versa, for each speed and subject. VAFtotal values

were used to evaluate the quality of this reconstruction. The third analysis tested if ref-

erence set of matrices W0 from cycling could be obtained by merging different walking

synergies. To determine which synergies extracted at cycling could be reconstructed by

linear combinations of synergies extracted at walking, nonnegative least squares were

used as described in (Cheung et al., 2012). This procedure is described in Equation 4.2

and detailed in Figure 4.3.

wi ≈
nwalking∑

k=1

mi
kwk,m

i
k ≥ 0, i = 1, ...,ncycling (4.2)

where wi is the i -th muscle synergy vector (column of matrix W0) from cycling,

wk is the k -th muscle synergy vector from walking, nwalking is the number of synergies

at walking (four in this case), ncycling is the number of synergies at cycling (three in

this case), and mi
k is a nonnegative coefficient denoting the degree of contribution of the

kth synergy from walking to the structure of the ith synergy from cycling. This algo-

rithm was applied through nonnegative least squares implemented using the lsqnonneg

option in Matlab. A walking synergy was considered to significantly contribute to the

corresponding cycling synergy if the merging coefficient mi
k was higher than 0.3. Accord-

ing to this method, and for matching speeds, each synergy extracted at walking could

contribute to the reconstruction of one or more synergies at cycling. After selecting

the walking synergies that could contribute for the reconstruction of cycling synergies,

similarity between reconstructed wi and the initially extracted synergy of cycling was

assessed by using the normalized scalar product between corresponding columns.

In addition to the analysis of muscle synergy vectors, a simple analysis of temporal

activations (H0) was also performed, in order to identify the periods of activation and

no activation of each synergy along the gait and pedaling cycle. This analysis was done

by defining an onset threshold calculated as the triple SD range of activation for each

activation coefficient, as performed before in a previous work ((Moreno et al., 2013).
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Figure 4.3: Representation of the merging process using linear combinations of syn-
ergy vectors from walking to reconstruct synergy vectors from cycling. mi

k is a non-

negative coefficient denoting the degree of contribution of the kth synergy vector from
walking to the structure of the ith synergy vector from cycling. mi

k lower than 0.3
counted as zero for the linear combination.

4.3.5 Statistical analysis

Paired Student’s t-tests were performed to compare cadences between motor tasks, for

each different speed. Statistical significance was set by a p-value of 0.05.

4.4 Results

4.4.1 Independent analysis of walking

4.4.1.1 EMG envelopes

The group averaged EMG envelopes of each of the eight recorded muscles, for all walking

conditions, are represented in Figure 4.4.
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For each participant, the shapes of EMG envelopes during walking correlated well

across conditions. The lowest correlation value when compared with MWS was obtained

for RF at S42 speed (0.79±0.08, range 0.69-0.92) and the higher correlation was obtained

for Sol at 80%MWS (0.98±0.01, range 0.96-0.99). On the other hand, it can be observed

by visual inspection of Figure 4.4 that the peak of activation of some muscles (e.g., RF

and TA.) occurred slightly earlier in the gait cycle as the speed increased. The lower

the speed, the later this peak occurred.

Figure 4.4: Group averaged EMG envelopes of the eight recorded muscles, for each
of the four studied conditions in walking. A total of 80 cycles (ten individual cycles of
each of the eight subjects) were averaged and expressed as a function of the gait cycle.
Each walking cycle started at each right heel strike. For each subject, EMG envelopes
from each muscle were previously normalized by the average of its peaks throughout the
ten cycles. Muscle abbreviations: GMed - Gluteus Medius, RF - Rectus Femoris, VL
- Vastus Lateralis, BF - Biceps Femoris, Sem – Semitendinosus, GaM - Gastrocnemius
Medialis, Sol – Soleus and TA - Tibialis Anterior. Speed conditions abbreviations:
MWS – maximum walking speed; S42 – speed at which each subject walked at 42
strides per minute; 70%MWS - speed at which each subject walked with a cadence of
70% of MWS cadence; 80%MWS - speed at which each subject walked with a cadence

of 80% of MWS cadence.
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4.4.1.2 Muscle synergies

Four muscle synergies were sufficient to reconstruct the original EMG envelopes for

all the subjects and walking conditions, according to the criteria previously defined

(VAFtotal higher that 90% and VAFmuscle higher than 75% for each individual muscle).

A minimum VAFtotal value of 90.7% for subject 8 at S42 condition and a maximum of

96% for subject 3 at MWS condition were obtained. Nevertheless, three synergies were

also sufficient to fit these criteria in one of the participants.

As a general trend among all the subjects, higher VAFtotal values were obtained

for higher speeds, as represented in Figure 4.5A. Reconstruction of EMG envelopes with

five synergies did not improve considerably the reconstruction quality when compared

with the reconstruction with four synergies.

Figure 4.5: Variability accounted for (VAFtotal) values (mean ± SD) according to
the number of muscle synergies used to reconstruct EMG envelopes with the NNMF
algorithm, for each speed condition in (A) walking and (B) cycling. The quality of
reconstruction of EMG data was considered good for VAFtotal values ≥ 90%. An

increment of the number of synergies led to higher VAFtotal values.

When analyzing the variability accounted for each muscle (VAFmuscle) with 3 syn-

ergies (see Figure 4.6A), some muscles were not so well reconstructed. For instance, Sem

presented a VAFmuscle value of 78.3±13.6 at S42 and BF presented a VAFmuscle value

of 77.3±10.7 at 70%MWS. On the other hand, when analyzing VAFmuscle values with

4 synergies (see Figure 4.6B), all the muscles presented mean VAFmuscle values higher

than 87%, and most of them present VAFmuscle values higher than 92%. As it happened

with VAFtotal, also VAFmuscle values increased, in general, with the increase of speed,

for 3 and 4 synergies, as represented in Figure 4.6A and 4.6B, respectively.
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Figure 4.6: Variability accounted for (VAFmuscle) values (mean ± SD) for each mus-
cle; (A) Walking with 3 synergies; (B) Walking with 4 synergies; (C) Cycling with 3
synergies; (D) Cycling with 4 synergies. A minimum value of 75% for VAFmuscle was

used to consider the quality of reconstruction of each muscle good.

Reference sets of muscle synergy vectors (columns of matrix W0) and the corre-

sponding activation coefficients (lines of matrix H0) at MWS condition are represented in

Figures 4.7A-II and 4.7A-I, respectively. Matrices W0 and H0 for each speed condition

(see Figure 4.7A-III,IV) were extracted by using the NNMF algorithm after concate-

nating 10 cycles from all the eight subjects. The quality of reconstruction when using

four synergies to reconstruct the pooled EMG envelopes from all the subjects was quite

good. In fact, except for S42 condition (VAFtotal = 87.7%), it was possible to obtain

VAFtotal values higher that 90%. These results improved for higher speeds (90.2% for

70%MWS, 90.7% for 80%MWS and 90.9% for MWS). In the case of the reconstruction

of pooled EMGs with three synergies, the quality of reconstruction was lower. VAFtotal

values ranged from 83.7% at S42 condition to 87.3% at MWS condition.

When analyzing matrices W0 and H0 from Figure 4.7A, some properties of mus-

cles synergies during cycling can be identified. Synergy 1 consisted mainly of the co-

activation of GMed (hip abductor and hip flexor) and TA (ankle dorsiflexor) (see Figure

4.7A-IV). In the case of higher speeds, this synergy was also responsible for the co-

activation of VL (mainly a knee extensor). Synergy 1 was mainly activated during

loading response and mid-stance. Synergy 2 consisted mainly of the co-activation of

RF (hip flexor, also knee extensor) and, in minor extent, of VL and TA. This synergy
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Figure 4.7: Reconstruction of concatenated EMGs from the 8 subjects with the
NNMF algorithm, when using (A) 4 synergies for walking, (B) 3 synergies for cycling
and (C) 4 synergies for cycling. (I) Normalized activation coefficients (lines of matrix
H0) for MWS condition indicate the time-variant profiles responsible to activate each
synergy. Thin grey lines represent activation coefficients of each of the 80 cycles (10
cycles per subject), with each black thick line representing the average of those cycles.
(II) Each muscle synergy vector (columns of matrix W0) of MWS condition has a time-
invariant profile of activation, representing the relative contribution of each synergy
for each muscular pattern. Muscle synergy vectors were normalized by their maximum
value. (III) Averaged activation coefficients for all the speeds were calculated, in order
to compare periods of activation responsible for important biomechanical tasks of each
type of movement. (IV) Muscle synergy vectors for all the speeds are represented with

different grey scales.
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contributed in a lower extent for VL activation with the increase of speed, in opposi-

tion to the synergy 1 influence. This synergy 2 presented two peaks of activation: one

at mid-stance phase and the other at initial swing phase. The peak at initial swing

phase was lower for lower speeds. Synergy 3 consisted mainly of the co-activation of

GaM (knee flexor and ankle plantarflexor) and Sol (ankle plantarflexor) during terminal

stance. Synergy 4 consisted mainly of the co-activation of BF (hip extensor and knee

flexor), Sem (hip extensor and knee flexor) and, in minor extent, by TA muscles at ter-

minal swing and initial stance. The contribution of this synergy for TA overall activity

was higher for decreasing speeds.

4.4.2 Independent analysis of cycling

4.4.2.1 EMG envelopes

The group averaged EMG envelopes of each of the eight recorded muscles, for all cycling

conditions, are represented in Figure 4.8. The shapes of EMG envelopes during cycling

correlated well across speeds. This is corroborated by the high correlation values across

speeds. When compared with MWS, the lowest correlation value was 0.91±0.06 (range

0.80-0.99) for Sol at 70%MWS.

4.4.2.2 Muscle synergies

Four muscle synergies were sufficient to reconstruct the original EMG envelopes for all

the subjects and walking conditions, according to the first inclusion criterion (VAFtotal

higher than 90%), as represented in Figure 4.5B. A minimum VAFtotal value of 92%

for subject 1 at 80%MWS condition and a maximum of 96% for subject 4 at 70%MWS

condition were obtained. VAFmuscle values were higher than 90% for all the muscles

and speed conditions of cycling, when using four synergies to reconstruct original EMG

envelopes (see Figure 4.6D).

When analyzing EMG reconstruction with three synergies, VAFtotal values oscil-

lated around 90%. Three synergies were sufficient to fit the criterion of VAFmuscle higher

than 90% in six out of the eight subjects. A minimum of 87% for subject 1 at 80%MWS

condition and a maximum of 94% for subject 7 at S42 condition were obtained for

VAFtotal. Conversely, VAFmuscle values were higher than 83% for all the muscles, which

fit the second inclusion criterion, based on VAFmuscle > 75% (see Figure 4.6C). Inter-

estingly, VAFtotal did not increase with the increase of speed. The inclusion of a fifth

synergy did not improve considerably the reconstruction quality (see Figure 4.5B).
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Figure 4.8: Group averaged EMG envelopes of the eight recorded muscles, for each
of the four studied conditions in cycling. A total of 80 cycles (ten individual cycles of
each of the eight subjects) were averaged and expressed as a function of the pedaling
cycle. Each pedaling cycle started at the lowest position of the right pedal. For each
subject, EMG envelopes from each muscle were previously normalized by the average

of its peaks throughout the ten cycles.

Reference sets of three and four muscle synergy vectors (columns of matrix W0)

and the corresponding activation coefficients (lines of matrix H0) of the entire group

while cycling at MWS condition are represented in Figure 4.7B-I,II and Figure 4.7C-

I,II, respectively. For all the speed conditions, matrices W0 and H0 (see Figure 4.7B-

III,IV and 4.7C-III,IV) were also extracted. This representation allowed to have a global

template of the synergistic control of cycling for the different speeds and compare it with

literature.

When analyzing matrices W0 and H0 with three synergies from Figure 4.7B, some

properties can be identified. Synergy 1 consisted mainly of the co-activation of TA and,

to a lower extent, RF, GMed and Sol (see Figure 4.7B-IV). The contribution of this

synergy to the total activity of RF and GMed decreased drastically with the speed.
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This synergy was mainly active during initial upstroke phase of cycling (see Figure

4.7B-III). Synergy 2 consisted mainly of the co-activation of RF, GMed and VL and, to

a lower extent, of Sol, being mainly active during the final upstroke phase and initial

dowstroke phase of cycling. Synergy 3 is clearly represented by the activity of BF, Sem,

GaM and Sol. Its contribution to Sol activity decreased with the speed. This synergy

was active during downstroke phase of cycling.

Considering the case of four muscle synergies, as represented in Figure 4.7C, it

can be observed that two different synergistic profiles were obtained: one for lower

speeds (S42 and 70%MWS conditions) and other for higher speeds (80%MWS and MWS

conditions). When comparing matrix W0 with four synergies for higher speeds and

matrix W0 with three synergies, it can be observed that, respectively, synergy vector 4

corresponds to synergy vector 3, synergy vector 3 has practically the same morphology

of synergy vector 2, and synergy vectors 1 and 2 are fractions of synergy vector 1. On the

other hand, synergy vectors from matrix W0 with four synergies for S42 and 70%MWS

conditions were very different from higher speed conditions, mainly because synergy 3

was only responsible for the activation of Sol.

The quality of reconstruction (VAFtotal) of EMG profiles with concatenated data

from all the subjects was higher than 84% when using 3 synergies and higher than 89%

when using 4 synergies.

4.4.3 Comparison between walking and cycling

4.4.3.1 Cadence

Subjects maintained a very similar cadence between matching speeds, with no significant

differences (p > 0.05 for all the speeds). In particular, p-values of 0.229, 0.704, 0.988 and

0.093 were obtained for S42, 70%MWS, 80%MWS and MWS speed conditions, respec-

tively. Walking trials were performed at a mean cadence of 42.1±3.0 strides/minute for

S42 condition, 50.1±3.6 strides/minute for 70%MWS condition, 56.7±4.6 strides/minute

for 80%MWS condition and 67.7±3.3 strides/minute for MWS condition. On the other

hand, cycling trials were performed at a mean cadence of 43.0±2.7 revolutions/minute

for S42 condition, 46.6±4.8 revolutions/minute for 70%MWS condition, 56.7±5.1 revo-

lutions/minute for 80%MWS condition and 70.0±4.0 revolutions/minute for MWS con-

dition.

The following subsections present the results of the threefold analysis of similarity

between between walking and cycling synergies based on the following approaches: 1)

direct comparison of muscle synergy vectors, 2) cross-reconstruction of the EMG of
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Table 4.1: Normalized scalar product between matching synergy vectors from walking
and cycling, for each participant (ID01 - ID08).

ID01 ID02 ID03 ID04 ID05 ID06 ID07 ID08 Mean Mean (each
speed)

S42 0.722
Synergy 1 0.99 0.61 0.67 0.85 0.85 0.61 0.72 0.66 0.75
Synergy 2 0.92 0.88 0.51 0.92 0.47 0.75 0.82 0.69 0.75
Synergy 3 0.91 0.75 0.99 0.68 0.79 0.78 0.87 0.96 0.84
Synergy 4 0.76 0.11 0.48 0.78 0.63 0.52 0.78 0.39 0.56

70%MWS 0.723
Synergy 1 0.79 0.47 0.89 0.71 0.89 0.84 0.76 0.67 0.75
Synergy 2 0.94 0.8 0.36 0.91 0.83 0.81 0.78 0.89 0.79
Synergy 3 0.73 0.64 0.93 0.6 0.76 0.7 0.42 0.56 0.67
Synergy 4 0.75 0.61 0.65 0.69 0.76 0.43 0.65 0.91 0.68

80%MWS 0.66
Synergy 1 0.27 0.66 0.85 0.76 0.85 0.75 0.57 0.69 0.68
Synergy 2 0.71 0.83 0.09 0.96 0.95 0.24 0.69 0.83 0.66
Synergy 3 0.56 0.12 0.71 0.65 0.91 0.69 0.57 0.23 0.56
Synergy 4 0.73 0.64 0.93 0.82 0.75 0.53 0.68 0.91 0.75

MWS 0.738
Synergy 1 0.7 0.84 0.82 0.93 0.68 0.84 0.74 0.87 0.80
Synergy 2 0.79 0.84 0.31 0.95 0.52 0.15 0.81 0.97 0.67
Synergy 3 0.75 0.85 0.7 0.79 0.85 0.75 0.72 0.36 0.72
Synergy 4 0.78 0.83 0.84 0.81 0.75 0.64 0.66 0.78 0.76

Similarity was calculated between the four extracted synergies for both motor tasks.
The similarity threshold was set to 0.75.

cycling by means of walking synergy vectors and vice-versa, and 3) merging walking

synergy vectors in order to obtain cycling synergy vectors.

4.4.3.2 Direct comparison of muscle synergy vectors

The four extracted synergies of walking were compared with the four extracted synergies

of cycling, by using the normalized scalar product between matching synergy vectors for

each subject and speed. Results (see Table 4.1) showed a mean similarity of 0.738 for

the MWS condition, 0.66 for the 80%MWS condition, 0.723 for the 70%MWS condition,

and 0.722 for the S42 condition. For each subject and speed, at least one of the synergies

had, generally, a normalized scalar product lower than 0.75.

Taking into account that EMG envelopes during cycling in trained cyclists can be

also well reconstructed using three synergies (Hug et al., 2010) (Hug et al., 2011), a sim-

ilar comparison of muscle synergy vectors as described before was done, but this time



Chapter 4. Study 1 - Shared synergies in human walking and cycling 64

Table 4.2: Normalized scalar product between the three synergy vectors from cycling
and the three most similar synergy vectors from walking, for each participant (ID01 -

ID08), according to their similarity values.

ID01 ID02 ID03 ID04 ID05 ID06 ID07 ID08 Mean Mean (each
speed)

S42 0.737
Synergy 1 0.91 0.62 0.66 0.85 0.47 0.76 0.71 0.7 0.71
Synergy 2 0.92 0.93 0.51 0.92 0.76 0.66 0.83 0.76 0.79
Synergy 3 0.77 0.71 0.56 0.87 0.63 0.48 0.78 0.92 0.72

70%MWS 0.778
Synergy 1 0.79 0.81 0.88 0.7 0.84 0.84 0.79 0.67 0.79
Synergy 2 0.93 0.62 0.98 0.81 0.81 0.85 0.62 0.82 0.81
Synergy 3 0.72 0.66 0.65 0.66 0.77 0.86 0.69 0.91 0.74

80%MWS 0.737
Synergy 1 0.67 0.64 0.85 0.77 0.92 0.79 0.76 0.86 0.78
Synergy 2 0.8 0.83 0.2 0.96 0.97 0.49 0.55 0.79 0.70
Synergy 3 0.72 0.7 0.64 0.75 0.8 0.67 0.68 0.88 0.73

MWS 0.777
Synergy 1 0.79 0.85 0.82 0.93 0.67 0.84 0.73 0.88 0.81
Synergy 2 0.75 0.74 0.35 0.96 0.93 0.84 0.82 0.92 0.79
Synergy 3 0.79 0.8 0.68 0.7 0.72 0.61 0.75 0.78 0.73

The similarity threshold was set to 0.75.

comparing the three muscle synergy vectors extracted in cycling with the three muscle

synergy vectors extracted in walking (from the total of four muscle synergy vectors)

that best correlated with them (see Table 4.2). Activation coefficient 3 of cycling was

the one with less similarity values when compared with walking activation coefficients.

Normalized scalar product values of synergy vector 3 from cycling and the corresponding

synergy vector from walking varied considerably across subjects. Nonetheless, normal-

ized scalar product values were higher in the case of three synergies than those obtained

with four synergies, across all speed conditions. Mean correlation values of 0.777 for the

MWS condition, 0.737 for the 80%MWS condition, 0.778 for the 70%MWS condition,

and 0.737 for the S42 condition were obtained.

4.4.3.3 Cross-reconstruction of EMG envelopes

For each speed and subject, the NNMF algorithm was applied using the walking syn-

ergy vectors (columns of matrices W), to reconstruct the cycling EMG envelopes, and

vice-versa, at each corresponding matching speed. An individual example of the recon-

struction of the cycling EMG envelopes at MWS condition is represented in Figure 4.9A.
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The activation coefficients (lines of matrices H) that best fit the walking synergy vectors

(represented in Figure 4.9C) are depicted in Figure 4.9B.

Average VAFmuscle values when reconstructing cycling EMG envelopes with the

corresponding 4 synergy vectors from walking are represented in Figure 4.10A. These

values were quite similar across muscles and presented a high inter-subject variability.

When analyzing VAFtotal values of this reconstruction using four synergies from walking

(Figure 4.10B), a minimum value of 80.4±6.1% for S42 condition and a maximum value

of 84.5±3.4% for MWS condition were obtained. When analyzing VAFtotal values of this

reconstruction but with 3 synergies (Figure 4.10B), a minimum value of 71.6±5.4% for

S42 condition and a maximum value of 79.7±3.4% for MWS condition were obtained.

Mean VAFtotal values of this reconstructed data (with 3 and 4 muscle synergies) increased

with the increase of speed, with the best reconstruction values achieved for the MWS

conditions.

Average VAFmuscle values when reconstructing walking EMG envelopes with the

corresponding 4 synergies from cycling are represented in Figure 4.10C. These values

were high for GMed, RF, VL and TA; on the other hand, low VAFmuscle values were

found for BF, Sem, GaM and Sol. When analyzing VAFtotal values of this reconstruction

with four synergies (Figure 4.10D), a minimum value of 77.9±4.3% for S42 condition

and a maximum value of 81.5±0.9% for MWS condition were obtained. When analyzing

VAFtotal values of this reconstruction but with 3 synergies (Figure 4.10D), a minimum

value of 71.9±5.6% for S42 condition and a maximum value of 77.5±2.4% for MWS

condition were obtained. Mean VAFtotal values of this reconstructed data also increased

with the increase of speed (with 3 and 4 muscle synergies), with the best reconstruction

values achieved for the MWS conditions.

When comparing the two types of reconstruction, similar VAFtotal values were

achieved when using 3 synergies. On the other hand, the reconstruction of cycling

envelopes with walking synergies was better than the other reconstruction, when using

4 synergies.

4.4.3.4 Merging of muscle synergy vectors

Muscle synergy vectors extracted from concatenated data of walking (those represented

in Figure 4.7A-IV) were merged, by linear combination, in order to reconstruct similar

synergy vectors to those extracted from concatenated data in cycling (represented in

Figure 4.7B-IV), according to Equation 4.2. The schematic of this merging process for

MWS condition is represented in Figure 4.11. The merging coefficients of the merging

process are presented in Table 4.3.
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Figure 4.9: Individual example of the cross-reconstruction of the cycling EMG en-
velopes at MWS condition. (A) Black lines represent the original average EMG en-
velopes (EMG0) and grey lines represent the reconstructed EMG envelopes (EMGr)
of the eight recorded muscles. NNMF algorithm was applied using the four walking
synergies coefficients (matrix W) to reconstruct the cycling EMG envelopes. (B) Nor-
malized activation coefficients (matrix H) indicate the time-variant profile responsible
to activate each synergy. Thin grey lines represent activation coefficients of each of
the 10 cycles, with each black thick line representing the average of those cycles. (C)
Each synergy coefficient extracted at walking (columns of matrix W) is represented by
a vector (time-invariant profile of activation), representing the relative contribution of
each synergy for each muscular pattern. Muscle synergy vectors were normalized by

their maximum value.
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Figure 4.10: Quality of cross-reconstruction of EMG envelopes. (A) Group variabil-
ity accounted for (mean ± SD) values for each muscle (VAFmuscle) when the NNMF
algorithm was applied with 4 synergy vectors (matrix W) from walking to reconstruct
the cycling EMG envelopes, for all the speeds. (B) Group variability accounted for
(VAFtotal) results (mean±SD) when the NNMF algorithm was applied with fixed syn-
ergy vectors (3 and 4, respectively) from walking to reconstruct the cycling EMG en-
velopes, for all the speeds. (C) Group VAFmuscle values (mean ± SD) when the NNMF
algorithm was applied with 4 synergy vectors (matrix W) from cycling to reconstruct
the walking EMG envelopes, for all the speeds. (D) Group VAFtotal results (mean±SD)
when the NNMF algorithm was applied with fixed synergy vectors (3 and 4, respec-

tively) from cycling to reconstruct the walking EMG envelopes, for all the speeds.

A synergy vector of walking was considered to significantly contribute to the merg-

ing of a synergy vector of cycling if the merging coefficient was higher than 0.3. After

selecting the contribution of the selected synergies and merging them, similarity be-

tween reconstructed and original synergy vectors of cycling was assessed. The results

are presented in Table 4.4.

MWS and 80%MWS were the speeds at which more similarities were found in

the merging process. Synergy vector 3 of cycling was always very well reconstructed

with linear combinations of synergy vectors 3 and 4 from walking, for all the speeds

(see similarity values in Table 4.4). Also, for MWS and 80% MWS conditions, synergy

vectors 1 and 2 from cycling could be both reconstructed by merging synergy vectors

1 and 2 from walking (see Table 4.3 and Table 4.4). For S42 and 70%MWS, synergy

vector 2 from cycling could be well reconstructed by merging synergy vectors 1 and 2
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Table 4.3: Representation of the merging coefficients.

Cycling

Synergy 1 Synergy 2 Synergy 3

S42 walking
Synergy 1 0.28 0.78 0.00
Synergy 2 0.02 0.86 0.03
Synergy 3 0.07 0.00 0.82
Synergy 4 0.34 0.00 0.66

70%MWS walking
Synergy 1 0.47 0.56 0.00
Synergy 2 0.10 0.84 0.00
Synergy 3 0.09 0.05 0.77
Synergy 4 0.17 0.00 0.97

80%MWS walking
Synergy 1 0.51 0.52 0.02
Synergy 2 0.50 0.55 0.00
Synergy 3 0.01 0.11 0.75
Synergy 4 0.07 0.00 0.96

MWS walking
Synergy 1 0.51 0.49 0.00
Synergy 2 0.69 0.38 0.00
Synergy 3 0.07 0.00 0.88
Synergy 4 0.00 0.18 0.96

Merging coefficients > 0.3 (bold) were considered to contribute to the merging proce-
dure.

Table 4.4: Similarity between reconstructed synergy vectors resulting from the merg-
ing process and corresponding synergy vectors of cycling.

Synergy 1 Synergy 2 Synergy 3

S42 0.61 0.98 0.89
70%MWS 0.62 0.93 0.95
80%MWS 0.76 0.84 0.98
MWS 0.85 0.75 0.98

Similarity was assessed by using the normalized scalar product between corresponding
synergy vectors. Values > 0.75 (representing good similarity) appear in bold.
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Figure 4.11: Cycling synergy vectors reconstructed as a merging (linear combination)
of walking synergy vectors for MWS condition. Each of the four walking synergy vectors
was considered to significantly contribute to the merging of a cycling synergy vector
if its merging coefficient was higher than 0.3 (See Table 4.3). Each synergy vector
extracted at walking could contribute to the reconstruction of one or more synergy
vectors at cycling. After selecting the contribution of the selected synergy vectors
for the merging model, similarity between reconstructed and original cycling synergy
vectors was assessed by using the normalized scalar product between corresponding
columns. For instance, at MWS, synergy vector 1 (W1) and 2 (W2) from cycling could
be well reconstructed by merging synergies 1 (W1) and 2 (W2) from walking; synergy
3 (W3) from cycling could be well reconstructed by merging synergy vectors 3 (W3)
and 4 (W4) of walking. The reconstructed synergy vectors presented high degrees of
similarity when compared with original synergy vectors of cycling: 0.85 for W1, 0.75

for W2 and 0.98 for W3.

from walking. Finally, synergy vector 1 from cycling at S42 and 70%MWS conditions

could not be well reconstructed by merging synergy vectors from walking.

4.5 Discussion

4.5.1 Novelty of the work

The most remarkable finding of this study is that, in healthy subjects, muscle synergies

extracted from cycling trials can be reconstructed applying a merging process of muscle
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synergies extracted from walking trials. In the preliminary study done at the begin-

ning of the Ph.D. Thesis (Barroso et al., 2013), a direct comparison between synergy

vectors of cycling and walking at one selected speed (MWS) was performed, with re-

sults suggesting that both tasks may share a similar synergistic control. For the present

study, the experiments were performed with different subjects and bigger sample size,

three more speeds and investigated the additional merging hypothesis, as well as the

cross-reconstruction of EMG patterns.

4.5.2 Cadence

One of the premises to compare the synergistic control of different motor tasks is to assure

similar cadences between matching speeds. As no statistically significant differences

(p-values > 0.05 for all the speeds) between matching speeds for walking and cycling

were verified, the rhythmic activity generated by central pattern generators (CPGs)

(Lacquaniti et al., 2012) did not biased the comparison.

4.5.3 Electromyographic patterns in walking and cycling

According to a large number of previous studies (Clark et al., 2010) (Dominici et al.,

2011) (Gizzi et al., 2011) (Hug et al., 2011) (Gizzi et al., 2012), EMG envelopes from

both legs of healthy people present high similarity. For this reason, muscles from the

right were chosen for analysis.

To further compare muscles synergies between walking and cycling, the first goal

was to verify the visual similarity both in shape and timing of the EMG envelopes

obtained in this study and those presented in literature (Clark et al., 2010) (Dominici

et al., 2011) (Gizzi et al., 2012) (Hidler and Wall, 2005) (Ivanenko et al., 2004) (Moreno

et al., 2013) (Nymark et al., 2005) (Ricamato and Hidler, 2005). Regarding EMG

envelopes for walking trials, the similarity was confirmed. The peak of activation of

some muscles occurred earlier in the gait cycle as the speed increased, in agreement

with other authors (Ivanenko et al., 2004) (Hof et al., 2002). This behavior seems to be

related with changes in the duration of stance (Ivanenko et al., 2004) (i.e., decreased %

of stance as the speed increases). As the walking speed increases, the activations are

played faster, with no change in the relative timing of activation of EMG envelopes (Hof

et al., 2002).

In what concerns the cycling trials, EMG envelopes were also similar to those

presented in literature (Wakeling and Horn, 2009) (Hug et al., 2010) (Hug et al., 2011)

(De Marchis et al., 2013), with the exception of some muscles (e.g., RF, BF and Sem),
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whose activations occurred earlier within the pedaling cycle. This might be due to the

slightly different seating position of the subjects in this study: whereas the individuals

analyzed in the referred studies seated in an ergometer, with the seat above the axis

of rotation, a conventional chair with a seating position closer in height to the axis of

rotation was used for this study. The correlations between the EMG envelopes at MWS

condition and the other speed conditions were higher than those observed for walking.

Best correlation values were obtained for higher speeds, which is in accordance that

cadence affects EMG profiles of some muscles of the lower limb (Marsh and Martin,

1995) (Baum and Li, 2003) (Wakeling and Horn, 2009).

4.5.4 Dimensionality of synergistic control

The results presented in this study show that a low-dimensional and impulsive synergistic

control is sufficient to control both walking and cycling. Four synergies were sufficient

to explain more than 90% of total variability of electromyographic activity of the eight

studied muscles, for all subjects and speeds during both motor tasks. For cycling trials,

this dimensionality seems to be reduced if compared with walking (see Figures 4.5 and

4.6). Six out of the eight subjects just needed three synergies to fit the criteria defined

to consider the quality of reconstruction acceptable (VAFtotal ≥ 90% and VAFmuscle

≥ 75%) for cycling. On the other hand, seven out of the eight subjects needed four

synergies to fit these criteria in walking trials. Apparently, three synergies are sufficient

to represent most of the electromyographic activity of non-trained cyclists with the

subset of 8 muscles analyzed. In the preliminary study done at the beginning of the

Ph.D. Thesis (Barroso et al., 2013), four synergies were also sufficient to explain more

than 90% of VAFtotal for both walking and cycling, at MWS condition. In the case of

cycling, two of the four synergies (one related with the main activation of hamstrings

and the other mainly responsible for GaM and Sol activation) were activated by similar

activation coefficients (both in time and in shape). This observation provides additional

evidence for the hypothesis of lower dimensionality of synergistic control of cycling,

when compared with walking. According to d’Avella and Bizzi (2005) and Bizzi and

Cheung (2013), muscle synergies may act to constrain the possibilities of motor output.

As cycling is a motor task with fewer degrees of freedom than walking (Raasch and

Zajac, 1999) (Zajac et al., 2002), it is expected that a higher or at least the same

number of synergies are needed to adequately reconstruct EMG envelopes of walking

when compared with cycling.

There are many factors that can influence the number of extracted synergies. One

main issue that is rarely referred to is the cutoff frequency of the low-pass filter to

obtain EMG envelopes, as explained in Subsection 2.3.3. This value should be adapted
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to the type of motor task and frequency of movement (Hug, 2011). For the study

presented in this chapter, the same cutoff frequency was applied for all the trials and

motor task. Another important aspect is the number of muscles considered, which

can affect the number of extracted synergies (Clark et al., 2010) (Monaco et al., 2010)

(Steele et al., 2013). Contrarily to what was performed in Barroso et al. (2013), the study

here presented did not analyze EMG activity from gluteus maximus and tensor fasciae

latae; also, a different processing methodology was applied to obtain EMG envelopes.

All these factors may explain small differences in the dimensionality. Finally, little is

known about the influence of the normalization procedures on the number of extracted

synergies, as well as on their composition (Hug et al., 2011). Nonetheless, as referred

by Gizzi et al. (2012), the small differences in dimensionality found in different studies

are not in disagreement with the hypothesis that motor coordination can be represented

by a small set of muscle synergies, robust to explain differences between subjects and

conditions.

4.5.5 Reconstruction quality

For walking trials, VAFtotal increased with the speed for most of the subjects, which is

in accordance with the results presented by Ivanenko et al. (2004). According to Tresch

et al. (2006), lower signal-to-noise ratio of EMG envelopes in lower speeds may result

in lower VAFtotal values. On the other hand, VAFtotal of cycling was constant across

speeds, for the same number of synergies.

The quality of reconstruction of EMG data obtained by concatenating together all

the subjects was also quite good when using 4 synergies for walking (VAFtotal higher

than 88% for all the speeds) and three synergies for cycling (VAFtotal higher than 84%

for all the speeds). These results show that intra and inter-subject variability can be

represented by a unique and fixed set of muscle synergies.

4.5.6 Functional interpretation of muscle synergies

The correct execution of biomechanical tasks depends on coordinated muscle activation,

because individual muscle action cannot, in general, result in a functional biomechanical

function (Zajac et al., 2002). Due to the articulated nature of the body, the activation

of a muscle may be reverberated in other muscles and joints that are not connected

to that muscle. Thus, it has been suggested that muscle synergies may incorporate

knowledge of both musculoskeletal dynamics and other biomechanical properties of the

limb (Berniker et al., 2009). The set of all existing synergies should be thought as

a compendium of coordinative patterns to execute several movements under different
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biomechanical conditions (Bizzi and Cheung, 2013). Nevertheless, other mechanisms as

feedback-related activities (Kutch and Valero-Cuevas, 2012) and monosynaptic stretch

reflexes may also contribute to individual muscular activity and muscle coupling.

By analyzing the representative sets of muscle synergy vectors (columns of matrices

W0) and the corresponding activation coefficients (lines of matrices H0), extracted by

concatenating EMG data from all the subjects (Figure 4.7-III,IV), it is possible to asso-

ciate each synergy with a specific biomechanical function. In the case of walking, synergy

1 (involving primarily hip abductor and ankle dorsiflexor) is mainly related to the biome-

chanical function of body weight support during the early stance phase (Neptune et al.,

2009) (Lacquaniti et al., 2012) (Moreno et al., 2013). Synergy 2 (hip flexor and knee

extensors) contributed to the control of ankle during initial stance and initial swing (foot

lift off) (Neptune et al., 2009) (Lacquaniti et al., 2012) (Moreno et al., 2013). Synergy

3 (knee flexors and ankle plantarflexors) mainly contributed to the forward propulsion

of the foot during terminal stance phase (Neptune et al., 2009) (Lacquaniti et al., 2012)

(Moreno et al., 2013). Synergy 4 (hip extensors and knee flexors) was a major responsi-

ble of leg movement during terminal swing (deceleration of the leg in preparation to heel

contact) and preparation towards initial stance (stabilizing the leg after heel contact)

(Neptune et al., 2009) (Lacquaniti et al., 2012) (Moreno et al., 2013).

In what concerns the three muscle muscle synergies extracted for cycling trials, they

were very similar to those already published by Hug et al. (2010) (see 4.7B). Specifically,

synergy 1 (involving primarily hip flexor, knee extensor, and ankle dorsiflexor) mainly

provided force to start the upstroke phase of cycling (Barroso et al., 2013). The energy

generated by RF in this phase of cycling is transmitted to the crank by the activation of

TA (Raasch and Zajac, 1999). TA is excited early in this phase due to its participation

in flexion of the limb. Synergy 2 (hip abductor, hip flexor, knee extensors and ankle

plantarflexor) contributed to the second part of upstroke phase and also to the initial

downstroke phase. Despite being activated to a lower extent, Sol was found to be neces-

sarily co-activated with hip and knee flexors during initial downstroke phase, to facilitate

energy transfer from the limb to the crank (Raasch and Zajac, 1999). Finally, synergy 3

(hip extensors, knee flexors and ankle plantarflexors) activated muscles responsible for

downstroke phase of cycling (Barroso et al., 2013), including the plantarflexion needed

to transfer energy produced by gluteus maximus to the crank (Zajac et al., 2002). More-

over, GaM and Sol act to oppose the strong acceleration of the leg verified during this

phase (Zajac et al., 2002). In summary, Sol and TA play a very important role in the

proper positioning of the feet to transfer energy from the limb to the crank, preventing

ankle dorsiflexion during limb extension and controlling excessive plantarflexion during

limb flexion (Raasch and Zajac, 1999) (Zajac et al., 2002).
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Considering the case of four synergies extracted for cycling trials (see Figure 4.7C),

two different synergistic profiles were obtained: one for lower speeds (S42 and 70%MWS

conditions) and other for higher speeds (80%MWS and MWS conditions). For the late

one, synergies 3 and 4 presented the same periods of activation (H0) of synergies 2

and 3 from Figure 4.7B (three synergies). Therefore, these synergies can be considered

the same synergy. Synergies 1 and 2 were fractions of synergy 1 from Figure 4.7B.

Interestingly, synergies composition (W0) for S42 and 70%MWS conditions were very

similar to those presented by De Marchis et al. (2012). This may indicate a speed effect

on synergistic composition in cycling, when using four synergies.

4.5.7 Comparison between walking and cycling

Based on the neural-mechanical components that are thought to be shared between

walking and cycling (Raasch and Zajac, 1999) (Zehr et al., 2007) (Hug et al., 2010),

this study tested the general hypothesis that pedaling should at least share some similar

neural mechanisms involved in the coordination of walking. This was done using a

threefold methodology.

The first similarity test was performed by correlating the four synergy vectors of

walking with the four synergy vectors of cycling (see Table 4.1). Maximum correlation

values were obtained for MWS condition (mean correlation of 73.8%), in accordance

with the values presented previously (Barroso et al., 2013) (mean r = 79.8% ± 6%).

Moreover, the 3 synergy vectors extracted for cycling were correlated with the 3 synergy

vectors of walking (from the set of 4 synergies) that best correlated with the cycling

synergy vectors (see Table 4.2). In this case, correlation values varied considerably for

synergy 3. Four muscles (BF, Sem, GaM and Sol) that are usually activated by synergy

3 of cycling (see Figure 4.7B-IV) are generally activated by synergies 3 and 4 in walking

(see Figure 4.7A-IV). As synergy vectors 1 and 2 from cycling usually were similar

to synergy vectors 1 and 2 form walking, the synergy vectors of walking that better

correlated with synergy vector 3 of cycling were synergy vectors 3 or 4. This explains

the lower correlation values for synergy vector 3, when compared with the other two

synergy vectors (see Table 4.2). Nevertheless, the correlation values in this case were

better than those obtained with four synergies, across all conditions, which may indicate

a possible lower dimensionality for cycling.

The second similarity test was performed by testing the hypothesis that EMG

envelopes obtained in cycling trials could be reconstructed with the four synergy vectors

extracted from walking, and vice-versa. The reconstruction of cycling EMG patterns by

using the four walking synergy vectors resulted in slightly higher VAFtotal values than
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the opposite reconstruction. Average VAFmuscle values when reconstructing walking

EMG envelopes with the corresponding four synergy vectors from cycling were high

for GMed, RF, VL and TA. On the other side, low VAFmuscle values were found for

BF, Sem, GaM and Sol, because these muscles are activated by the same synergy in

cycling (see Figure 4.7B-IV), and by two synergies in walking (see Figure 4.7A-IV). In

the future, caution should be used when using just VAFtotal as a metric to decide the

number of synergies to use. A combination of VAFtotal with VAFmuscle (and maybe

other metrics) will introduce more reliability. These results support the hypothesis that

synergies extracted from walking can be used to reconstruct cycling EMG patterns.

Finally, the hypothesis that synergy vectors of cycling can result from merging

synergy vectors of walking was tested. According to the results presented in Table 4.3,

synergy vectors 1 and 2 from walking could generally be merged in cycling. When

synergy vectors 1 and 2 of both motor tasks were compared for matching speeds, mean

normalized scalar products ranged from 0.66 to 0.80 (see Table 4.1). Moreover, there

is evidence that two synergies from walking, normally activated independently, can be

merged (thus co-activated) into one synergy during cycling (see Table 4.3). This is

the case of synergy vector 3 of cycling, which was always very well reconstructed with

linear combinations from synergy vectors 3 and 4 from walking (see Tables 4.3 and

4.4), across all the speed conditions. MWS and 80%MWS were the conditions at which

more similarities were found in the merging process (see Table 4.4). Apparently, CNS

may choose the appropriate subset of synergies from a larger set, and depending on the

motor function, use them independently or in a merging state to cope with the required

biomechanical task. Merging coefficients higher than 0.3 were chosen for the merging

process, which is a slightly higher values than the threshold of 0.2 used by Cheung et al.

(2012). As they recorded EMG activity from 10-16 muscles, it is reasonable to use a

higher threshold once the study presented in this chapter analyzed a set of 8 muscles. If

a lower threshold had been chosen, similarity between reconstructed and original cycling

synergies would be even higher.

Globally, the results presented in this study corroborate previous evidences defend-

ing that both walking and cycling result from a modular control architecture (Clark

et al., 2010) (Gizzi et al., 2012) (Hug et al., 2011) (Moreno et al., 2013) (Routson et al.,

2013). Nonetheless, muscle synergies should not be interpreted as completely invariant

profiles of spatial activation. As referred by Lacquaniti et al. (2012), this hypothesis

may be too rigid to be physiologically plausible for human locomotion. Muscles belong-

ing to the same anatomical group may have different biomechanical properties, which

introduce competing demands on the appropriate way of activation of each one (Wakel-

ing and Horn, 2009). Therefore, it is thought that muscle synergies can incorporate the

biomechanical properties of the limbs (Bizzi and Cheung, 2013).
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4.5.8 Methodological considerations

Muscular activity from gluteus maximus was recorded during the experiment, but some

data were corrupted due to the contact of this muscle with the chair. Therefore, the set

of muscles presented in this study did not include this muscle.

Other interesting muscles could have been analyzed, i.e., gracilis (as hip and knee

flexor), psoas or vastus medialis (monoarticular muscle in the knee, but very similar to

vastus lateralis). For comparison with previous work on motor control of walking (Clark

et al., 2010) (Gizzi et al., 2012) and cycling (De Marchis et al., 2012) (Hug et al., 2010),

a subset with the same number of muscles (except for Hug et al. (2010)) and functionally

matching muscular groups was chosen.

Baum and Li (2003) referred that load changes have an effect on EMG profiles

during cycling. Hug et al. (2011) also reported a moderated similarity between EMG

patterns in two different load conditions, despite the extracted synergies presented higher

similarity between the two conditions. Therefore, it was used a fixed resistance value in

the ergometer, in order to guarantee equal biomechanical constraints across subjects.



Chapter 5
Study 2 - Muscle synergies during cycling

as a measure of sensorimotor function in

SCI

Abstract

Background. After incomplete spinal cord injury (iSCI), patients suffer important

sensorimotor functional consequences, including motor impairments and maladaptive

symptoms associated with spasticity. Complementary to current diagnostic procedures,

novel outcome measures that reflect small changes of antagonist neuromuscular control

over several joints are required. The analysis of muscle synergies can be used to quantify

the spatiotemporal muscle co-activation, identified as an important clinical characteristic

of spasticity. Moreover, muscle synergies have been related to both gait performance

and speed.

Objective. Based on the findings presented in Chapter 4, confirming the hypothe-

sis that similar synergistic features are shared between walking and cycling, the research

presented in this Chapter tests two hypothesis: I) iSCI patients preserve synergistic con-

trol of muscles during cycling; II) muscle synergies outcomes extracted during cycling

correlate with clinical measurements of gait performance and/or spasticity.

Methods. The EMG of 13 muscles of the lower limb was recorded in a group

of ten healthy individuals and ten iSCI subjects while they cycled at four different

cadences. NNMF algorithm was applied to extract muscle synergy components. Two

reconstruction goodness scores (VAFtotal and r2, both introduced at section 2.3.3.4)
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were used to evaluate the ability of a given number of synergies to reconstruct the EMG

envelopes.

Results. iSCI patients preserved a synergistic control of muscles during cycling.

However, muscle synergies composition of more impaired patients was less similar to the

healthy controls if compared with the less impaired iSCI patients. A stepwise multiple

regression analysis indicated that VAFtotal and r2 at 42 rpm were good predictors of

gait performance, accounting for at least 63% of the variance of clinical scales of gait

performance (i.e., TUG, 10-Meter Walk Test (10MWT) and WISCI II). Similarly, two

metrics based on the similarity between the healthy and affected synergies were able to

predict spasticity symptoms measured by Penn, Modified Ashworth, and SCATS scales.

Conclusions. The results presented in this Chapter provide supporting evidences

for the hypothesis that iSCI patients preserve synergistic control of muscles during cy-

cling and also evidences that the analysis of muscle synergies during cycling can be used

for a detailed quantitative assessment of gait performance and symptoms of spasticity.

This analysis can complement current assessement procedures.

5.1 Introduction

One of the main goals of rehabilitation of SCI patients is to promote the recovery of gait

after injury (van Middendorp et al., 2014). The development of the spasticity syndrome

is one of the crucial contributors to motor impairment (Bravo-Esteban et al., 2013).

Although the most common clinical definition of the spasticity syndrome is based on

the detection of velocity-dependent stretch reflex activity (Lance, 1980), this syndrome

has also been considered as a complex set of symptoms including hypertonia, spasms,

clonus, hyperreflexia and muscle co-activation (Arene and Hidler, 2009) (Bennett, 2008)

(Burridge et al., 2005) (Dietz and Sinkjaer, 2007). While some levels of co-activation

are important to guarantee joint stability, movement accuracy and energy efficiency

(Rosa et al., 2014), poststroke patients show abnormal co-activation of both agonist

and antagonist muscles during the execution of certain motor tasks, which in turn may

reflect adaptive and maladaptive mechanisms of motor recovery (Gómez-Soriano et al.,

2012). The analysis of multi-joint muscle activation would support clinical decisions

based on residual useful motor function, help to assess the effects of standard and novel

therapies, and guide the prescription of standard anti-spastic medications (Bowden and

Stokic, 2009) (Reichenfelser et al., 2012). As such, an improvement in the estimation of

agonist and antagonist muscle activity may represent an important outcome measure of

rehabilitation after SCI (Awai and Curt, 2014).
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Based on the premise that the estimation of co-activation of both agonist and

antagonist muscles may improve the assessment of spasticity, the analysis of muscle

synergies can be explored as a reliable method to estimate muscle coordination (Berger

et al., 2013) (Bizzi et al., 2008) (Cheung et al., 2012) (Clark et al., 2010) (d’Avella

and Bizzi, 2005) (Oliveira et al., 2014), as they define weights of co-activated muscles.

Recent studies in healthy subjects demonstrated that the combination of three to four

muscle synergies can explain most of the activation of lower limb muscles during walking

and cycling (Barroso et al., 2013) (Clark et al., 2010) (De Marchis et al., 2012) (Gizzi

et al., 2011) (Hug et al., 2010) (Hug et al., 2011). In the case of poststroke patients,

the number of muscle synergies have been related to gait performance and seems to be

a superior predictor of walking performance, if compared with the gold-standard scales

(Clark et al., 2010). Also in the case of poststroke patients, Routson et al. (2013) used

both synergy vectors and activation coefficients to measure motor recovery following

therapeutic interventions. In the case of SCI patients, it has been observed that a

disruption of muscle coordination plays a major role in iSCI patients during overground

walking (Hayes et al., 2014), with less impaired SCI subjects presenting more similar

synergy vectors to the healthy controls than those of the most affected SCI subjects

(Ivanenko et al., 2003). Thus, the analysis of muscle synergies can be explored as a

method to assess gait performance and/or spasticity of iSCI patients.

Not all the patients have the required muscle strength to walk during the early stage

of rehabilitation, even with an amount of body weight support. Thus, the prediction

of their walking performance is compromised. As proposed in Chapter 4, cycling may

be explored as a novel framework for the assessment of motor performance in people

with impaired neuromotor control, given the similar synergistic control of walking and

pedaling. Specifically, it was demonstrated that 1) the four synergy vectors extracted

from walking can be used to reconstruct cycling EMG envelopes; 2) synergies 1 and 2

from walking could generally be merged in cycling; 3) synergy 3 from cycling was always

very well reconstructed with linear combinations from synergies 3 and 4 from walking.

5.2 Goals

This Chapter aims to test two main hypotheses: I) iSCI patients preserve synergistic

control of muscles during cycling; II) muscle synergies outcomes extracted during cycling

correlate with clinical measurements of gait performance and/or spasticity. The confir-

mation of hypothesis I) will provide additional evidence for the hypothesis that different

types of movement can be achieved using a low-dimensional synergistic control and will

give new insight on the impaired mechanisms underlying cycling in iSCI patients. The
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confirmation hypothesis II) will be relevant to choose the most efficient experimental

setup (e.g., different cycling velocities and different number of tested muscles) for ex-

tracting reliable results in the clinical context.

This study is motivated by the potential use of cycling exercises as a mean to assess

the affected sensorimotor mechanisms involved in pathologic locomotion, as well as an

alternative tool to monitor patients’ recovery.

5.3 Materials and Methods

5.3.1 Subjects

All recruited subjects gave their written consent to participate in the study and for data

publication, after being informed about the procedures and possible discomfort associ-

ated with the experiments, in accordance with the Declaration of Helsinki (see Appendix

E.1). The local Toledo Paraplegics Hospital Clinical Ethical Committee approved this

study (07/05/2013 No47). Ten healthy subjects (6 men and 4 women), with an age of

33.9 ± 8.48 yr (25.75-44.5, 25th percentile – 75th percentile), with no diagnosed neural

injury, neither central nor peripheral, were recruited to participate as controls. Ten iSCI

patients (6 men and 4 women), with an age of 43.08 ± 14.32 yr (25.69-59.31), 7.23±
4.86 months (2.72-9.66) post-SCI, volunteered to participate in this study. All of them

received the standard rehabilitation program of the hospital. Inclusion criteria were:

aged between 18 and 80 yr; motor incomplete spinal lesion (AIS C-D) of traumatic and

non-traumatic etiology, with prognosis of recovery of the walking function; evolution of

at least 1.5 months. Exclusion criteria were: supraspinal or peripheral neurological in-

volvement; history of epilepsy; musculoskeletal involvement of lower limbs or spasticity

higher than 3 (measured with the Modified Ashworth Scale) for each joint, either for

extension or flexion. Detailed information of the patients is presented in Table 5.1.

5.3.2 Experimental protocol

Prior to the experiment, a trained physiotherapist performed a set of clinical evaluations

in order to inform about the clinical and functional status of the patients. The hypertonia

of the muscles of the ankle and knee joints was evaluated using the Modified Ashworth

scale (MAS, see Table 5.2) (Bohannon and Smith, 1987). The frequency of spasms was

assessed using the Penn scale (Penn et al., 1989). Patients were also assessed with the

Spinal Cord Assessment Tool for Spastic Reflexes (SCATS), which measures three types

of spastic reflexes in SCI patients: clonus, flexor spasms and extensor spasms, each of
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Table 5.1: Individual iSCI patients’ description.

Patient ID Age
(Years)

Gender Time
post-SCI
(months)

Level of
Lesion

Most
affected
side

AIS

1 25 M 9 C5 Right C
2 46 M 6 T9 Left D
3 61 M 4 T10 Right D
4 25 M 5 T4 Left D
5 37 M 25 C3 Left D
6 19 F 2 C6 Right D
7 36 F 3 T3 Left D
8 58 F 2 C5 Right D
9 77 M 13 C7 Right D
10 44 F 5 C4 Left C

M, male; F, female; Level of Lesion: C – Cervical, T – Thoracic; AIS, American Spinal
Injury Association (ASIA) Impairment Scale.

them rated from 0 (no reaction) to 3 (severe) (Benz et al., 2005). Patients showing a

Total MAS higher than 1 or a Penn score greater or equal to 1 were characterized as

presenting spasticity (see Table 5.2), as done by Bravo-Esteban et al. (2014).

The gait performance of seven out of the ten iSCI patients was evaluated using the

Timed Up and Go (TUG) test (Wall et al., 2000) and the 10-Meter test (Forrest et al.,

2014). The other three patients were unavailable to perform these tests. The Walking

Index for Spinal Cord Injury (WISCI II) was used to assess the amount of physical

assistance needed by the patients to walk 10 meters. This is a 21-point scale that ranges

from 0 (patient unable to stand and/or participate in assisted walking) to 20 (patient

ambulates 10 meters with no devices, no braces and no physical assistance) (Dittuno

and Ditunno, 2001).

On the day of the experiment, patients received their standard rehabilitation ther-

apy in the morning, and performed the cycling trials in the afternoon. For both iSCI

patients and healthy subjects, four cycling trials (at 30, 42, 50 and 60 rpm, revolutions

per minute) of 30 s duration each, with 60 s resting between trials, were performed on an

electronically braked cycle ergometer (MOTOmed viva2, Reck, Betzenweiler, Germany)

in the passive mode. For each participant, the order of the trials was randomized to

avoid biased results. All participants were asked to perform the experiment while sat

on a regular chair. Patients who felt more comfortable doing the experiments on their

own wheelchair were allowed to remain sat on it (see Figure 5.1). When this occurred,

a pillow was placed on the backside to maintain the pedaling position similar to the

regular chair position.
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Table 5.2: Amount of physical assistance needed, gait performance and spasticity
syndrome scores of iSCI patients.

MAS SCATS

Patient
ID

WISCI
II

TUG
(s)

10-
Meter
(s)

KF KE DF PF MAS
Knee

MAS
Ankle

Total
MAS

Penn
scale

C F E

1† 16 22.0 23.0 1 1 1 1 2 2 4 2 1 0 1
2 20 23.0 12.0 0 0 0 0 0 0 0 0 0 0 0
3† 16 44.7 50.8 0 1+ 1+ 0 2 2 4 1 1 0 0
4† 15 29.3 27.7 2 1 3 0 4 4 8 1 1 0 1
5† 20 N.A. N.A. 0 1+ 3 0 2 4 6 1 0 1 1
6† 0 N.A. N.A. 1+ 2 3 0 5 4 9 2 3 1 0
7† 16 31.0 30.0 1+ 0 1+ 0 2 2 4 0 2 0 0
8 13 27.0 23.0 0 0 0 0 0 0 0 0 0 0 0
9 19 25.1 10.2 0 0 0 0 0 0 0 0 0 0 0
10† 8 N.A. N.A. 0 0 3 0 0 4 4 3 3 0 3

WISCI II, Walking Index for Spinal Cord Injury; TUG, Timed Up and Go; MAS,
Modified Ashworth Scale; KF, knee flexion; KE, knee extension; DF, dorsiflexion; PF,
plantarflexion. MAS Knee, sum of KF and KE. In order to sum, 1+ counts as 2, 2
counts as 3, 3 counts as 4 and 4 counts as 5; MAS Ankle, sum of DF and PF; Total MAS,
sum of MAS Knee and MAS Ankle; Penn, Penn scale; SCATS, Spinal Cord Assessment
Tool for Spastic Reflexes; Types of spastic reflexes: C, clonus; F, flexion; E, extension;

N.A., measure not available; †, patients characterized as presenting spasticity.

Figure 5.1: EMG recordings during cycling trials of a iSCI patient (ID 6) who per-
formed the cycling trials on her own wheelchair.
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In order to synchronize participants’ cycling frequency with the desired cadence,

an auditory metronome was used. The cycling resistance (gear) of the ergometer was

individually chosen by each iSCI patient, in order to cycle comfortably with the same

gear across the four cadences. A constant gear was set for all control subjects.

An EMG amplifier (EMG-USB, OT Bioelettronica, Torino, Italy) with recording

bandwidth of 10-750 Hz, overall gain of 1,000 V/V, and acquisition frequency of 2,048

Hz was used to record surface electromyography (sEMG) of 13 muscles of the most af-

fected leg of patients, and the dominant leg of healthy subjects. The recorded muscles

were: Gluteus Medius (GMe), Adductor Longus (AL), Sartorius (Sar), Tibialis Anterior

(TA), Rectus Femoris (RF), Tensor Fascia Latae (TFL), Vastus Lateralis (VL), Vastus

Medialis (VM), Biceps Femoris (BF), Semitendinosus (Sem), Soleus (Sol), Gastrocne-

mius Lateralis (GaL) and Gastrocnemius Medialis (GaM). The most affected side of

each patient was determined based on the muscle score (Seddon, 1976) of quadriceps,

hamstrings, TA and gastrocnemius for both limbs.

SENIAM recommendations for sEMG recording procedures (Hermens et al., 1999)

were followed before placing the electrodes: shaving the places where the electrodes

were placed; cleaning the skin with alcohol to minimize impedance; allowing the alcohol

to vaporize in order to dry the skin before placing the electrodes. After that, bipolar

EMG electrodes (Ag-AgCl, Ambur Neuroline 720, Ambu, Ballerup, Denmark) were

fastened with a 2-cm inter-electrode distance on each recorded muscle. Finally, the

electrodes and cables were wrapped with bandages to ensure that the wires did not

impede cycling movements and also to avoid movement-induced artifacts. Preliminary

tests were performed to check for cross-talk and contact artifacts, giving special attention

to the hamstrings of those patients that cycled on their own wheelchair. When needed,

electrodes were repositioned.

Crank angle was measured with a potentiometer (Vishay, Malvern, PA), and digi-

talized with a sampling frequency of 100 Hz. The bottom dead center (BDC) position

of the pedal of the analyzed leg was used to segment data into pedaling cycles. EMG

and angular data were synchronized by means of a common synchronization signal. For

each subject, each recording session lasted approximately 10 minutes, in addition to

the donning and doffing of the EMG recording setup (15-30 minutes, depending on the

subject and level of impairment).

Data were analyzed offline with MATLAB R2011a (The MathWorks, Natick, MA)

and IBM SPSS Statistics 20 software (IBM).
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5.3.3 EMG analysis

Using SynergiesLAB (see Appendix C), for each trial and participant, ten continuous

non-corrupted pedaling cycles were selected for analysis. The selected raw EMG signals

were high-pass filtered at 20 Hz, demeaned, rectified, and smoothed with a low-pass

filter at 5 Hz, resulting in the EMG envelopes, according to the procedures performed

by Clark et al. (2010) Hug et al. (2010).

EMG envelopes from each muscle were then normalized by the average of the

maximum of each of the ten cycles, and resampled at each 1% of the pedaling cycle.

For each participant and trial, normalized EMG envelopes were combined into an m x

t matrix (EMG0), where m is the number of muscles (thirteen in this case) and t is the

time base (t = no. of cycles (10) x 100)).

Differences between mean EMG envelopes of iSCI patients and the mean EMG

envelopes of the healthy group were assessed using two criteria proposed by Hug et al.

(2011): the lag time and rmax coefficient, as performed in section 4.3.3. The lag time

quantifies the time shift between EMG patterns and is calculated as the time shift needed

to get the maximum (rmax) of the cross correlation between two signals.

5.3.4 Muscle synergies analysis

Muscle synergy vectors and the corresponding activation coefficients were extracted

using the NNMF algorithm in SynergiesLAB (see equation 2.1) (Lee and Seung, 1999).

For each EMG0, the NNMF algorithm was run four times, considering as input 2 to 5

synergies (n = 2, 3, 4, 5). In order to avoid local minima, for each run, the NNMF was

repeated 40 times and the repetition with the lowest reconstruction error was selected.

Each muscle synergy vector (column of matrix W) was normalized by the maximum

value of the muscle in the synergy to which they belong, which also helps the visual

comparisons among subjects, as performed by Hug et al. (2010) and Muceli et al. (2010).

Then, the corresponding activation coefficients were scaled by the same quantity, as done

by De Marchis et al. (2012).

The similarity between EMG0 and EMGr was calculated based on two indicators:

the variability accounted for (VAFtotal, see Equation 4.1) (Clark et al., 2010) and the

coefficient of determination (r2) (Torres-Oviedo et al., 2006). The coefficient of determi-

nation was calculated by the MATLAB function ’rsquare’. Both VAFtotal and r2 have

been adopted in most studies on muscle synergies (Clark et al., 2010) (Torres-Oviedo
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et al., 2006). VAFtotal has been suggested to be more stringent than r2, since it is sensi-

tive to both shape and amplitude of the signals, whereas r2 only addresses similarity in

shape.

VAF was also computed for each muscle individually (VAFmuscle).

For each cadence, reference set of matrices (W0 and H0) were obtained by con-

catenating the EMG envelopes from all the healthy subjects, and applying the NNMF

algorithm, constrained to a fixed number of synergies. This fixed number was defined as

the minimum number of synergies needed to obtain VAFtotal values ≥ 85% in at least

half of the healthy participants. Synergy vectors of each patient were ordered according

to their similarity with columns of W0, at the corresponding matching speeds. This was

done by means of the normalized scalar product and corresponds mathematically to the

scalar product of pairs of columns from matrices W, each one previously normalized by

its norm, providing output values ranging from 0 to 1. After being ordered, muscle syn-

ergy vectors and activation coefficients of each patient were compared with the reference

healthy set (W0 and H0) using the normalized scalar product.

In order to study the sensitivity of the method to the number of muscles, the overall

process was repeated on two muscle datasets, the first including all (13) muscles recorded

in the experiment, and the second including the eight muscles considered in Chapter 4.

These eight muscles are marked with an asterisk in Figure 5.3.

5.3.5 Statistical analysis

Independent Student’s t-tests were computed to test the similarity between the cadences

achieved by both groups, at each matching speed. Independent Student’s t-tests were

also performed to test the similarity of the VAFtotal and r2 scores between the two groups

and between spastic and non-spastic patients, when using 2 to 5 synergies. Statistical

significance was set by a p-value of 0.05.

Stepwise multiple regression analyses were carried out to identify a small set of

variables that could predict motor performance or spasticity scales scores. Multiple

regression analysis is a predictive model that uses two or more predictors (independent

variables) as input to predict the result of a dependent variable, according to the equation

5.1

Y = b0 + b1X1 + b2X2 + . . . + bnXn (5.1)
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,where Y is the dependent variable, X1 to Xn are the n different independent

variables used as input for the model, b0 is a constant and b1 to bn are the estimated

regression coefficients. A significance of p < 0.05 was used, as performed by Roche et al.

(2015).

To predict the value of each gait scale score (WISCI II, TUG and 10-Meter tests),

the VAFtotal and r2 values obtained for each different number of muscle dataset and

speed were considered as input to the model. To predict the value of each spasticity

scale score (Total MAS, Penn and spastic reflexes from SCATS), the normalized scalar

products between H and H0 and between W and W0 (hereafter denoted with “H · H0”

and “W · W0”, respectively), were considered as input to the model. In both cases

(gait performance and spasticity scales), preliminary linear regressions between each

independent variable and the corresponding scale were performed in order to minimize

the number of independent variables used as input, including only those with a p-value

≤ 0.05, as represented in Figure 5.2.

Figure 5.2: Schematic representation of the steps included in the stepwise multiple
regressions to predict motor performance or spasticity scales scores.

5.4 Results

5.4.1 Cadence

SCI group cycled with a cadence of (mean ± SD) 30.26 ± 0.87, 41.89 ± 1.04, 49.71 ±
1.91 and 57.73 ± 3.57 rpm for the desired speeds of 30, 42, 50 and 60 rpm, respectively.

The healthy group cycled with a cadence of 30.21 ± 0.34, 42.21 ± 1.15, 49.25 ± 0.76

and 59.79 ± 0.90 rpm, respectively. The tests of equality of means from Independent

Student’s t-tests revealed no significant differences between the two groups, in any of

the four speeds considered. In particular, p-values of 0.868, 0.516, 0.492 and 0.093 were

obtained for speeds of 30, 42, 50 and 60 rpm, respectively.
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5.4.2 Individual EMG profiles

The average EMG envelopes of each group, for each of the 13 recorded muscles, are

represented in Figure 5.3. Average activations of GMed, AL, Sar, TA and, to a lower

extent, RF, occurred during the initial upstroke phase. Average activations of TFL, VL

and VM were observed during the final upstroke phase and initial downstroke. Average

activation of BF, Sem, Sol, GaL and GaM occurred mostly during the downstroke phase

of cycling.

For each muscle, the shape and activation timing of average EMGs were very similar

across speeds and also between the two groups (see Figure 5.4), except for TA, VM, Sol

and GaL. In the case of these muscles, the timing of maximum activation occurred

earlier in the pedaling cycle in the iSCI patients, as indicated by the vertical arrows in

Figure 5.3 and represented in Figure 5.4A. On the other hand, maximum values of the

cross-correlation function were lower for Sol and GaL, when compared with the other

muscles (Figure 5.4B). For these two muscles, maximum correlations were lower than

0.85 for higher speeds, while maximum correlations were higher than 0.95 for the other

muscles at most of the speed conditions.

5.4.3 Muscle synergies

5.4.3.1 Reconstruction goodness

Three synergies were sufficient to describe most of the variance of the two different sets of

muscles in the two groups of participants analyzed, according to the criterion previously

defined (VAFtotal values ≥ 85% for at least half of the healthy participants). Hence, the

following analysis of this chapter is based on three synergies.

For the set of 8 muscles, both groups reached their minimum values of VAFtotal

at the speed of 60 rpm. VAFtotal values in such condition were 86.7±2.0% (Figure

5.5AI) for the healthy group and 86.6±3.1% (Figure 5.5AII) for the iSCI group. The

maximum VAFtotal was obtained at the speed of 30 rpm, reaching values of 88.5±4.2%

and 88.2±3.9% for the healthy and iSCI groups, respectively.

When analyzing VAFmuscle values with 3 synergies for the same set of 8 muscles, all

the muscles presented values higher that 75%. For instance, in the case of the healthy

group, a minimum VAFmuscle value of 83.0±13.0% was obtained for Sem at the speed of

30 rpm; a maximum VAFmuscle value of 91.9±4.7% was obtained for VL at the speed of

50 rpm. In the case of the iSCI group, a minimum VAFmuscle value of 75.6±8.4% was
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Figure 5.3: Group average electromyographic (EMG) envelopes of the 13 recorded
muscles for each of the 4 speeds during cycling (30, 42, 50 and 60 rpm). For each group
(healthy subjects, black lines; iSCI patients, grey lines), a total of 100 cycling cycles
(10 cycles by subject) were averaged and expressed as a function of the pedaling cycle.
Pedaling cycle is divided into two phases: upstroke and downstroke. Upstroke begins
when the pedal corresponding to the dominant leg (in healthy subjects) or the most
affected leg (in iSCI subjects) is at the lowest position and ends when the pedal is at the
top position. The end of upstroke phase corresponds to the beginning of downstroke
phase, and ends when the pedal reaches the lowest position again. EMGs from each
subject and muscle were previously normalized by the average of its maximum values
throughout the 10 cycles. a.u., arbitrary unit. *, muscles belonging to the 8 muscles set
used in parallel analysis. Red arrows indicate the early timing of maximum activation

observed in the average EMGs of iSCI group.
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Figure 5.4: Comparison of mean EMG envelopes from iSCI patients and the mean
EMG envelopes from the healthy group for the 13 recorded muscles for each of the 4
speed conditions (30, 42, 50 and 60 rpm). (A) The lag time quantifies the time shift
between EMG patterns and is calculated as the time shift needed to get the maximum
of the cross correlation (rmax) between two signals. A negative value indicates that
mean EMG envelopes from iSCI patients shifted earlier in the cycle relative to the
mean EMG envelopes from the healthy group. (B) Maximum of the cross correlation

(rmax) between the two signals.

obtained for GMe at the speed of 60 rpm; a maximum VAFmuscle value of 91.0±2.4%

was obtained for GaM at the speed of 30 rpm.

VAFtotal values decreased when considering the set of 13 muscles. Minimum values

of 84.0±2.2% (Figure 5.5AIII) and 83.1±4.0% (Figure 5.5AIV) were obtained for the

healthy and iSCI group, respectively. In this case, the healthy group reached minimum

VAFtotal values at the speed of 60 rpm, whereas iSCI group reached its minimum at the

speed of 50 rpm. The maximum values of 86.0±4.6% and 85.2±4.2% were obtained for

the healthy and iSCI group, respectively, both at 30 rpm.

When considering 3 synergies for the set of 13 muscles, all the muscles presented

VAFmuscle values higher that 75%, except for one muscle and condition in the iSCI

group. Specifically, a minimum VAFmuscle value of 73.8±10.8% was obtained for GMe

at 60 rpm; a maximum VAFmuscle value of 87.4±3.3% was obtained for BF at 60 rpm. In

the case of the healthy group, a minimum VAFmuscle value of 77.2±11.1% was obtained

for AL at 42 rpm; a maximum VAFmuscle value of 91.9±4.6% was obtained for VL at 30

rpm.
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Figure 5.5: (A) Variability accounted for (VAFtotal) and (B) coefficient of determina-
tion (r2), according to the number of synergies, for each of the 4 speeds (30, 42, 50 and
60 rpm). Values are given in means ± SD. These reconstruction goodness indexes were
calculated after running the NNMF algorithm to reconstruct a set of 8 EMG envelopes
for the healthy group (I) and the iSCI group (II), as well as a set of 13 EMG envelopes
(III and IV for the healthy group and iSCI group, respectively). A VAFtotal value of
100% and a r2 value of 1 mean perfect reconstruction of the EMG set. *, Number of
synergies sufficient to describe VAFtotal values ≥ 85% for at least half of the healthy

participants.

Independent Student’s t-tests revealed no significant differences for the VAFtotal

scores between the two groups and also between spastic and non-spastic patients, for

the 4 studied speeds, when using 2 to 5 synergies as input to the NNMF algorithm to

reconstruct EMG signals.

In the case of the r2 coefficient with 3 synergies, a minimum of 0.70±0.05 (Figure

5.5BI) and 0.69±0.06 (Figure 5.5BII) were obtained for the healthy and iSCI group,

respectively, for the set of 8 muscles. Both values were obtained for the speed of 60

rpm. On the other hand, a maximum of 0.73±0.09 and 0.72±0.06 were obtained for
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the healthy and iSCI group, respectively. Both values were obtained for the speed of 30

rpm.

As it happened in the case of VAFtotal, also r2 values decreased in the case of

13-muscle dataset. A minimum of 0.63±0.08 (Figure 5.5BIII) and 0.61±0.06 (Figure

5.5BIV) were obtained for the healthy (at 42 rpm) and iSCI group (at 60 rpm), respec-

tively. A maximum of 0.67±0.91 and 0.65±0.07 were obtained for the healthy and iSCI

group, respectively, both at 30 rpm.

Independent Student’s t-tests indicated no significant differences for the r2 scores

between the two groups and also between spastic and non-spastic patients, for all speeds

and input number of synergies.

5.4.3.2 Synergy vectors and activation coefficients

The reference sets of three muscle synergy vectors (W0) and the corresponding activation

coefficients (H0) of the healthy group at the four different speeds are represented in

Figure 5.6AI and Figure 5.6AII, respectively. Synergy 1, activated predominantly during

the upstroke phase of cycling (see Figure 5.6AII), was represented by the activity of

GMed, AL, Sar, TA and RF. Synergy 2, activated during the final upstroke phase and

initial downstroke phase of cycling, was represented by the activity of TFL, VL, VM

and, to a lower extent, TA and RF. Synergy 3, activated during the downstroke phase

of cycling, was composed by the activity of BF, Sem, Sol, GaL and GaM.

Results from a representative iSCI patient (ID 4) with spasticity are represented in

Figure 5.6BI and Figure 5.6BII. In the case of this patient, it was verified high variability

of muscle synergy vectors and activation coefficients across speeds. This is reflected by

the normalized scalar product values between muscle synergy vectors W extracted with

the set of 13 muscles, and the reference matrices W0 (W · W0). Those values ranged

from 0.41 to 0.69 in synergy 1, from 0.57 to 0.78 in synergy 2, and from 0.74 to 0.90 in

synergy 3 (see Table 5.3). In the case of activation coefficients, H · H0 values ranged from

0.63 to 0.91 for activation coefficient 1, from 0.59 to 0.90 for activation coefficient 2, and

from 0.50 to 0.87 for activation coefficient 3. When only 8 muscles were considered, W

· W0 ranged from 0.41 to 0.66 for synergy vector 1, from 0.70 to 0.73 for synergy vector

2, and from 0.74 to 0.96 for synergy vector 3 (see Table 5.4). Normalized scalar product

ranged from 0.60 to 0.81 for activation coefficient 1, from 0.58 to 0.88 for activation

coefficient 2, and from 0.61 to 0.90 for activation coefficient 3.

Results from a representative iSCI patient (ID 9) without spasticity are represented

in Figure 5.6CI and Figure 5.6CII. In this case, muscle synergy vectors and activation
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Figure 5.6: Reconstruction of EMG envelopes in four speeds (30, 42, 50 and 60 rpm)
using concatenated data from (A) the 10 healthy subjects, and (B) individual data from
a patient with spasticity - ID 04 and (C) a patient without spasticity - ID 09, applying
the NNMF algorithm with 3 synergies. I: muscle synergy vectors. Each muscle synergy
vector has a time-invariant profile, representing the relative contribution of each synergy
for each muscular pattern. Muscle synergy vectors were normalized by their maximum
value. II: averaged activation coefficients, indicating time-variant profiles responsible

to activate each synergy.
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Table 5.3: Normalized scalar product between matching muscle synergy vectors from
matrices W of each patient and the matrix W0 obtained from all healthy subjects pooled

together, considering the set of 13 muscles and 3 synergies.

W · W0 at 30rpm W · W0 at 42rpm W · W0 at 50rpm W · W0 at 60rpm

Patient ID 1 2 3 1 2 3 1 2 3 1 2 3

1† 0.48 0.71 0.79 0.64 0.67 0.78 0.60 0.78 0.68 0.74 0.68 0.78
2 0.91 0.89 0.99 0.92 0.81 0.91 0.87 0.73 0.90 0.87 0.79 0.88

3† 0.55 0.83 0.96 0.58 0.84 0.95 0.40 0.78 0.91 0.46 0.73 0.95
4† 0.62 0.78 0.90 0.61 0.68 0.74 0.69 0.57 0.85 0.41 0.71 0.79
5† 0.79 0.88 0.94 0.78 0.80 0.90 0.75 0.77 0.93 0.93 0.90 0.88
6† 0.73 0.54 0.73 0.45 0.58 0.67 0.73 0.65 0.61 0.67 0.76 0.76
7† 0.96 0.96 0.96 0.93 0.97 0.94 0.88 0.77 0.68 0.86 0.89 0.85
8 0.70 0.69 0.86 0.50 0.75 0.85 0.70 0.31 0.66 0.74 0.39 0.78
9 0.76 0.95 0.83 0.68 0.92 0.83 0.81 0.89 0.96 0.57 0.88 0.85

10† 0.54 0.80 0.93 0.71 0.78 0.97 0.44 0.83 0.85 0.40 0.88 0.82

Mean 0.71 0.80 0.89 0.68 0.78 0.85 0.69 0.71 0.80 0.67 0.76 0.83
(SD) (0.13) (0.10) (0.07) (0.12) (0.09) (0.08) (0.12) (0.12) (0.12) (0.16) (0.11) (0.05)

The scalar product was abbreviated with the notation “W ·W0”. Values ≥ 0.9 appear
in bold. †, patients characterized as presenting spasticity.

Table 5.4: Normalized scalar product between matching muscle synergy vectors from
matrices W of each patient and the matrix W0 obtained from all healthy subjects pooled

together, considering the set of 8 muscles and 3 synergies.

W · W0 at 30rpm W · W0 at 42rpm W · W0 at 50rpm W · W0 at 60rpm

Patient ID 1 2 3 1 2 3 1 2 3 1 2 3

1† 0.37 0.74 0.84 0.73 0.67 0.71 0.69 0.87 0.81 0.59 0.78 0.75
2 0.83 0.73 0.98 0.87 0.72 0.86 0.82 0.51 0.87 0.95 0.70 0.84

3† 0.80 0.76 0.97 0.79 0.81 0.96 0.81 0.89 0.95 0.68 0.83 0.97
4† 0.66 0.73 0.96 0.60 0.70 0.86 0.46 0.72 0.82 0.41 0.71 0.74
5† 0.76 0.73 0.98 0.73 0.65 0.78 0.39 0.74 0.82 0.95 0.83 0.70
6† 0.36 0.58 0.71 0.52 0.89 0.85 0.79 0.86 0.69 0.56 0.83 0.88
7† 0.68 0.87 0.81 0.96 0.93 0.99 0.70 0.56 0.87 0.94 0.75 0.93
8 0.54 0.70 0.78 0.84 0.91 0.95 0.93 0.57 0.81 0.94 0.79 0.85
9 0.75 0.89 0.88 0.70 0.81 0.91 0.77 0.85 0.97 0.75 0.76 0.93

10† 0.22 0.80 0.83 0.12 0.88 0.85 0.15 0.88 0.78 0.23 0.78 0.84

Mean 0.60 0.75 0.87 0.69 0.80 0.87 0.65 0.74 0.84 0.70 0.78 0.84
(SD) (0.18) (0.06) (0.08) (0.16) (0.09) (0.06) (0.19) (0.12) (0.06) (0.20) (0.04) (0.07)

The scalar product was abbreviated with the notation “W ·W0”. Values ≥ 0.9 appear
in bold. †, patients characterized as presenting spasticity.
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coefficients were very similar across the speeds, as it happened with the healthy group.

In particular, W · W0 ranged from 0.57 to 0.81 for synergy 1, from 0.88 to 0.95 for

synergy 2, and from 0.83 to 0.96 for synergy 3 (see Table 5.3). In the case of activation

coefficients, H · H0 ranged from 0.65 to 0.87 for activation coefficient 1, from 0.92 to

0.95 for activation coefficient 2, and from 0.78 to 0.92 for activation coefficient 3. For

the set of 8 muscles, W · W0 ranged from 0.70 to 0.77 for synergy vector 1, from 0.76

to 0.89 for synergy vector 2, and from 0.88 to 0.97 for synergy vector 3 (see Table 5.4).

As for the activation coefficients, H · H0 ranged from 0.78 to 0.95 for synergy 1; 0.91 to

0.97 for synergy 2; 0.72 to 0.93 for synergy 3.

When comparing these similarity values between spastic and non-spastic patients,

most of the metrics presented a lower mean in spastic patients, despite those differ-

ences were not statistically significant. Just in the case of H2 · H02 at 30 rpm for the

dataset of 13 muscles, differences were significant (p-value = 0.036), with spastic patients

(0.9±0.04) presenting lower similarity than non-spastic (0.94±0.02).

Normalized scalar products between synergy vector 3 (W3) from each iSCI patients

and the corresponding synergy vector from the healthy group (W03) were, on average,

higher than those obtained for W1 and W2, for all speeds (see Tables 5.3 and 5.4), in

both sets of 13 and 8 muscles. In general, normalized scalar products were higher at

lower speeds. Also, normalized scalar products using the set of 13 muscles were higher

than those observed with the set of 8 muscles at 30 rpm, and lower for the other speeds.

Normalized scalar products of activation coefficient 3 from each iSCI patient (H3)

and activation coefficient 3 from the healthy group (H03) were, on average, higher than

those obtained for H1 and H2, for all speeds and sets of muscles.

5.4.4 Stepwise regressions to predict gait performance

One of the goals of this study was to find some correlations between synergies outcomes

extracted during cycling in iSCI patients and clinical measurements of gait performance.

Stepwise multiple linear regressions showed that r2 scores obtained at 42 rpm with the

dataset of 8 muscles could alone account for approximately 64% of the variance of TUG

scores (R2 = 0.635, Adjusted R2 = 0.563) and approximately 71% of the variance of

10-Meter scores (R2 = 0.711, Adjusted R2 = 0.653). Both predictions were statistically

significant (F = 8.715, p = 0.032, in the case of TUG test; F = 12.310, p = 0.017, in

the case of 10-Meter test). Resulting models are:

TUG score = 89.813 - 85.698 x (r2 with 8 muscles at 42 rpm)
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10-Meter score = 138.517 – 159.3 x (r2 with 8 muscles at 42 rpm)

Multiple linear regression models for TUG and 10-Meter tests are represented in

Figures 5.7A and 5.7B, respectively.

Figure 5.7: Stepwise multiple linear regressions using reconstruction goodness indexes
as predictors of gait performance. r2 scores using the dataset of 8 muscles at 42 rpm
predicted the time to perform TUG (A) and 10-Meter test (B); VAFtotal scores using

the dataset of 13 muscles at 42 rpm predicted the WISCI II score (C).

VAFtotal score obtained at 42 rpm, when using the dataset of 13 muscles, was

statistically significant (F = 17.174, p = 0.003) and accounted for approximately 68%

of the variance of WISCI II scores (R2 = 0.682, Adjusted R2 = 0.642). Resulting model

is:

WISCI II score = -91.075 + 1.257 x (VAFtotal with 13 muscles at 42 rpm)

This linear regression is represented in Figure 5.7C.

5.4.5 Stepwise regressions to predict spasticity

Another goal of this study was to find some correlations between synergies outcomes

extracted during cycling in iSCI patients and clinical measurements of spasticity. H2 ·
H02 score obtained at 30 rpm, when using the dataset of 13 muscles, was statistically

significant (F = 13.186, p = 0.007) and accounted for approximately 62% of the variance

of Total MAS scores (see Figure 5.8A) (R2 = 0.622, Adjusted R2 = 0.575). Resulting

model is:

Total MAS score = 56.448 – 58.09 x (H2 · H02 with 13 muscles at 30 rpm)

Scores obtained at Penn scale, as well as the clonus and extensor spasms assessed

with SCATS, could be predicted using W1 · W01 scores when using the dataset of 8
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Figure 5.8: Multiple linear regressions using similarity scores as input to predict the
score of some spasticity scales. H2 · H02 score obtained at 30 rpm, when using the
dataset of 13 muscles, predicted Total MAS scores (A); scores obtained with Penn scale
(B), as well as the clonus spasms assessed with SCATS (C), could be predicted using
W1 · W01 scores with the dataset of 8 muscles at 42 rpm; flexor spasms assessed with
SCATS (D) could be predicted using H2 · H02 scores with the dataset of 8 muscles at
30 rpm; extensor spasms assessed with SCATS (E) could be predicted using W1 · W01

scores with the dataset of 8 muscles at 50 rpm.

muscles, at two different speeds: 42 rpm in the case of Penn scale (see Figure 5.8B) and

clonus spasms assessed with SCATS (see Figure 5.8C); 50 rpm in the case of extensor

spasms assessed with SCATS (see Figure 5.8E). These three predictions were statistically

significant (F = 19.038, p = 0.002, in the case of Penn scale; F = 38.429, p < 0.001,

in the case of clonus spasms assessed with SCATS; F = 38.983, p < 0.001, in the case

of extensor spasms assessed with SCATS) and accounted for approximately 70% of the

variance of Penn scale scores (R2 = 0.704, Adjusted R2 = 0.667); approximately 83%

of the variance of clonus spasms assessed with SCATS (R2 = 0.828, Adjusted R2 =

0.806); approximately 83% of the variance of extensor spasms assessed with SCATS (R2

= 0.830, Adjusted R2 = 0.808). Resulting models are:

Penn score = 3.576 – 3.759 x (W1 · W01 with 8 muscles at 42 rpm)

Clonus spasms assessed with SCATS = 3.535 – 3.845 x (W1 · W01 with 8 muscles at

42 rpm)

Extensor spasms assessed with SCATS = 2.984 – 3.665 x (W1 · W01 with 8 muscles at

50 rpm)
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At last, H2 · H02 scores obtained at 30 rpm, when using the dataset of 8 muscles,

was statistically significant (F = 18.297, p = 0.003) and accounted for approximately

70% of the variance of flexor spasms assessed with SCATS (see Figure 5.8D) (R2 =

0.696, Adjusted R2 = 0.658). Resulting model is:

Flexor spasms assessed with SCATS = 3.360 – 3.607 x (H2 · H02 with 8 muscles at 30

rpm)

5.5 Discussion

Two main findings were provided by this study: I) iSCI patients (with and without

spasticity symptoms) preserve a synergistic control of muscles during cycling, evidence

that was not previously reported in the literature; II) gait performance and spasticity

can be predicted by muscle synergies outcomes extracted during cycling. In particular,

gait performance of iSCI patients may be predicted by synergy reconstruction goodness

scores, whereas spasticity can be predicted by the degree of similarity between iSCI

and healthy synergies. The following sections provide a detailed discussion on the main

findings of this work, as well as additional reasoning for their correct interpretation.

5.5.1 Electromyographic patterns in iSCI patients during cycling

According to several studies, the EMG activity of lower limb muscles is similar between

sides, during tasks like walking and cycling in healthy subjects (Clark et al., 2010) (Gizzi

et al., 2011) (Hug et al., 2011). Hence, only the dominant leg of healthy participants

was chosen for analysis in this study. In the case of iSCI patients, the most affected side

was the one chosen for analysis, in order to extract more relevant information on the

underlying impairments.

In addition to the eight muscles studied previously in healthy subjects and presented

in Chapter 4, five additional muscles (mono and bi-articular) were recorded to test the

influence of the number of muscles on the correlations between muscle synergies outcomes

and clinical scales of gait performance and spasticity.

As part of the standard rehabilitation program of the hospital, patients were already

familiarized with cycling on MOTOmed viva2. With the exception of TA, VM, Sol and

GaL, the average EMG envelopes of all muscles presented very similar activation timing

and shape between the two groups, for the four matching speeds. In the case of the

three distal muscles (TA, Sol and GaL), which are usually affected by spasticity (Bravo-

Esteban et al., 2013) and co-activation (Gómez-Soriano et al., 2010), the differences
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in the average activation timing and shape might be explained by the hypertonia and

clonus presented by some of the patients recruited.

5.5.2 Reconstruction goodness scores

To assess the reconstruction goodness scores of reconstructed EMG envelopes with a

given number of synergies, two different coefficients were used: VAFtotal and the coeffi-

cient of determination (r2). Both coefficients have been used in most studies on muscle

synergies (Clark et al., 2010) (Torres-Oviedo et al., 2006). VAFtotal has been suggested

to be more stringent than r2, since it is sensitive to both shape and amplitude of the

signals, whereas r2 only addresses similarity in shape.

In Chapter 4, VAFtotal values of approximately 90% were obtained when using

three synergies to reconstruct a set of eight lower limb muscles in eight healthy subjects,

for cycling speeds ranging from 43±2.7 to 70±4.0 rpm. In this study, similar VAFtotal

values (86.7±2.0% to 88.5±4.2%) were obtained for the same set of muscles in ten healthy

subjects. As expected, both VAFtotal and r2 values decreased when using 3 synergies

to reconstruct the set of 13 muscles, when compared with the case of 8 muscles. As

referred by Steele et al. (2013), Clark et al. (2010) and Monaco et al. (2010), the higher

the number of muscles, the lower is the reconstruction goodness score. No significant

differences were found in the VAFtotal and r2 scores neither between the iSCI group and

the healthy group nor between spastic and non-spastic patients, for the 4 speeds, when

using 2 to 5 synergies. This result may be explained by the low complexity of cycling

(few degrees of freedom), which seems to be executed by the same number of synergies

by both healthy and iSCI subjects.

Differently from previous studies, in which VAFtotal is used to define the optimal

number of synergy for each subject, here it was introduced a global criterion (VAFtotal

values ≥ 85% in at least 50% of the subjects) in order to fix a “globally optimum”

number of synergies for all subjects. This criterion allowed to i) use VAFtotal values as a

continuous quantitative metric of motor performance with a fixed number of synergies,

and ii) perform a direct comparison between patients’ synergies and a reference dataset

from healthy subjects (W0 and H0).

5.5.3 Similarity of synergy vectors and activation coefficients

Little is known about the effect of iSCI on muscle synergies organization. The few studies

that investigated this synergistic control focused on gait (Hayes et al., 2014) (Ivanenko

et al., 2003) (Ivanenko et al., 2009). These studies suggested that the training post-SCI
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and the underlying plasticity lead to a reorganization of interneuronal networks, this way

modifying and creating new muscle synergies. Notwithstanding, the synergistic control

of iSCI patients during cycling has not been described yet, to our best knowledge.

When using the set of 13 muscles, the activation coefficients were very similar

to those obtained with the set of 8 muscles (see Figure 5.6AII), and similar to those

presented in Chapter 4 (see Figure 4.7B). Synergy vectors were also very similar between

the 8- and 13-muscle datasets, with the additional five muscles being incorporated within

the 3 synergy vectors (see Figure 5.6AI).

In the healthy group, antagonist muscles were not activated by the same synergy

(e.g., the quadriceps and hamstrings, the TA and the Triceps Surae), in accordance with

the literature on walking (Clark et al., 2010) and cycling (Hug et al., 2011). As expected,

patients with no diagnosed spasticity presented similar synergy vectors to the healthy

people (levels of co-activation of agonists/antagonists very low) (see representative pa-

tient from Figure 5.6CI). However, this was not the case of some iSCI patients diagnosed

with spasticity (see representative patient from Figure 5.6BI). In this case, there was

high variability of muscle synergy vectors and activation coefficients across the speeds,

and also antagonist muscles were activated by the same synergy (e.g., TA and Sol ac-

tivated by synergy 3 in Figure 5.6BI). Although spastic patients presented, on average,

lower similarity values (W · W0 and H · H0) than non-spastic patients, differences were

not statistically significant, except for the case of H2 · H02 at 30 rpm for the dataset of

13 muscles. This metric could also predict Total MAS scores.

When considering the whole iSCI group, similarity with the healthy reference set

was higher for the activation coefficients than for the synergy vectors. These results may

indicate less disruption of the corticospinal drive (represented by activation coefficients)

than the disruption of the spinal organization (represented by the synergy vectors) after

SCI (Ting et al., 2015) (Ivanenko et al., 2003).

Synergy 3 (activated during the downstroke phase of cycling) from iSCI patients

was the one with higher similarity with the corresponding synergy of the healthy group,

for both spastic and non-spastic patients. This was observed both for the synergy

vectors (W3 · W03) and activation coefficients (H3 · H03), indicating less variability for

this synergy composition and activation. Taking into account the higher similarity of

synergy 3, it can be hypothesized that the similarity scores for W1 and W2, as well as

H1 and H2, which present lower correlation values with the healthy group, would better

distinguish the spasticity levels of each patient.
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5.5.4 Predictions of gait performance

Gait speed is an important variable assessed in the clinical setting. For instance, the

criteria used to include similar patients in a group are usually based on classic clinical

evaluations and walking speed (Nadeau et al., 2011). By analyzing muscle synergies

during walking in poststroke subjects, Clark et al. (2010) reported that the number of

synergies correlated with the preferred walking speed. Also, Routson et al. (2013) re-

ferred that poststroke patients that improved the activation coefficients (more similar to

the healthy group) also improved walking performance. Based on the observed common

muscle synergies between cycling and walking (Barroso et al., 2014), one of the hypoth-

esis of this study was that the analysis of muscle synergies during cycling correlates with

gait performance scales.

When assessing iSCI subjects, van Hedel et al. (2005) reported that the 10-Meter

test was more sensitive than the WISCI II in demonstrating improvements on walking

performance. In the study presented in this Chapter, after performing individual linear

correlation with WISCI II, both goodness scores (VAFtotal and r2) at different speeds

were selected as input for the Multiple Regression Model. As output of the model,

VAFtotal score at 42 rpm with the dataset of 13 muscles could alone predict most of the

variance of WISCI II. r2 values using the dataset of 8 muscles, also at 42 rpm, could

predict alone the time to perform TUG and 10-Meter tests. Thus, 42 rpm seems to be

the most appropriate speed to assess motor performance in iSCI patients.

5.5.5 Predictions of spasticity

The difficulty to classify a subject as spastic or not is a well-known problem (Reichen-

felser et al., 2012). In the case of poststroke patients, spasticity is characterized by

high levels of muscle tone and a relative absence of spasms, whereas in iSCI patients,

spasticity is mainly associated with the presence of flexor and extensor spasms triggered

by cutaneous stimulation (Bennett, 2008). Ashworth and modified Ashworth scales

are commonly used to assess spasticity, although they specifically measure hypertonia

(Gómez-Soriano et al., 2012). It has been suggested that the combination of these scales

with a spasms frequency scale may be useful to obtain more information about the

spasticity of iSCI patients (Priebe et al., 1996).

Despite the valuable information of pathophysiological mechanisms involved in

spasticity (Biering-Sørensen et al., 2006), there is still need for novel tools capable of

providing quantitative metrics of spasticity, with low intra and inter-rater variability

(Gómez-Soriano et al., 2012). As shown by the results presented in this Chapter, the

use of EMG analysis may provide solutions to this problem.
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Similarity scores for synergies 1 and 2 could predict spasticity and spasms frequen-

cies. In particular, H2 · H02 at 30 rpm for the dataset of 13 muscles predicted Total

MAS scores. W1 · W01 with the dataset of 8 muscles could alone predict most of the

variance of Penn and the spams of SCATS scale. These results indicate that H2 · H02

at low speeds may be useful to assess the level of hypertonia, whereas W1 ·W01 may be

used to assess and predict the spasms frequency. On the other hand, these results also

encourage a wider use of Penn and SCATS scale to assess spasticity syndrome in iSCI

patients.





Chapter 6
Study 3 - Combining biomechanical and

neuromuscular analysis to assess walking

symmetry post iSCI

Abstract

Background. To improve customized therapy of iSCI patients, it is important to

understand the neuromuscular and biomechanical features underlying the motor control

of both sides, as iSCI may lead to an asymmetric motor control and functional behavior.

The analysis of muscle synergies, as well as the study of biomechanics, may detect

differences between the most and less affected sides in iSCI patients.

Objective. The research presented in this Chapter tests two hypothesis: I) some

biomechanical features can differentiate most and less affected side of iSCI patients; II)

the analysis of muscle synergies can also differentiate most and less affected side of iSCI

patients.

Methods. Eight iSCI patients and eight healthy subjects completed ten walking

trials at matching speed. For each trial, three-dimensional (3D) motion analysis, as

well as the recording of the electrical activity of seven leg muscles from both limbs

using surface electromyography (sEMG) were performed. Muscle synergies were further

extracted using the NNMF algorithm, with the number of synergies being defined as the

minimum number needed to obtain variability accounted for (VAFtotal) ≥ 90%.

Results. Six kinematic variables and one spatio-temporal variable showed signif-

icant differences between the most and the less affected side of SCI patients. Fewer

103
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muscle synergies were needed to account for the muscle activity of the most affected

side of iSCI. Differences of similarity with the healthy reference were also observed in

synergy 2 between both sides of patients.

Conclusions. Biomechanical analysis was more effective to detect differences be-

tween most and less affected side of iSCI patients than the analysis of muscle synergies,

maybe due to the reduced number of muscles assessed in this study.

6.1 Introduction

The progressive adaptation to the patient-specific reorganization of sensorimotor func-

tions is one of the main challenges in gait training (Wang et al., 2013). A central issue

to achieve this goal is to accurately measure the locomotor responses after neurological

disease (Ivanenko et al., 2013).

Biomechanical measures obtained with gait analysis systems may provide detailed

and a quantitative description of motor behavior of iSCI patients. It has been referred

that iSCI patients present an impaired walking and tend to walk slowly (Ditunno and

Scivoletto, 2009). Moreover, Gil-Agudo et al. (2011) and Gil-Agudo et al. (2013) showed

remarkable kinematic differences localized at the knee and ankle level, in the sagittal

plane, between iSCI patients and healthy subjects. The understanding of how iSCI

affects kinematics of lower limbs during walking is of great importance to help the

physician to set a customized rehabilitation program.

In addition to the biomechanical analysis, surface electromyography (EMG) may

also provide valuable information about disturbances and changes in motor control in

neurological diseases, which can be used to further guide the rehabilitation process

(Wang et al., 2013). Neurological impairments such as iSCI may alter the normal func-

tioning of the synergistic control typically observed in healthy subjects, and lead to gait

disturbances (Fox et al., 2013).

The few existing reports on the synergistic control of iSCI patients suggest that

muscle synergies are altered after the injury. However, it is very complicated to compare

the results presented in these studies, since different age groups have been analyzed and

also the sites of injuries are highly variable in location and magnitude (Ting et al., 2015).

For instance, Fox et al. (2013) reported that less number of muscle synergies were needed

to account for most of the variability of EMG envelopes of lower limb muscles of children

who suffered iSCI in comparison with healthy children. However, these results should

be analyzed with caution, as children’s nervous system is still immature and developing,

which may represent a different synergistic control of walking than the observed in adults
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(Fox et al., 2013). Other authors have studied heterogeneous populations, including

patients with complete motor SCI, and analyzed different conditions of weight loading

and treadmill speed (Grasso et al., 2004) (Ivanenko et al., 2003) (Ivanenko et al., 2009).

Hayes et al. (2014) conducted a study to quantify neuromuscular deficits in muscle

coordination during overground walking in iSCI subjects, concluding that iSCI patients

presented significant reduced muscle coordination if compared with healthy controls,

with neuromuscular constraints contributing to person-specific deficits in overground

walking.

One limitation of most of these studies is that they assess only one side of the body

or average data from both sides. As iSCI may affect both sides differently, leading to

an asymmetric motor control and functional behavior, it is important to understand

which biomechanical and EMG features may detect differences between the two sides in

patients with iSCI, to further improve customized therapy.

6.2 Goals

The main goal of this Chapter is to test two hypotheses: I) some biomechanical features

can differentiate most and less affected side of iSCI patients; II) muscle synergies can

also differentiate most and less affected side of iSCI patients. The confirmation of these

two hypotheses would support the importance of studying the bilateral control of lower

limb functions in iSCI patients, as well as to combine biomechanical features and the

analysis of the synergistic muscle control.

6.3 Materials and Methods

6.3.1 Subjects

All recruited subjects gave their written consent to participate in the study and for data

publication, after being informed about the procedures and possible discomfort associ-

ated with the experiments, in accordance with the Declaration of Helsinki (see Appendix

E.2). The National Hospital for Spinal Cord Injury Ethical Committee approved this

study.

Eight healthy subjects (4 men, 4 women), with an age of 31.50 ± 6.61 yr, with

similar demographic and anthropometric characteristics, and with no diagnosed neural

injury, neither central nor peripheral, were recruited to participate as controls (CG -

control group). Eight iSCI patients (5 men, 3 women), with an age of 38.38 ± 10.45 yr,
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Table 6.1: Individual iSCI patients’ information.

Patient
ID

GenderAge
(Years)

Level
of
Le-
sion

AIS Time
post-
SCI
(months)

WISCI
II

Assistive
device

LEMS
(L/R,
to-
tal)

10MWT
(s)

TUG
(s)

SCIM Cadence
(step-
s/min)
(L/R)

Most
af-
fected
side

1 M 25 C4 D 4 19 One
crutch
(R)

16/21,
37

27 32 68 42.3/53.5 L

2 M 36 C7 D 154 20 None 21/25,
46

12.5 10 93 73.8/76.5 L

3 M 51 T12 D 216 20 None 21/20,
41

8 8 93 103.4/101.8 R

4 M 41 C6 D 6 20 None 24/24,
48

9 10 83 95/86.7 R

5 M 31 C6 D 3 19 One
crutch
(R)

18/24,
42

10 11 83 85.7/91.8 L

6 F 48 C5 D 3 20 None 24/25,
49

7 6.15 99 101/99.2 R

7 F 26 T10 D 6 19 One
crutch
(R)

22/22,
44

8 9 83 84.4/79.5 R

8 F 49 T7 D 7 12 Two
crutches
and
braces

17/22,
39

18 21 85 68.9/74.8 L

M, male; F, female; Level of Lesion: C – Cervical, T – Thoracic; AIS, American Spinal
Injury Association (ASIA) Impairment Scale; WISCI II, Walking Index for Spinal Cord
Injury; R, right; L, left; LEMS, Lower Extremity Motor Score; 10MWT, 10-Meter Walk

Test; TUG, Timed Up and Go; SCIM, Spinal Cord Independence Measure.

volunteered to participate in this study. All of them received the standard rehabilitation

program of the hospital. Inclusion criteria were: aged between 18 and 65 years, motor

incomplete spinal lesion (AIS C-D), evolution of at least 1.5 months, absence of any other

pathological condition, ability to walk 10 meters unassisted with or without technical

aids. Exclusion criteria were: history of epilepsy, passive restriction of the joints and

diagnosis of any other disease associated with memory, concentration and/or visual

deficits. Detailed information of the patients is presented in Table 6.1.

6.3.2 Experimental protocol and data collection

The research presented in this Chapter was carried out in the Biomechanical and Tech-

nical Aids Department of the National Hospital for Spinal Cord Injury (Toledo, Spain).
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Patients underwent two different types of assessment: clinical evaluation and 3D

gait analysis. Clinical evaluation was not performed for the control group.

Clinical evaluation was performed by a trained physiatrist and consisted on a set

of evaluations to examine the clinical and functional status of the patients. In order

to minimize inter-rater variability, one physiatrist carried out the entire assessment

procedure, evaluating the following scales (see Table 6.1): Lower Extremity Motor Score

(LEMS), which test five key muscles in each leg with a score from 0 to 5, with the

accumulative score for each extremity being between 0 and 25 and a total score from 0

to 50; Walking Index for Spinal Cord Injury II (WISCI II), which assesses the amount of

physical assistance needed by the patient to walk 10 meters (0 indicates that the patient

cannot stand and walk, whereas 20 means that the patient can walk 10 meters without

any kind of assistance); 10-Meter Walk Test, which measures the time a person takes to

walk 10 meters using the usual walking devices; the Timed Up and Go (TUG) test, which

measures the time spent to stand up from a chair, walking 3 meters, turn around, return

to the chair and sit down again at self-selected speed and using the habitual walking

devices; and the Spinal Cord Independence Measure (SCIM), which is a disability scale

specific for SCI (Benito-Penalva et al., 2012) (Gil-Agudo et al., 2013) (Kapadia et al.,

2014).

Gait analysis was performed using a 3D motion analysis system with two scanner

units (CODA System6, Charnwood Dynamics, Ltd, UK) and a force platform embedded

in the walking path, which allowed the study of ground reaction forces. An acquisition

frequency of 200 Hz was used to record data with CODA and from the force platform.

Each participant completed ten walking trials along a 10 m walkway at self-selected

speed, resting one minute between trials to avoid fatigue (see Figure 6.1). Eleven active

markers were positioned and attached to anatomic landmarks, as described by Kadaba

et al. (1990). All the iSCI patients walked with their usual footwear. CG participants

were asked to walk within the range of speeds of iSCI group, following the same criterion

performed by Ochi et al. (1999) and Gil-Agudo et al. (2013).

For all iSCI patients, surface electromyography (sEMG) data were recorded bilat-

erally using an EMG recording system (Noraxonr, Scottsdale, Arizona, U.S.A.), with

an acquisition frequency of 1500 Hz, being synchronized online with CODA data. In

the case of the CG, just the right side was evaluated. Surface EMG electrodes were

positioned as described in Cram (2011), on the following seven muscles: Gluteus Medius

(GMe), Gluteus Maximus (GMa), Rectus Femoris (RF), Adductor Longus (AL), Biceps

Femoris (BF), Tibialis Anterior (TA) and Gastrocnemius Medialis (GaM).
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Figure 6.1: Incomplete SCI patient walking during one trial.

For each subject, the recording session lasted approximately 20 minutes, in addition

to the donning and doffing of the EMG recording setup and the markers for 3D gait

analysis (15-30 minutes, depending on the subject and level of impairment).

Data were analyzed offline with MATLAB R2011a (The MathWorks, Natick, MA)

and IBM SPSS Statistics 20 software (IBM).

6.3.3 Data analysis

Heel strike events were determined by visual inspection of the heel marker trajectory.

Each walking stride started at the heel strike of the corresponding leg. Cadence and

speed were calculated independently for each side, according to the time spent and

distance walked during a step. Cadence values of each side were used to tag sides as

being the most or the less affected side, with the most affected side (iSCIa) defined as the

one achieving a lower cadence (see Table 6.1). For each one of the ten trials performed

by each subject, the central left stride and the central right stride were selected for

analysis. Finally, for each side, data from the chosen strides were concatenated.
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6.3.3.1 Analysis of muscle synergies

Using SynergiesLAB software (see Appendix C), concatenated raw EMG signals from

each participant and side analyzed were high-pass filtered at 20 Hz, demeaned, rectified,

and smoothed with a low-pass filter at 5 Hz, resulting in the EMG envelopes, according

to the procedures performed by Clark et al. (2010) and Hug et al. (2010). EMG en-

velopes were then normalized by the average of the maximum of each of the ten strides,

and resampled at each 1% of the stride cycle. For each participant and analyzed side,

normalized EMG envelopes were combined into an m x t matrix (EMG0), where m is

the number of muscles (seven in this case) and t is the time base (t = no. of cycles (10)

x 100)).

Muscle synergy vectors and the corresponding activation coefficients were extracted

using the NNMF algorithm in SynergiesLAB (see equation 2.1) (Lee and Seung, 1999).

For each EMG0, the NNMF algorithm was run six times, considering as input 2 to 7

synergies (n = 2, 3, 4, 5, 6, 7). In order to avoid local minima, for each run, the NNMF

algorithm was repeated 40 times and the repetition with the lowest reconstruction error

was selected.

Each muscle synergy vector (column of matrix W) was normalized by the maximum

value of the muscle in the synergy to which they belong, which also helps the visual

comparisons among subjects, as performed by Hug et al. (2010) and Muceli et al. (2010).

Then, the corresponding activation coefficients were scaled by the same quantity, as done

by De Marchis et al. (2012).

The similarity between EMG0 and EMGr was calculated using the variability ac-

counted for (VAFtotal, see Equation 4.1) (Clark et al., 2010). The number of synergies

was defined as being the minimum number needed to obtain VAFtotal values ≥ 90%

(Routson et al., 2014).

At last, two reference sets of matrices (W0 and H0) were obtained by concatenating

the EMG envelopes from all the CG subjects, and applying the NNMF algorithm con-

strained to four muscle synergies, regardless the VAFtotal criterion, as done previously by

Clark et al. (2010) and Routson et al. (2014). Hence, it was possible to compare muscle

synergy vectors and activation coefficients of iSCI with the four synergies described in

literature for healthy subjects while walking (Clark et al., 2010) (Routson et al., 2014).

After that, previously extracted muscle synergy vectors (columns of matrix W) of each

patient were ordered according to their similarity with columns of W0. This was done by

means of the normalized scalar product and corresponds mathematically to the scalar

product of pairs of columns from matrices W, each one previously normalized by its
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norm, providing output values ranging from 0 to 1. After being ordered, muscle syn-

ergy vectors and activation coefficients of each patient were compared with the reference

healthy sets (W0 and H0), using the normalized scalar product. In this Chapter, the

normalized scalar products between H and H0 and between W and W0 are denoted “H

· H0” and “W · W0”, respectively.

6.3.3.2 Kinematics

Raw kinematic data of each analyzed side and subject were low-pass filtered at 6 Hz

(Allen and Neptune, 2012). From the mean profile over the ten selected strides (Bowden

et al., 2010), it was possible to extract the following joint kinematic parameters usually

used to describe gait (Schutte et al., 2000) (Moreno et al., 2013) (Bonnyaud et al., 2014)

(Roche et al., 2015):

• Hip joint parameters: peak flexion (o), peak extension (o), range of flexion (o),

pre-swing angle (min) (o), peak of abduction in swing (o), range of abduction (o),

mean rotation in stance (o);

• Knee joint parameters: flexion at initial contact (o), time of peak flexion (% gait

cycle), peak flexion (o), time of peak extension (% gait cycle), peak extension (o),

range of flexion (o);

• Ankle joint parameters: peak dorsiflexion during stance (o), peak dorsiflexion

during swing (o), peak dorsiflexion (o), peak plantarflexion (o), range of flexion

(o);

• Pelvis joint parameters: mean tilt (o), range of tilt (o), mean rotation (o);

6.3.3.3 Spatio-temporal parameters

Based on the 3D position of the foot markers, it was possible to extract the mean of

the following spatio-temporal parameters (Schutte et al., 2000) (Bowden et al., 2010)

(Boudarham et al., 2013) (Bonnyaud et al., 2014) (Arnold et al., 2014): speed (m/s),

stride length (m), stride duration (s), strides/minute, step length (m), step duration (s),

cadence (steps/minute), % stance, duration of stance (s), duration of single support (s),

% single support, duration of double support (s).
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6.3.3.4 Kinetics

Raw data from the force platform were low-pass filtered at 20 Hz and normalized by

subject’s weight (Bowden et al., 2010). The mean over the ten trials was calculated

and the following parameters were extracted (Bonnyaud et al., 2014) (Bowden et al.,

2010): vertical ground reaction force (GRF) during single support phase (N/Kg), peak

of propulsion (N/Kg), peak of braking (N/Kg), peak medio-lateral force (N/Kg).

6.3.4 Statistical analysis

After verifying the normality of the samples with the Kolmogorov-Smirnov test, it was

used one-way ANOVA with post-hoc Bonferroni for multiple comparisons between the

three groups (control group, most affected side of iSCI patients and less affected side of

iSCI patients) in terms of speed, cadence, VAFtotal scores and the number of synergies.

Paired Student’s t-tests were performed to test significant differences between most

and less affected side of iSCI patients on the following variables: synergy similarity

indicators (H · H0 and W · W0), kinematic, spatio-temporal and kinetic variables.

Statistical significance was set by a p-value of 0.05.

6.4 Results

6.4.1 Biomechanical differences between sides

Patients walked at very heterogeneous speed, ranging from 0.30 to 1.05 m/s. When

considering each side independently (using data from independent strides), patients

showed an average speed of 0.71 ± 0.24 m/s for the most affected side and 0.73 ±
0.25 m/s for the less affected side. The CG walked with an average of 0.92 ± 0.20 m/s,

which fits the range of motion of iSCI patients. Differences in speed were not statistically

significant when comparing the speed of the three groups (iSCI, iSCIa and CG) (p =

0.158).

Regarding patients’ cadence, values ranged from 42.28 to 103.40 steps/min. When

considering each side independently (using data from independent strides), an average

cadence of 80.49 ± 18.55 for the most affected side and 84.32 ± 17.16 for the less affected

side was obtained. CG walked with a cadence of 89.29 ± 12.40 steps/min, which fits

the range of motion of iSCI patients. No statistically significant differences were found

comparing the cadence of the three analyzed groups (p = 0.565).
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Six kinematic variables (peak of hip flexion, range of hip flexion, peak of hip ab-

duction in swing, range of hip abduction, peak of knee flexion and peak of ankle plan-

tarflexion) showed significant differences between the most and the less affected side of

iSCI patients (p < 0.05), with the most affected side presenting lower values than the

less affected side, except for peak of hip abduction in swing (see Table 6.2). For these six

kinematic variables, CG presented the following values (mean ± SD) (see Figure 6.2A-

F): 40.97 ± 10.70o for peak of hip flexion, 38.36 ± 5.89o for range of hip flexion, 0.45

± 2.47o for peak of hip abduction in swing, 10.80 ± 4.29o for range of hip abduction,

64.03 ± 3.22o for peak of knee flexion and 19.54 ± 2.23o for peak of ankle plantarflexion.

Mean ± SD values of these six variables for the most affected side of iSCI patients were

less than or equal to those verified for the CG. On the other hand, data from the less

affected side of iSCI patients were greater than or equal to those verified for the CG,

except for the peak of hip abduction in swing, which was lower for the less affected side

of iSCI patients than the CG.

Step length was the only spatio-temporal variable that showed significant differences

between the most and the less affected side of iSCI patients (p = 0.027), with the most

affected side presenting lower values (0.50 ± 0.12) than the less affected side (0.56 ±
0.09) (see Table 6.3). Both the most and less affected side of iSCI patients presented

lower values than those verified for the CG (0.65 ± 0.068) (see Figure 6.2G).

No significant differences were found between the most and the less affected side of

iSCI patients when analyzing kinetic variables.

6.4.2 Synergistic control of gait

Fewer muscle synergies were needed to account for the whole muscle activity of the

seven analyzed muscles in the most affected side (2.88 ± 0.64) than the less affected side

(3.38 ± 0.52) of iSCI patients and the CG (3.62 ± 0.52) (see Table 6.4). The difference

between the number of synergies needed to account for the whole muscle activity of the

most affect side of iSCI patients (iSCIa) and the CG was statistically significant (p-value

= 0.042).

Considering the most affected side, two patients (25%) required two synergies,

five patients (62.5%) required three synergies and one patient (12.5%) required four

synergies to obtain VAFtotal values ≥ 90%. In the case of the less affected sides, five

patients (62.5%) required three synergies, whilst three patients (37.5%) required four

synergies to obtain VAFtotal values ≥ 90%. Three healthy subjects (37.5%) required

three synergies, while the other five healthy participants (62.5%) needed four synergies

to obtain VAFtotal values ≥ 90%.
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Table 6.2: Comparison of kinematic indicators between most and less affected sides
of iSCI patients. Values are given in mean ± SD.

Kinematic variables Side Mean ± SD p-value

Peak of hip flexion (o)
most affected 30.21±10.72
less affected 43.23±11.08 0.044*

Peak of extension (o)
most affected -3.07±11.67
less affected 0.31±12.32 0.427

Range of hip flexion (o)
most affected 37.28±4.19
less affected 42.93±4.94 0.011*

Pre-swing angle of hip (min) (o)
most affected -3.08±11.67
less affected 0.31±12.32 0.427

Peak of hip abduction in swing (o)
most affected -0.08±3.05

less affected -5.80±4.93 0.022*

Range of hip abduction (o)
most affected 10.80±3.71
less affected 14.43±3.69 0.003**

Mean rotation of hip in stance (o)
most affected 12.26±4.13
less affected 11.72±4.18 0.754

Knee flexion at initial contact (o)
most affected 5.58±5.62
less affected 8.49±3.85 0.357

Time of peak knee flexion (% gait cycle)
most affected 77.75±5.99
less affected 78.88±4.29 0.697

Peak of knee flexion (o)
most affected 50.10±11.62
less affected 61.35±8.96 0.011*

Time of peak knee extension (% gait cycle)
most affected 53.13±29.50
less affected 74.13±38.74 0.198

Peak of knee extension (o)
most affected -1.19±6.46
less affected 3.48±6.09 0.122

Range of knee flexion (o)
most affected 51.30±10.30
less affected 57.86±8.98 0.169

Peak of ankle dorsiflexion during stance (o)
most affected -10.41±6.50
less affected -6.28±2.89 0.121

Peak of ankle dorsiflexion during swing (o)
most affected -5.59±8.59
less affected -1.31±5.38 0.263

Peak of ankle dorsiflexion (o)
most affected -10.55±6.65
less affected -6.46±2.88 0.132

Peak of ankle plantarflexion (o)
most affected 13.66±7.00
less affected 18.48±5.20 0.042*

Range of ankle flexion (o)
most affected 24.21±5.18
less affected 24.94±4.02 0.668

Mean pelvic tilt (o)
most affected 14.34±7.44
less affected 16.77±8.58 0.371

Range of pelvic tilt (o)
most affected 8.48±4.24
less affected 6.94±3.84 0.110

Mean pelvic rotation (o)
most affected -0.57±3.61
less affected 2.23±3.61 0.215

* Values are significantly different between sides (p < 0.05). ** Values are significantly
different between sides (p < 0.01). For those indicators with significant differences

between sides, the side with higher values is evidenced in bold.
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Figure 6.2: Biomechanical indicators that showed significant differences between most
and less affected side in iSCI patients.
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Table 6.3: Comparison of spatio-temporal and kinetic indicators between most and
less affected sides of iSCI patients. Values are given in mean ± SD.

Variables Side Mean ± SD p-value

Spatio-temporal

Speed (m/s)
most affected 0.71±0.24
less affected 0.73±0.25 0.466

Stride length (m)
most affected 1.02±0.19
less affected 1.03±0.18 0.588

Stride duration (s)
most affected 1.55±0.45
less affected 1.55±0.47 0.773

Strides/minute
most affected 41.18±9.19
less affected 41.16±9.12 0.952

Step length (m)
most affected 0.50±0.12
less affected 0.56±0.09 0.027*

Step duration (s)
most affected 0.80±0.27
less affected 0.75±0.18 0.186

Cadence (steps/minute)
most affected 80.49±18.55
less affected 84.32±17.16 0.073

% Stance
most affected 69.71±3.21
less affected 72.10±5.42 0.138

Duration of stance (s)
most affected 1.09±0.36
less affected 1.14±0.46 0.233

Duration of single support (s)
most affected 0.41±0.36
less affected 0.46±0.09 0.163

% Single support
most affected 27.87±5.28
less affected 30.28±3.33 0.103

Duration of double support (s)
most affected 0.34±0.17
less affected 0.34±0.18 0.837

Kinetics

Vertical ground reaction force(N/Kg)
most affected 10.05±1.30
less affected 10.31±0.86 0.332

Peak of propulsion (N/Kg)
most affected 0.86±0.31
less affected 1.04±0.51 0.175

Peak of braking (N/Kg)
most affected -1.03±0.61
less affected -0.91±0.37 0.397

Peak of medio-lateral force (N/Kg)
most affected 0.71±0.14
less affected 0.67±0.19 0.276

* Values are significantly different between sides (p < 0.05). For those indicators with
significant differences between sides, the side with higher values is evidenced in bold.
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Table 6.4: Number of muscle synergies and VAFtotal values obtained for the three
groups, when using two to four synergies to reconstruct overall muscle activity. Values
are expressed as mean ± SD. iSCI, less affected side; iSCIa, most affected side; CG,

control group.

Variable iSCI iSCIa CG p-value

Number of synergies 3.38 ± 0.52 2.88 ± 0.64 3.62 ± 0.52 0.042
VAFtotal (2 synergies) 83.44 ± 4.60 85.20 ± 5.40 81.80 ± 2.75 0.321
VAFtotal (3 synergies) 90.25 ± 2.58 91.88 ± 1.66 90.39 ± 2.12 0.269
VAFtotal (4 synergies) 94.51 ± 1.35 95.48 ± 1.00 94.83 ± 1.49 0.332

Bold values indicate significant differences.

When considering VAFtotal values, no significant differences were found among the

three groups (p-value > 0.05), despite iSCIa had presented higher mean values (see Table

6.4).

Reference sets of muscle synergy vectors (W0) and activation coefficients (H0) were

consistent with those described in literature (see Figure 6.3) using eight muscles and

similar functional muscle groups (Clark et al., 2010) (Routson et al., 2014) and qualita-

tively similar to previous studies that recorded a larger set of muscles (Ivanenko et al.,

2004) (Cappellini et al., 2006). Synergy 1 consisted mainly on the activity of biceps

femoris (BF) (knee flexors and hip extensors) at the end of swing and initial heel con-

tact. Synergy 2 consisted on the activity of GMe (hip abductor) and GMa (hip extensor

and abductor), RF (knee extensor and hip flexor) and TA (ankle dorsiflexor) during

early stance. Synergy 3 consisted mainly on the activity of GaM (ankle plantarflexor),

and to a lower extent, GMe, during late stance. Finally, synergy 4 consisted in the

activation of AL (hip adductor), TA, and to a lower extent, RF, during initial swing

phase.

The similarity of synergy vectors (W · W0) and activation coefficients (H · H0)

from iSCI patients with the control group (CG) reference was calculated by means of

normalized scalar product (see Table 6.5). Both muscle synergy vectors (W) and acti-

vation coefficients (H) were very heterogeneous for both sides of patients. A significant

difference between sides was found for H2 · H02 (p = 0.046). Specifically, H2 from the

less affected side was more similar to the healthy reference that the most affected side of

iSCI patients (see Figure 6.4). No more significant differences were found for the other

similarity indicators.
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Figure 6.3: Reconstruction of EMG envelopes using concatenated data from the 8
healthy subjects and 4 muscle synergies. (A) Activation coefficients (rows of matrix
H0) of the reference set indicate time-varying profiles of activation responsible to ac-
tivate each synergy. Thin gray lines represent activation coefficients of each of the 80
strides (10 stride cycles/ healthy subject), with each black thick line representing the
average of those cycles. (B) Synergy vectors (columns of matrix W0) of the reference
set indicate the relative weighting of each synergy for each muscular pattern. GMe,
Gluteus Medius; GMa, Gluteus Maximus; RF, Rectus Femoris; AL, Adductor Longus;

BF, Biceps Femoris; TA, Tibialis Anterior (TA); GaM, Gastrocnemius Medialis.
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Table 6.5: Similarity of synergy vectors (W ·W0) and activation coefficients (H · H0)
with the control group (CG) reference, using four synergies to reconstruct the EMG
envelopes of the less affected side (iSCI) and the most affected side (iSCIa) of iSCI

patients.

Subject
ID

W1·W01 W2·W02 W3·W03 W4·W04 H1·H01 H2·H02 H3·H03 H4·H04

iSCI1 0.99 0.86 0.98 0.91 0.87 0.59 0.79 0.93
iSCI2 0.88 0.92 0.81 0.84 0.73 0.91 0.96 0.89
iSCI3 0.17 0.74 0.98 0.64 0.88 0.82 0.50 0.61
iSCI4 0.15 0.76 1.00 0.90 0.76 0.95 0.94 0.94
iSCI5 0.87 0.77 0.94 0.55 0.85 0.93 0.89 0.80
iSCI6 0.91 0.99 0.96 0.98 0.88 0.92 0.99 0.78
iSCI7 0.45 0.64 0.99 0.82 0.77 0.88 0.98 0.80
iSCI8 0.17 0.76 0.78 0.97 0.84 0.94 0.84 0.90
mean±SD 0.57±0.38 0.81±0.11 0.93±0.08 0.83±0.15 0.82±0.06 0.87±0.12 0.86±0.16 0.83±0.11

iSCIa1 0.98 0.80 0.71 0.65 0.82 0.54 0.93 0.75
iSCIa2 0.88 0.80 0.80 0.66 0.73 0.78 0.87 0.86
iSCIa3 0.76 0.83 0.93 0.47 0.94 0.85 0.53 0.94
iSCIa4 0.91 0.91 0.96 0.83 0.93 0.93 0.94 0.90
iSCIa5 0.79 0.70 0.86 0.88 0.90 0.71 0.94 0.43
iSCIa6 0.88 0.99 0.91 0.94 0.81 0.94 0.84 0.79
iSCIa7 0.70 0.65 0.92 0.81 0.78 0.80 0.96 0.88
iSCIa8 0.46 0.79 0.81 0.85 0.86 0.83 0.82 0.74
mean±SD 0.79±0.16 0.81±0.11 0.86±0.09 0.76±0.15 0.85±0.08 0.79±0.13 0.86±0.14 0.79±0.16

p-value 0.089 0.949 0.070 0.321 0.370 0.046 0.816 0.561

Values close to 1 mean mean high similarity with the healthy reference. Similarity lower
than 0.75 appear in bold. Bold values in the last row indicate significant or marginally

significant differences between sides.

6.5 Discussion

This Chapter had two main goals: to compare the biomechanical and the synergistic

control of walking between the two lower limbs in iSCI patients. Underlying these goals

is the fact that walking patterns after a SCI are not always symmetrical between limbs,

i.e., one side may be more affected than the other, as it happens, for instance, in the

case of hemiparesis following stroke.

As higher walking speeds may contribute to the identification of more muscle syner-

gies (Clark et al., 2010), healthy subjects were asked to walk within the range of speeds
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Figure 6.4: Muscle synergies components for the iSCI patients. Upper plot: Synergy
vectors (W) and activation coefficients (H) extracted for the most affected side of iSCI
patients, considering four synergies. Low plot: Synergy vectors (W) and activation
coefficients (H) extracted for the less affected side of iSCI patients using four synergies.
For the synergy vectors (W1-W4), each gray bar represents each iSCI patient, and the
reference from the control group is represented in black. In relation to the activation
coefficients (H1-H4), grey lines represent the results of each iSCI patient, and black

lines represent the reference from the control group.

of the iSCI group. Moreover, the trials were performed overground, because comfort-

able speed may differ in populations with motor impairments if walking on a treadmill

(Bowden et al., 2010).

LEMS score is usually employed in the clinical practice to assess patients’ most

affected side (van Middendorp et al., 2010) (Gil-Agudo et al., 2013). Nevertheless, four

out of the eight iSCI patients presented equal or very similar LEMS score between sides.

In order to distinguish between most and less affected side, we used another criterion: the

cadence achieved by each side independently, according to the time spent to perform a

step, with the most affected side being the one that needed more time. This additional

criterion seems to be robust and useful to determine the most affected side in iSCI

patients, as further differences were found between sides.

6.5.1 Biomechanical differences between sides

It has been reported that iSCI patients present an impaired walking, with poor balance

and decreased walking speed, if compared with healthy subjects (Ditunno and Scivoletto,
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2009). By assessing only one side of the body or average data from both sides, some other

biomechanical features have shown differences in relation to the normality: kinematic

differences localized at the knee and ankle level, in the sagittal plane (Gil-Agudo et al.,

2011) (Gil-Agudo et al., 2013), with the knee and hip hyperflexed in the stance phase.

The effective push-off in the transition between stance to swing is also compromised in

some of these patients due to the excessive ankle plantarflexion through the stance phase

(Ditunno and Scivoletto, 2009).

As presented in the Results section, some biomechanical variables showed significant

differences between the most and the less affected side of iSCI patients. In particular,

four variables associated with the hip (peak of hip flexion and abduction in swing, range

of hip flexion and abduction), as well as peak of knee flexion, peak of ankle plantarflexion

and step length differed between sides. These differences may represent compensatory

strategies applied by these patients, which are not usually reported in literature.

6.5.2 Synergistic control of gait

There is evidence that SCI patients need less muscle synergies than healthy subjects

to explain the EMG variability of lower limbs (Fox et al., 2013) (Hayes et al., 2014),

though these reports had analyzed only the right limb of patients. When using the

cadence criterion to tag each side as being more or less affected, the results of this

Chapter showed that less muscle synergies were needed to explain the EMG variability

of the most affected side during walking overground if compared with the less affected

side, suggesting less complexity in the patterned activity of the most affected side. In

fact, the identification of less muscle synergies is associated with lower independence

among the activation patterns of each muscle, suggesting coupling of muscles across the

limb or a possible merging of existing muscle synergies (Cheung et al., 2012). Similar

results were reported by Clark et al. (2010) when comparing the paretic and non-paretic

sides of poststroke patients.

When analyzing the healthy group, four synergies were needed to obtain VAFtotal

≥ 90%. Synergy 1 consisted mainly of BF activation (hip extensor and knee flexor),

which was activated in the terminal swing phase and initial heel contact to decelerate

the lower limb during the final gait cycle and prepare for the initial contact (Neptune

et al., 2009) (Clark et al., 2010) (Lacquaniti et al., 2012). Synergy 2 consisted on the

activation of GMe (hip abductor), GMa (hip extensor and abductor), RF (hip flexor

and knee extensor) and TA (ankle dorsiflexor), which were activated during the loading

response phase to support the body and accept the body weight during initial contact

(Neptune et al., 2009) (Clark et al., 2010) (Lacquaniti et al., 2012). Synergy 3 consisted
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mainly of GaM (ankle plantarflexor) activation during mid and terminal stance phase,

contributing to body support and forward propulsion (Neptune et al., 2009) (Clark et al.,

2010) (Lacquaniti et al., 2012). GMe was also activated by this synergy, which might

prevent pelvic drop during the monopodal stance and also the Trendelenburg gait pattern

1. Synergy 4 was mainly composed by AL activation, which might have provided stability

in the frontal plane of hip during the terminal stance (Hayes et al., 2014). This synergy

also consisted on the activation of TA and RF during initial swing phase, contributing

to foot clearance (Neptune et al., 2009) (Clark et al., 2010) (Lacquaniti et al., 2012).

Both muscle synergy vectors (W) and activation coefficients (H) were very het-

erogeneous for both sides of patients. When testing the similarity with the healthy

reference, a significant difference between sides was found just for H2 · H02. One pos-

sible explanation for these results is the reduced number of muscles assessed from each

side of the body. The assessment of more muscle could eventually reveal more neural

control differences between sides.

6.5.3 Limitations of the study

The study presented in this Chapter has some limitations. First of all, the number of

assessed iSCI patients (eight) limits the ability to detect statistical significance. Another

limitation was the the range of speeds at which patients walked (0.30 to 1.05 m/s), as

speed may influence the number of extracted synergies (Clark et al., 2010). To ease

this effect, the control group was asked to walk within the range of speeds of iSCI

patients, despite this decrease of their normal speed may had also altered their usual gait

patterns. Another possible limitation was the recording of seven representative muscles

of each side. It is possible to find or identify additional synergies if the repertoire of

analyzed muscles is larger (Ivanenko et al., 2004) or the chosen muscles are different

(Steele et al., 2013). However, taking into account that both sides were analyzed, in

addition to the markers for 3D gait analysis, it was reached a good compromise between

measurement completeness and minimal experimental burden, with the latter being a

critical factor when analyzing SCI patients, similar to what has been performed by others

when measuring both lower limbs (Clark et al., 2010) (Bowden et al., 2010) (Fox et al.,

2013).

1Trendelenburg gait is an abnormal walking pattern caused either by weak hip abductor muscles or
an unstable hip fulcrum (Benson et al., 2010).





Chapter 7
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neuromuscular analysis to assess walking

poststroke

Abstract

Background. Gait analysis laboratories have been increasingly integrated into the

clinical practice, as they provide crucial data to understand pathological gait. However,

there is a need to reduce the typical large amount of data provided by gait analysis into a

small and meaningful set of gait features able to assess walking performance poststroke.

Objective. Based on the findings presented in Chapter 5, showing that muscle

synergies during cycling can be used to assess functional motor impairments in iSCI

patients, the purpose of this research was to test whether the combination of a small set

of gait features (kinematics, kinetics and spatiotemporal parameters) and the analysis of

muscle synergies can better predict walking function poststroke than Fugl-Meyer Assess-

ment (FMA), which is one of the most used quantitative measures of motor impairment.

Methods. Nine poststroke hemiparetic patients were assessed with FMA and 3D

gait analysis, in order to extract synergies outcomes, kinematic, kinetic and spatio-

temporal variables bilaterally during walking.

Results. Stepwise multiple regression analyses using parameters from the non-

paretic side indicated that early time of peak knee flexion, high VAFtotal values and

prolonged stance phase predicted impaired walking function. At the same time, step-

wise multiple regression analyses using parameters from the paretic side indicated that
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reduced propulsion force, range of hip flexion and also prolonged stance phase predicted

impaired walking function. All these predictors have shown better prediction of walking

function than FMA.

Conclusions. Therapies focused on improving these predictors may improve func-

tional gait. Specifically, therapies targeted to reduce spasticity, as well as to sculpt

plantarflexion or dorsiflexion muscle synergies will improve the independent activation

of ankle and knee muscles, therefore improving poststroke walking performance.

7.1 Introduction

The occurrence of a stroke may result in a series of motor impairments contralateral

to the brain lesion (DeLisa and States, 1998), such as muscle weakness or hemiparesis

(Ramsay et al., 2014). Clinical assessment of motor impairments in post-stroke patients

is usually quantified by the Fugl-Meyer Assessment (FMA) (Bowden et al., 2010), which

can be divided into upper-extremity (FMA-UE) and lower-extremity (FMA-LE). FMA-

LE may be used for prognosis and to quantify the results of a given therapy. This

test focuses on isolated voluntary tasks, which are not always representative of the

walking performance. For instance, walking is a complex motor behavior, controlled by

spinal cord, in coordination with both supraspinal control and peripheral afferent input

(Bowden et al., 2010). As such, FMA may have limited relevance to assess walking

performance. Duncan et al. (1983) have recommended using FMA in conjunction with

other assessments (e.g., activities of daily living, gait, and perceptual motor skills),

allowing therapists to plan appropriate treatment programs and measure progress.

Despite the usefulness of FMA to assess motor recovery, small improvements in

neurological and biomechanical mechanisms may be not detected by this scale. The lat-

est researches on pathological conditions strongly recommend gait analysis to adequately

assess and follow-up the patient and to support clinical decision on the best treatment

(Wren et al., 2009). Gait analysis systems usually provide a complete description of the

main biomechanical features of walking, as well as the neuromuscular state. However,

it is difficult to interpret the typical large amount of data produced, favoring the use of

the classical clinical scales. Therefore, several gait summary scales have been proposed

to quantify the degree of deviation from normal gait (Cimolin and Galli, 2014). The

major goal of rehabilitation should not be a complete normalization of gait (Andrés

et al., 2013), but an increase of functionality and improvement of walking performance

(and not clinical scales). To achieve that goal, it is necessary to treat some features

of gait that will improve walking performance, i.e., some variables that predict walking

performance.
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Experimental evidences have shown that the synergistic control is visibly affected

in poststroke patients (Clark et al., 2010) (Cheung et al., 2012) (Gizzi et al., 2011).

Hence, the analysis of muscles synergies has gained relevance as a tool to describe the

neuromuscular coordination during the execution of multi-limb movements. Compared

to the FMA, the analysis of muscle synergies seems to be a superior predictor of walk-

ing performance (Clark et al., 2010) (Bowden et al., 2010), especially in the case of

patients with poor intermuscular coordination. According to Routson et al. (2013), the

combination of the analysis of the synergistic muscle control with the application of

functional metrics could represent the key step toward a better quantitative assessment

of stroke-related diseases.

7.2 Goals

The main goal of this Chapter is to test the hypothesis that the combination of muscle

synergies analysis and a small set of biomechanical features (gait kinematics, kinetics

and spatiotemporal parameters) will improve the functional assessment of walking per-

formance poststroke. Specifically, it is hypothesized that the new set of features will

provide more meaningful information about walking function than the one provided by

FMA.

7.3 Materials and Methods

7.3.1 Subjects

Nine hemiparetic patients with stroke (Table 7.1) were recruited by the Movement Anal-

ysis, Ergonomics, Biomechanics and Motor Control Laboratory of Rey Juan Carlos Uni-

versity. All patients provided written informed consent to participate in this study (see

Appendix E.3). The local Ethics Committee (EC) approved this study. Inclusion criteria

were: to present moderate disability (Rankin scale ≤ 3); Mini–mental state examination

(MMSE) score > 24); NIH Stroke Scale (NIHSS) score < 20. Exclusion criteria were: to

present severe cognitive impairment, mixed aphasias, unilateral spatial neglect, impor-

tant visual deficits, joint stiffness (irreducible contractures and arthrodesis), convulsive

crisis and alterations of the behavior (no cooperation).



Chapter 7. Study 4 - Combining biomechanical and neuromuscular analysis to assess
walking poststroke 126

Table 7.1: Individual description of nine hemiparetic stroke subjects.

Patient
ID

Age,
yrs

Gender Height,
m

Weight,
Kg

Post,
ms

Type of
lesion,
Affected
hemisphere

FAC FMA-
LE

Side
af-
fected

01 41 M 1.76 71.5 158 Hem, R 5 68 L
02 76 M 1.69 64.0 18 Hem, L 4 63 R
03 60 F 1.62 101.8 18 Isc, L 5 81 R
04 54 M 1.79 83.0 55 Isc, R 5 70 L
05 55 M 1.78 75.7 119 Hem, L 5 67 R
06 54 F 1.59 61.3 192 Isc, R 5 66 L
07 53 F 1.55 48.2 60 Isc, L 5 75 R
08 40 M 1.68 64.8 6 Isc, R 5 77 L
09 44 M 1.69 93.7 54 Isc, R 4 45 L

M indicates male; F, female; Post ms, months poststroke; Hem, Hemorrhagic; Isc,
Ischemic; FAC, Functional Ambulation Categories scores; FMA-LE, Fugl-Meyer as-

sessment for lower extremity; L, left; R, right.

7.3.2 Experimental protocol and data collection

Patients underwent two different types of assessment: clinical evaluation and 3D gait

analysis.

Clinical evaluation consisted on the Fugl-Meyer assessment for lower extremity

(FMA-LE). This assessment method is a cumulative numerical scoring system composed

by four domains: motor function of the lower extremity (maximum score = 34 points),

sensory function (maximum of 12 points), joint range of motion (maximum of 20 points)

and joint pain (maximum of 20 points), resulting in a maximum motor score of 86

points for the lower extremity (Fugl-Meyer et al., 1975). In order to minimize inter-

rater variability, one physiatrist carried out the entire assessment procedure.

Gait analysis was performed using Vicon Motion Systems (Oxford Metrics, Oxford,

UK) and three 3D AMTI force platforms (Watertown, USA) embedded in the walking

path, which allowed the study of ground reaction forces. An acquisition frequency of

100 Hz was used to record data with Vicon and from force platforms. Each patient

completed 10 walking trials, at their comfortable speed, on a plain path of 11-m length

(see Figure 7.1). A 30-sec rest between trials was included to avoid muscle fatigue.

Since it has been suggested to remove from the analysis the first three trials of walking

in poststoke patients (in order to exclude the adaptation phase) (Boudarham et al.,

2013), just the last six trials were analyzed. Sixteen special lightweight surface markers

were attached on the skin over standardized landmarks on the lower limbs and trunk,

according to the biomechanical model of Kadaba et al. (1990) and Davis et al. (1991).
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Furthermore, patients wore a harness for body weight support attached to a moving rail

to ensure stability and safety during walking. The percentage of body weight support

was set to the minimum value that allowed the patient to walk independently, with no

external support.

Figure 7.1: Poststroke patient walking during one trial.

Surface electromyography (sEMG) was recorded with the Cometa ZeroWire EMG

system (Milan, Italy) from the following 11 muscles, bilaterally: erector spinae, gluteus

maximus, gluteus medius, tensor fasciae latae, adductor longus, rectus femoris, vastus

lateralis, biceps femoris, gastrocnemius medialis, soleus and tibialis anterior. The EMG

amplifier had an acquisition frequency of 1,000 Hz. SENIAM recommendations for

sEMG recording procedures were performed (Hermens et al., 1999). Synchronization

between EMG and Vicon data was done automatically by the VICON MXControl Unit.

For each subject, each recording session lasted approximately 20 minutes, in ad-

dition to the donning and doffing of the EMG recording setup and the markers for 3D

gait analysis (15-30 minutes, depending on the subject and level of impairment).

Data were analyzed offline with MATLAB R2011a (The MathWorks, Natick, MA)

and IBM SPSS Statistics 20 software (IBM).
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7.3.3 Data analysis

Heel strike events were determined by visual inspection after analyzing Vicon data. Each

walking stride started at each heel strike event of the corresponding leg. At least two

valid strides were obtained for each trial. For each subject, raw data corresponding to

those valid trials were concatenated. The ten central strides were further selected for

analysis (Barroso et al., 2014).

7.3.3.1 Analysis of muscle synergies

Using SynergiesLAB (see Appendix C), the selected raw EMG signals from each patient

were high-pass filtered at 20 Hz, demeaned, rectified, and smoothed with a low-pass

filter at 5 Hz, resulting in the EMG envelopes, according to the procedures performed

by Clark et al. (2010) and Hug et al. (2010).

EMG envelopes from each muscle were then normalized by the average of the

maximum of each of the ten strides, and resampled at each 1% of the walking stride.

For each participant, normalized EMG envelopes were combined into an m x t matrix

(EMG0), where m is the number of muscles (eleven in this case) and t is the time base

(t = no. of cycles (10) x 100)).

Muscle synergy vectors and the corresponding activation coefficients were extracted

using the NNMF algorithm in SynergiesLAB (see equation 2.1) (Lee and Seung, 1999).

For each EMG0, the NNMF algorithm was run three times, considering as input 3 to 5

synergies (n = 3, 4, 5). In order to avoid local minima, for each run, the NNMF was

repeated 40 times and the repetition with the lowest reconstruction error was selected.

Each muscle synergy vector (column of matrix W) was normalized by the maximum

value of the muscle in the synergy to which they belong, as performed by Hug et al.

(2010) and Muceli et al. (2010). Then, the corresponding activation coefficients were

scaled by the same quantity, as done by De Marchis et al. (2012).

The similarity between EMG0 and EMGr was calculated based on two indicators:

the variability accounted for (VAFtotal, see Equation 4.1) (Clark et al., 2010) and the

coefficient of determination (r2) (Torres-Oviedo et al., 2006). The coefficient of deter-

mination was calculated by the MATLAB function ’rsquare’.

VAFtotal ≥ 90% was the criterion used to determine the optimal number of muscle

synergies for each side and patient (Routson et al., 2014).
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7.3.3.2 Kinematics

Raw kinematic data of each side and subject were low-pass filtered at 6 Hz (Allen and

Neptune, 2012). From the mean profile over the ten selected strides (Bowden et al.,

2010), it was possible to extract the following joint kinematic parameters usually used

to describe gait (Schutte et al., 2000) (Moreno et al., 2013) (Bonnyaud et al., 2014)

(Roche et al., 2015):

• Hip joint parameters: peak flexion (o), peak extension (o), range of flexion (o),

pre-swing angle (min) (o), peak of abduction in swing (o), range of abduction (o),

mean rotation in stance (o);

• Knee joint parameters: flexion at initial contact (o), time of peak flexion (% gait

cycle), peak flexion (o), time of peak extension (% gait cycle), peak extension (o),

range of flexion (o);

• Ankle joint parameters: peak dorsiflexion during stance (o), peak dorsiflexion

during swing (o), peak dorsiflexion (o), peak plantarflexion (o), range of flexion

(o);

• Pelvis joint parameters: mean tilt (o), range of tilt (o), mean rotation (o);

7.3.3.3 Spatio-temporal parameters

Based on the 3D position of the foot markers, it was possible to extract the mean of

the following spatio-temporal parameters (Schutte et al., 2000) (Bowden et al., 2010)

(Boudarham et al., 2013) (Bonnyaud et al., 2014) (Arnold et al., 2014): speed (m/s),

stride length (m), stride duration (s), strides/minute, step length (m), step width (m);

step duration (s), cadence (steps/minute), % stance, duration of stance (s), duration of

single support (s), % single support, duration of double support (s).

7.3.3.4 Kinetics

Raw data from the force platforms were low-pass filtered at 20 Hz and normalized

by subject’s weight (Bowden et al., 2010). The mean over the six selected trials was

calculated and the following parameters were extracted (Bonnyaud et al., 2014) (Bowden

et al., 2010): vertical ground reaction force (GRF) during single support phase (N/Kg),

peak of propulsion (N/Kg), peak of braking (N/Kg), paretic propulsion, peak medio-

lateral force (N/Kg).
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7.3.4 Statistical analysis

Paired Student’s t-tests were performed to test significant differences between paretic

and non-paretic sides on the following variables: quality of reconstruction indicators,

kinematic, spatio-temporal and kinetic variables. FMA-LE values were correlated with

the walking performance indicators using non-parametric Spearman’s correlations. As

indicators of walking performance, the following indicators were used: speed (Bowden

et al., 2010); percentage of stance of the paretic limb; paretic propulsion (PP), i.e.,

percentage of total propulsion force performed by the paretic leg (Bowden et al., 2010);

and the paretic step ratio (PSR), i.e., the percentage of the stride length performed by

the paretic leg (Bowden et al., 2010). Statistical significance was set by a p-value of

0.05.

Stepwise multiple regression analyses were carried out to identify variables that

most correlated with walking performance, as done in Section 5.3.5. A significance of p

< 0.05 was used, as performed by Roche et al. (2015).

As input of the model (independent variables), all the measured variables were con-

sidered, i.e., quality of reconstruction indicators, kinematic, spatio-temporal and kinetic

variables. To minimize the number of independent variables, a preliminary analysis was

performed, using a liner regression between each considered independent variable and

the walking performance indicator, selecting as input for the multiple regression analysis

only those with a p-value ≤ 0.05, as represented in Figure 7.2.

Figure 7.2: Schematic representation of the steps included in the stepwise multiple
regressions to predict walking performance indicators.
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7.4 Results

7.4.1 Synergistic control of gait

Fewer muscle synergies were needed to account for the whole muscle activity of the 11

analyzed muscles in the paretic side (3.67±0.44) than the non-paretic side (4.11±0.59).

Three paretic sides required three synergies, while six paretic sides required four syner-

gies. The non-paretic side demonstrated a more heterogeneous behavior: three synergies

were required in two patients, four synergies in four patients, and five synergies in the

remaining three patients to obtain VAFtotal values ≥ 90%.

For all the subjects and sides, the quality of reconstruction indicators (VAFtotal

and r2) were significantly lower in the non-paretic side compared to the paretic side (see

Figure 7.3 and Table 7.2) (p-values < 0.05).

Figure 7.3: Variability accounted for (VAFtotal) (A) and coefficient of determination
(r2) (B) according to the number of synergies, for both paretic and non-paretic sides.
Values are given in mean ± SD. These reconstruction goodness indexes were calculated
after running the NNMF algorithm to reconstruct a set of 11 EMG envelopes in a group
of 9 poststroke patients. The quality of reconstruction of EMG data was considered
good for values of VAFtotal ≥ 90%. A VAFtotal value of 100% and a r2 value of 1

indicate perfect reconstruction of the EMG set.

7.4.2 Biomechanical differences between sides

Five kinematic variables (time of peak knee flexion, peak knee flexion, range of knee

flexion, range of ankle flexion and mean pelvic rotation) showed significant differences

between paretic and non-paretic sides (p < 0.05), with the paretic side presenting lower

values in all cases, as detailed in Table 7.3 and represented in Figure 7.4.

Significant differences between paretic and non-paretic sides were also found for six

spatio-temporal variables (step duration, cadence, % stance, duration of stance, duration

of single support and % single support) (see Table 7.3 and Figure 7.5), presenting all of

these variables lower values in the paretic side, except for step duration.
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Table 7.2: Comparison of quality of reconstruction indicators (VAFtotal and r2) be-
tween paretic and non-paretic side, when using 3 to 5 synergies. Values are given in

mean ± SD.

Quality of reconstruction indicators Mean ± SD p-value

VAFtotal with 3 synergies
paretic side 89.33±1.4

non-paretic side 87.00±2.8 0.014*

VAFtotal with 4 synergies
paretic side 93.00±0.8

non-paretic side 91.00±2.1 0.012*

VAFtotal with 5 synergies
paretic side 95.33±1.0

non-paretic side 93.67±1.9 0.017*

r2 with 3 synergies
paretic side 0.75±0.04

non-paretic side 0.66±0.06 0.005**

r2 with 4 synergies
paretic side 0.83±0.03

non-paretic side 0.77±0.05 0.004**

r2 with 5 synergies
paretic side 0.89±0.03

non-paretic side 0.83±0.04 0.005**

* Values are significantly different between sides (p < 0.05). ** Values are significantly
different between sides (p < 0.01). For those indicators with significant differences

between sides, the side with higher values is evidenced in bold.

At last, significant differences were found between sides for two kinetic variables

(peak of propulsion and peak medio-lateral force) (see Table 7.3 and Figure 7.5).

7.4.3 Correlation between FMA-LE and walking performance indica-

tors

Patients walked at a speed of 0.52±0.18 m/s, with stance phase of the paretic limb

lasting 62.23±4.56% of the gait cycle, a paretic propulsion ratio (PP) of 0.24±0.14,

and a paretic step ratio (PSR) of 0.51±0.05. Except for PSR, the other three walking

performance indicators presented significant correlations (p < 0.01) among themselves.

Spearman’s correlation showed that, of the four motor indicators, only PP cor-

related significantly (p = 0.045) with FMA-LE (see Table 7.4). Correlation between

FMA-LE and speed almost reached significance (p = 0.088).

7.4.4 Stepwise regressions to predict speed

When analyzing variables from the non-paretic side, the stepwise linear regression showed

that time of peak knee flexion and VAFtotal with 4 synergies accounted together for ap-

proximately 91% of the variance of walking speed (R2 = 0.913, Adjusted R2 = 0.885)

and were statistically significant (F = 31.64, p = 0.001). Resulting predictive model is:
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Table 7.3: Comparison of biomechanical indicators that showed significant differences
between paretic and non-paretic side. Values are given in mean ± SD.

Variables with significant differences between sides Mean ± SD p-value

Kinematics

Time of peak knee flexion (% gait cycle)
paretic side 70.34±4.67

non-paretic side 81.15±4.66 <0.001**

Peak knee flexion (o)
paretic side 34.90±10.94

non-paretic side 62.26±9.79 <0.001**

Range of knee flexion (o)
paretic side 39.45±12.60

non-paretic side 60.51±10.12 <0.001**

Range of ankle flexion (o)
paretic side 22.15±5.41

non-paretic side 26.02±2.65 0.018*

Mean pelvic rotation (o)
paretic side -5.9711±4.14

non-paretic side 5.4511±4.11 0.003**

Spatio-temporal

Step duration (s)
paretic side 0.94±0.18

non-paretic side 0.64±0.08 <0.001**

Cadence (steps/minute)
paretic side 75.30±11.67

non-paretic side 80.55±13.00 <0.001**

% Stance
paretic side 62.23±4.56

non-paretic side 74.38±7.44 <0.001**

Duration of stance (s)
paretic side 0.99±0.22

non-paretic side 1.19±0.30 <0.001**

Single support (s)
paretic side 0.33±0.12

non-paretic side 0.57±0.08 0.001**

% Single support
paretic side 35.25±16.16

non-paretic side 50.41±12.71 0.013*

Kinetics

Peak of propulsion (N/Kg)
paretic side 0.49±0.31

non-paretic side 0.94±0.31 <0.001**

Peak medio-lateral force (N/Kg)
paretic side 0.78±0.17

non-paretic side 0.65±0.14 0.031*

* Values are significantly different between sides (p < 0.05). ** Values are significantly
different between sides (p < 0.01). For those indicators with significant differences

between sides, the side with higher values is evidenced in bold.
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Figure 7.4: Kinematic variables that showed significant differences between paretic
and non-paretic side.

Table 7.4: Spearman’s correlations between Fugl-Meyer assessment for lower extrem-
ity (FMA-LE) and walking performance indicators.

Speed % Stance paretic side PP PSR

r = 0.600 r = -0.217 r = 0.678* r = -0.185
FMA-LE p = 0.088 p = 0.576 p = 0.045 p = 0.634

PP, paretic propulsion; PSR, paretic step ratio. * Correlation is significant at the 0.05
level.

Speed = 7.785 - 0.048.(time of peak non-paretic knee flexion) - 3.672.(non-paretic

VAFtotal with 4 synergies)

When analyzing variables from the paretic side, peak of propulsion and range of

hip flexion were statistically significant (F = 77.32, p < 0.001) and accounted for ap-

proximately 96% of the variance of walking speed (R2 = 0.963, Adjusted R2 = 0.950).

Resulting model is:

Speed = -0.079 + 0.443.(peak of paretic propulsion) + 0.011.(range of paretic hip

flexion)
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Figure 7.5: Spatio-temporal and kinetic variables that showed significant differences
between paretic and non-paretic side.

7.4.5 Stepwise regressions to predict % stance of the paretic side

When analyzing variables from the non-paretic side, only the time of peak knee flexion

was statistically significant (F = 18.29, p = 0.004) and accounted for approximately

72% of the variance of % stance of the paretic side (R2 = 0.723, Adjusted R2 = 0.684)

(no other variables reached significance). Resulting model is:

% stance of the paretic side = -5.169 + 0.831.(time of peak non-paretic knee flexion)
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When analyzing variables from the paretic side, only the peak of propulsion was

statistically significant (F = 15.79, p = 0.005) and could account for approximately 69%

of the variance of % stance of the paretic side (R2 = 0.693, Adjusted R2 = 0.649) (no

other variables reached significance). Resulting model is:

% stance of the paretic side = 68.171 – 12.060.(peak of paretic propulsion)

7.4.6 Stepwise regressions to predict paretic propulsion

Most of the spatio-temporal variables from both non-paretic and paretic side correlated

significantly with PP, when doing the preliminary analysis using linear regressions to

predict PP. Therefore, the fit of the model was perfect and included several independent

variables. This suggests that most of the chosen spatio-temporal variables are redundant,

being the duration of stance of each side the one that presented the most significant

correlation (p < 0.001, and negative correlation for both sides) with PP.

7.4.7 Stepwise regressions to predict paretic step ratio

When analyzing variables from the non-paretic side, none of the variables could predict

paretic step ratio. On the other hand, when analyzing variables from the paretic side,

peak hip flexion was the only statistically significant variable (F = 6.21, p = 0.041) and

accounted for approximately 47% of the variance of PP (R2 = 0.470, Adjusted R2 =

0.394). Nevertheless, caution should be taken with these significance values. Resulting

model is:

PSR = 0.616 – 0.003.(Peak hip flexion)

7.5 Discussion

From the initial dataset of biomechanical features and muscle synergies outcomes as-

sessed in this Chapter, it was possible to find a small set of variables that could predict

walking performance. Those variables predicted the resulting walking speed, % stance

of the paretic side and paretic propulsion (PP), and may be used to drive customized

rehabilitation therapies. For instance, when assessing the non-paretic side, early time of

peak knee flexion, high VAFtotal values and prolonged stance phase predicted impaired

walking performance. When assessing the paretic side, reduced propulsion force, range

of hip flexion and also prolonged stance phase predicted impaired walking performance.
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It has been referred that poststroke patients may present decreased knee flexion as

a result of increased ankle plantarflexion or quadriceps spasticity (DeLisa and States,

1998). Other patients may present reduced planterflexion and produce compensatory

strategies based on reducing range of hip flexion (Roche et al., 2015). If patients walk

with the excessive dorsiflexion, they will also present decreased propulsion. Taking the

aforementioned predictors together, it seems that therapies targeted to reduce spasticity,

as well as to sculpt plantarflexion or dorsiflexion muscle synergies (with FastFES, for

example) (Ting et al., 2015) will improve the independent activation of ankle and knee

muscles, therefore improving walking performance.

The number of muscle synergies is usually determined based on a reconstruction

quality criterion (VAFtotal or r2) (Clark et al., 2010). The results presented in this

Chapter showed that both reconstruction quality indicators are also valid to assess the

neural control of both sides in poststroke patients. Quality of reconstruction indicators

assessed in this study were significantly lower in the non-paretic side if compared with

the paretic side, in accordance with the results reported by Clark et al. (2010). The re-

sults of these reconstruction quality indicators suggest less complexity in the patterned

activity of the paretic limb during walking (Clark et al., 2010). The identification of less

muscle synergies is associated with lower independence among the activation patterns of

each muscle, associated with coupling of muscles across the limb or a possible merging of

existing muscle synergies (Cheung et al., 2012). These impairments in muscle coordina-

tion result in walking deficits and asymmetry highlighted by kinematic, spatio-temporal

and kinetic patterns.

As indicators of walking performance, the following indicators were used: speed,

percentage of stance of the paretic limb, paretic propulsion (PP) and paretic step ratio

(PSR). Walking speed is an important indicator of poststroke gait performance (Verma

et al., 2012) (Clark et al., 2010). Healthy population usually walks with a mean speed

of 1.3 m/s, while poststroke patients walk within the range from 0.23 to 0.73 m/s

(Verma et al., 2012), which is in accordance with the values obtained in this study

(0.52±0.18 m/s). PP has been shown to be a crucial predictor of gait performance

(Bowden et al., 2010) (Clark et al., 2010), with healthy population presenting values

near to 0.5 (similar propulsion forces from both limbs). Poststroke patients assessed

in this study presented PP values of 0.24±0.14, which indicates decreased propulsion

executed by the paretic limb. Due to compensation mechanisms, patients presented

reduced stance phase of the paretic limb in comparison with the non-paretic limb. PSR

has been also proposed as a metric to assess walking performance (Bowden et al., 2010),

with healthy population presenting values near to 0.5 (similar step length from both

limbs). Poststroke patients assessed in this study presented PSR values of 0.51±0.05,

which cast doubt about the usefulness of this metric to assess impaired gait. That
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explains why PSR did not correlate significantly with the other three motor indicators.

In fact, Verma et al. (2012) referred that different studies have reported that poststroke

patients walk with either relatively longer paretic or non-paretic step length, which

was the case of the population assessed in this study. The reasons for that have not

been explained (Verma et al., 2012). These results suggest that walking performance

poststroke may be assessed by looking at walking speed, PP and % stance of the paretic

side.

From all the four motor indicators, only PP correlated significantly with FMA-LE.

One possible reason for the low correlation between FMA-LE and the other walking per-

formance indicators of the patients assessed in this study is the good recovery poststroke

presented by them (minimum of 66 points out of 86 in the FMA-LE scale, except for one

patient; FAC = 4,5). FMA-LE seems to present some restrictions to assess poststroke

patients with improved function, despite presenting walking asymmetry. As referred by

Bowden et al. (2010) and Clark et al. (2010), the number of muscle synergies seems to

be a better predictor of walking performance than the FMA-LE. The explanation for

this is that muscle synergies analysis are based on data collected from walking, while

the tasks assess on FMA-LE are not similar to those performed while walking (Bowden

et al., 2010).

At last, FMA-LE does not assess differences between sides. As suggested by the

stepwise multiple regressions, both limbs present important features that can predict

walking performance. Different compensation strategies may be applied by poststroke

patients to improve functional performance, ranging from improved mechanical output

from the paretic limb, or increased reliance on mechanical output from the non-paretic

limb (Routson et al., 2013).

In the future, these experiments might be replicated, by assessing a wider sample

of poststroke patients, with different levels of walking impairments, and compare the

results with a control group of healthy subjects.



Chapter 8
Concluding Remarks

Research on the assessment and management of recovery after neural damage is a con-

stantly evolving area that today requires an early convergence of clinical and engineering

perspectives. It is of utmost importance to understand specific patient’s impairments

in order to prescribe effective customized treatments at the very early stage of rehabil-

itation (Molina Rueda et al., 2012). In that sense, the main goal of this Ph.D. Thesis

was to generate meaningful quantitative metrics to assess sensorimotor impairments of

patients that suffered a stroke or an incomplete spinal cord injury (iSCI), which can

complement current clinical assessment procedures. To achieve this main goal, four dis-

tinct but complementary studies were performed. For each study, metrics based on the

analysis of muscle synergies, on the biomechanics of walking, or a combination of both,

were used.

The analysis of biomechanics of walking can provide quantitative description and

disclose impairments underlying abnormal walking. This can be used to extract impor-

tant information to select a task-oriented rehabilitation approach that might enhance

therapeutic response, which cannot be provided by clinical evaluation alone (Nadeau

et al., 2011).

On the other hand, as the improvements on the design of future motor interven-

tions should be based on the deep understanding of the neural function and plasticity,

the analysis of muscle synergies has great potential for the assessment of neuromotor

diseases, offering the clinician a simplified view on the neural structure underlying mo-

tor behaviors (Bowden et al., 2010). The analysis of muscle synergies can also provide

valuable data to quantify spasticity. According to the review presented by Rosa et al.

(2014), it is not possible to recommend the most appropriate way to quantify or access

muscle co-activation, which is one of the spasticity symptoms. Given the potential of
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co-activation as a target for gait rehabilitation, novel and recognized methods need to

arise to quantitatively assess muscle co-activation. In that sense, the analysis of muscle

synergies can provide valuable data. However, the analysis of muscles synergies has not

been recommended as an outcome measure of motor performance neither spasticity yet,

mainly because of the need for EMG data and complex mathematical analysis. Never-

theless, this tool might be integrated in clinical diagnosis, because it may help clinicians

to understand gait motor control in patients that suffered neural damage (Bowden et al.,

2010).

In summary, the use of quantitative metrics based on EMG and biomechanical

features gave valuable information on the motor recovery mechanisms as well as the

performance after neural damage in a population of patients that suffered a stroke or

a SCI, which was the main goal of this Ph.D. Thesis. These analyses may complement

current assessment procedures.

The next section present the main conclusions of each of the four individual studies

performed along this research work.

8.1 General Conclusions

8.1.1 Study 1

Study 1 presented possible arrangements of existing muscle synergies which, when ade-

quately combined, could result in the typical muscular patterns verified at walking and

cycling in healthy controls. The results presented in this study provide evidences in line

with the hypothesis of a neural meaning of muscle synergies to explain motor control in

walking and cycling.

Dimensionality of motor control in cycling seems to be reduced if compared with

walking. Four synergies from walking could explain most of the EMG variability of

cycling trials and also be merged to cope with the required biomechanical demand of

this motor task.

The main discovery of this study was that cycling and walking share common

neuromuscular mechanisms. This evidence supported the use of cycling as a novel tool

to assess walking in people with impaired neuromotor control.
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8.1.2 Study 2

Study 2 was an explorative study that tested the ability of muscle synergy analysis

during cycling movements, to quantitatively assess walking functionality, as well as to

quantify hypertonia and spasms, which are important clinical conditions of spasticity

present in iSCI patients (Bennett, 2008).

The main goal was to characterize the synergistic control of iSCI patients during

cycling at different cadences. Results provided supporting evidences for the hypothesis

that iSCI patients preserve synergistic control of muscles during cycling, evidence that

was not reported previously in the literature. However, muscle synergies composition

of more impaired patients was less similar to the healthy controls if compared with the

less impaired iSCI patients.

As a secondary goal, it was found that the analysis of muscle synergies during cy-

cling can be used for a detailed quantitative assessment of gait performance and symp-

toms of spasticity. In particular, reconstruction goodness indexes presented significant

correlation with gait performance scales (TUG, 10MWT and WISCI II). Additionally,

metrics based on the similarity between the healthy and affected synergies correlated

with spasticity symptoms measured by Penn, MAS, and SCATS scales. The analysis of

muscle synergies can, therefore, complement current assessment procedures performed

in the clinical setting.

8.1.3 Study 3

Study 3 proposed the use of a new criterion to determine the most affected side in iSCI

patients presenting similar LEMS scores for each side. This criterion is based on the

cadence achieved by each side independently, according to the time spent to perform a

step, with the most affected side being the one that needed more time. This criterion

seems to be robust and useful to determine the most affected side in iSCI patients, as

further differences were found between sides.

Incomplete SCI patients presented significant less muscle synergies in the most

affected side when compared with the healthy group. Thus, the analysis of muscle

synergies might be explored to detect differences between the two sides in patients

with iSCI. Specifically, VAFtotal can be used as neurophysiological metric to assess and

monitor patients’ condition through their specific gait rehabilitation program. However,

the biomechanical analysis was more effective to detect differences between most and

less affect side of iSCI patients than the analysis of muscle synergies, maybe due to the

reduced number of muscles assessed in this study.
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The results presented in this study support the importance of studying the bilateral

control of lower limb functions in iSCI patients, as well as to combine biomechanical

features and the analysis of the synergistic muscle control.

8.1.4 Study 4

Study 4 tested whether the combination of a small set of gait features and the analysis

of muscle synergies could better predict walking function poststroke than Fugl-Meyer

Assessment (FMA), which is one of the most used quantitative measures of motor im-

pairment. Although scales like FMA do not present administrative expenses, they might

present inter-rater variability. In addition, the tasks assessed by this scale are not quite

similar to those executed during walking. FMA is a global motor function measure.

This study aimed to find a small set of variables that could provide quantitative and

objective information about the patient’s motor status.

First of all, results showed that fewer muscle synergies were needed to account

for the whole muscle activity of the analyzed muscles in the paretic side than the non-

paretic side, i.e., the quality of reconstruction indicators (VAFtotal and r2) were signif-

icantly lower in the non-paretic side compared to the paretic side. Additionally, some

biomechanical variables also differentiated between the paretic and the non-paretic side.

Second, results showed that some parameters associated to the non-paretic side

(early time of peak knee flexion, high VAFtotal values and prolonged stance phase)

predicted impaired walking function. At the same time, some parameters associated

to the paretic side (reduced propulsion force, range of hip flexion and also prolonged

stance phase) predicted impaired walking function. All these predictors have shown

better prediction of walking function than FMA.

Therapies focused on improving these predictors may improve functional gait.

Specifically, therapies targeted to reduce spasticity, as well as to sculpt plantarflexion or

dorsiflexion muscle synergies may improve the independent activation of ankle and knee

muscles, therefore improving poststroke walking performance.

8.2 Future Work

The assessment methods and tools developed in this Ph.D. Thesis pave the way for

future research in the fields of wearable sensing and exoskeletons technologies, as well as

the clinical assessment of patients that suffered a stroke or an iSCI. Subsequent phases

of work include:
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• Performing longitudinal studies from the acute to the chronic phase of iSCI, in

order to test the intra and inter-rater variability of the analysis of muscle synergies

during pedaling as a tool for the assessment of walking functionality. This is of

main importance to validate this approach for long term monitoring and assessment

of different therapeutic interventions, as well as to predict motor recovery.

• Exploring the ability of muscle synergy analysis to detect hypertonia and spasms

online, which can be used in robotic-assisted rehabilitation. In this type of reha-

bilitation, it is important to identify spastic muscle activity, in order to protect

patients against mechanical injury.

• Exploring cycling exercise as a novel approach to promote the re-learning process

of locomotion, based on biofeedback. The use of biofeedback in cycling is gaining

relevance in clinical applications, as a way to improve motor performance. This

potential application should be further investigated by appropriate longitudinal

studies.

• Using IMUs as a substitute to traditional motion capture systems for the real time

assessment of gait in poststroke patients. Therefore, important biomechanical

features could be assessed outside the laboratory (e.g., gait tracking at home) and

improve poststroke training. However, additional efforts are needed in order to

use these devices outside the lab, including better data processing, reduction of

donning/doffing time, as well as a reduction of sensors’ size (Rueterbories et al.,

2010).

8.3 Technical Contributions

As a demonstration of the scientific quality of the work performed along the Ph.D., the

main technical contributions are listed below:

• Development of the user-friendly GUI SynergiesLAB, which allows for both qual-

itative and quantitative diagnosis of synergistic control. Particular requirements

of the software tool have been gathered to permit a practical and intuitive use by

users non-familiarized with Matlab, like therapists and doctors. Functions that

allow to perform detailed analysis and comprehension of all the computational

steps to process multiple EMG channels are described, from the raw EMG pro-

cessing, up to the calculation of activation coefficients and synergy vectors. The

software can be customized to a wide range of motor tasks, different algorithms

for synergies extraction, filtering options and number of muscles.
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• Study of the neurophysiologic meaning of muscle synergies, by analyzing different

tasks (e.g., walking, pedaling and standing) in different populations that suffered

neural injuries, as stroke, incomplete spinal cord injured (iSCI) and cerebral palsy.

• Assessment of pathological gait in terms of biomechanics and neuromuscular per-

formance in the above-mentioned populations.

• Training of movement with biofeedback that was designed based on targeted neu-

romuscular patterns. Preliminary tests are in progress using an ergometer to train

cycling movements of poststroke and iSCI patients.

• Use of ergometers as novel clinical tools to assess motor performance and spasticity

in iSCI patients.

8.4 Publications

The work described along this Thesis allowed the publication and preparation of the

following book chapters, journal papers and conference papers.

Book chapters

• Barroso F, Torricelli D, Moreno JC. Recovery of Motor Function in Spinal Cord

Injury, Chapter Emerging Techniques for Assessment of Sensorimotor Impair-

ments after Spinal Cord Injury. (In Preparation). InTech. 2016.

• Barroso F, Figueiredo J. Nuevas tecnoloǵıas en Neurorrehabilitación, Chapter

Introducción a la Bioingenieŕıa. (In Preparation). Elsevier, 2016.

• Torricelli D, Barroso F, Coscia M, Alessandro C, Lunardini F, Bravo-Esteban E,

d’Avella A. Emerging Therapies in Neurorehabilitation II, Chapter Muscle syn-

ergies in clinical practice: theoretical and practical implications. Springer Berlin

Heidelberg. 2015.

• Barroso F, Torricelli D, Pons JL. Control y Aprendizaje Motor, Chapter Evalu-

ación de las sinergias musculares: aplicación al análisis de la organización modular

de la marcha. Editorial Médica Panamericana, Madrid, 2015.

• Barroso F, Ruiz Bueno D, Gallego JA, Jaramillo P, Kilicarslan A. Emerging

Therapies in Neurorehabilitation, Chapter Surface EMG in Neurorehabilitation

and Ergonomics: State of the Art and Future Perspectives. Springer Berlin Hei-

delberg. 2013.
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Papers in journals

• Barroso FO, Torricelli D, Molina Rueda F, Alguacil Diego IM, Cano De La

Cuerda R, Santos C, Moreno JC, Miangolarra JC, Pons JL. (In Revision). Com-

bining biomechanical and neuromuscular analysis to assess walking poststroke.

• Pérez-Nombela S, Barroso FO, Torricelli D, de los Reyes-Guzmán A, del-Ama

AJ, Gómez-Soriano J, Pons JL, Gil-Agudo A. (In Revision). Modular control of

gait after incomplete spinal cord injury: differences between sides.

• Bravo-Esteban E, Taylor J, Barroso FO, Piazza S, Torricelli D, Avila-Martin G,

Galan-Arriero I, Pons JL, Gómez-Soriano J. (In Preparation). Tibialis Anterior

muscle coherence during cycling in patients with spinal cord injury: a new scenario

for the diagnosis of residual walking recovery.

• Barroso FO, Torricelli D, Bravo-Esteban E, Taylor J, Gómez-Soriano J, Santos C,

Moreno JC and José L. Pons. Muscle synergies in cycling after incomplete spinal

cord injury: correlation with clinical measures of motor function and spasticity.

Front. Hum. Neurosci. 9: 706, 2015.

• Barroso FO, Torricelli D, Moreno JC, Taylor J, Gomez-Soriano J, Bravo-Esteban

E, Piazza S, Santos C, Pons JL. Shared muscle synergies in human walking and

cycling. J Neurophysiol, 2014.

• Moreno JC, Barroso F, Farina D, Gizzi L, Santos C, Molinari M, Pons JL. Effects

of robotic guidance on the coordination of locomotion. J Neuroeng Rehabil 10:

79, 2013. (2014 Top 5 Cited Articles from JNER).

International Conferences

• Loma-Ossorio M, Torricelli D, Moral Saiz B, Parra Musśın E, Mart́ın Lorenzo T,

Barroso F, Mart́ınez Caballero I, Lerma Lara S. Changes in Modular Control of

Gait Following SEMLS in Children with Cerebral Palsy. 24th Annual Meeting of

the European Society for Movement Analysis in Adults and Children, Heidelberg,

Germany, 2015.

• Gómez-Soriano J, Bravo-Esteban E, Barroso F, Piazza S, Torricelli D, Serrano-

Muñoz D, Taylor J. Tibialis Anterior Muscle Coherence During Cycling. A New

Measure for Incomplete Spinal Cord Injury. International Neurorehabilitation

Symposium (INRS 2015), 2015.
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• Pérez-Nombela S, Barroso F, Torricelli D, Gómez Soriano J, Reyes-Guzmán A,

del-Ama AJ, Pons JL, Gil-Agudo A. Modular Control of Gait in Incomplete Spinal

Cord Injury: Preliminary Results. Proceedings of the 2nd International Conference

on NeuroRehabilitation (ICNR2014): 601-610, 2014.

• Barroso F, Torricelli D, Moreno JC, Taylor J, Gómez-Soriano J, Bravo-Esteban

E, Santos C, Pons JL. Similarity of muscle synergies in human walking and cycling:

preliminary results. EMBC’13 - 35th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society: 6933-6936, 2013.

• Torricelli D, Pajaro M, Lerma S, Marquez E, Martinez I, Barroso F, Pons JL.

Modular Control of Crouch Gait In Spastic Cerebral Palsy. MEDICON 2013 - XIII

Mediterranean Conference on Medical and Biological Engineering and Computing,

2013.

• Piazza S, Torricelli D, Alguacil Diego IM, Cano De La Cuerda R, Molina Rueda

F, Barroso F, Pons JL. Muscle synergies underlying voluntary anteroposterior

sway movements. MEDICON 2013 - XIII Mediterranean Conference on Medical

and Biological Engineering and Computing, 2013.

• Aśın G, Barroso F, Moreno JC, Pons JL. Assessment of the Suitability of the

Motorized Ankle-Foot Orthosis as a Diagnostic and Rehabilitation Tool for Gait.

Neurotechnix 2013; Special Session: Sensory Fusion for Diagnostics and Neurore-

habilitation - SensoryFusion 2013, 2013.

• Barroso F, Santos C, Pons JL, Moreno JC. Muscular activation and kinetic effects

of robotic guidance force on human walking. Proceedings of the International

Conference on NeuroRehabilitation (ICNR2012): 787-791, 2012.

Local Conferences

• Miangolarra Page JC, Barroso F, Cano de la Cuerda R, Carratalá Tejada M,

Iglesias Giménez J, Torricelli D. Evaluación de las sinergias musculares implicadas

en la marcha en pacientes con ictus. 53 Congreso Nacional de la Sociedad Española

de Rehabilitación y Medicina F́ısica - SERMEF 2015, 2015.

• Alguacil Diego IM, Cano de la Cuerda R, Molina Rueda F, Rivas Montero FM,

Barroso F, Torricelli D. Evaluación de las sinergias musculares en el control

postural mediolateral en sujetos con ictus vs sujetos sanos. 52 Congreso Nacional

de la Sociedad Española de Rehabilitación y Medicina F́ısica - SERMEF 2014,

2014.
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• Barroso F, Santos C, Moreno JC. Influence of the robotic exoskeleton Lokomat

on the control of human gait: an electromyographic and kinematic analysis. IEEE

3rd Portuguese Bioengineering Meeting, 2013.
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Pons, and J. Gómez-Soriano (2014). Tibialis anterior muscle coherence during con-

trolled voluntary activation in patients with spinal cord injury: diagnostic potential

for muscle strength, gait and spasticity. J Neuroeng Rehabil 11 (23).

Burridge, J. H., D. E. Wood, H. J. Hermens, G. E. Voerman, G. R. Johnson, F. van

Wijck, T. Platz, M. Gregoric, R. Hitchcock, and A. D. Pandyan (2005). Theoretical

and methodological considerations in the measurement of spasticity. Disabil Reha-

bil 27 (1–2), 69–80.

Cappellini, G., Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti (2006, June). Motor

patterns in human walking and running. J Neurophysiol 95 (6), 3426–3437.

Catz, A. and M. Itzkovich (2007). Spinal cord independence measure: comprehensive

ability rating scale for the spinal cord lesion patient. J Rehabil Res Dev 44 (1), 65–68.

Cheung, V. C. K., A. Turolla, M. Agostini, S. Silvoni, C. Bennis, P. Kasi, S. Paganoni,

P. Bonato, and E. Bizzi (2012). Muscle synergy patterns as physiological markers of

motor cortical damage. Proc Natl Acad Sci U S A 109 (36), 14652–14656.

Chvatal, S. A. and L. H. Ting (2013). Common muscle synergies for balance and walking.

Gait & Posture 7.



Bibliography 153

Cimolin, V. and M. Galli (2014). Summary measures for clinical gait analysis: A liter-

ature review. Gait & Posture 39 (4), 1005–1010.

Clark, D. J., L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz (2010, Febru-

ary). Merging of healthy motor modules predicts reduced locomotor performance and

muscle coordination complexity post-stroke. J Neurophysiol 103 (2), 844–857.

Cram, J. R. (2011). Electrode Placements. In: Criswell E (eds). Cram’s Introduction to

surface electromyography. 2nd edn. PJones and Barlett Publishers.

d’Avella, A. and E. Bizzi (2005). Shared and specific muscle synergies in natural motor

behaviors. Proc Natl Acad Sci U S A 102 (8), 3076–3081.

d’Avella, A. and F. Lacquaniti (2013). Control of reaching movements by muscle synergy

combinations. Front Comput Neurosci 7 (42).

d’Avella, A. and D. K. Pai (2010). Modularity for sensorimotor control: evidence and a

new prediction. J Mot Behav 42 (6), 361–369.

Davis, R. B., S. Õunpuu, D. Tyburski, and J. R. Gage (1991). A gait analysis data

collection and reduction technique. Human Movement Science 10 (5), 575—-587.

De Marchis, C., A. M. Castronovo, D. Bibbo, M. Schmid, and S. Conforto (2012). Muscle

synergies are consistent when pedaling under different biomechanical demands. Conf

Proc IEEE Eng Med Biol Soc, 3308–3311.

De Marchis, C., M. Schmid, D. Bibbo, I. Bernabucci, and S. Conforto (2013). Inter-

individual variability of forces and modular muscle coordination in cycling: A study

on untrained subjects. Human Movement Science 32 (6), 1480—-1494.

De Mauro, A., E. Carrasco, D. Oyarzun, A. Ardanza, A. Frizera Neto, D. Torricelli,

J. L. Pons, A. Gil, and J. Florez (2011). Virtual reality system in conjunction with

neurorobotics and neuroprosthetics for rehabilitation of motor disorders. Stud Health

Technol Inform 163, 163–165.

DeLisa, J. A. and U. States (1998). Gait analysis in the science of rehabilitation. Dept.

of Veterans Affairs, Veterans Health Administration, Rehabilitation Research and

Development Service, Scientific and Technical Publications Section Washington, D.C.

Dietz, V. (2008). Body weight supported gait training: from laboratory to clinical

setting. Brain Research Bulletin 76, I–VI.

Dietz, V. and T. Sinkjaer (2007). Spastic movement disorder: impaired reflex function

and altered muscle mechanics. Lancet Neurol 6 (8), 725–733.



Bibliography 154

Dittuno, P. L. and J. F. J. Ditunno (2001). Walking index for spinal cord injury (wisci

ii): scale revision. Spinal Cord 39 (12), 654–656.

Ditunno, J. and G. Scivoletto (2009). Clinical relevance of gait research applied to

clinical trials in spinal cord injury. Brain Research Bulletin 78 (1), 35–42.

Dominici, N., Y. Ivanenko, G. Cappellini, A. d’Avella, V. Mondi, M. Cicchese, A. Fabi-

ano, T. Silei, A. Di Paolo, C. Giannini, R. Poppele, and F. Lacquaniti (2011). Lo-

comotor primitives in newborn babies and their development. Science 334 (6058),

997–9.

Duffell, L. D., G. L. Brown, and M. M. Mirbagheri (2015). Facilitatory effects of anti-

spastic medication on robotic locomotor training in people with chronic incomplete

spinal cord injury. J Neuroeng Rehabil 12 (29).

Duncan, P. W., M. Propst, and S. G. Nelson (1983). Reliability of the fugl-meyer assess-

ment of sensorimotor recovery following cerebrovascular accident. Phys Ther 63 (10),

1606–1610.

Eng, J. J. and P. F. Tang (2007). Gait training strategies to optimize walking ability

in people with stroke: a synthesis of the evidence. Expert Rev Neurother 7 (10),

1417–1436.

Farina, D., A. Holobar, R. Merletti, and R. M. Enoka (2010). Decoding the neural drive

to muscle from the surface electromyogram. Clin Neurophysiol 10 (121), 1616—-1623.

Farina, D., R. Merletti, and R. M. Enoka (2004). The extraction of neural strategies

from the surface emg. J Appl Physiol 94 (6), 1486–1495.

Fawcett, J. W., A. Curt, J. D. Steeves, W. P. Coleman, M. H. Tuszynski, D. Lammertse,

P. F. Bartlett, A. R. Blight, V. Dietz, J. Ditunno, B. H. Dobkin, L. A. Havton,

P. H. Ellaway, M. G. Fehlings, A. Privat, R. Grossman, J. D. Guest, N. Kleitman,

M. Nakamura, and D. Gaviria, M. Short (2007). Guidelines for the conduct of clinical

trials for spinal cord injury as developed by the iccp panel: spontaneous recovery after

spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal

Cord 45 (3), 190–205.

Field-Fote, E. and V. Dietz (2007). Single joint perturbation during gait: Preserved

compensatory response pattern in spinal cord injured subjects. Clin Neurophysiol .

Finnerup, N. B. (2013). Pain in patients with spinal cord injury. Pain.

Forrest, G. F., K. Hutchinson, D. J. Lorenz, J. J. Buehner, L. R. Vanhiel, S. A. Sisto,

and D. M. Basso (2014). Are the 10 meter and 6 minute walk tests redundant in

patients with spinal cord injury? PLoS One 9 (5).



Bibliography 155

Fox, E. J., N. J. Tester, S. A. Kautz, D. R. Howland, D. J. Clark, C. Garvan, and

A. L. Behrman (2013). Modular control of varied locomotor tasks in children with

incomplete spinal cord injuries. J Neurophysiol 110 (6), 1415–1425.
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and A. del Ama-Espinosa (2011). Gait kinematic analysis in patients with a mild form

of central cord syndrome. J Neuroeng Rehabil 8 (7).
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Taylor (2012). Evaluation and quantification of spasticity: a review of the clinical,

biomechanical and neurophysiological methods. Rev Neurol 55 (4), 217–226.
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Appendix A
Muscular system

Figure A.1: Muscular system. (A) Anterior and (B) Posterior view. (Page, 2016)
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Appendix B
ASIA Scale

Figure B.1: Neurological classification of spinal cord injury proposed by the American
Spinal Injury Association (ASIA).
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Appendix C
SynergiesLAB

Supporting Online Material:

https://www.dropbox.com/sh/88qiu6n3mjbvgc9/AAA8v8BjZ4EDX5PhZ2RSwM9ma?

dl=0#
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Appendix E
Informed Consents from the Ethical

Committees

E.1 Study 2

E.2 Study 3

E.3 Study 4

177



Appendix E. Informed Consents from the Ethical Committees 178



Appendix E. Informed Consents from the Ethical Committees 179



Appendix E. Informed Consents from the Ethical Committees 180



Appendix E. Informed Consents from the Ethical Committees 181



Appendix E. Informed Consents from the Ethical Committees 182



Appendix E. Informed Consents from the Ethical Committees 183



Appendix E. Informed Consents from the Ethical Committees 184



Appendix E. Informed Consents from the Ethical Committees 185



Appendix E. Informed Consents from the Ethical Committees 186


	Declaration of Authorship
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivations and problem statement
	1.2 Hypotheses and Research Questions
	1.3 Thesis Organization

	2 Insight into sensorimotor control
	2.1 The Nervous System
	2.1.1 Neurons
	2.1.2 Spinal cord and central pattern generators
	2.1.3 Brain

	2.2 Muscle activation
	2.2.1 Human Locomotor System
	2.2.2 Motor unit action potential

	2.3 Muscle synergies hypothesis
	2.3.1 General concepts
	2.3.2 The case for and against synergies
	2.3.3 EMG factorization into muscle synergies
	2.3.3.1 Recording EMG
	2.3.3.2 Processing the EMG
	2.3.3.3 Algorithms to extract muscle synergies
	2.3.3.4 Reconstruction goodness scores

	2.3.4 Implications for the clinical setting


	3 Assessment of spinal cord injury and stroke
	3.1 Biomechanics of normal gait
	3.1.1 Spatio-temporal parameters
	3.1.2 Kinematics
	3.1.3 Kinetics

	3.2 Instrumented gait analysis systems
	3.2.1 Spatio-temporal parameters
	3.2.2 Kinematics
	3.2.3 Kinetics

	3.3 General Concepts of Stroke
	3.3.1 Abnormal gait after stroke
	3.3.2 Assessment of sensorimotor impairments poststroke
	3.3.2.1 Clinical scales
	3.3.2.2 Emerging measures of sensorimotor impairments poststroke


	3.4 General Concepts of Spinal Cord Injury
	3.4.1 Abnormal gait after spinal cord injury
	3.4.2 Assessment of sensorimotor impairments after spinal cord injury
	3.4.2.1 Clinical scales
	3.4.2.2 Emerging measures of sensorimotor impairments after spinal cord injury



	4 Study 1 - Shared synergies in human walking and cycling
	4.1 Introduction
	4.2 Goals
	4.3 Materials and Methods
	4.3.1 Subjects
	4.3.2 Experimental protocol
	4.3.3 EMG analysis
	4.3.4 Muscle synergies analysis
	4.3.5 Statistical analysis

	4.4 Results
	4.4.1 Independent analysis of walking
	4.4.1.1 EMG envelopes
	4.4.1.2 Muscle synergies

	4.4.2 Independent analysis of cycling
	4.4.2.1 EMG envelopes
	4.4.2.2 Muscle synergies

	4.4.3 Comparison between walking and cycling
	4.4.3.1 Cadence
	4.4.3.2 Direct comparison of muscle synergy vectors
	4.4.3.3 Cross-reconstruction of EMG envelopes
	4.4.3.4 Merging of muscle synergy vectors


	4.5 Discussion
	4.5.1 Novelty of the work
	4.5.2 Cadence
	4.5.3 Electromyographic patterns in walking and cycling
	4.5.4 Dimensionality of synergistic control
	4.5.5 Reconstruction quality
	4.5.6 Functional interpretation of muscle synergies
	4.5.7 Comparison between walking and cycling
	4.5.8 Methodological considerations


	5 Study 2 - Muscle synergies during cycling as a measure of sensorimotor function in SCI
	5.1 Introduction
	5.2 Goals
	5.3 Materials and Methods
	5.3.1 Subjects
	5.3.2 Experimental protocol
	5.3.3 EMG analysis
	5.3.4 Muscle synergies analysis
	5.3.5 Statistical analysis

	5.4 Results
	5.4.1 Cadence
	5.4.2 Individual EMG profiles
	5.4.3 Muscle synergies
	5.4.3.1 Reconstruction goodness
	5.4.3.2 Synergy vectors and activation coefficients

	5.4.4 Stepwise regressions to predict gait performance
	5.4.5 Stepwise regressions to predict spasticity

	5.5 Discussion
	5.5.1 Electromyographic patterns in iSCI patients during cycling
	5.5.2 Reconstruction goodness scores
	5.5.3 Similarity of synergy vectors and activation coefficients
	5.5.4 Predictions of gait performance
	5.5.5 Predictions of spasticity


	6 Study 3 - Combining biomechanical and neuromuscular analysis to assess walking symmetry post iSCI
	6.1 Introduction
	6.2 Goals
	6.3 Materials and Methods
	6.3.1 Subjects
	6.3.2 Experimental protocol and data collection
	6.3.3 Data analysis
	6.3.3.1 Analysis of muscle synergies
	6.3.3.2 Kinematics
	6.3.3.3 Spatio-temporal parameters
	6.3.3.4 Kinetics

	6.3.4 Statistical analysis

	6.4 Results
	6.4.1 Biomechanical differences between sides
	6.4.2 Synergistic control of gait

	6.5 Discussion
	6.5.1 Biomechanical differences between sides
	6.5.2 Synergistic control of gait
	6.5.3 Limitations of the study


	7 Study 4 - Combining biomechanical and neuromuscular analysis to assess walking poststroke
	7.1 Introduction
	7.2 Goals
	7.3 Materials and Methods
	7.3.1 Subjects
	7.3.2 Experimental protocol and data collection
	7.3.3 Data analysis
	7.3.3.1 Analysis of muscle synergies
	7.3.3.2 Kinematics
	7.3.3.3 Spatio-temporal parameters
	7.3.3.4 Kinetics

	7.3.4 Statistical analysis

	7.4 Results
	7.4.1 Synergistic control of gait
	7.4.2 Biomechanical differences between sides
	7.4.3 Correlation between FMA-LE and walking performance indicators
	7.4.4 Stepwise regressions to predict speed
	7.4.5 Stepwise regressions to predict % stance of the paretic side
	7.4.6 Stepwise regressions to predict paretic propulsion
	7.4.7 Stepwise regressions to predict paretic step ratio

	7.5 Discussion

	8 Concluding Remarks
	8.1 General Conclusions
	8.1.1 Study 1
	8.1.2 Study 2
	8.1.3 Study 3
	8.1.4 Study 4

	8.2 Future Work
	8.3 Technical Contributions
	8.4 Publications

	Bibliography
	A Muscular system
	B ASIA Scale
	C SynergiesLAB
	D MATLAB code to implement NNMF
	E Informed Consents from the Ethical Committees
	E.1 Study 2
	E.2 Study 3
	E.3 Study 4




