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Abstract 
 

 

 

Auxetic materials are a class of non-conventional materials having negative Poisson’s 

ratio. They expand laterally when axially loaded or laterally shrink when compressed. Due to 

its counterintuitive behaviour, auxetic materials possess enhanced properties that could be 

beneficial for many specific applications. This thesis aimed to develop such a class of auxetic 

materials from braided composite rods which can be beneficial for civil engineering 

applications as a strengthening materials. The developed auxetic structures can be reinforced 

into either for existing structural elements or for newly built one. 

Novel macro auxetic structures were developed from core fibre reinforced braided 

composite rods based on missing rib or lozenge grid and re-entrant hexagon or bow-tie auxetic 

structural design. The developed structures tested under tensile loading to study their tensile 

and auxetic behaviour. The auxetic behaviour was studied thorough images taken during tensile 

loading. Also, the auxetic and tensile behaviour of the developed structures were studied by 

varying their structural and material parameters. Developed auxetic structures exhibits negative 

Poisson’s ratio and it is mainly depends up on structural parameters. The Poisson’s ratio of the 

developed auxetic structures were studied by suitable analytical model either by existing model 

or by using newly developed model. These analytical models could be useful to predict the 

Poisson’s ratio of the developed auxetic structures accurately. In addition to analytical model, 

the FE solver DIANA was used to develop a numerical modelling to predict the tensile and 

auxetic behaviour. The developed numerical model was accurate to predict the tensile and 

Poisson’s ratio of the structures. 

In addition, the auxetic structures were reinforced into the masonry wall specimens, 

which is built by cement hollow bricks. The reinforced masonry wall specimens were tested 

under three point flexural loading and the results were compared with plain grid (commercial 

design) reinforced masonry wall. The auxetic structures strengthened walls performed well 

under flexural load compared to plain grid reinforced wall, but the crack level was more for 

auxetic structures reinforced wall due to its lateral expansion. This research works opened 

novel opportunity to use auxetic materials in the civil engineering field and created huge scope 

to do more research work in this area. 
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Resumo 

 

 

 

Materiais auxéticas são uma classe de materiais não convencionais que apresentam um 

Coeficiente de Poisson negativo. Assim, expandem lateralmente quando são carregados 

longitudialmente e encolhem quando comprimidos. Devido ao seu comportamento fora do 

comum, os materiais auxéticos possuem propriedades benéficas para muitas aplicações 

específicas. Este trabalho tem como objetivo o desenvolvimento de materiais compósitos 

auxéticas a partir de varões entrançados para utilização no reforço em engenharia civil. As 

estruturas auxéticas desenvolvidas podem ser usadas tanto na reabilitação e reforço de 

elementos existentes ou na construção de novos elementos estruturais. 

Estruturas auxéticas inovadoras foram desenvolvidas a partir de varões compósitos 

entrançados com fibras de alto desempenho no núcleo em modelos teóricos de estruturas 

“missing rib” ou “lozenge grid” e “re-entrant hexagon” ou “bow-tie”. As estruturas 

desenvolvidas foram ensaiadas em tração para estudar o seu comportamneto auxético e o seu 

comportamento e propriedades quando este tipo de cargas são aplicadas. O comportamento 

auxético foi estudado recorrendo a técnicas de análise imgagem (DIC-Digitally Correlation 

Image) retiradas durante o ensaio de tração. Para além disso, foi estudada a influência de 

diversos parãmetros da estrutura e do material correspondente no comportamento auxético, 

nomeadamente o tipo de fibra utilizada e o ângulo dos elemntos estruturais na estrutura 

auxética. Os resultados demonstram que as estruturas auxéticas desenvolvidas apresentam um 

Coeficiente de Poisson negativo devido ao comportamento estrutural da mesma. No âmbito 

deste trabalho, foi igualmente desenvolvido um modelo recorrendo a Elementos Finitos para 

previsão do comportamento auxético das estruturas estudadas tendo como base as alterações 

da sua geometria quando cargas de tração são aplicadas, prevendo igualmente a sua resistência 

à tração.  

Além disso, as estruturas auxéticos em material compósito foram utilizadas no reforço 

de parede de alvenaria. Os provetes de parede de alvenaria reforçados foram testados à flexão 

em três pontos e os resultados foram comparados com uma parede de alvenaria reforçada 

convencionalmente recorrendo a uma grellha metálica. As paredes reforçadas por estruturas 

auxéticas apresentaram um bom desempenho sob carga de flexão quando comparadas com a 

parede convencional, no entanto, apresentaram maior nível de fissuração devido à expansão 

lateral do material de reforço. O presente trabalho de investigação abriu novas oportunidades 

para utilização de materiais auxéticas no campo da engenharia civil servindo como ponto de 

partida para os trabalhos, nesta área, que se seguirão. 
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Chapter 1 

Introduction 
 

 

 

 

 

 

 

1.1. General framework and motivation 

 Composites refers as a combination of two or more materials that provide better 

properties than individual ones. The term Fibre Reinforced Composites refers to 

“Composite materials are those solid materials composed of binder or matrix that 

surrounds and holds in place reinforcements” [1]. Fibres are the most widely using 

reinforcing material to produce composites namely fibre reinforced polymer (FRP) 

composites. Fibre reinforced polymers are a kind of composite materials, manufactured 

from high strength and modulus fibres embedded with or bonded to a matrix with distinct 

boundaries between them. Most commonly used fibres are glass, basalt, carbon, aramid 

and high strength steel; common polymer matrices are epoxies and esters [2 – 5]. 

FRPs have considerable advantages over conventional structural materials such 

as steel, including low weight due to less density of fibres, corrosion resistance and easy 

handling during applications. FRPs are very much suitable for structural applications 

mainly to repair concrete reinforced elements, pre-stressed concrete, masonry and wood 

structural elements [5]. FRPs started to be used in civil engineering application since 

1980s, and since then a large numbers of projects have been started to demonstrate the 

application of FRPs in various structural elements. FRPs have been used successfully to 

retrofit all basic structural components, namely, columns, beams, slabs and walls. These 
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FRPs are applied to existing structures to enhance any or more of the following properties 

[5]: 

 Tensile, shear or flexural load capacities; 

 Ductility for enhanced seismic and blast application; 

 Increased durability against worst environment conditions; 

 Enhanced fatigue life; 

 Stiffness increase. 

Braided composite rods (BCRs) is a kind of composite material reinforced with 

high strength and modulus fibres in the core and low or high stiffness fibre in the sheath. 

BCRs were introduced in civil engineering applications for the replacement of steel 

mimicking its stress-strain characteristics. The load-deformation behaviour of the braided 

structures can be tailored by selecting the core and the sheath fibres. BCRs offer several 

advantages over the other type of FRP rods such as simple and economical manufacturing 

process, tailorable mechanical properties and good bonding behaviour with civil 

structural elements [6 – 8]. 

Auxetic materials are kind of innovative material which own unusual behaviour, 

i.e. possessing negative Poisson’s ratio. It can be explained that usually when a material 

is stretched, for example an elastic band, it will become longer in the stretched direction 

and thinner in cross-section. Similarly, in compression expands transversely. Whereas, 

auxetic materials expands in transverse direction in tension and shrink laterally in 

compression [9-10]. Auxetic materials gained interest over the past three decades due to 

their superior physical properties due to their negative Poisson’s ratio under strain. They 

are improved strength, enhanced fracture resistance, superior energy absorption, superior 

acoustic behaviour, good indentation resistance, and improved damping [11-18].  

Auxetic materials are available in different forms, from micro to nano scales, for 

example, liquid crystalline polymers, microporous polymer, fibres, foams, honeycombs, 

bio-materials, structure, nano composites, FRP composites, etc. Auxetic composites can 

find potential applications in automotive, protection and aerospace industries, where non-

auxetic composite with high specific strength and stiffness are currently used. The auxetic 

property can also be achieved with certain structural designs. In the last few decades, 

dissimilar geometric structures and models exhibiting auxetic behaviour have been 

proposed, studied and tested for their mechanical properties. The main auxetic structures 
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reported are two dimensional (2D) and three dimensional (3D) re-entrant structures, 

rotating rigid/semi-rigid units, chiral structures, and missing rib or lozenge grid [19 – 21]. 

Composite auxetic structures from BCRs offer novel solution combining the advantages 

of auxetic material and BCRs. 

 

1.2. Objectives 

The objective of this research is to development of novel auxetic structures based 

on fibre reinforced braided composites for civil engineering applications. In this way, it 

is intended to study various configurations of auxetic structural designs, selected from 

different literature already reported using braided composite rods as basic elements. 

These novel composite auxetic structures are optimized in terms of their mechanical 

behaviour and its masonry reinforcing capabilities analysed and discussed. The specific 

objectives of this thesis includes: 

 Development of novel composite auxetic structures based on missing rib 

or lozenge grid and re-entrant hexagon design.  

 Evaluation of the auxetic behaviour of the structures by feasible technique, 

e.g. image-based feature tracking method. 

 Optimisation of developed auxetic structures by studying the effect of 

structural and material parameters on their mechanical behaviour 

(Poisson’s ratio and tensile properties). 

 Studying the auxetic behaviour of structures by suitable analytical model 

and development of numerical model for these novel structures. 

 Studying the effect of auxetic structures reinforced civil structural 

elements (reinforced mortar and reinforced masonry) under tensile and 

flexural loads.  
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1.3. Outline of the thesis 

The aforementioned objects are studied and elaborated in detailed manner in eight 

chapters, as follows: 

Chapter 1 introduces the framework of the Thesis and motivation behind this novel works 

is provided along with specific objectives. 

Chapter 2 provides the literature review about fibrous and composite materials used in 

civil structural applications and brief review about auxetic materials and structures. Also, 

this section describes the requirements of novel composite structure for structural 

applications. 

Chapter 3 presents the materials used in this works and their mechanical properties. Also, 

the section contains the procedure of relevant testing carried out in this work. The 

calculation of Poisson’s ratio and work of rupture is given in this section. 

Chapter 4 presents development of composite auxetic structures from BCRs based on 

missing rib or lozenge grid. The auxetic behaviour of developed structures were evaluated 

by using image based tracking methods with suitable set-up. Also, the effect of structural 

and material parameters on auxetic and tensile behaviour was studied and summarized. 

The developed auxetic structures exhibits higher strain, which is drawback in the sense 

of civil engineering applications. The problem is resolved by modifying the basic auxetic 

structures and studied their auxetic and tensile behaviours. 

Chapter 5 presents the development of composite auxetic structures from BCRs based on 

re-entrant hexagon design. The auxetic behaviour of structures were evaluated by using 

image analysis technique. The developed structure was optimized by studying their 

various parameters related to the structures. Also, the structure is modified to suit 

strengthening purpose of civil structural elements. 

Chapter 6 presents the calculation of auxetic behaviour of developed structures using 

suitable analytical models which are reported in literature. The analytical model was 

modified to fit with developed auxetic structures. The new analytical models were 

developed to calculate the auxetic behaviour of structures developed based on modified 

designs. Also, the numerical modelling has been developed to study their tensile and 

auxetic behaviour of developed structures. 
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Chapter 7 presents the performance of the auxetic structures reinforced (both the design) 

structural elements (mortar and masonry) under tensile and flexural loads. The results are 

compared with plain grid (commercial design) reinforced structural elements. The overall 

effectiveness of the auxetic structures with structural elements also provided in this 

section. 

Finally, Chapter 8 presents the main conclusions of the thesis and a proposal for future 

work.
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Chapter 2 

 

Literature Review 
 

 

 

 

 

 

 

2.1. Introduction 

Fibres have been used in the construction field since ancient time. Straw and hair 

fibres were used to reinforce brittle materials which was used to build house. In late 19th 

century, asbestos fibre was used in large quantity in the construction field. However, due 

to health hazards associated with asbestos fibres, alternate fibres started to be introduced 

in the field since 1950s. Glass and steel fibres were used as reinforcing elements into 

concrete and its behaviour extensively studied. The use of fibre reinforced construction 

materials offers many improvements in the properties, when compared to conventional 

materials, including tensile strength, elastic modulus, compressive strength, durability, 

crack resistance, crack control, fatigue life, etc. 

Apart from glass and steel, other high performance fibres were started to be used 

to reinforce structural elements including carbon, basalt, aramid and polypropylene. In 

order to avoid the environmental problems of these manmade fibres, natural fibres 

(cotton, flax, jute, coconut, hemp, etc.) are also being extensively studied in civil 

engineering applications [22 – 26]. 

Other than fibres, fibre reinforced polymers (FRPs) or fibre reinforced polymer 

composites (FRPC) have been widely accepted and initiated to be used in structural 
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elements to enhance physical and mechanical properties. FRPs are applied externally to 

the structures with polymeric resins and improve ductility and energy absorption 

property, tensile strength along with shear strength. FRP materials also improve the 

stiffness of structural elements. FRPs have many superior properties such as high strength 

to weight ratios and are effectively corrosion free. FRPs can be used as a retrofit for 

existing structural elements very easily with minimal loss of existing space and disruption 

to the structure. The method is also cost-effective compared with other methods such as 

strengthening with bonded steel plates [27 – 34]. Composites widely used in the civil 

applications are glass fibre reinforced polymer composite (GFRP), carbon fibre 

reinforced polymer composite (CFRP), aramid fibre reinforced polymer composite 

(AFRP), basalt fibre reinforced polymer composite (BFRP), among others. [35, 36]. 

Auxetic materials are novel class of materials which possess negative Poisson’s 

ratio (NPR). Due to the NPR, this materials exhibits improved properties compared to 

conventional materials including, fracture toughness, energy absorption, indentation 

resistance, etc. There are various auxetic materials such as polymer, fibre, fabric, 

composite, foam, etc. These auxetic materials can be used in wide range applications 

including, protective textiles, bulletproof materials, aeronautics materials, aerospace 

industry, etc. [17, 37 – 43]. 

This chapter further explains in detail about various fibres, resins, FRP composites 

used in civil engineering applications. Also, explained in detail about various auxetic 

fibrous materials, their properties and applications. 

2.2.  Fibrous and composite materials for civil applications 

2.2.1. Fibres  

The four main fibres used in the civil engineering applications are: glass, basalt, 

carbon, and aramid. Commonly, fibres can be used in various ways, with the performance 

changing of each [44]: 

 The best performance in terms of strength and modulus in one direction comes 

from unidirectional reinforcement. When the fibres are arranged in parallel 

direction provides maximum performance under axial loading. 

 Arranging the fibre in a weave or mat, strength can be achieved in more directions, 

although the maximum strength and modulus is reduced. 
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 Chopping the fibres into short lengths and arranged them randomly, uniform 

properties can be obtained in all directions. This is generally the cheapest 

technique, used for the least structurally demanding case. 

Figure 2.1 shows fibrous materials configurations used to reinforce polymers with 

application in civil engineering. 

Among the various fibres used in structural applications glass fibre is the least 

expensive and carbon fibre being the most expensive. The cost of basalt fibre slightly 

higher than glass fibre and the cost of aramid fibres is about the same as the lower grades 

of carbon fibre [45].  

 

Figure 2.1. Fibre types in distinct configurations [45]. 

2.2.1.1. Glass fibre 

Glass fibres exhibit the typical glass properties of corrosion resistance, hardness 

and inertness. Glass fibres are divided into three main classes – E-glass, S-glass and C-

glass. The E-glass fibre is designed for electrical use and the S- glass for high strength. 

The C-glass is for corrosion resistance, and it is not uncommon for civil engineering 

applications. Among these three classes, E-glass fibre is the most common reinforcement 

material for civil engineering applications. It is produced from lime-alumina-borosilicate 

which can be easily extracted from abundance of raw materials like sand. The fibres are 

drawn into very fine filaments with diameters ranging from 2 to 13 µm. The glass fibre 

strength and modulus can deteriorate with aggregate temperature. Though the glass fibre 

creeps under a constant load, it can be designed to perform adequately. The fibre regarded 
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as an isotropic material and has a lower thermal expansion co-efficient than that of steel 

fibre. The properties of glass fibre is given in the Table 2.1 [46 – 50]. 

Table 2.1. Physical and mechanical properties of glass fibre [46-50] 

Typical properties E- glass S- glass 

Density (g/cm3) 2.60 2.50 

Young’s modulus (GPa) 72 87 

Tensile strength (GPa) 1.72 2.53 

Tensile elongation (%) 2.4 2.9 

 

Properties of glass fibre reinforced concrete (GFRC): GFRC doesn’t fail instantly 

underload, but yields steadily nonetheless in cement and concrete. Tensile failure begins 

with micro cracks and propagate fast and cause damage. This is due to randomly 

distributed fibre in GFRC, uniformed dispersed fibres develops the loads in a wide range 

and let the matrix to behave cohesive. The presence of glass fibres in GFRC offer crack 

arresting behaviour. GFRC has higher tensile strength than steel. Generally, the higher 

the fibre content higher the strength.  

GFRC perform excellently under the salt water and marine environment, as there 

is no steel reinforcement to corrode. GFRC also possess high damping capacity and low 

coefficient of thermal expansion. Resistance against acid attack is enhanced with addition 

of glass fibres into the concrete mixture. It is also noticed that there is no effect of 

sulphates on GFRC. Chloride permeability of GFRC shows less when compared with 

ordinary concrete [51 – 53]. 

2.2.1.2. Basalt fibre 

Basalt fibres are produced by melting crushed volcanic rocks and known primarily 

for its resistance to high temperatures, strength, and durability, widely spread all around 

the world, in which SiO2 accounts for the main part, followed by Al2O3, then Fe2O3, FeO, 

CaO and MgO. For this reason, basalt rocks are classified according to the SiO2 content 

as alkaline (up to 42% SiO2), mildly acidic (43 to 46% SiO2) and acidic basalt (over 46% 

SiO2). Only acidic types of basalt satisfy the conditions for fibre preparation. The 

properties of basalt fibre is given in the Table 2.2 [47, 54, 55]. 
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Table 2.2. Physical and mechanical properties of basalt fibre [47, 54, 55] 

Typical properties Value 

Density (g/cm3) 2.65 

Young’s modulus (GPa) 79 – 93 

Tensile strength (GPa) 3.0 – 4.8 

Tensile elongation (%) 3.10 

 

Properties of basalt fibre reinforced concrete (BFRC) includes [55 – 58]: 

- Workability of concrete can be improved by addition of 0.5% by volume of 

basalt fibre into the mixture. 

- Larger quantities of fibres compared to PP fibres can be added without any 

problems, i.e. balling or segregation. 

- The performance of BFRC is almost similar compared to PPFRC. 

- Compared to plain concrete, there is significant improvement in impact 

resistance and toughness. 

- The addition of fibres into the concrete, leads to change on the failure mode 

from a brittle to ductile failure, when subjected to bending, impact and 

compression. 

- Compressive strength of basalt fibre reinforced concrete increases up to 14% 

compared to plain concrete. 

- Percentage increase of split tensile strength of basalt fibre reinforced concrete 

compared to plain concrete is about 62%. 

- Flexural strength of basalt fibre reinforced concrete found increase about 50% 

than plain concrete. 

- The level of strength increase of basalt fibre reinforced concrete depends on 

concrete age. 

2.2.1.3. Carbon fibre 

Carbon fibre can be produced from the three types of polymer precursors: 

polyacrylonitrile (PAN), rayon, and pitch. Pitch fibres are cheaper than PAN based fibres, 

but possess lower strength. The tensile stress-strain curve is linear to the point of 

breakage. There are many carbon fibres available in the market, but they can be arbitrarily 

categorized into three grades, as shown in the Table 2.3. Carbon fibres are lightweight 

and strong with excellent chemical resistance. Carbon fibres have lower thermal 
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expansion co-efficient than both aramid and glass fibres. The fibre is an anisotropic 

material, and its transverse modulus are greater than longitudinal modulus in an order of 

magnitude. The fibre has a very high fatigue and creep resistance [47,49,50,54,59 – 61]. 

Table 2.3 Physical and mechanical properties of carbon fibres [59-61] 

Typical properties High strength High modulus Ultra-high modulus 

Density (g/cm3) 1.8 1.9 2.0 – 2.1 

Young’s modulus (GPa) 230 370 520 – 620 

Tensile strength (GPa) 2.48 1.79 1.03 – 1.31 

Tensile elongation (%) 1.1 0.5 0.2 

 

The characteristics of carbon fibre reinforced concrete (CFRC) includes [61]: 

 High tensile strength – smaller cross section, earth quake resistance; 

 Higher durability – corrosion free and less running cost; 

 Eco-friendly – less materials needed for maintenance and construction; 

 Low weight – easy to handle; 

 High flexibility; 

 High abrasion resistance – suitable for highway construction; 

 Low co-efficient of thermal expansion – high fire resistance; 

 Increase of flexural strength and toughness; 

 High compressive strength; 

 Decrease of electrical resistance; 

 Decrease of dry shrinkage; 

 High split tensile strength. 

2.2.1.4. Aramid fibres 

Aramid fibres are polymeric fibres, where polymeric chains are aligned and made 

rigid aromatic rings linked by hydrogen bridges. Fibres main properties are high strength, 

impact resistance due to their energy absorption, low-density and moderate modulus. 

Aramid fibres are susceptible to degradation under moisture and UV light, but exhibit 

resistance to acids and alkalis. They have excellent fatigue and creep resistance. As an 

anisotropic fibre, its transverse shear modulus is less than those of longitudinal direction. 

The fibres can have difficulty achieving a chemical or mechanical bond with the resin. 
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The properties of commercially available aramid fibres are given in Table 2.4 [47, 49, 50, 

62 – 64]. 

Table 2.4 Physical and mechanical properties of aramid fibres [49, 50, 63] 

Fibre type Density, (g/cm3) Elongation, % Modulus, GPa Tenacity, GPa 

Kevlar 29 1.43 3.6 70 20-23 

Kevlar 49 1.45 2.8 135 20-26 

Kevlar 119 1.44 4.4 55 -- 

Kevlar 129 1.45 3.3 99 -- 

Kevlar 149 1.47 1.5 143 18 

Nomex 1.38 22 17 5.8 

 

2.2.1.5. Polypropylene fibres 

Polypropylene (PP) is a thermoplastic polymer used in wide variety applications 

including textiles, packaging, civil, marine ropes, etc. Mostly, isotactic PP is used for 

industrial applications due to their high crystallinity. PP is normally tough, flexible and 

resistance to fatigue. The suitable properties of PP with respect to civil engineering 

application includes: 

 The fibre has good resistance to almost all chemicals. Any chemicals that will 

not attack the concrete mixture will have no effect on the fibre either.  

 The fibre is hydrophobic and it will not wet by cement paste helps prevent 

chopped fibres from balling effect during mixing like other fibres. 

 The orientation leaves the film feeble in the horizontal direction which helps 

fibrillation. The cement matrix can therefore infiltrate in the mesh structure 

between the individual fibrils and develop mechanical bond between fibre and 

matrix. The properties of PP fibre are given in Table 2.5 [47, 65, 66]. 

 

Table 2.5 Physical and mechanical properties of PP fibre [47, 65, 66] 

Typical properties Values 

Density (g/cm3) 0.91 

Tenacity (g / denier) 3.5 – 9.0 

Elongation (%) 10 – 45 

Moisture regain (%) 0.0 
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Properties of PP reinforced concrete 

Fibres before mixing into the concrete, the amount and length and design mix 

variables need to be adjusted to prevent the fibres from balling. Good fibre reinforced 

concrete mixture normally comprise a high mortar volume as compared to conventional 

concrete mixtures. The aspect ratio for the fibres are usually chosen between 100 to 200 

since fibres which are too long tend to “ball” in the mix and create work-ability problems. 

PP fibres are used in two different ways to reinforce cementitious matrices. One 

is in thin sheet constituents in which PP offers the principal reinforcement. Its volume 

content is relatively high over 5%, in order to get both toughening and strengthening. 

Other is in fibre form and volume content is less than 0.3%, and it is anticipated to act as 

mainly as secondary reinforcement to control crack. 

Effects on Fresh concrete: the work-ability of concrete mainly decides on slump test. 

The addition of PP fibres decreases slump value significantly. The concrete mixture with 

PP fibres leads to fewer rate of bleeding and segregation as compared to plain concrete. 

PP fibres in concrete mixtures also help reduce early plastic shrinkage cracking, improve 

the tensile capacity, decrease the number of cracks, and bridging of cracks. 

Effects on hardened concrete: the addition of fibres in the concrete increases the splitting 

tensile strength approximately 20 – 50%. 

Compressive strength: the inclusion of fibre in concrete has null effect on compressive 

property of concrete. 

Flexural tensile strength: flexural tensile strength increases with increase of volume 

fraction of fibre. It is also noticed there was improvement in strength for with the increase 

of fibre aspect ratio. 

Fracture properties: the failure behaviour of high strength concrete is successfully 

improved by the use of fibres. The typical shear bond failure due to strain localization 

could be avoided. 

Creep and shrinkage properties: addition of fibres decreases creep strain. Shrinkage of 

concrete, which is the result of removal of water from concrete during drying, is also 

decreased by fibres. 

Flexural impact properties: the properties improved significantly with relatively low 

fibre volume ratio [67 – 73]. 

  



Chapter 2: Literature Review 

15 

 

2.2.1.6. Other fibres 

Apart from above said synthetic fibres some natural fibres are also used in civil 

engineering applications. Vegetable fibres are extracted from various part of plants and 

categorized as seed fibres, leaf fibres, bast fibres, stalk fibres, and fruit fibres. Seed fibres 

are fibres extracted from seeds of the plants, e.g. cotton and Kapok. Leaf fibres are fibre 

collected from leaves of the plants, e.g. sansevieria, fique, sisal, banana and agave. Bast 

fibres are fibres collected from the skin or bast surrounding the stem of the plants. These 

fibres has higher tensile strength than other vegetable fibres, e.g. Jute, Flax, kenaf, hemp, 

ramie, rattan and vine fibres. Fruit fibres are collected from the fruit of the plants or tree, 

e.g. coconut (coir) fibre. Stalk fibres are actually stalk of the plants, e.g., straws of wheat, 

rice, barley, and other crops include bamboo and grass. 

The most used vegetable fibres in the civil engineering applications for the 

reinforcement of mortars and concrete are cotton, flax, hemp, sisal, jute, bamboo and 

coconut (coir) fibres. The use of vegetable fibres in concrete provides an exciting 

challenge to the housing construction industry, particularly in non-industrialized 

countries since they are a cheap and readily available form of reinforcement, require only 

a low degree of industrialization for their processing and, in comparison with an 

equivalent weight of the most common synthetic reinforcing fibres, the energy required 

for their production is small and hence the cost of fabricating these composites is also 

low. In addition, the use of a random mixture of vegetable fibres in cement matrices leads 

to a technique that requires only a small number of trained personnel in the construction 

industry. Vegetable fibre cement composites this pose the challenge and the solution for 

combining unconventional building materials with conventional construction methods 

[74 – 76]. The properties of fibres used in civil engineering applications are given in the 

Table 2.6. 
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Table 2.6 Physical and mechanical properties of various natural used in civil 

engineering applications [77] 

Properties Sisal fibre Coir fibre Jute fibre 
Hemp 

fibre 
Flax fibre 

Density (g/cm3) 1.3 – 1.5 0.67 – 1.2 1.3 – 1.5 1.5 1.4 – 1.5 

Elongation (%) 2.0 – 2.5 15 – 30 1.5 – 1.8 1.6 1.2 – 3.2 

Young’s 

modulus (GPa) 

9.4 – 28 4 – 6 10 – 55 70 50 – 70 

Tensile strength 

(MPa) 

511 – 635 131 – 230 390 – 800 550 – 900 340 – 1500 

 

2.2.1.7. Resins 

Resins are the polymer binders that hold the fibres together and transfer the loads 

between the fibres in addition to guarding them from environmental factors and carrying 

shear loads. There are various polymer matrices which can be used to produce FRP 

composites, but in construction industry only a relatively small number is actually used. 

According to their nature, there are two major types of polymers, which determine the 

methods of manufacturing and the properties of the composite: (i) thermoplastic and (ii) 

thermosetting. FRPs were all based on thermosetting polymers and, besides the fact that 

thermoplastic have seen rapid growth in recent years, thermosetting is still the most used 

in civil engineering applications [78]. 

Thermoplastic polymers are long chain molecules held together by relatively 

weak Van der Waals forces. These polymers can be amorphous, which implies a random 

structure with a high concentration of entanglement, or crystalline, with a high degree of 

molecular order [79]. The semi-crystalline polypropylene and nylon are especially 

popular as matrices. Thermosetting polymers are usually made from liquid or semi-solid 

precursors which harden irreversibly; this chemical reaction is known as cure and on 

completion, the liquid resin is converted to a hard solid by chemical cross-linking which 

produces a three dimensional network of polymer chains. This family of polymers has an 

imperative quality when used as matrices in FRP, which is the low viscosity of the 

precursor liquids, prior to cross linking that facilitates wetting of reinforcement fibres. 

The main polymers used in construction under this heading are: 
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 Unsaturated polyesters. Currently, these are the most widely used polymers in 

construction, as matrix of FRP. They are relatively low cost materials and are easy 

to process at an ambient temperature of cure. They can be formulated in hundreds 

of diverse ways to craft their properties to numerous manufacturing process and 

can easily be filled and pigmented. 

 Epoxies. In general, epoxies have high dimensional stability and specific strength. 

They are particularly known by their adhesion ability with many substrates, and 

low shrinkage during the cure. A wide variety of formulations are available giving 

a broad spectrum of properties. They can be processed at both room and elevated 

temperatures. Epoxies have excellent environmental and chemical resistance, 

when compared with unsaturated polyester. 

 Vinyl esters. These polymers have similar mechanical and in-service properties to 

those of the epoxy resins and equivalent processing techniques to those of the 

unsaturated polyesters. Generally they have good wetting characteristics and have 

resistance to strong acids and strong alkali conditions. They can, also, be 

processed at both room and elevated temperatures. 

 Phenolic. The most important characteristic of this family of polymers is there 

good flame retardant properties, low smoke generation and high heat resistance. 

For this reason, they are used when required fire resistance. 

According to Hollaway and Head [80], the requirements for a good FRP matrix are the 

following: 

 wet out the fibre and cure satisfactory in the required conditions; 

 bind together the fibres and protect their surfaces from abrasion and 

environmental ageing; 

 disperse the fibres an separate them in order to avoid any catastrophic propagation 

of cracks; 

 transfer stresses to the fibres efficiently; 

 chemically and thermally compatible with fibres; 

 have appropriate fire resistance and limit smoke propagation; 

 provide well aesthetic finish (colour and surface). 

The properties of thermoset polymer matrices given in Table 2.7 [80]. 
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Table 2.7 Physical and mechanical properties of thermoset resins [80] 

Property Polyester Vinylester Epoxy 

Strength (MPa) 20 – 70 68 – 82 60 – 80 

Elastic modulus (GPa) 2 – 3 3.5 2 – 4 

Strain at failure (%) 1 – 5 3 – 4 1 – 8 

Density (g/cm3) 1.2 – 1.3 1.12 – 1.16 1.2 – 1.3 

Glass transition temperature (Tg) (°C) 70 – 120 102 – 150 100 – 270  

 

2.2.2. Fibre reinforced polymer composites 

Fibre reinforced polymer composites (FRPC) are advanced composite materials 

made of a polymer matrix reinforced with fibres. The fibres are usually glass, carbon and 

aramid, while the polymer matrix are usually polyester, vinyl ester and epoxy 

thermosetting polymers.  

2.2.2.1. Glass fibre reinforce polymer composites (GFRP) 

Glass fibre reinforced polymer composite is one of the major FRPs used in the 

construction field to improve the properties of structural elements, e.g. shear strength, 

flexural strength, tensile strength, etc. There are many varieties of glass fibres such as S-

glass, E-glass, A-glass, C-glass, AR-glass, etc. Out of this, both S and E glass are found 

suitable for making reinforcement fabrics; but E-glass fibre is more economical and does 

not lose its stiffness with time or at high temperatures compared to S- glass fibre [49, 81-

83]. E-glass fibre is an alumino-borosilicate glass, and it has less percentage of alkali. 

This low alkali content will be beneficial while interacting with cement material. Epoxy 

and Vinyl ester are the most widely used resins for retrofitting of structures with GFRPs 

as well as for making composite laminates. GFRPs can be made into many shape 

including strips, continuous sheets, rods, rebars and sandwich structures with other 

fibrous materials and used in existing civil structures to increase their mechanical 

behaviour [83]. 

Researchers have used composite laminates prepared from various commercially 

available glass fabrics to improve properties of civil structures. The range of properties 

of GFRP laminates is given in Table 2.8 [84-88]. 
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Table 2.8 Physical and mechanical properties of GFRP composite [84-88] 

Properties Values in Range 

Tensile Strength (MPa) 300 – 2300 

Tensile Modulus (GPa) 17 – 72 

Elongation at break (%) 2.08 – 3.2 

Thickness (mm) 0.33 – 1.3 

Weight (g/m2) 325 – 915 

 

Characteristics of glass fibre reinforced composites includes: 

 Linear elastic behaviour up to failure (no ductility); 

 Orthotropic behaviour; 

 High longitudinal strength (similar to steel); 

 Low elasticity (10 – 20% of steel) and shear modulus; 

 Low density (20 – 25% of steel). 

 

2.2.2.2. Carbon fibre reinforced polymer composites (CFRP) 

CFRP is an extremely strong and light FRP material. The polymer most often used 

in CFRP is epoxy, but other polymers, such as vinyl ester, polyester or nylon are 

sometimes used [89, 90].  

The following are the general properties of CFRP: 

 The strength and modulus of elasticity are very high when compared to GFRP and 

aramid-FRP, even for the same fibre weight. 

 The design strength is significantly higher compared to other FRPs. The strain is 

low for CFRP and this gives a higher design capacity (see Figure 2.2). 

 The durability with the time of carbon fibre wraps is far better than that of other 

FRPs. 

 CFRP shows good fatigue resistance [91]. 
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Figure 2.2 - Design strength vs. strain for major FRPs used in civil engineering 

applications [91]. 

Over the past two decades, CFRPs has become an increasingly notable material 

for structural engineering applications. Applied to reinforced concrete (RC) to improve 

flexural properties, CFRPs typically have large impact on strength (doubling or more 

increase in strength is not uncommon), but provide only moderate increase in stiffness. 

CFRPs can also be applied to enhance the shear strength of RC by wrapping fabrics or 

fibres around the section to be strengthened. Wrapping around sections (such as bridge 

or building columns) can also enhance the ductility of the section, greatly increasing the 

resistance to collapse under blast loading. CFRPs has very good durability than other 

FRPs and it’s relatively high stiffness can afford efficient confinement with minimum 

wraps [49, 92]. Properties of carbon fibre reinforced polymer composites are given in 

Table 2.9. 

 

Table 2.9 Physical and mechanical properties of CFRP composite [49, 92] 

Properties Values in Range 

Tensile strength (GPa) 3 - 7 

Tensile modulus (GPa) 150 - 450 

Elongation at break (%) 1.8 – 2.0 

Density (g/cm3) 1.5 – 1.6 

 

2.2.2.3 Aramid fibre reinforced polymer composite (AFRP) 

AFRP have high fracture toughness, high strength, high elastic modulus, and 40% 

lower density than GFRP. The AFRP is much costlier than GFRP and basalt fibre 
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reinforced polymer composite (BFRP) making them little consideration in civil 

engineering applications. AFRP absorbs moisture, so careful storage and planning of 

project using AFRP is critical when applied to structures. The composite has less 

compressive strength than other FRPs. The properties of AFRP are given in Table 2.10 

[93, 94]. 

 

Table 2.10 Physical and mechanical properties of AFRP composite [93, 94] 

Properties Values in Range 

Tensile strength (MPa) 3000 

Tensile modulus (GPa) 70 - 120 

Elongation at break (%) 1.6 – 1.8 

Density (g/cm3) 1.4 

 

2.2.2.4. Braided composite rods (BCRs) 

Braiding technique is one of the most ancient production process (since 1800s) to 

produce textile structures. This technique is commonly used for the production of ropes 

and cables. A braiding machine has fibre carriers (more than three) moving in circular 

pattern. Half of the carriers move clockwise, and others move anticlockwise, in an 

intertwining serpentine motion producing a desired braided pattern (see the Figure 2.3). 

Braided structures are also very interesting for composite reinforcements due to their 

characteristics: conform-ability, in-plane multi-axial orientation, excellent damage 

tolerance and low cost [95, 96]. 

 

  

Figure 2.3. Carriers moving direction and braiding machine [95, 96]. 
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Axial (core) reinforced braided structures are braided tubular structures 

presenting, besides one system of yarns moving helically and a core reinforcement yarns 

introduced axially (Figure 2.4). The two systems of yarns or fibres can be varied 

according to the requirements of specific applications [97]. 

The core reinforcement fibres are responsible for the mechanical performance of 

core reinforced braided structures. Braided composite rods (BCRs) are produced by using 

conventional braiding machine with minor adjustment in the machine. The braiding 

machine is equipped with a resin bath where the core reinforcement fibres pass through 

in a polymer matrix, at the point before braiding action (Figure 2.5). Therefore, it is 

ensured that the impregnation of the axial reinforced braided structure occurs from inside 

to the outside of the structure [97]. 

In addition, a braiding ribbed structure can be produced by varying linear density 

of the sheath yarns. Also, the braided composite rods can be produced by varying axial 

reinforcement fibres and type of resin. With help of braiding technique composite rods 

can be produced with specific mechanical, physical and chemical properties for specific 

applications [97]. 

 

 

 

Figure 2.4. Braiding with axial reinforcement fibres [97]. 
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Figure 2.5. Braiding with axial reinforcement and resin bath set-up [97]. 

2.2.2.5. FRPs for structural applications 

Recently, composites found potential application in construction industry as 

strengthening material for many problems associated with the deterioration of civil 

structures. Over the period, composites are considered replacement of steel in 

construction industry due to their superior properties and reduction of cost of FRPC 

materials [98]. Composites are used to improve the various properties of structural 

elements and they are explained in detail as follows, 

Flexural strength: Flexural strengthening of reinforced concrete (RC) beams using 

composites can be offered by epoxy bonding of FRPC plate to the portion of elements in 

tension, with fibres parallel to the principal stress direction. If fibres are placed 

perpendicular to cracks, a huge increase in stiffness and strength is achieved compared to 

situation where fibres are placed diagonal to the cracks. Flexural performance of 

strengthened RC beams with FRPC is depends on several factors including, type of fibres, 

length of laminate, width of laminate, amount of main and shear reinforcement, FRPC 

configuration, number of layers in FRPC, damage and loading condition, concrete 

strength and cover, etc.[98]. 
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Ductility: A variety of indices including deformability ratios, energy ratios have been 

suggested measuring ductility. Experiments have indicated catastrophic failure of 

strengthened beams due to low ductility. Researchers have suggested anchorage system 

to enhance ductility, which is not affected by the change in the loading rate. Researchers 

performed experiments by using innovative triaxially braided ductile fabric which was 

reported to increase ductility. It was reported that torsional capacity of RC beams can be 

increased up to 70% with the help of FRPC strengthening. It is also observed from the 

results fatigue life of reinforced concrete beams could be significantly enhanced through 

the use of externally bonded CFRPC laminate and it is largely depended on the stress 

range applied to steel reinforcements [98].  

Shear strength: Shear strengthening of RC elements can be offered by epoxy bonding of 

FRPC materials with the fibres parallel to the direction of the shear stresses. It was 

perceived that the shear strength of newly constructed RC beam can be improved by 60 

– 120% using FRPC sheets.  Fibre orientation may be perpendicular to the shear cracks. 

Shear contribution by the FRPC strengthening to the total shear capacity depends on many 

parameters including surface preparation, amount of main and shear reinforcement, 

composite fabric shear reinforcement ratio, strength of FRPC, shear span to effective 

depth ratio, number of FRPC layers, etc. U-wrap of sheet offered the most effective 

strengthening of beams with about 119% increase in shear strength [98]. 

Energy absorption: Wrapping of FRPC sheets around concrete columns is a promising 

method for structural rehabilitation and strengthening. One of the deficiency in concrete 

columns is the lack of lateral confinement and low energy absorption capacity. Externally 

confinement of concrete considerably increases strength, energy absorption and ductility 

of concrete specimens by building RC cage around existing columns [98]. 

Seismic retrofit: Retrofitting of column components to withstand earthquakes is a recent 

and widespread task and one of the more complex engineering challenges. Seismic 

resistance of FRPC retrofitted column increases considerably because of confining action 

of FRPC wraps. The technique has been noticed to enhance displacement ductility as well 

as strength [98]. 

Blast resistance: The numerous blast resistance studies have been conducted on civil 

structural elements retrofitted with various form fibrous and composite materials. The 

types of fibrous and composite materials are GFRP, CFRP, steel fibre, aramid, PU; Nano-



Chapter 2: Literature Review 

25 

 

particle reinforced Polyurea and hybrid textile (aramid/glass). Fibrous and composite 

materials are used in blast protection of structural elements in various form includes; 

fibres, composite strips, laces, rebars, spray-on materials and NSM rods. The composite 

materials produced from glass and carbon fibres are used to protect the structural elements 

from high mass of explosives at different stand-off distances (close or far from the blast 

source). Researchers measured or observed blast resistance property of retrofitted 

structural elements in terms of delamination of composite materials from elements, wall 

failure pattern, debris speed and debris level, increase of ductility, cracks of the wall, wall 

displacement, increase of flexural strength, energy absorption, toughness, etc., These 

studies showed that the utilization of fibrous and composite materials as retrofits of 

existing structures can significantly increase the blast protection by reducing the 

fragmentation and debris which will help further to avoid loss of occupant lives and to 

protect property and structures [2]. 

2.3. Auxetic materials 

2.3.1. Introduction of auxetic materials 

The Poisson’s ratio of any material is defined as the negative ratio of transverse 

strain to axial strain in the direction of loading (longitudinal strain). In general, materials 

have positive Poisson’s ratio, i.e. stretching in one direction (axial) results in reduced 

dimension in the other direction (transverse); but in auxetic materials the phenomenon is 

just the opposite, i.e. stretching in one direction results in widening in another direction 

(Figure 2.6). Therefore, auxetic materials possess negative Poisson’s ratio. Wide range of 

auxetic materials and structures has been discovered and manufactured both at micro and 

macro scales. For anisotropic materials, the values of Poisson’s ratio can vary in a wider 

range as compared to those of isotropic materials. The variation in the Poisson’s ratio 

clearly depicts that the negative Poisson’s ratios or auxetic effects are theoretically 

permissible. 

Auxetic materials are of particular interest due to their counterintuitive behaviour 

under strain as well as improved properties such as enhanced strength, better acoustic 

behaviour, improved fracture toughness, superior energy absorption, damping 

improvement, and indentation resistance [99]. 
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Figure 2.6. Auxetic material and conventional material [99]. 

2.3.2. Auxetic fibre, yarn and fabric 

2.3.2.1 Auxetic textile fibre 

Researchers produced various auxetic textile fibres including polyester, 

polyamide and PP. These fibres found potential applications such as fibrous filters, 

protective clothing, biomedical materials, and reinforcement in composites. The details 

of various auxetic textile fibres are given below. 

Auxetic polyester fibre was produced from using polytrimethyleneterephthalate, 

which is procured from DuPont in the granule form. The granules are converted into 

powder form using cryogenic grinding before the extrusion. For the extrusion purpose the 

polyester particles of less than 150 μm were sorted out. 3GT granules and powder were 

pre-dried under partial vacuum oven at 108oC for two days before extrusion. The 3GT 

powders are underwent melt spinning process to produce fibres. The fibres produced at 

225°C with take-up speed 5 mpm (0.075 m/sec) and screw speed 5 rpm (0.525 rad/sec) 

exhibits negative Poisson’s ratio, ν = -0.72 ± 0.05 [100, 101]. 

To produce auxetic nylon fibres, nylon® powder was used, which is commercially 

available Nylon-R grade, purchased from Nylon Colours. To know about thermal 

processing window the powder was subjected to DSC analysis. The SEM micrographs 

used to know about average powder particles size and it was found 43 µm. To avoid 

hydrolysis during extrusion, the nylon® powder was over dried for two days in vacuum 

at 80ºC. Melt spinning method was used to produce fibre and fibres produced at 195°C 

with screw speed 10 rpm (1.05 rad s–1) and take-up speed of 2 mpm (0.03 ms–1) exhibits 

negative Poisson’s ratio, ranging between -0.15 to -0.25 [102]. 
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Auxetic PP fibres produced from Coathylene PB 0580 powder supplied by Univar 

plc, UK. Fibre exhibit better mechanical properties and auxetic behaviour produced at 

processing temperature of 159°C with take-off speed of 2 mpm, screw speed of 1.047 rad 

s-1 and die diameter of 0.55 mm. The negative Poisson’s ratio obtained through this 

process is about -2.5 [102]. 

2.3.2.2 Auxetic yarns 

One of the most gifted auxetic material for practical application is helical auxetic 

yarn (HAY), first reported by Hook in 2003. HAY is a fibre structure consists of two 

fibres (flexible and stiff fibre), one fibre being the core around which is helically wound 

the second fibre, wrap (see Figure 2.7). 

 
Figure 2.7. Components of HAY [103, 104]. 

Underload, the wrap fibre become straight which causes core displacement 

laterally in the helical manner (see Figure 2.8). If the wrap fibre have less diameter and 

stiff than core will results in nett increase in the effective diameter of the HAY under 

tension – a negative Poisson’s ration. This novel behaviour leads to interesting textile 

application based on developing the ability to cause pores to open (see Figure 2.9). 

 

 
Figure 2.8. Auxetic behaviour under tension [103, 104].

 

Figure 2.9. Textile application - pores open under tension in a complementary pair of 

HAYs [103, 104]. 
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The static behaviour of this HAY has been examined under tension using Finite 

Element Analysis (FEA). The results show that the stiffness of the component fibres and 

the initial helical wrap angle are key design parameters, also the strain-dependent changes 

in cross-section should be taken in to consideration. It is observed that the structures 

shown non-linear behaviour due to non-zero individual components Poisson’s ratio. The 

Poisson’s ratio of the helical structures was observed as -5.0. 

The key geometric parameters used to tailor the auxetic behaviour of HAY are: 

 The starting angle of the wrap fibre dominates the magnitude of auxetic behaviour. 

 The auxetic performance is also affected by the diameter ratio of wrap to core 

fibres and the inherent Poisson’s ratio of the fibres [16, 103 – 105]. 

2.3.2.3 Auxetic fabrics 

Knitting technology is one of the most attractive textile technology that can be 

used to produce fabrics with auxetic (negative Poisson’s ratio) behaviour due to its high 

structure variety. There are various techniques to produce knitted fabrics such as weft and 

warp knitting. 

Weft Knitted Auxetic Fabric: A suitable geometric design is chosen to produce NPR 

effect weft knitted fabric using computerized flat knitting machine. The knit pattern which 

will produce NPR effect is shown in Figure 2.10. The knitted fabric at the relaxed state is 

shown in Figure 2.11. The Poisson’s ratio value obtained for these kinds of fabric is in 

the range of -0.02 to -0.5. The Poisson’s ratio values are decreases with increase of strain. 

Also, the NPR value depends up on the structural parameters. Among the various 

parameters, the initial opening angle θ0 is a key factor that affects the NPR effect. The 

fabric which are closely folded can lead to less θ0 and consequently have higher NPR 

value [106]. 

There are few more auxetic weft-knitted fabrics based on three kinds of 

geometrical structures, i.e. re-entrant hexagon, rotating rectangle and foldable structure 

using computerized flat knitting machine. The fabrics are shown in Figure 2.12.  
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Figure 2.10. i) knit pattern and ii) (a) three dimensional structure and (b) unit cell [106]. 

   

Figure 2.11. Auxetic weft knitted fabric at related state [106]. 

    

(a)    (b) 

    

(c)     (d) 

Figure 2.12. Auxetic weft knitted fabric. (a) Re-entrant hexagon, (b) rotating rectangle 

and (c and d) foldable structure [107]. 
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The maximum negative Poisson’s ratio value of the developed auxetic knitted 

fabrics are around -0.13, and -0.18 to -0.42 for foldable structure, -0.5 for rotating 

rectangle, and -0.6 for re-entrant hexagon. The Poisson’s ratio value of these fabrics 

decreased with the increase of axial strain, except for one foldable structure (Figure 

2.12d’). For this foldable structure, auxetic effect firstly increases and then decreases with 

the axial strain. The auxetic behaviour of the auxetic knitted fabrics against axial strain 

are shown in Figure 2.13[107]. 

  

(a)       (b) 

  

(c)       (d) 

Figure 2.13. Poisson's ratio vs. axial strain for the auxetic knitted fabric. (a) & (b) 

foldable structures, (c) rotatable rectangle, and (d) re-entrant hexagon [107]. 

Warp knitted auxetic fabric: The auxetic knitted fabrics can be produced by warp knit 

technique. To produce warp knitted fabrics the triangular or double arrowhead topology 

was selected, as shown in the Figure 2.14. This produces the auxetic effect by hinging, 

leading to opening of arrowheads. To get this design in to the fabric an 18-gauge machine 

was employed. The fabrics were developed with help of two components – one is the 

auxetic component and the other is the stabilizing component. 



Chapter 2: Literature Review 

31 

 

Figure 2.15 shows the stitch pattern used to produce auxetic warp knit fabric and 

real fabric. The guide bar settings and fibres used to produce fabric is given in the Table 

2.11. 

 

 

Figure 2.14. Triangular or double arrowhead auxetic topology. (a) Relaxed state and (b) 

with load [108]. 

 

Figure 2.15. (a) Stitch pattern (b) real fabric based on the given stitch pattern [108]. 

Table 2.11. Guide bar setting and fibre details of auxetic fabric [108] 

Bar Setting Fibre 

Front 2-0/2-4 (1 in-1 miss) 480 dtex Dorlastan V500 

2 0-2/2-0 (Full set) 480 dtex Dorlastan V500 

3 0-0/4-4/8-8/4-4 (1 in-1 miss) Mono-filament PES 0.25 mm 

Rear 2-0/2-2/2-4/2-2 (1 in-1 miss) Mono-filament PES 0.15 mm 
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The fabric exhibit negative Poisson’s ratio tested at +45° (𝜈21 = -0.13 ± 0.04) 

(45°), near conventional behaviour tested at -45° (𝜈12 = -0.02 ± 0.02), and conventional 

behaviour test at x and y co-ordinates (see Figure 2.16). 

 

Figure 2.16. Schematic of test sample orientations [108]. 

Another warp knitted fabric was produced by modifying guide bar setting and 

fabric exhibited auxetic behaviour tested at ± 45° and conventional behaviour at x and y 

directions. The obtained Poisson’s ratio values are 𝜈21 = -0.13 ± 0.02, 𝜈12 = -0.22 ± 0.03, 

𝜈𝑥𝑦 = 0.1 ± 0.06, and 𝜈𝑦𝑥 = 0.23 ± 0.05.  The guide bar setting are given in the Table 2.12 

and stitch pattern & real knitted fabric are shown in the Figure 2.17[108]. 

Table 2.12. Guide bar setting and fibre details of auxetic fabric [108] 

Bar Setting Fibre 

Front 2-0/2-4 (1 in-1 out) 480 dtex Dorlastan V500 

2 2-4/0-2 (1 in-1 out) 480 dtex Dorlastan V500 

3 0-0/4-4/8-8/4-4  Mono-filament PES 0.25 mm 

4 2-0/2-2/2-4/2-2 (1 in-1 out) Mono-filament PES 0.15 mm 

 

Warp knitted auxetic spacer fabric: Auxetic warp knitted spacer fabric (3D) was 

produced based on the special geometrical configuration which is formed with 

parallelograms (refer Figure 2.18). 

In this spacer fabric, two face fabric layers are connected together by a group of spacer 

yarn as the middle layer. In this kind of structure, usually monofilaments are used as 

spacer yarn to better keep the space made between two face fabric layers. To produce 

auxetic spacer fabric, the design of geometrical structure which can produce auxetic effect 

is important. The chosen geometrical structures should meet following requirements, 

 To be able to exhibit the auxetic behaviour in various fabric directions. 
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 To be able knit in warp knitting machine 

 The resultant fabric structure should be stable. 

 

   

Figure 2.17. (a) Stitch pattern, (b) loop diagram, and (c) knitted fabric [109]. 

 

 

Figure 2.18. Sketch drawing of (a) auxetic spacer fabric, (b) geometrical structural for 

face fabric layers and (c) reprinting unit [109]. 

The design shown in Figure 2.18 (above) meet the requirements. Three geometrical 

parameters, i.e. length of short rib 𝑙1, length of long rib 𝑙2, and angle θ are enough to 

know the geometric feature of the structure. The auxetic effect of the structure mainly 

comes from the rotation of ribs around their connecting points when a tensile load applied 

to the fabric structure. The fabrics were fabricated using multifilament polyester in the 
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face layers and polyester monofilament in the middle layers. After knitting, the fabric 

undergone heat treatment to stabilize the geometric configuration in the fabric. The 

fabrics were produced with varying angle θ and rib length (𝑙1 and 𝑙2) and studied their 

auxetic behaviour. The warp knitted spacer fabric is shown in Figure 2.19. 

 

Figure 2.19. Warp knitted spacer fabric [109]. 

The auxetic behaviour of this structure tested at different directions is shown in 

the Figure 2.20. 

 

Figure 2.20. Poisson's ratio vs. tensile strain tested at different direction of fabric [109]. 

The fabric exhibits negative Poisson’s ratio tested in all direction. The fabric 

exhibited higher Poisson’s ratio value in weft direction and less in warp direction. The 

Poisson’s ratio value of the fabric structure decreases with increase of tensile strain. The 

geometrical parameters have an obvious effect on Poisson’s ratio value of the structure. 

The closer the fabric structure (less θ value) will have the higher auxetic effect (high 

negative Poisson’s ratio value). The developed auxetic fabric exhibited better shape 

fitting ability than conventional fabric (refer Figure 2.21). This behaviour will helpful 

where shape fitting is highly required [109]. 
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Figure 2.21. Shape fitting ability of spacer fabric. (a) Conventional fabric and (b) 

auxetic fabric [109]. 

2.3.3. Auxetic composites 

Presently, there exist two main approaches for producing auxetic composites: (1) 

angle ply method, i.e. through stacking of composite laminates at specific angles and (2) 

fabrication of composites in which one or more phases are auxetic. In the angle ply 

approach, unidirectional carbon fibre/epoxy laminates are stacked in a certain sequence 

resulting in negative Poisson’s ratio either in in-plane or through-thickness direction. 

Poisson’s ratio achieved using this method lies in the range of -0.21 to -0.37. The angle 

of laminates in these composites is kept between ±15° to 30° [21]. In the other approach, 

auxetic composites are manufactured using double helix yarns (DHY) [41, 103, 105]. 

Helical yarns are used to produce auxetic composites in two different ways. In one 

method, carbon double helix yarns are used to reinforce polyester matrix unidirectionally 

to produce composites with stiffness of 4 GPa and negative Poisson’s ratio of -6.8 at 30% 

fibre volume fraction [41]. In the second method, helical yarns are woven into a fabric 

and silicone rubber is used as the matrix to produce flexible composites with Poisson’s 

ratio of -0.1 and low elastic modulus (5.8 MPa) [105].  

2.3.4. Auxetic structures 

In the last few decades, dissimilar geometric structures and models exhibiting 

auxetic behaviour have been proposed, studied and tested their mechanical properties. 

The main auxetic structures reported are two dimensional (2D) and three dimensional 

(3D) re-entrant structures, rotating rigid/semi-rigid units, chiral structures, hard 

molecules, liquid crystalline polymers and microporous polymers. Some of these auxetic 

structures are presented in Figure 2.22 [38, 13, 19 – 21]. 
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Figure 2.22. Auxetic structures: (a) re-entrant hexagon, (b) chiral honeycomb, (c) star-

shaped honeycomb topology, (d) double arrow head honeycomb topology, and (e & f) 

missing rib or lozenge grid [38, 13, 19 – 21]. 

2.3.5. Properties of auxetic materials 

Auxetic materials have special properties compared to non-auxetic materials 

including: 

 Good fracture toughness, 

 High in-plane indentation resistance, 

 High dynamic properties, 

 High transverse shear modulus, 

 Superior energy absorption, 

 Improved damping, 

 Improved strength, 

 Porosity and permeability variation with strain. 

2.3.6. Applications of auxetic fibrous materials 

Auxetic materials can be used in wide range of applications in apparel textiles 

(auxetic fibres, threads, functional fabrics, etc.), technical textiles (air filter, gasket, 

fishnet, fastener, shock absorber, sound absorber, etc.), aerospace industry (curved body 

parts, wing panel, and aircraft nose-cones), materials for protection (crash helmet, 
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projectile-resistant materials, shin pad, glove, protective clothing, car bumpers, etc.), bio-

medical industry (bandage, wound pressure pad, dental floss, artificial blood vessel, drug 

release devices, etc.), furniture and also in sensors and actuators (hydrophone, 

piezoelectric devices, miniaturized sensors) [37, 38, 43]. 

2.4. Conclusion 

The key purpose of this research works is to develop a novel material for the civil 

engineering applications which has the combining features of fibre reinforced composites 

and auxetic materials. The development of the novel materials mainly for the existing 

structural elements to enhance their resistance against earth quake, blast or impact load 

caused by explosions. The key requirements for these applications are higher energy 

absorption, ductility, catching the debris caused by explosion, etc. Existing FRP materials 

available for this type of application is not up to the level, i.e. less ductility and energy 

absorption. 

Until now, there is no auxetic materials, which is meant for civil engineering 

applications. In this research works, the suitable auxetic structural designs are adopted 

and auxetic composite structures developed from fibre reinforced braided composite rods. 

These novel auxetic materials expected to show higher ductility, enough strength, and 

higher energy absorption than other FRP materials. 
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Chapter 3 
 

Materials and Methods 
 

 

 

 

 

 

 

3.1. Introduction 

This chapter explained about fibres used in the experimental work and its tensile 

properties. Also, it is explained the production of the core reinforced braided structures 

and the developed auxetic structures in this research work consists of both undulation and 

straight form of BCRs, it is necessary to understand their tensile behaviour. So the tensile 

testing was carried out for both undulation and straight form BCRs. In addition, 

preparation of auxetic structures for tensile and Poisson’s ratio testing explained and also, 

an evaluation method of mechanical behaviour (Poisson’s ratio and work of rupture) of 

the auxetic structures provided briefly. 

3.2. Fibres and resin 

For the production of braided composite rods, glass fibre roving with linear 

density of 1200 tex and 4800 tex was purchased from Owens Corning, France. Also, 

basalt fibre roving with 4800 tex and carbon fibre roving with linear density of 1600 tex 

were purchased from Basaltex, Belgium and Toho Tenax, Germany, respectively. These 

core fibres are used to produce braided structures with required linear density by varying 

number of rovings during braiding. The epoxy resin used to in this work was supplied by 
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Sika, Germany, in two parts: Biresin CR83 Resin and Biresin CH-83-2 Hardner. The resin 

and hardener components were mixed in a weight ratio of 100:30 prior to use. The 

important properties of fibre and resin are given in Table 3.1. 

Table 3.1. Physical and mechanical properties of core fibres and resin 

S. No. Properties Basalt Glass Carbon Epoxy 

1 Density (g/cm3) 2.63 2.62 1.77 1.15 

2 Filament diameter (µm) 17 -- 13 -- 

3 Tensile strength (MPa) > 4000 3100 – 3800 4400 122 

4 Tensile modulus (GPa) 87 80 – 81 240 3.3 

5 Elongation (%) -- -- 1.8 6.7 

 

3.3. Production of braided structures 

The core fibre reinforced braided structures were produced by using vertical 

braiding machine (Figure 3.1). The core fibres used to produce braided structures are 

glass, basalt and carbon fibres. The sheath was multifilament polyester fibre with linear 

density of 110 tex and total 16 bobbins were used. The following are the braided 

structures produced for this research work. 

 Glass fibre braided structure – 2400, 4800, and 6000 tex 

 Basalt fibre braided structure – 4800 tex 

 Carbon fibre braided structure – 4800 tex 

 

Figure 3.1. Vertical braiding machine. 
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These braided structures were produced to develop auxetic structures based on 

missing rib or lozenge grid and re-entrant hexagon or bow-tie design. Also, the braided 

structures were tested under tensile loading to study their tensile behaviour which can be 

useful to understand the tensile behaviour of auxetic structures. As the braided structures 

are used both undulation and straight forms to develop auxetic structures, the tensile 

testing of braided structures carried out with both forms. 

3.3.1. Tensile properties of BCRs in straight form 

The epoxy resin was applied to the braided structures. The braided structures after 

resin application and curing became circular composites termed as braided composite 

rods (BCR). The weight percentage of core fibre in each of these rods was around 51 ± 

2%. Resin application was necessary to give sufficient mechanical stability to the braided 

materials in order to handle them easily and turn them in to auxetic structures. Also, the 

braided structures display suitable mechanical properties necessary for the targeted use 

only after resin application and formation of BCR, since the epoxy matrix holds the 

various components (core and sheath) of braided structures together, enabling them to act 

as a single structure. In absence of resin, there may be slippage between the core and 

sheath as well as between the core fibres causing in poor mechanical properties. In these 

BCRs, the cover or sheath influences the adhesion property and provides environmental 

protection, whereas the axial reinforcement (core fibre) is responsible for their 

mechanical performance.  

The tensile test of BCRs (straight form, see Figure 3.2) was carried out using 

Universal Tensile Testing machine. The cross-head speed of tensile testing was 2 

mm/min. The gauge length of BCRs in straight form is 40 cm and tensile properties of 

the BCRs produced with different type of core fibres are provided in Table 3.2. 

 

Figure 3.2. Braided composite rods in straight form. 
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Table 3.2. Tensile properties of BCRs (straight form) with resin 

Fibre type 

BCRs core 

linear 

density (tex) 

BCR 

diameter 

(mm) 

Tensile 

strength 

(MPa) 

Tensile 

Modulus 

(GPa) 

Elongation 

(%) 

Glass 4800 2.39 600 14.8 4.10 

Basalt 4800 2.41 680 14.5 4.70 

Carbon 4800 2.90 885 29.0 3.05 

 

 

Figure 3.3. Stress vs. strain curves of BCRs produced with different core fibres (4800 

tex). 

The stress - strain curves for the BCRs produced with different types of core fibres 

are shown in Figure 3.3. The results show that carbon fibre exhibits highest tensile 

strength and modulus than basalt and glass fibre. Basalt fibre shows higher tensile load 

compared to glass fibre, however, the tensile modulus of basalt is almost similar to glass 

fibre. 

3.3.2. Tensile properties of BCRs in undulation form 

Tensile testing of BCRs produced with different core fibres (glass, basalt and 

carbon) having undulation (see Figure 3.4) was carried out using Universal Tensile 

Testing machine. The cross-head speed of testing was 25 mm/min. The gauge length of 
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the samples were 40 cm. The tensile properties of undulation BCRs is provided in the 

Table 3.3 and the tensile behaviour is shown in the Figure 3.5. 

 

(a) 

 

(b) 

Figure 3.4. (a) Schematic diagram of undulation rod with angle and (b) braided 

composite rods in undulation form. 

 

Table 3.3. Tensile properties of undulation BCRs 

Fibre type 

BCRs core 

linear 

density (tex) 

BCR 

diameter 

(mm) 

Tensile 

strength 

(kN) 

Elongation 

(%) 

Glass 4800 2.39 1.57 8.11 

Basalt 4800 2.41 2.13 9.20 

Carbon 4800 2.90 2.70 7.82 

 

The results show that carbon fibre undulation BCR exhibits higher tensile load, 

followed by basalt and glass fibre undulation BCR. Also, compared with straight BCR, 

the tensile load is less and elongation is more. This is due to the presence of inclination 

in the BCR and it takes more time to become straight. In addition, the bending of core 

fibres in the undulation BCRs results less tensile load. 
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Figure 3.5. Tensile behaviour of undulation BCRs. 

3.4. Testing of auxetic structures 

Auxetic structures were prepared from using braided structures and tested in 

tensile testing machine to study their auxetic and tensile behaviour. The preparation of 

the samples for the tensile testing is explained here. 

3.4.1. Sample preparation 

While producing auxetic structures extra length (10 cm) have been given in the 

structures at top and bottom for the clamping purpose (see Figure 3.6). To produce the 

clamp for the tensile testing, first, few layers of glass fabric with resin were applied both 

sides at top and bottom of the structures. After resin curing, the Zincor (electrogalvanized 

steel plate with zinc coating) metal plates (14 cm x 10 cm x 0.15 cm) were applied top 

and bottom of the samples on both sides. This type of clamping helps avoid slippage 

during testing. 

 

Figure 3.6. Auxetic structure with clamping plate at the top and bottom. 
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3.4.2. Tensile testing 

The auxetic structures were tested in Universal Tensile Testing machine. Testing 

was carried out with the cross-head speed of 25 mm/min. Videos were captured during 

testing to study the deformation of the structures to evaluate the Poisson’s ratio of the 

structures, using image based tracking methods. 

3.5. Evaluation of the mechanical properties of the structures 

3.5.1. Calculation of Poisson’s ratio of the structures 

The white marking was provided on the structures at top, middle and bottom of 

the structure. The distance between the points marked in the structures both in lateral and 

longitudinal directions were measured in pixels using ImageJ software manually. The 

vertical and transverse strains calculated by using following formulae: 

𝜀𝑥 =
𝑥𝑛− 𝑥0

𝑥0
           (3.1) 

𝜀𝑦 =  
𝑦𝑛− 𝑦0

𝑦0
           (3.2) 

  

Where 𝑥𝑛 and 𝑦𝑛 are the distance between the points marked on the structure at 

nth of loading, 𝑥0 and 𝑦0 are the original distance between the marks at zero loading. The 

average lateral strain was calculated by averaging the lateral strains calculated at top, 

middle and bottom points. The average longitudinal strain was calculated from 

longitudinal strains measured from left and right points of the structures. Later, the 

Poisson’s ratio was calculated from the average strains using Eq. 3.3, 

𝜈𝑥𝑦 = - 
〈𝜀𝑥〉

〈𝜀𝑦〉
        (3.3) 

3.5.2. Calculation of work of rupture of the structures 

Work of rupture or energy required to break the structure has been calculated 

using load-elongation curve. To calculate the area under the curve there are numerous 

formulae with different approaches. Numerical integration using the rectangle rule based 

on the midpoint was used in this work. Figure 3.7 shows a representation of this method 

where the blue area is the exact area and the grey value estimated by the integral method. 
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Figure 3.7. Area under the curve by rectangle method. 

This is an approximation of an integral of a function by dividing an interval (a - 

b) and in (m) sub-intervals, the area of each subinterval is calculated.  

The function can be defined by:    

∫ 𝑓(𝑥) ≈ ∑ 𝑓 (
𝑥𝑘+𝑥𝑘+1

2
) ℎ𝑚−1

𝑘=0
𝑏

𝑎
         (3.4) 

3.6. Conclusion 

This chapter detailed about physical properties of fibres used in this research 

works. Also, the tensile testing of BCRs with straight and undulation forms were carried 

out. As the developed auxetic structures composed of BCRs with undulation and straight 

form. So tensile testing of single rods will be helpful to understand the tensile behaviour 

of the structures. BCRs in straight form shows linear tensile behaviour, whereas BCRs in 

an undulation form shows linear behaviour after the undulation becomes straight and at 

initial stage the load carried by the rods is less and it will be varied based on the level of 

the undulations of the axial rods. The chapter also explained methods of tensile testing 

and calculation of strains, Poisson’s ratio, and work of rupture of the auxetic structures. 



 

47 

 

 
Chapter 4 

 

Development and Optimization of 

Auxetic Structures Based on Lozenge 

Grid 
 

 

 

 

 

 

 

4.1. Introduction 

This chapter discusses the development and optimization of auxetic structures 

from braided composite rods in detail. There are many auxetic structural design reported 

in the literature (see also Figure 2.22) and out of that one simple design has been chosen 

to develop auxetic structures from fibre reinforced braided composites. The auxetic 

design chosen was “lozenge grid or missing rib”. Primarily, the auxetic structures were 

produced by varying their structural parameters (rib length and angle) and studied auxetic 

and tensile behaviour in detailed manner. The developed auxetic structure had some 

drawbacks like the opening between the longitudinal and transverse elements was much 

compared with commercial grid and tensile behaviour of the structures also is less when 

compared to commercial grids. 

Later the basic lozenge grid design was modified and optimized to suit for the 

strengthening purpose of civil structural elements by studying structural and material 

parameters. The structural parameters studied are the angle, rib length and design. The 
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material parameters studied were types of core fibres and linear density of core fibre. The 

auxetic behaviour of the developed auxetic structures were carried out by two different 

image-based approaches. The first method is an image-based tracking method, in which 

the image captured at particular intervals using a high resolution camera automatically 

and later the images were analysed using Mat Lab software. Another method is manual 

process, in which videos were captured and later they were converted in to images at 

required interval to analyse manually. 

4.2. Development of auxetic structure: Preliminary study 

The auxetic structural design considered in this research is “missing rib” (Figure 

2.22e) due to its simple design and ease of manufacturing using braided structures. This 

type of auxetic structures has been developed for the first time in macro-scale using 

composite materials, based on the auxetic structural design previously reported. These 

structures were subjected to tensile loading in a Universal Testing Machine and auxetic 

behaviour (Poisson’s ratio) was characterized by means of an image-based tracking 

method. The influence of the structural angle on Poisson´s ratio and tensile properties was 

thoroughly investigated. An analysis of the auxetic behaviour was performed using a 

previously reported analytical model and the experimental values were compared with 

the predicted values obtained from the analytical model. 

4.2.1 Materials and methods 

Fibre reinforced braided structures were used to develop the auxetic structure in 

the following steps: (1) the auxetic structural design (Figure 4.1) was drawn on a white 

chart paper; (2) the chart paper was placed on a board and the braided structures were 

placed over the drawn design firmly with help of adhesive tape; (3) the cross-over points 

were tied by polyester filaments and epoxy resin was applied over the structures using a 

brush; (4) after curing, the structures were removed from the board. The braided structures 

after resin application and curing became circular composites termed as BCRs.  
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Figure 4.1. Missing rib or lozenge grid auxetic structural design. 

Resin application was necessary to give sufficient mechanical stability to the 

braided materials in order to handle them easily and turn them in to auxetic structures. 

Also, the braided structures show suitable mechanical properties necessary for the 

targeted use only after resin application and formation of BCR, since the epoxy matrix 

holds the various components (core and sheath) of braided structures together, enabling 

them to act as a single structure. In absence of resin, there may be slippage between the 

core and sheath as well as between the core fibres resulting in poor mechanical properties. 

Therefore, although without epoxy resin the developed structures may permit higher 

flexibility and structural movement (similar to flexible knitted auxetic structures) leading 

to better auxetic property, application of epoxy resin was necessary to achieve suitable 

mechanical properties for the targeted applications. Five different auxetic structures were 

prepared by changing their structural angles, φ and  (Figure 4.2). The dimension of these 

structures was kept constant for all specimens, i.e. 20 cm in width and 40 cm in length, 

with additional length for clamping during testing. In this study, only the effect of angle 

(φ,) on the auxetic and tensile behaviour was addressed. Five different types of auxetic 

structures produced within this study are shown in Figure 4.2 and their structural angles 

are provided in Table 4.1. Four specimens were produced and tested for each type of 

auxetic structure. 
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Table 4.1. Values of the structural angles and rib length 

Structure Angle Value, ° Rib Value, cm 

1 
φ 45 r1 7.0 

ζ 91 r2 3.5 

2 
φ 52 r1 6.3 

ζ 102 r2 4.0 

3 
φ 64 r1 5.6 

ζ 122 r2 4.6 

4 
φ 68 r1 5.4 

ζ 127 r2 4.6 

5 
φ 79 r1 5.1 

ζ 138 r2 4.6 

 

 

Figure 4.2.  Developed auxetic structures: a) structure-1, b) structure-2, c) structure-3, 

d) structure-4, e) structure-5, and f) magnified image of structure-5. 

4.2.2. Evaluation of auxetic and tensile behaviours of the structures 

The tensile and auxetic behaviours of the five structures were evaluated 

simultaneously using tensile testing machine. The cross-head speed of tensile testing 

machine was kept at 25 mm/min. To observe the dimensional changes in the structures 
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under tensile load using feature tracking method, white marks were painted on the 

structures at discrete nodes, as shown in Figure 4.3 [110, 111]. This optical technique has 

the advantage of being contact-free, providing relative displacements between target 

points over the region of interest. The photo-mechanical set-up was adjusted in order to 

provide suitable resolution for the purpose of the study. A camera-lens optical system was 

used for image grabbing. A charge-coupled device (CCD) 8-bit Baumer Optronic FWX20 

camera (resolution of 1624 × 1236 pixels2, pixel size of 4.4 m and sensor format of 

1/1.8’’) was coupled with a Nikon AF Micro-Nikkon105 mm f/4D IF-ED lens. The 

working distance was set to 2755 mm and the focal length to about 50 mm, in order to be 

less sensitive to out-of-plane parasite movements. The lens aperture was set to f/16 in 

order to enhance the depth of focus during testing. LED lighting system was used and a 

matte black environment around the specimen was created to enhance sharp white-black 

contrast of the target marks.  

 

Figure 4.3. Auxetic structure during testing. (a) Structure before testing; (b) structures 

with white marks painted at nodes; (c) binary image resulting from the post-processing 

using an image-based tracking algorithm. 

The size of the marks with regard to the field of view was chosen to compromise 

between spatial resolution (smaller marks) and accuracy (large marks). These marks 

represent a carrier for measuring the relative displacement in the structure under analysis. 

During tests, images were recorded with an acquisition frequency of 0.4 Hz using a 

shutter time of 14 ms. The recorded images of the structures were analysed by image 

processing. The centroid of target objects in the images were tracked during image 

sequence based on a combination of threshold segmentation and mathematical 

morphological operators [110, 111]. The relative distance variation among the selected 

marks allowed to evaluate the strain on the structures. Before testing, static and translation 
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rigid-body tests were carried out in order to evaluate the resolution of the technique. The 

advantage of such tests is that the measured field is theoretically known, allowing a 

statistical evaluation of noise [112, 113]. Therefore, the standard deviation over the noise 

field (understood as a white Gaussian noise) is the estimation of the accuracy of the 

technique. Regarding the size of the marks and photo-mechanical set-up, in this case, a 

resolution of 10-1 pixels (26 m) in displacement was obtained. Taking a reference base 

length between adjacent marks of 100 mm, a resolution in strain of 0.026 % was then 

achieved. Specimens were tested until failure. 

4.2.3. Results and discussion 

4.2.3.1. Auxetic behaviour of the structures 

Poisson’s ratio of the structures was calculated by strain components obtained 

from the image-based tracking method and presented in Figure 4.4 to Figure 4.8. The 

comparison of auxetic behaviour of five different structures is shown in Figure 4.9, which 

presents the behaviour of only one representative sample from each category. 

 

Figure 4.4. Auxetic behaviour of structure-1. 
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Figure 4.5. Auxetic behaviour of structure-2. 

 

 

Figure 4.6. Auxetic behaviour of structure-3. 
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Figure 4.7. Auxetic behaviour of structure-4. 

 

Figure 4.8. Auxetic behaviour of structure-5. 

The results show that the auxetic structures have Poisson’s ratio in the range -5.00 

to -0.30.  Poisson’s ratio of developed auxetic structures increase with the increase in 

angle φ. The auxetic behaviour of samples from each structure is similar with less sample 

to sample variation. Also, the absolute value of Poisson’s ratio decreases with the increase 

in longitudinal strain level. In these structures, the longitudinal and transverse rods 

contain undulation and are arranged in a special configuration. As the cross-over points 

or nodes are tied by filaments, when tensile load is applied in the longitudinal direction, 

the load is transmitted to the transverse direction through these nodes. The undulation in 
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the longitudinal rods continues to straighten under loads, leading to the increase in 

specimen´s width due to straightening of the transverse rods.  

 

Figure 4.9. Change of Poisson’s ratio with longitudinal strain for the auxetic structures. 

4.2.3.2. Relationship between angle φ and Poisson’s ratio 

The change in angle φ was measured from images taken at regular intervals at 

different strains for all structures. The variation of Poisson’s ratio with respect to variation 

of angle φ is given in Figure 4.10.  

 

Figure 4.10. Change of Poisson’s ratio as a function of angle φ of the structures. 
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As the tensile load is applied to the structures, angle φ continuously increases until 

the longitudinal rods become straight, i.e. angle φ reaches 90°. The results showed that 

Poisson’s ratio of the structures decreases with the increase in angle φ, but the trend is 

different for different structure. For structure-1 to 4, Poisson’s ratio initially exhibits a 

relatively constant value and then starts to decrease continuously with increasing φ. On 

the other hand, for structure-5, Poisson’s ratio decreases continuously with increasing φ. 

The different behaviour of structure-5 may be due to the higher initial value of angle φ 

(i.e. at zero load condition). Although the auxetic structures produced at micro-scale using 

the same auxetic design showed similar influence of angle φ on Poisson’s ratio in the 

lower φ range (lower than 56º), this effect was not studied for the higher range of φ (45- 

90º), as investigated in the present research (Figure 4.2). 

4.2.3.3. Relationship between angle φ and longitudinal strain 

The relationship between angle φ and longitudinal strain measured using image-

based tracking method is shown in Figure 4.11. The results show that the longitudinal 

strain increases with increase in angle φ for all structures.  

 

Figure 4.11. Measured longitudinal strain as a function of angle φ of the structures. 
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these structures varies according to their initial angle φ. The lower is the value of initial 

angle φ, lower is the maximum tensile load, which increases with the increase in initial 

angle φ of the structures. Structure-5 shows the maximum tensile load (initial φ – 79o) 

among all structures, and unlike other structures, exhibits good tensile load bearing 

capacity even at lower strain level. 

Table 4.2. Tensile test results of the structures 

Structure  

Avg. max. 

tensile 

load, kN 

Avg. 

elongation at 

max. tensile 

load, % 

Avg. work of 

rupture, J 

1 1.15 (0.2) 38.8 (5.5) 13.8 (20.9) 

2 1.48 (0.7) 25.8 (2.7) 12.1 (18.3) 

3 2.34 (0.6) 11.4 (4.1) 14.4 (8.0) 

4 3.00 (0.6) 8.6 (5.5) 19.7 (22.5) 

5 4.55 (0.7) 5.6 (6.1) 43.7 (18.5) 

Note – Values of CV% are given in the bracket. 

 

Figure 4.12. Tensile behaviour of developed auxetic structures. 
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Figure 4.13. Tensile behaviour of auxetic structure-3. 

 

 

Figure 4.14. Tensile behaviour of auxetic structure-5. 

Phase I 

Structure-3: Upon loading, the structure starts to bear load due to straightening of the 

longitudinal rods and shows less load bearing capacity and high elongation in this phase 

due to lower initial angle φ (64°). 
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Structure-5: Upon loading, the structure starts to bear load due to straightening of the 

longitudinal rods and shows higher load bearing capacity and lower elongation in this 

phase than structure-3 due to higher initial angle φ (79°). The structures in phase I are 

shown in Figure 4.15. 

 

Figure 4.15. Structure at phase 1. 

Phase II 

Structure-3: The curves are steeper in this region since the longitudinal rods became 

already straight in phase I, and start to bear load due to tensile deformation until fracture. 

The elongation of this phase is less. 

Structure-5: Initially, the curves are steeper and linear in this region due to elastic 

deformation of the longitudinal rods and then shows yielding before fracture. Therefore, 

structure-5 shows higher elongation and some pseudo-ductile behaviour when compared 

to structure-3. The structures in Phase II are shown in Figure 4.16. 

 

Figure 4.16. Structure at phase II. 
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Phase III 

Structure-3 & 5: The failure of longitudinal rods occurs in phase III. (The arrow marks 

shown in Figure 4.17) 

 

Figure 4.17. Structure at phase III. 

Due to less undulation of the longitudinal rods in structure-5, the rods become 

straight quickly and therefore, exhibits lower strain in phase I. However, in other 

structures, the undulation of longitudinal rods is high and therefore, these structures take 

more time to become straight, resulting in higher strain in phase I. Higher undulation of 

longitudinal rods in structure-1 to structure-4 cause development weakest points and 

stress concentration at the bending locations, and therefore, failure occurs suddenly at 

these weakest points. On the other hand, less undulation of longitudinal rods in structure-

5 does not create weakest points at the bending locations and therefore, failure does not 

preferably occur at these locations. As a result, the structure-5 can show its complete 

tensile behaviour, i.e., a linear elastic behaviour due to elongation of core fibres and 

subsequent plastic behaviour probably due to matrix deformation and load transfer to the 

sheath polyester fibres. 

4.2.3.5. Work of rupture  

Work of rupture (WOR), i.e. work done or energy required to break the structures 

has been calculated using load-elongation curve of the structures and given in Table 4.2. 

Work of rupture for the auxetic structure-5 is two to three times higher than the other 

structures.  
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4.3.  Development of auxetic structure based on lozenge grid: 

optimized structure 

The auxetic structure explained in previous section was optimized based on design 

aspects to improve the structural integrity and strengthening behaviour. The auxetic 

structures explained in previous section have the drawback of low strength at initial stage 

and too much space between longitudinal and transverse rods in the structures. The 

parameters studied to optimize the structure is explained in following sections of this 

chapter. 

 

4.3.1. Parameters of developed structures 

In order to study the influence of  different parameters, auxetic structures were 

produced using different types of core fibre having different linear densities (2400 tex, 

4800 tex, and 6000 tex glass fibre; 4800 tex basalt fibre and 4800 tex carbon fibre). Also, 

structures angle φ (66°, 72°, and 78°) varied and studied effect on auxetic and tensile 

behaviour. Moreover, modification of basic structures through addition of straight 

longitudinal rod and change in structural angle resulted in different structural parameters, 

which are listed in Table 4.3 along with material parameters. Also, the developed 

structures are given in the Figure 4.18. 

The dimension of the structures was kept constant for all specimens, i.e. 15 cm in 

width and 40 cm in length, with additional length for clamping. Four specimens were 

produced for each type of auxetic structure.  
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Figure 4.18.  Auxetic structural design used in the present study showing the structural 

angles (r1 – longitudinal rod rib length and r2 – transversional rod rib length). (a) 

Schematic of structure-1, (b) real structure-1, (c) portion of structure in close-up, (d) 

schematic of structure-2 and (e and f) structure-2 and structure-3. 

Table 4.3. Parameters of developed auxetic structures 

Structure 
Core fibre 

type 

Core 

fibre, tex 

Angle φ, 

° 
Rib length, cm 

S – 1  Glass 2400 66 r1 – 2.7 & r2 – 2.35 

S – 1 Glass 4800 66 r1 – 2.7 & r2 – 2.35 

S – 1 Glass 6000 66 r1 – 2.7 & r2 – 2.35 

S – 1 Glass 4800 72 r1 – 2.6 & r2 – 2.35 

S – 1 Glass 4800 78 r1 – 2.5 & r2 – 2.35 

S – 1 Basalt 4800 66 r1 – 2.7 & r2 – 2.35 

S – 1 Carbon 4800 66 r1 – 2.7 & r2 – 2.35 

S – 2*  Glass 4800 66 r1 – 2.7 & r2 – 2.35 

S – 3*  Glass 4800 78 r1 – 2.5 & r2 – 2.35 

Note: *S – 2 and S – 3 consists both undulation and straight vertical rods 
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4.3.2. Measurement of Poisson’s ratio and tensile properties 

The measurement of Poisson’s ratio and tensile properties of the auxetic structures 

developed were carried out in a Universal Tensile Testing Machine. The cross-head speed 

of tensile testing machine was kept at 25 mm/min. White marks were painted on the 

structures at top, middle and bottom as shown in Figure 4.19. During tensile testing, the 

video of sample deformation was captured using Canon EOS 650D and later, the video 

was converted in to images at specific interval. The distance between the marks in the 

structures, both in longitudinal and transverse directions, was measured in pixels using 

ImageJ software. The longitudinal and transverse strains were then calculated by using 

equations 3.1 and 3.2. 

 

Figure 4.19. Auxetic structure with marks. 

Where 𝑥𝑛 and 𝑦𝑛 are the distance between the points marked on the structure at 

nth of loading, 𝑥0 and 𝑦0 are the original distance between the marks at zero loading. The 

average transverse strain was calculated by averaging the transverse strain calculated at 

top, middle and bottom points. Similarly, the average longitudinal strain was calculated 

from longitudinal strains measured from left and right points of the structures. The 

measurement principle has been illustrated in Figure 4.20. Later, the Poisson’s ratio was 

calculated from the average strains by using equation 3.3. 
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Figure 4.20. (a) Auxetic structure with painted marks, and (b) points for strain 

calculation. 

4.3.3. Results and discussion 

4.3.3.1. Auxetic behaviour of the basic structures 

Axial strain on the longitudinal undulation rods induced by the tensile load results 

straightening of the rods, thus leads to expansion in the transverse direction through an 

opening of transverse undulation rods. The deformation of the structures unit cell 

elements at various stages during tensile loading are presented in Figure 4.21. 

 

 

Figure 4.21. (a) Schematic of unit cell movement during loading and (b) Structures unit 

cell at various stages of loading. 
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4.3.3.2. Effect of core fibre type on auxetic behaviour of structures 

To study the effect of core fibre types, auxetic structures were produced with 

braided rods consisting of glass, basalt, and carbon core fibres with same linear density, 

4800 tex. As presented in Figure 4.22 and listed in Table 4.4, the core fibre type shows 

no influence on the auxetic behaviour and the trend of Poisson’s ratio change with 

longitudinal strain is the same for all fibres.  

The Poisson’s ratio values remain constant until around ~5.5% longitudinal strain 

and then start to decrease with additional increase of strain until failure of the structures. 

The straightening of longitudinal rods stop at this strain level (~5.5%), i.e. they become 

fully straight and no further transverse expansion is possible. Further axial strain after this 

point, therefore, results in reduction of Poisson’s ratio. 

Table 4.4. Poisson’s ratio of the auxetic structures developed from the glass, basalt and 

carbon fibres 

Core 

fibre 

(tex) 

Type of 

fibre 

Avg. diameter 

of BCR (mm) 

Avg. Poisson’s 

ratio at 

around 1% 

strain 

4800 Glass 2.4 (2.1) -1.59 (11.6) 

4800 Basalt 2.4 (3.4) -1.59 (13.1) 

4800 Carbon 2.1 (4.0) -1.57 (14.3) 

Note: Values of CV% are given inside brackets. 
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Figure 4.22.  Auxetic behaviour of structure-1 having different types of fibres as core. 

4.3.3.3. Effect of linear density of braided composite rods on auxetic behaviour  

The effect of linear density of core fibres on auxetic behaviour of developed 

structures can be seen from Table 4.5 and Figure 4.23. It is obvious from the Table 4.5 

that the diameter of BCRs increases with the increase in linear density of core fibre. The 

change in the BCR diameter causes change in the auxetic behaviour of the structures. An 

increase in the BCR diameter reduces the auxetic behaviour (2400 tex > 4800 > 6000 

tex). This is due to the fact that higher diameter (i.e. high linear density core) longitudinal 

and transverse elements present more resistance towards deformation, resulting in lower 

transverse expansion and Poisson’s ratio.  

Table 4.5. The diameter values of BCRs produced from various linear density of glass 

fibre 

Glass 

fibre  

(Tex) 

Avg. diameter  

(mm) 

Avg. Poisson’s 

ratio at around 

1% strain 

Percentage of change in 

Poisson’s ratio w.r.t 

2400 tex 

2400 2.1 (3.9) -1.78 (13.7) -- 

4800 2.4 (2.1) -1.71 (5.1) 3.9 

6000 2.7 (2.4) -1.57 (6.7) 11.8 

Note: Values of CV% are given inside brackets. 

-3.0

-2.4

-1.8

-1.2

-0.6

0.0

0 2 4 6 8 10

P
o

is
so

n
's

 r
at

io

Longitudinal strain [%]

Glass fibre

Basalt fibre

Carbon fibre



Chapter 4: Development and Optimization of Auxetic Structures Based on Lozenge Grid 

67 

 

 

Figure 4.23. Auxetic behaviour of structure-1 having glass fibre as core with different 

linear density. 

4.3.3.4. Effect of angle φ on auxetic behaviour of the structures 

Table 4.6 and Figure 4.24 shows that effect of increasing of initial angle φ. It can 

be observed that an increase in φ increases the Poisson’s ratio value. Higher angle of the 

longitudinal inclined rods results in improved tensile load bearing capability and this, in 

turn, leads to higher deformation in transverse direction and higher Poisson’s ratio. 

Maximum Poisson’s ratio obtained with initial structural angle 66° was ~15% and ~96% 

lower as compared to 72° and 78°, respectively.  

Table 4.6. Auxetic behaviour of structures having different initial angle φ 

Initial angle φ 

(°) 

Avg. Poisson’s 

ratio at around 

1% strain 

CV% 

Percentage of 

change in Poisson’s 

ratio w.r.t 66° 

66 -1.70 8.5 -- 

72 -1.96 7.3 15.3 

78 -3.34 7.4 96.5 
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Figure 4.24. Auxetic behaviour of structure-1 having different initial angle φ. 

4.3.3.5. Influence of structural modification on auxetic behaviour 

 The basic auxetic structure, i.e. missing rib or lozenge grid design has been 

modified with longitudinal straight rods to improve their strengthening behaviour, so that 

auxetic structures will be suitable for strengthening of structural elements. The auxetic 

behaviour of the modified auxetic structure is shown in Figure 4.25. Even though the 

modified structure consists of straight vertical rod, it exhibits negative Poisson’s ratio. 

But the Poisson’s ratio value significantly decreased compared with basic structure 

(structure-1) as expected. This is due to the presence of straight vertical rod that partially 

restricts the transverse expansion of the structure, as the core fibre of the BCRs straining 

due to the application of axial load has transverse expansion. The Poisson’s ratio value 

trend of the structure starts with higher value and then drops. Again, it increases until 3% 

of strain value and decreases continuously until the failure of structure. This is attributed 

with breakage of longitudinal straight rod breaks at around 3% longitudinal strain value. 

The initial angle φ of the longitudinal undulation rod of the structure-2 is 66°. This angle 

is increased to 78° to enhance further its strengthening behaviours. This structure referred 

as structure-3 and its auxetic behaviour is shown in Figure 4.26. The Poisson’s ratio value 

for the structure-3 is increased considerably and the value decreases with increase of 

longitudinal strain. This higher Poisson’s ratio value compared to structure-2 is due to the 

higher initial angle φ of longitudinal undulation rods. 
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Figure 4.25. Auxetic behaviour of the structure-2 (with straight rod). 

 

Figure 4.26. Auxetic behaviour of the structure-3 (with straight rod). 

4.3.3.6. Tensile properties of auxetic structures 

The tensile properties of auxetic structures are provided in Table 4.7. The tensile 

load was higher for carbon, which was followed by basalt and glass, in decreasing order. 

It is obvious that carbon fibre is stronger than glass and basalt, so it has provided highest 

tensile load. The typical tensile behaviour of the developed auxetic structures are shown 

in Figure 4.27. 
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It is clear from Table 4.7 that increase of linear density of core fibre increases 

tensile load and decreases elongation (%) value. This is due to increase of linear density 

(6000 tex) increases the number of filaments in the BCRs cross-section which bears more 

load compared lower linear density BCRs (2400 tex). It is also noted from Table 4.7, 

increase of initial angle φ increases the tensile load of the structures. This is due to with 

higher initial angle φ (78°), the vertical undulation rods becomes straight sooner and 

started to bear more loads compared lower initial angle φ (66°). 

Table 4.7. Tensile properties of various developed auxetic structures. 

Structure 
Fibre 

type 
Tex 

Angle 

φ, Deg 

Avg. max. 

tensile 

load, kN 

Avg. 

elongation at 

max. tensile 

load, % 

Avg. work 

of 

rupture, J 

S – 1 Glass 2400 66 4.2 (10.6) 10.0 (4.1) 35.2 (12.0) 

S – 1 Glass 4800 66 4.9 (15.2) 9.3 (6.3) 38.2 (2.7) 

S – 1 Glass 6000 66 5.9 (10.5) 9.1 (2.2) 49.2 (5.0) 

S – 1 Glass 4800 72 5.1 (12.7) 7.2 (6.5) 42.9 (6.0) 

S – 1 Glass 4800 78 6.9 (10.1) 4.3 (9.7) 47.8 (8.7) 

S – 1 Basalt 4800 66 6.1 (14.7) 9.5 (1.9) 45.7 (14.5) 

S – 1 Carbon 4800 66 7.3 (15.5) 8.7 (5.6) 71.3 (12.4) 

S – 2 Glass 4800 66 3.4 (11.2) 8.9 (5.0) 43.7 (10.5) 

S – 3 Glass 4800 78 5.5 (8.3) 3.0 (7.9) 48.8 (6.1) 
Note: Values of CV% are given inside brackets. 

 

Figure 4.27. Tensile behaviour of developed auxetic structures. 
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The tensile results and curve of structure-2 and structure-3 shows that the 

maximum tensile load value is decreased compared with structure-1 and the curves are 

totally different in behaviour. Tensile behaviour of structure-1 to structure-3 explained in 

detailed manner by dividing the tensile vs. elongation curve in three phase and it is shown 

in Figure 4.28, Figure 4.29, and Figure 4.30.  

 

Phase I 

Structure-1: the tensile load applying on vertical undulation rods results straightening of 

undulation and becomes straight at the end of phase. The load bearing of structure is less 

due to undulation of vertical rods. 

Structure-2: as the structure has straight vertical rods, the structure takes more load so 

the curve is steep. End of this phase the straight vertical rod was broken. Also, the 

structure’s vertical undulation rods getting straight in this phase. 

Structure-3: structure consists of straight and less undulation vertical rods results more 

bearing of tensile load compared to structure-2. This is due to undulation becomes straight 

quickly and start to bear more loads. At 2% of longitudinal strain structure-2 bears 2.5 

kN load, but structure-3 bears 3.4 kN tensile load. End of this straight vertical rod was 

broken and undulation vertical rods are become straight. The Figure 4.31 shows the all 

structures in Phase I. 

 

Figure 4.28. Tensile behaviour of structure-1. 
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Figure 4.29. Tensile behaviour of structure-2. 

 

Figure 4.30. Tensile behaviour of structure-3. 

Phase II 

Structure-1: the vertical rods are becomes straight and started to bear more tensile load 

and curve is steep in this phase. 

Structure-2: the straightened vertical undulation rods started to bear more loads so the 

curve become steep again. 
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Structure-3: straightened vertical rods started to take more loads, so the curves are steep 

again. 

The Figure 4.32 shows the structures at phase II. 

Phase III 

Structure-1: the vertical rods were failed one by one in this stage. The failure takes place 

at the bending points of rods. Because the undulation causes growth of weak points in the 

core fibre at the bending and stress concentrates at this points, and therefore, breaking of 

rods happened at this weak points. 

Structure-2 & 3: the straightened vertical undulation rods failed one by one. The failure 

takes place bending points of rods and the reason explained in the previous paragraph. 

The Figure 4.33 shows the structures at phase III. 

 

 

Figure 4.31. Structures at phase I: a) structure-1, b) structure-2, and c) structure-3. 
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Figure 4.32. Structures at phase II: a) structure-1, b) structure-2, and c) structure-3. 

 

Maximum tensile load for the structure-1 is more compared to structure-2 and 3. 

Because, in structure-1 all the three vertical rods bearing loads at once, whereas in 

structure- 2 and 3 the load bearing capacity was distributed in two phase. However, the 

energy absorption is more for structure-2 and 3 compared to structure-1. 

 

  Figure 4.33. Structure at phase III: (a) structure-1 and (b) structure-2 and structure-3. 
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4.3.3.7. Work of rupture of the auxetic structures 

Work of rupture (J) calculated for the developed auxetic structures are given in 

Table 4.7. As expected, the work of rupture increases with increase of linear density of 

glass fibre and increase of structure initial angle φ for the structure-1 and the work of 

rupture of the structures developed from the different core fibres as follows: glass < basalt 

< carbon. Work of rupture for the structures developed from glass fibre (4800 tex) is in 

the order: structure-1< structure-2 < structure-3. As structure-3 exhibits higher work of 

rupture and better tensile properties than the other two structures, it is here proposed for 

civil engineering applications. As structure-3 consists of both straight and undulation 

vertical rods, it will give strengthening as well as ductility in balanced way more than 

other structures. The core fibre of the BCRs can be chosen depending up on the nature 

and requirement of a given specific application. 

4.4. Conclusion 

The auxetic structures studied in the preliminary work had some drawbacks 

concern with civil engineering applications like no load capacity at lower tensile strain, 

less energy absorption and more space between longitudinal and transverse elements of 

the structures. So the design is modified and optimized and studied auxetic and tensile 

behaviour in detailed manner. Simple Image analysis software was used to measure strain 

components of the structures which undergone tensile tests with a balanced compromise 

between spatial resolution and accuracy. Poisson’s ratio was calculated using strain 

components (both longitudinal and transverse) obtained through the image analysis.  

All structures exhibited negative Poisson’s ratio and Poisson’s ratio was 

dependent on the initial value of structural angle (φ).  Poisson’s ratio was found to 

increase with the increase in the initial angle φ. Also, the Poisson’s ratio of the structures 

varied slightly by varying the BCRs diameter and doesn’t change for changing core fibre 

of BCRs. And, the lower diameter BCRs shows higher Poisson’s ratio value compared 

higher diameter BCRs structures. Modified auxetic structures (structure-2 and structure-

3 consists of straight vertical rod) also exhibits negative Poisson’s ratio, but lesser than 

basic structure (structure-1). This is due to the presence of longitudinal straight rods 

which restricts the transverse movement compared to structure-1. 
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The work of rupture and tensile behaviour of the structures also depends up on the 

structure angle, BCRs diameter and type of fibres. The higher work of rupture and tensile 

behaviour was observed for the structures with higher angle, higher BCRs diameter and 

high stiffness fibre (e.g. carbon fibre). The structures work of rupture and tensile 

behaviour enhanced by modifying the structure with straight vertical rod (structure-2 and 

structure-3). This modification of the structures will be helpful while strengthening with 

civil structural elements. Structure-3 exhibits maximum energy absorption and good 

strengthening at lower strain, so it is proposed for the civil engineering applications. 
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Chapter 5 
 

Development and Optimization of 

Auxetic Structures Based on Re-entrant 

Hexagon Design 
 

 

 

 

 

 

5.1. Introduction 

In the previous chapter, the development and optimization of auxetic structures 

based on missing rib or lozenge grid have been discussed. The successful development 

of auxetic structures from braided composites gave motivation to develop another novel 

auxetic structure from braided composites which may give different auxetic and tensile 

behaviour. The design chosen for this new structure is re-entrant hexagon or bow-tie 

design. 

Re-entrant hexagon or bow-tie or butterfly design [114] was chosen due to its 

simple design and easy to develop structure from braided composite materials. Re-entrant 

is the internal geometry of the system, which can be observed in the macro, micro and 

nano structure [107]. Re-entrant design was adopted and produced the following auxetic 

materials: foams for sandwich panel core for aerospace and air filtration applications [19, 

115, 116], flat and warp knitted fabric [107, 117], molecular auxetic, i.e. (n,m) – reflexyne 

[15, 38], cellular tubes for angioplasty or Annuloplasty rings [118], honeycomb core from 

Kevlar/epoxy and recycled rubber core materials for sandwich applications [119 – 122]. 
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The mechanical properties of these materials are not sufficient to use them as 

strengthening materials for civil engineering applications. 

Auxetic structures based on re-entrant hexagon were produced from glass, basalt 

and carbon fibre reinforced braided composites and the results were compared. Also, 

effect of varying linear density of glass fibre roving and angle on auxetic and tensile 

behaviour was studied. Later, the basic auxetic design have been modified with straight 

vertical rods to improve the strengthening characteristics of the structure considering civil 

engineering applications and auxetic and tensile behaviour have been studied in detailed 

manner in this chapter. 

5.2. Development of auxetic structures 

Triaxial braided structures were produced in a vertical braiding machine using 

polyester multi-filament yarns (with linear density of 110 tex) in the sheath and 

glass/basalt/carbon multifilament rovings as the core material. During the braiding 

process, sixteen polyester filament bobbins were used to supply the sheath yarns, which 

were then braided around the core fibres. Produced braided structures were next used to 

develop three types of auxetic structures, as shown in Figure 5.1. The first structure 

(structure-1) was developed using the basic re-entrant honeycomb design. In structure-2, 

the basic design was modified with straight longitudinal rods. Structure-2 was further 

modified to improve the tensile behaviour using higher angle of longitudinal rods, 

resulting in structure-3. For each type, three samples were produced keeping the total 

length and width as 40 cm and 11 cm, respectively, with additional length for clamping 

during tensile testing. Following steps were performed to produce the auxetic structures: 

(1) the auxetic structural design (Figure 5.1) was drawn on a white chart paper; (2) the 

chart paper was placed on a board and the braided structures were placed over the drawn 

design firmly with help of adhesive tape; (3) the joints were tied by polyester filaments 

and epoxy resin was applied over the structures using a brush; (4) after curing, the 

structures were removed from the board. The braided structures after resin application 

and curing became circular composites termed as braided composite rods (BCR). The 

weight percentage of core fibre in each of these rods was around 51 ± 2%.  

Resin application was necessary to give sufficient mechanical stability to the 

braided materials in order to handle them easily and turn them in to auxetic structures. 
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Also, the braided structures display suitable mechanical properties necessary for the 

targeted use only after resin application and formation of BCR, since the epoxy matrix 

holds the various components (core and sheath) of braided structures together, enabling 

them to act as a single structure. In absence of resin, there may be slippage between the 

core and sheath as well as between the core fibres causing poor mechanical properties. 

 

Figure 5.1  a) Basic re-entrant honeycomb design, a – horizontal rib length, b – diagonal 

rib length, c – half of the ‘a’, θ – angle formed between diagonal and horizontal rib and α 

– angle between diagonal rib to vertical axis, b) auxetic structure developed from BCR 

(structure-1), c) repeat unit cell of structure 1, d) schematic design of structure-2, e) 

structure-2, and f) structure-3. 
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5.3. Parameters of developed structures 

The influence of structural and material parameters were studied by analytical and 

experimental methods, i.e. material parameters (linear density, type of fibres) and 

structural parameter (angle θ) are studied experimentally. Auxetic structures were 

produced from BCRs contain different linear density (2400 Tex, 4800 Tex and 6000 Tex) 

of glass fibre as core and also the structures produced by changing their core fibres, i.e. 

basalt fibre (4800 Tex) and carbon fibre (4800 Tex). The glass, basalt and carbon fibre 

rovings were purchased from commercially available sources from different countries. 

The basic design was modified with straight vertical rods to improve their tensile 

characteristics at low strain levels. This modified designs referred as structure-2 and it is 

further modified to improve of tensile behaviour with higher angle of vertical undulation 

rods and referred as structure-3 later in this work.  

For each type, three samples were produced and the working dimensions kept 

same as 40 cm in length and 11 cm in width, with additional length for clamping during 

tensile testing. The modified auxetic structures developed are shown in Figure 5.1. The 

structural parameters of auxetic structures are given in the Table 5.1. 

Table 5.1. Structural parameters of the re-entrant auxetic structures 

Structure 
Core 

fibres  

Core fibre linear 

density, tex 
Angle Value, ° Rib 

Length, 

cm 

1 

Glass 

Basalt 

Carbon 

2400, 4800, 6000 

4800  

4800 

θ 76 

a 3.0 

b 4.1 

2 

 

Glass 

 

 

4800 

 

θ 76 

a 3.0 

b 4.1 

c 3.0 

d 1.0 

3 Glass 4800 θ 83 

a 3.0 

b 4.0 

c 2.0 

d 2.0 
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5.4. Evaluation of the auxetic behaviour by image analysis 

method 

The measurement of Poisson’s ratio and tensile properties of the auxetic structures 

developed were carried out by using tensile testing machine. The cross-head speed of 

tensile testing machine was kept at 25 mm/min. The marking was provided on the 

structures at top, middle and bottom of the structures. During tensile testing the video was 

captured by using Canon EOS 650D and later the video was converted into images at 

required interval (for example per second). The distance between the points marked in 

the structures both in lateral and longitudinal direction were measured in pixels using 

ImageJ software. Poisson’s ratios were calculated by using the lateral and longitudinal 

strain the. 

5.5. Results and discussion 

5.5.1. Auxetic behaviour of the basic structures 

The developed auxetic structures based on re-entrant hexagon design exhibits 

negative Poisson’s ratio. While applying tensile load longitudinally to the structure, the 

vertical inclined rods becoming straight, which results in transverse deformation of 

structure with help of horizontal connecting rods. The maximum transverse deformation 

of structure achieved when the vertical rods inclination become straight. The deformation 

of repeat unit cell of re-entrant hexagon in the auxetic structure at various stages during 

tensile testing are schematically shown in Figure 5.2. 

 

Figure 5.2. Deformation of repeat unit cell of re-entrant hexagon in auxetic structure 

during tensile loading. 
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5.5.2. Effect of core fibre on auxetic behaviour of structures 

In order to investigate the influence of core fibre type, auxetic structures were 

produced with BCRs consisting of glass, basalt and carbon core fibres with same linear 

density, 4800 Tex. As shown in Figure 5.3 and listed in Table 5.2, the core fibre type 

exhibit significant influence on auxetic behaviour and the trend of Poisson’s ratio change 

with longitudinal strain is the same for all the fibres. Poisson’s ratio first increases with 

strain and then decreases with further strain increment. 

The decrease in Poisson’s ratio after certain strain level is attributed to the 

restriction in the free transverse movement of the structures by the clamping systems 

present at top and bottom of the structures. It results in first bending and subsequently 

breakage of the transverse rods prior to the longitudinal rods’ failure. The highest auxetic 

behaviour is noticed for glass fibre structure, followed by basalt and carbon fibre 

structures. Maximum Poisson’s ratio obtained with glass fibre was ~8% and ~13% higher 

as compared to basalt and carbon fibre based structures, respectively. This difference in 

auxetic behaviour of the structures is related to their stiffness. The stiffer structures (based 

carbon fibres) exhibit lower Poisson’s ratio. Therefore, the developed structures show 

Poisson’s ratio in the following order, which is reverse to the stiffness of core fibres: 

Poisson’s ratio glass structure  ˃ Poisson’s ratio basalt structure ˃ Poisson’s ratio carbon structure.  

 

Figure 5.3. Auxetic behaviour of structure-1 containing different types of core fibres 

(linear density 4800 tex). 
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Table 5.2. Poisson’s ratio of auxetic structures produced from glass, basalt and carbon 

fibres 

Core 

fibre 

(tex) 

Type of 

fibre 

Avg. 

diameter of 

BCR (mm) 

Avg. Poisson’s 

ratio at around 

1% strain 

Percentage of 

change in Poisson’s 

ratio w.r.t glass 

4800 Glass 2.39 (2.08) -6.77 (4.8) -- 

4800 Basalt 2.39 (3.24) -6.20 (10.3) 8.4 

4800 Carbon 2.91 (4.00) -5.90 (4.1) 12.8 

Note: Values of CV% are given inside brackets. 

Table 5.3. Poisson’s ratio of auxetic structures produced from glass fibres with different 

linear densities 

Glass fibre 

(Tex) 

Avg. diameter of 

BCR (mm) 

Avg. Poisson’s 

ratio at around 

1% strain 

Percentage of change 

in Poisson’s ratio 

w.r.t 2400 tex 

2400 2.06 (3.90) -7.57 (12.7) -- 

4800 2.39 (2.08) -6.77 (4.8) 10.6 

6000 2.73 (2.45) -6.41 (9.6) 15.3 

Note: Values of CV% are given inside brackets. 

5.5.3. Effect of linear density of braided composite rods on auxetic behaviour 

The influence of linear density of core fibres on Poisson’s ratio of developed 

structures can be noticed from Table 5.3 and Figure 5.4 It is also clear from Table 5.3 that 

the diameter of BCRs increases with increasing linear density of core fibre. An increase 

in linear density of core fibres results in decrease in the auxetic behaviour of developed 

structures. A decrease in negative Poisson’s ratio by ~15% is noticed by increasing glass 

core linear density from 2400 tex to 6000 tex. This is attributed to the fact that higher 

diameter (i.e. high linear density core) horizontal and vertical elements present higher 

stiffness resulting in lower structural movement and Poisson’s ratio.  
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Figure 5.4. Auxetic behaviour of structure-1 having different linear density of glass 

fibre roving as core materials. 

5.5.4. Effect of angle on auxetic behaviour of structures 

Table 5.4 shows the influence of structural angle θ on Poisson’s ratio of structure-

1. It should be noted that θ has been measured from the same structure during tensile 

deformation at different strain levels. It can be seen that an increase in θ by keeping other 

structural parameters ‘a’ and ‘b’ constant, Poisson’s ratio increases. This is due to the fact 

that when the angle of longitudinal rods increases, they take higher axial loads as 

compared to the rods with lower angles, leading to higher structural deformation and 

Poisson’s ratio. By changing θ from 74.5 to 85.0, Poisson’s ratio increases by 54%. 

Therefore, it is possible to obtain auxetic structures with different Poisson’s ratio through 

easy adjustment of their structural angles. 
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Table 5.4. Structural angle and Poisson’s ratio of structure-1 at various stages of loading 

Stage Angle θ 

Experimental 

Transverse 

strain, % 

Longitudinal 

strain, % 

Poisson’s 

ratio 

Percentage of 

increase in 

Poisson’s ratio 

1 74.5 1.03 0.22 -4.57  

2 77.0 7.41 1.58 -4.70 2.8 

3 80.0 16.53 2.63 -6.28 37.4 

4 81.5 19.22 2.89 -6.64 45.3 

5 83.0 24.94 3.69 -6.70 46.6 

6 85.0 29.66 4.21 -7.05 54.3 

a – 2.89 cm and b – 3.98 cm  

 

5.5.5. Influence of structural modification on auxetic behaviour 

The re-entrant auxetic structure, i.e. the basic structure was modified with straight 

longitudinal rods to improve their tensile behaviour, so that these auxetic structures could 

be suitable for strengthening of structural elements. The auxetic behaviour of the modified 

structure-2 is shown in Figure 5.5. The results show that auxetic behaviour of structure-2 

decreases as compared to the basic structure and the maximum achievable Poisson’s ratio 

is -3.60. The overall decrease in the Poisson’s ratio of structure-2 is attributed to the 

existence of straight rods, which restricts lateral deformation of structures. The trend of 

Poisson’s ratio change with tensile strain is, however, very similar to the basic structure, 

except in a strain region (indicted in the graph by arrow) in which Poisson’s ratio 

decreases with strain. This region is due to the breakage of straight longitudinal rods, after 

which load is completely transferred to the diagonal longitudinal rods and the structure 

behaves again in the similar way to the basic structure. However, structure-3, in which 

the angle was further increased besides incorporating straight longitudinal rods, shows 

similar behaviour to the basic structure. The region in which Poisson’s ratio decreases 

with strain, as observed in case of structure-2, is absent due to well balance of load sharing 

by the straight and diagonal longitudinal rods and smooth transfer of load, once the 

straight rods break. Poisson’s ratio is also higher in this case due to higher structural angle, 

as shown in Figure 5.6, reaching maximum Poisson’s ratio of -5.15.  
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Figure 5.5. Auxetic behaviour of structure-2 made of glass fibre BCRs. 

 

 

Figure 5.6. Auxetic behaviour of structure-3 made of glass fibre BCRs. 

5.6. Tensile properties of auxetic structures 

5.6.1 Tensile behaviour of auxetic structures  

The tensile properties of auxetic structure-1 produced by varying type of fibre and 

linear density and structure-2 and structure-3 is provided in Table 5.5. The tensile loads 

was higher for carbon, which was followed by basalt and glass, in decreasing order. It is 

obvious that carbon fibre is stiffer than glass and basalt, so it has provided highest tensile 
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exhibits high tensile load than glass fibre, which was used in this study. The typical tensile 

behaviour of structure-1 is shown in Figure 5.7. 

Table 5.5. Tensile properties of various developed auxetic structures. 

Structure Fibre type Tex 
Avg. max. 

tensile load, kN 

Avg. elongation at 

max. tensile load, 

% 

S – 1 Glass 2400 9.21 (0.46) 5.72 (2.10) 

S – 1 Glass 4800 10.40 (8.33) 5.14 (5.45) 

S – 1 Glass 6000 15.43 (8.33) 4.82 (9.63) 

S – 1 Basalt 4800 14.58 (9.85) 5.92 (10.88) 

S – 1 Carbon 4800 22.25 (12.08) 6.20 (12.49) 

S – 2 Glass 4800 8.23 (7.31) 4.90 (6.57) 

S – 3 Glass 4800 15.23 (0.88) 4.04 (12.15) 

Note: Values of CV% are given inside brackets.

 

Figure 5.7. Tensile behaviour of structure-1 made of glass fibre BCRs. 

The tensile behaviour of modified structures referred as structure-2 and structure-

3 made by glass fibre BCRs are shown in Figure 5.8 and Figure 5.9. The results show that 

tensile behaviour of the structure-2 improved significantly compared to structure-1 (basic, 

refer Figure 5.7). The tensile characteristics of the structure enhanced further by 
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in the structure -2, whereas the improved tensile characteristics of structure-3 than 

structure-2 is due to higher angle of undulation rods in the structure than structure-2. The 

higher angle of vertical undulation rods leads to quick straightening while applying tensile 

load and started to bear high loads. However, this behaviour is opposite in the structure 

with less angle of vertical undulation rods, i.e. the undulation rods takes more time to 

become straight. 

 

Figure 5.8. Tensile behaviour of structure-2 made of glass fibre BCRs. 

 

Figure 5.9. Tensile behaviour of structure-3 made of glass fibre BCRs. 
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Tensile behaviour of structure-1 – 3 is explained in detailed manner by dividing 

the tensile vs. elongation curve in three phase and it is shown in Figure 5.10, Figure 5.11, 

and Figure 5.12.  

 

Figure 5.10. Tensile behaviour of structure-1 made of basalt fibre BCRs. 

 

 

Figure 5.11. Tensile behaviour of structure-2 made of glass fibre BCRs. 
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Figure 5.12. Tensile behaviour of structure-3 made of glass fibre BCRs. 
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Structure-1: the tensile load applying on vertical undulation rods results straightening of 

undulation and becomes straight at the end of phase. The load bearing of structure is less 

due to undulation of vertical rods. 

Structure-2: as the structure has straight vertical rods, the structure takes more load so 

the curve is steep. At the end of this phase the straight vertical rods were broken. Also, 

the structure’s vertical undulation rods have become straight in this phase. 

Structure-3: structure consists of straight vertical rods and less undulation vertical rods 

results in more bearing of tensile load compared to structure-2. This is due to undulation 

becomes straight quickly and start to bear more load. At 1% of longitudinal strain, 

structure-2 bears 3 kN load but structure-3 bears 6 kN tensile load. 

The Figure 5.13 shows all the structures in Phase I. 

Phase II 

Structure-1: the vertical rods are becomes straight and started to bear more tensile load 

and curve is steep in this phase. 

Structure-2: the straightened vertical undulation rods started to bear more loads so the 

curve become straight again. 
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Structure-3: all the vertical rods become straight and takes more tensile loads. 

The Figure 5.14 shows the structures at phase II. 

 

Figure 5.13. Structures at phase I: a) structure-1, b) structure-2, and c) structure-3. 

 

 

Figure 5.14. Structures at phase II: a) structure-1, b) structure-2, and c) structure-3. 
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Phase III 

Structure-1: the vertical rods failed one by one in this stage. The failure takes place at 

the bending points of rods because the undulation causes growth of weak points in the 

core fibre at the bending and stress concentrates at these points, and therefore, breaking 

of rods happened at these weak points. 

Structure-2 & 3: the straightened vertical undulation rods failed one by one. The failure 

takes place bending points of rods and the reason explained in the previous paragraph. 

The Figure 5.15 shows the structures at phase III. 

 

Figure 5.15. Structures at phase III: a) structure-1, b) structure-2, and c) structure-3. 

 

5.6.2 Work of rupture of the auxetic structures  

Work of rupture (J) calculated for the developed auxetic structures are given in 

Table 5.6. As expected, the work of rupture increases with increase of linear density of 

glass fibre for the structure-1 and the work of rupture of the structure developed from the 

different core fibres as follows: glass < basalt < carbon. Work of rupture for the structures 

developed glass fibre is in the order: structure-1 ≤ structure-2 < structure-3. As structure-

3 exhibits higher work of rupture and better tensile property than other structures, it is 

proposed for the structural applications. As the structure-3 consists of both straight and 

undulation vertical rods, it will provide strengthening as well as ductility in a balanced 

way, more than the other structures.  
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Table 5.6. Work of rupture of the developed auxetic structures 

Structure Fibre type 
Linear 

density, tex 

Avg. work of 

rupture, J 
CV% 

S - 1 Glass 2400 93.31 4.82 

S - 1 Glass 4800 98.20 9.40 

S - 1 Glass 6000 139.4 11.82 

S - 1 Basalt 4800 147.0 8.85 

S - 1 Carbon 4800 257.2 3.68 

S – 2 Glass 4800 93.7 4.96 

S – 3 Glass 4800 150.9 9.00 

 

5.7. Conclusion 

In this work, novel auxetic structures at macro scale was developed using braided 

composite rods and the influence of various structural and material parameters on both 

auxetic and tensile properties was thoroughly studied and compared with analytical 

models. Following major conclusions can be drawn from the present research: 

The developed auxetic structures exhibit negative Poisson’s ratio with maximum 

value of -8.00. Poisson’s ratio of these structures strongly depends on the structural 

parameters such as structural angle, and also dependent to a lesser extent on the material 

parameters such as core fibre type and linear density. The increase in the core fibre linear 

density (which in turns increases the diameter of longitudinal and transverse elements) 

results in decrease in Poisson’s ratio and vice-versa. Similarly, change in core fibre type 

(which changes the strength and stiffness of longitudinal and transverse elements) 

changes the Poisson’s ratio; stiffer and stronger fibre such as carbon results in lower 

Poisson’s ratio as compared to glass and basalt fibres. The structural parameter angle θ 

has a strong influence on Poisson’s ratio and an increase in θ results in considerable 

increase in Poisson’s ratio of developed structures.  

Tensile behaviour of the auxetic structures also depends significantly on the 

material and structural parameters. Higher tensile strength is observed in structures 

developed using stronger fibres (carbon > basalt > glass) and with higher linear density 

(6000 tex > 4800 tex > 2400 tex). It is also possible to tailor the mechanical properties of 

developed structures through incorporation of additional straight longitudinal elements. 
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The structures developed using straight longitudinal elements (structure-2), however, 

exhibit lower Poison’s ratio and tensile properties compared to the basic structures. 

Further modification of structure-2 by increasing angle θ (i.e. structure-3) results in higher 

Poisson’s ratio, tensile strength as well as work of rupture. Among the different fibres, 

carbon based auxetic structures exhibit the highest work of rupture, followed by basalt 

and glass. An increase in liner density of core fibres also increases the work of rupture of 

the auxetic structures. It can be concluded that the modified auxetic structures (structure- 

3) developed within this study can be applied for structural applications due to their good 

auxetic property as well as high strength and work of rupture or energy absorption 

capability.  
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Chapter 6 

Analytical and Numerical Modelling 

of Auxetic Structures 
 

 

 

 

 

6.1. Introduction 

 It is important to develop an analytical and numerical model for the purpose of 

predicting mechanical and auxetic behaviour of the structures from braided composites, 

presented in chapter 4 and 5, for the designing purpose. In this chapter, a new analytical 

model has been developed for structure-1, structure-2 and structure-4 (see Figure 6.1) to 

calculate their Poisson’s ratio and an existing analytical model was used to calculate the 

Poisson’s ratio of structure-3 (refer Figure 6.1). Also, numerical modelling of auxetic 

structures were carried out and explained in this chapter.  

Finite element analysis will be useful to predict these structures behaviour. 

Previously researchers were successfully used finite element analysis (ANSYS and 

ABAQUS) to predict the Poisson’s ratio of the auxetic closed cell foam, auxetic 3D fabric 

(Structure contains three yarn systems, namely warp, weft and stitch yarn), 3D auxetic 

cellular honeycomb structure, 2D re-entrant auxetic structures, microstructures of auxetic 

materials, etc. [123 – 127]. Finite Element code DIANA was used here to develop a two 

dimensional model to predict the tensile behaviour and Poisson’s ratio of the developed 

auxetic structures. 
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6.1.1. Structures used for modelling  

The auxetic structures considered for analytical and numerical modelling is shown 

in Figure 6.1. The structural parameters of the developed auxetic structures, which were 

used to calculate the Poisson’s ratio are shown in Figure 6.2. 

 

Figure 6.1. Auxetic structures. Structure 1 – Basic lozenge grid design, structure 2 – 

Modified lozenge grid design, structure 3 – basic re-entrant hexagon design, and 

structure 4 – modified re-entrant hexagon design. 

 

Figure 6.2. Schematic diagram. (a) Unit cell of structure 1, (b) unit cell of structure 

2, (c) unit cell of structure 3, and (d) unit cell of structure 4. 

6.2. Analytical modelling for auxetic structure based on 

Lozenge grid 

6.2.1. Analytical model for basic design 

6.2.1.1. Existing analytical model 

Researchers developed an analytical model to calculate Poisson’s ratio for 2D 

honeycomb structures, which is the auxetic design used in this research work. This model 
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has been applied to structure-1 to calculate its Poisson’s ratio. The assumptions made in 

this analytical model are: (i) the angle between the adjacent rods deforms elastically; (ii) 

no change in the length of the ribs is allowed; (iii) the translational symmetry of the unit 

cell is maintained throughout deformation [20]. The elastic angular deformation is 

defined by mA = kAdA (A = φ, ζ), where mA is the force moment about a rib, dA is the 

increment of rib angle and kA is the linear spring constant. This model also assumes that 

the central spring constant is much greater than the outer ones (kζ≫kφ) in order to prevent 

flexing of central spring and have negligible effect of concurrent deformation. In the 

present work, flexing of spring is included by considering the change of angle ζ as a 

fraction (ĸ) of change of angle φ. Hence, 

Δζ = ĸ Δφ, where Δζ = ζn – ζ0.     (6.1)  

All references to angle ζ can then be written in terms of angle φ by 

ζn = ζ0 + ĸ Δφ         (6.2) 

6.2.1.2. Calculation of engineering strain and Poisson´s ratio 

To calculate Poisson’s ratio of auxetic structure using the above analytical model, 

structure-1 (basic lozenge grid design) have been chosen. The calculation of engineering 

strain is performed using the following equation [20] 

ϵx = 4r(
𝐶𝑜𝑠 (𝜁0− 𝛷0+ 𝛥𝛷(𝑘−1))

Cos(𝜁0− 𝛷0)
− 1),    (6.3) 

ϵy = 4r(
Sin 𝛷𝑛

𝑆𝑖𝑛𝛷0
− 1),       (6.4) 

where ĸ = Δζ/Δφ is a measure of the relative deformation between ζ and φ springs. 

Poisson’s ratio at strain point n is given by, 

𝑣𝑥𝑦
𝑟𝑎𝑡𝑖𝑜 =  − 

(Cos(𝜁0+ 𝛷0+𝛥𝛷(ĸ−1))− Cos(𝜁0− 𝛷0)) 𝑆𝑖𝑛𝛷0

(Sin 𝛷𝑛− 𝑆𝑖𝑛𝛷0) Cos(𝜁0− 𝛷0)
  (6.5)  

6.2.1.3. Comparison of Poisson’s ratio: Experimental vs. Analytical 

The mean values of the angles (ζ, φ) (refer Figure 6.2) measured from the 

structure-1 (refer Figure 6.1) having glass fibre as core with initial angle φ - 66 at different 

strain points are given in Table 6.1. 
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Table 6.1. Mean values of angles (TC is the total change in the angle value between initial and 

final strain point and SD is the standard deviation).  

Structure  Angle 

Angle data at different strain point 

 

0 1 2 3 4 5 6 7 8 

1 
φ 67.4 68.0 68.4 69.2 69.6 70.1 70.8 71.6 72.3 

ζ 128.3 129.3 129.3 129.4 129.4 129.4 129.3 129.7 129.3 

Angle data at different strain point 
TC SD 

9 10 11 12 13 14 15 

 72.8 73.5 74.1 74.7 75.4 76.1 76.9 23 7.0 

130.1 130.1 130.8 130.9 131.6 131.3 132.2 6.5 2.4 

 

The parameter k is obtained from the gradients of best fitted linear function, as 

shown in Figure 6.3, to the curves representing the relationship between changes in angle 

ζ with φ at different strain points. The values of Δζ and Δφ are obtained from the measured 

values of angle ζ and φ at different strain points and therefore, parameter k is actually 

measured from the real structures and used in the model. Poisson’s ratio is then calculated 

using values of ĸ, ζ and φ. So, Poisson’s ratio has been calculated in this research using 

the above analytical model based on the parameters experimentally measured from the 

developed structures. In fact, these parameters were measured from the real structures so 

that the model will take into account the real deformations of the BCRs (i.e. true 

behaviour of fibre, matrix and interface) in order to correlate well with the experimental 

results. 

Figure 6.4 shows Poisson’s ratio of structure obtained from the analytical model 

and experiments. In this case, k = 0.32, as calculated according to Figure 6.3 has been 

used. The experiment Poisson’s ratio values are significantly lower when compared to 

the analytical model Poisson’s ratio. This may be due to the assumptions considered 

during the development of the analytical model. For example, some deformations of the 

structures were not considered. The change of r1 and r2 during tensile loading and opening 

of the transverse rods were not considered. The model also assumed that the unit cell 

deformed uniformly throughout the loading cycle, but actually it might not happen and 

possibly influenced the measured Poisson’s ratio. 
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Figure 6.3. Relationship between Δζ and Δφ from different strain points and fitting of 

linear function for measuring k value for structure-1. 

 

Figure 6.4. Poisson’s ratio of structure-1 calculated from analytical and experimental. 

y = 0.3186x + 0.2878

0.0

1.0

2.0

3.0

4.0

5.0

0.0 2.0 4.0 6.0 8.0 10.0

Δ
ζ

[°
]

Δφ [°]

-3.9

-3.4

-2.9

-2.4

-1.9

-1.4

-0.9

-0.4

0.0 2.0 4.0 6.0 8.0 10.0

P
o

is
so

n
's

 r
at

io

Longitudinal strain [%]

Sample 2

Sample 3

Analytical Old



Development of Composite Auxetic Structures for Civil Engineering Applications 

 
100 

 

6.2.2. Revised analytical model for basic design 

The model discussed in the previous section has been revised to fit well with 

experimental results. In the present analytical model both angle ζ, and φ are related with 

each other and both with respect to vertical undulation rods. Actually in the structure the 

transverse expansion occurs due to the opening of horizontal undulation rods, which is 

not considered in the existing model used. So, in the revised analytical model the angle α 

(refer Figure 6.2) is introduced and change of angle α is measured from different strain 

values. Change of angle α is a function of change of angle φ. 

α = f (φ)        (6.6) 

To calculate the angle α, the equation is derived with help of angle (α, φ) measured 

from different strain points and it is shown in Figure 6.5. 

 

The function α = 0.9484φ - 6.8197 is now used to calculate the angle α. The 

calculated angle α is given in the Table 6. 2. Later, the transversal and longitudinal strains 

are calculated by using following formulae, 

 

 

Figure 6.5. Relationship between angle φ and angle α. 

 

𝜖𝑥  = (
𝑆𝑖𝑛 𝛼𝑛

𝑆𝑖𝑛 𝛼0
− 1),       (6.7) 

α = 0.9484φ - 6.8197

R² = 0.9566
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ϵy =(
Sin 𝜑𝑛

𝑆𝑖𝑛𝜑0
− 1),       (6.8) 

𝜈𝑥𝑦 =  − 
𝜖𝑥

𝜖𝑦
        (6.9) 

Table 6. 2. Angle α calculated using function of α = 0.9484φ - 6.8197 (TC is the total 

change in the angle value between initial and final strain point and SD is the standard deviation). 

Structure  Angle 
Angle data at different strain point 

 

0 1 2 3 4 5 6 7 8 

1 α 59.5 60.1 60.5 61.3 61.6 62.2 62.8 63.6 64.3 

Angle data at different strain point 
TC SD 

9 10 11 12 13 14 15 
 

64.8 65.5 66.1 66.7 67.4 68.1 68.8 9.3 3.0 

 

 

Figure 6.6. Modelled and experimental Poisson’s ratio of structure-1. 

Figure 6.6 shows Poisson’s ratio of structure-1 calculated from revised analytical 

model and compared with experimental Poisson’s ratio. The results show that the 

Poisson’s ratio calculated from the revised analytical model is well fitted with 

experimental results. In Figure 6.6 it is observed that after 6% longitudinal strain the 

analytical Poisson’s ratio value is getting increase, but the experimental Poisson’s ratio 

getting decrease. This may be due to the analytical model assumed the structure expands 
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freely in the transverse direction, but in the case experimental due to clamping of structure 

it doesn’t expand freely in the transverse direction. This difference causes change in value 

of Poisson’s ratio. 

6.2.3. Analytical model for modified lozenge grid design 

For analytical simulation of the modified design of missing rib or lozenge grid 

(structures-2 and 3), development of a new analytical formula was necessary. For this 

purpose the auxetic structure-2 (modified missing rib or lozenge grid design) is 

considered. In order to study the analytical auxetic behaviour of structure-2 Eq. (6.8) can 

be used to calculate longitudinal strains as a function of angle, φ. However, Eq. (6.7) 

needs to be revised as the unit cell is different in this structure. According to the 

experimental observations on the deformational mode of the structure-2, Eq. (6.7) can be 

rewritten at the structural level, i.e. it can be assumed that the whole tested structure is a 

unit cell (see Figure 6. 7). In this unit cell, the change of transverse length is mainly due 

to the change of angle α and not angle β because angle β is closer to the vertical straight 

rod and it doesn’t change much during tensile loading as compared to angle α. This is 

justified through the relation between angle φ vs angle α and angle β (see Figure 6.8). All 

the angles (φ, α, and β) were measured from the images taken during tensile loading.  So, 

the change of transverse length is equal to, Δl = 4𝑟 [Sin (
𝛼𝑛

2
) − 𝑆𝑖𝑛(

𝛼0

2
)] and the 

transversal strain is, Δl/l. Therefore, the transversal strain of the structure-2 can be 

obtained as follows: 

𝜀𝑇 =  
∆𝑙

𝑙
=

4𝑟 [Sin(
𝛼𝑛
2

)−𝑆𝑖𝑛(
𝛼0
2

)] 

𝑙
       (6.10) 

Figure 6.8 shows that the angle α can be presented as a function of angle φ based 

on the obtained experimental results: 

α = 0.9622 φ – 7.5212         (6.11) 

Using the Eq. 6.11 the angle α is calculated with respect to varying angle φ 

periodically from the initial angle (φ-66°). By using angle α and φ the transverse strain 

and longitudinal strain were calculated from Eq. (6.10 and 6.7) and using both strain 

values analytical Poisson’s ratio can be obtained (Eq. 6.9). Poisson’s ratio of the structure-

2 calculated by analytical and experimental methods are shown in the Figure 6.9. 
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Figure 6. 7. Unit cell of structure-2. (a) Force acting and displacement of unit cell, and 

(b) displacement of unit cell (real structure-2) at different stages of loading. (α and β – 

angle formed at the bending of horizontal undulation rod nearer to the vertical 

undulation rods and nearer to the vertical straight rod, respectively). 

 

Figure 6.8. Relation between angle φ vs angle α and β. 

The results show that Poisson’s ratio calculated analytically is similar to 

experimental values. There is a difference in the Poisson’s ratio between the analytical 

and experimental results and as the previous structure, this may be due to the assumptions 

considered in the analytical model, i.e. the structures deforms freely in the transversal 

direction which does not occur in this case as well due to the clamping system. 
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Figure 6.9. Modelled and experimental Poisson’s ratio of structure-2. 

6.3.   Analytical model for auxetic structure based on re-

entrant hexagon design 

6.3.1. Basic re-entrant hexagon design 

The re-entrant auxetic structure (Figure 6.1, structure-3) will expand transversely 

while loading is applied in the longitudinal direction. This is due to the fact that diagonal 

longitudinal ribs or elements will move to the longitudinal disposition, which results in 

an increase of the distance between the diagonal elements through the connection of 

horizontal elements. Consequently, the auxetic effect is achieved. Based on the 

geometrical analysis, Poisson’s ratio (ν), axial strain (𝜀𝑎) and transversal strain of the re-

entrant auxetic structure formed with rigid rods can be theoretically calculated by 

following formulae’s [107], 

ν =  
𝑏 𝑠𝑖𝑛𝜃0(𝑐𝑜𝑠𝜃0−𝑐𝑜𝑠𝜃)

(𝑎−𝑏 𝑐𝑜𝑠𝜃0)(𝑠𝑖𝑛𝜃0−𝑠𝑖𝑛𝜃)
      (6.12) 

𝜀𝐿 =  
sin 𝜃

sin 𝜃0
− 1        (6.13) 

𝜀𝑇 =  
𝑏 (𝑐𝑜𝑠𝜃0−𝑐𝑜𝑠𝜃)

(𝑎−𝑏 𝑐𝑜𝑠𝜃0)
       (6.14) 
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The auxetic behaviour of structure-3 has been calculated using Eq. 6.12 and 

compared with experimental results in Figure 6.10. The parameters a, b and angle θ which 

are required for analytical calculations are measured from images taken during testing at 

different stages. The results show that the analytical and experimental Poisson’s ratio 

values are closer with each other. There is a difference in the Poisson’s ratio between the 

analytical and experimental results (after 2.0% strain) and this may be due to the 

assumptions considered in the analytical model, i.e. the structures deforms freely in the 

transversal direction, which does not occur due to the clamping system. 

 

Figure 6.10.  Poisson's ratio of auxetic structure-3: Analytical vs. experimental results. 

 

6.3.2. Modified re-entrant hexagon design 

To study the auxetic behaviour of structure-4 analytically Eq. (6.13) can be used 

to calculate the longitudinal strains as a function of angle, θ. However, Eq. (6.14) needs 

some revision as the unit cell is different in this structure. According to the experimental 

observations, the deformational mode of the structure is presented in Figure 6.11b. 

Assuming that the whole tested structure is a unit cell, the transverse strain can be written 

as presented in Eq. (6.15). The width of the structure (unit cell) is taken equal to l. Having 

the change of the unit cell width in each load level, Δl, the transverse strain can be 

obtained as 𝜀𝑇 =
Δ𝑙

𝑙
 . The deformed shape and free body diagram of half of the unit cell 

(due to its symmetry) is presented in Figure 6.11b. According to this diagram, the width 
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can be obtained as 
𝐿

2
=

𝑑

2
+ 𝑐 + (𝑎 − 𝑏𝐶𝑜𝑠 𝜃). The changes in the width with the changes 

of 𝜃 can be obtained as ∆𝑙/2 = 𝑏(𝐶𝑜𝑠𝜃 − 𝐶𝑜𝑠 𝜃0) leading to the following relation for 

the transverse strain:  

 

𝜀𝑇 =
∆𝑙

𝑙
=  

2𝑏 [Cos 𝜃𝑛−𝐶𝑜𝑠𝜃0] 

𝑙
       (6.15) 

 

Figure 6.11. (a) Unit cell of structure-4, (b) load and momentum act on the unit cell 

while axial loading, and (c) unit cell displacement while testing. 

Using the longitudinal and transverse strains, the structural Poisson’s ratio can be 

obtained. Poisson’s ratio of this structure calculated by analytical and experimental 

methods are shown in the Figure 6.12. The results show that Poisson’s ratio calculated 

analytically is almost similar to experimental values. It is found that the Poisson’s ratio 

of structure-2 can be predicted accurately by given analytical formulae. 



Chapter 6: Analytical and Numerical Modelling of Auxetic Structures 

107 

 

 

Figure 6.12. Poisson’s ratio of the structure-4: analytical vs. experimental results. 

6.4. Numerical modelling of auxetic structures 

6.4.1. Finite element (FE) modelling 

6.4.1.1. Modelling strategy 

A two dimensional model is produced in FE code DIANA to simulate the response 

of the developed auxetic structures. According to the experimental results, the composite 

material used for preparation of the specimens have a linear elastic behaviour until failure. 

The observed nonlinear force-displacement and auxetic behaviour of the structures are 

thus due to the large deformation and geometric nonlinearity of the system, which should 

be taken into account in the numerical modelling.  

The FE model is produced based on the geometry of the tested structures. A simple 

modelling strategy is adopted using linear three-node beam elements (labelled as L7BEN 

in DIANA) to represent the ribs and linear rotational spring elements (labelled as SP2RO 

in DIANA) for simulating the ribs rotational stiffness at the curvature points, see Figure 

6.13. The beams have a circular cross-section with diameter of 2.83 mm according to the 

experimental measurements. The intersection of the vertical and the horizontal joints are 

modelled with continuous elements without introducing any extra degree of freedom. The 

constraints and loading conditions are applied to the model as the experimental tests were 

performed, i.e. the displacements of the structure at both ends are constrained in both x 
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and y directions. An incremental monotonic displacement load is applied to one side of 

the structures for simulating the tensile test conditions. 

 

Figure 6.13. FE modelling strategy. 

A linear elastic with brittle failure material model and a linear elastic rotational 

spring are adopted for the ribs and the springs, respectively. The elastic modulus, E, of 

rods was taken 14.2 GPa according to experimental results. The properties of rotational 

springs are obtained by performing a parametric analysis as explained in sec. 6.4.1.2. 

A geometric nonlinear analysis with total Lagrange formulation is performed to 

simulate the large deformation and auxetic behaviour of the structures. The total Lagrange 

formulation is useful when rotations and displacements are large and strains are small as 

is the case of the structures under study. 

As explained before, the force-displacement response of original auxetic structures 

(e.g. structure-1, and structure-3) consisted of two main phases. In the initial phase, the 

response was governed by large deformation and low load resistance. After a certain 

deformation level, in the second phase, the structure resisted higher loads with lower 

deformation capacity. Different solution strategies deemed necessary for numerically 

simulating the structural response in each phase. A modified Newton-Raphson iterative 
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together with the line search method and displacement convergence criteria are used for 

solving the nonlinear equations in the initial phase of structural behaviour. The analysis 

is then continued, in the second phase, with a quasi-Newton iterative method and force 

(or energy) convergence criteria. On the other hand, the behaviour of modified structures 

(e.g. structure-2 and structure-4) generally consisted of three phases initiating with a 

linear elastic behaviour until the failure of the straight rods. Then, the load dropped 

significantly by entering the second phase which was similar to the first phase behaviour 

of original structures (large deformation and low load resistance) followed by the third 

phase (small deformation and high load resistance). A similar solution strategy as the 

original structures was adopted for each phase of the analysis to ease the convergence of 

the numerical problem. 

 

6.4.1.2. Springs’ properties validation 

A numerical back analysis was performed for estimating the rotational stiffness of 

the springs. For this reason, tensile tests were performed on two types of specimens each 

consisting of five straight rods and four curvature points, see Figure 6.14. The specimens 

had different connection angles of 19° and 29° (three specimens for each angle).  

The numerical analysis was performed to simulate the experimental tensile 

behaviour of each specimen type following the same modelling strategy as explained in 

sec 6.4.1.1. Having the elastic modulus of the rods, a parametric study was performed on 

the stiffness of the rotational springs for obtaining the best simulation of experimental 

results. It was observed that a rotational stiffness of k =1000 N.mm/rad leads to an 

acceptable prediction of the experimental behaviour in both specimen types, see Figure 

6.15. It can be seen that the numerical results show good agreement with experimental 

ones. The stiffness of the rotational springs are thus assumed as 1000 N.mm/rad hereafter. 

 

Figure 6.14. Validation of the mechanical properties for rotational springs. 

Experimental testing 

29° 

19° 

L7BEN Elements SP2RO Rotational 

spring 

Numerical Modelling 
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Figure 6.15. Comparison of experimental and numerical results for single rod tests. 

 

6.4.1.3. FE simulations of Poisson’s ratio and tensile behaviour of the structures 

The modelling strategy and material models presented in Sec. 6.4.1.2 are used for 

simulating the observed experimental behaviour of four auxetic structures, see Figure 6.1. 

The main focus is on prediction of the force-displacement behaviour and the changes of 

the Poisson’s ratio during the tests. The numerical results are presented in Figure 6.16 to 

Figure 6.19 in comparison to the experimental observations. It can be seen that the 

numerical predictions are in good agreement with experimental results in both predictions 

of the load-displacement response and Poisson’s ratio. The changes of the Poisson’s ratio 

have some differences with the experimental results in some cases, structure-2 and 

structure-3. These differences are in acceptable range and can be attributed to the 

imperfections of the handmade specimens and simplifying assumptions of the numerical 

model. In general, the developed numerical model, although being simple, suitably 

predicted the global response and local deformation of different auxetic structures, being 

the evidence of applicability of this modelling strategy for predictive purposes or 

simulating the behaviour of auxetic structures at the structural level. 
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(a) 

 

(b) 

Figure 6.16. Experimental and numerical results for structure-1: (a) force-displacement 

behaviour; (b) Poisson’s ratio. 
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(a) 

 

(b) 

Figure 6.17. Experimental and numerical results for structure-2: (a) force-displacement 

behaviour; (b) Poisson’s ratio. 
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(a) 

 

(b) 

Figure 6.18. Experimental and numerical results for structure-3: (a) force-displacement 

behaviour; (b) Poisson’s ratio. 
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(a) 

 

(b) 

Figure 6.19. Experimental and numerical results for structure-4: (a) force-displacement 

behaviour; (b) Poisson’s ratio. 

6.5. Conclusion 

 In this chapter, the Poisson’s ratio of the developed auxetic structures was 

calculated analytically and compared with the experimental results. New analytical 

formulas were developed for structures based on lozenge grid (both basic and modified 

design). Whereas, for basic re-entrant hexagon existing formulae was used to calculate 
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derived. The results show that experimental results were closer with analytical results 

except for basic re-entrant hexagon design. The reasons were explained in the section 6.2 

and 6.3. 

Also, numerical modelling by using FE code of DIANA was used to predict the 

Poisson’s ratio of the developed structures and their tensile behaviour. The numerical 

model was developed based on the elastic modulus of braided composite rod 

(experimental results) using concept of rotation spring element. The numerical analysis 

exhibits better agreement with the experimental results (both tensile and auxetic 

behaviours). 
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Chapter 7 
 

Auxetic Structures Reinforced 

Structural Elements 
 

 

 

 

 

 

 

7.1. Introduction 

The auxetic structures are developed from fibre reinforced braided composite rods 

based on lozenge grid and re-entrant hexagon design. The auxetic structures were 

optimized by studying their structural parameter (angle) and material parameters (linear 

density and type of core fibres). Also, the auxetic structures were optimized by modifying 

basic design through introduction of vertical straight rods. This improves the structures 

tensile behaviour at lower strain levels. This is critical while reinforcing into structural 

elements, which has less strain (brittle materials) values compared to textile materials. 

In order to study the application of auxetic structures as strengthening elements 

for civil structures, the optimized auxetic structures were placed as reinforcement into 

structural elements and their performance was studied under tensile and flexural load. To 

study the tensile behaviour, the auxetic structures are reinforced into the mortar (plaster 

mortar) and their performance was compared with plain grid (commercial design) 

reinforced mortar. In addition, to study the flexural behaviour, the auxetic structures were 

reinforced to the masonry (built with cement hollow bricks) externally with mortar 
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(plaster mortar) in one side. The flexural behaviour auxetic reinforced masonry was 

compared with non-reinforced and plain grid reinforced masonry specimens. 

7.2. Sample preparation 

7.2.1. Preparation of auxetic structures reinforced mortar 

Regarding the structures reinforced mortar, the understanding of cracking 

behaviour is an important factor along with load bearing capacity and deformation to 

design serviceability. For the purpose of analysis of tensile behaviour of structure 

reinforced mortar, specimens with 120 mm x 15 mm cross-sectional area and 600 mm in 

length were prepared. 

The reinforced mortar specimens were produced with auxetic structures (both 

lozenge grid and re-entrant structures), see Figure 7.1. The structures were placed in the 

middle of the mortar specimens. In order to get the failure in the middle of the specimens 

during tensile loading, in the clamp portion (top and bottom) glass grid with dimensions 

of 120 mm x 100 mm were placed at the both sides of the composite structures. 

To prepare structures reinforced mortar specimens’ acrylic mould with 

dimensions of 600 mm x 140 mm (see Figure 7.2), which has four parts, was used. After 

specimens’ preparation, they were kept in curing chamber for 75 days at 20° C and 60% 

RH. Structures used to reinforce into the mortar are shown in the Figure 7.1 and each four 

samples were produced and reinforced into the mortar. The weight of the structures used 

in this reinforcement are 480 – 500 g/m2 for plain grid 3VR & lozenge grid structures and 

630 – 660 g/m2 for plain grid 6VR & re-entrant structures. 

 

 

 

 

 



Chapter 7: Auxetic Structures Reinforced Structural Elements 

119 

 

 

Figure 7.1. Auxetic structures used to reinforce in the mortar. (a) Structures based on 

lozenge grid, and (b) structures based on re-entrant hexagon. 

 

 

Figure 7.2. Acrylic mould. 
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7.2.2. Preparation of auxetic structures reinforced masonry 

For the flexural strength testing, auxetic structures reinforced masonry wall 

specimens were prepared according to test standard EN 1052-2:1999. The masonry walls 

were prepared using cement hollow bricks. The masonry wall dimensions are given in 

Figure 7.3. 

 

Figure 7.3. Masonry wall specimen dimensions. 

 

The brick dimensions of 200 mm length, 100 mm width and 90 mm height and 

had two holes of 30 mm x 30 mm, see Figure 7.4. The masonry wall specimens were 

prepared by using mortar (Type G M10) and the wall specimens (Figure 7.5) are left in 

the room environment for the curing purpose for around 45 days. 

 

Figure 7.4. Cement hollow brick dimensions. 
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Figure 7.5. Masonry wall specimen without any reinforcement. 

Later, the basalt fibre reinforced braided composite structures (600 mm in length 

and 300 mm in width) were prepared and reinforced in to masonry wall by using mortar. 

The mortars (joint and plaster mortar) technical specifications are provided in the Table 

7.1.  

Table 7.1. Properties of the mortars used provided by the manufacturer. 

Joint Mortar Plaster Mortar 

Properties Value Properties Value 

Chlorine content <0.1% Density 1500 ± 200 kg /m3 

Consistency 15.0 ± 0.5 cm Consistency 170 ± 5 mm 

Compressive strength 

after 28 days 

> 10 MPa Compressive 

strength after 28 

days 

> 6 MPa 

Fresh density 1950 ± 200 kg /m3 Permeability to 

water vapour 

µ <= 15 

  Thermal 

conductivity (λ10, 

dry) 

0.5 W/mK 

 

Plaster mortar with 15 mm thickness was applied and the structure was placed at 

the mid of the plaster thickness. The composite structures (both plain grid and auxetic 

structures) used for the reinforcement are shown in Figure 7.6. Five categories of 

specimens were prepared as follows:  

 Non-reinforcement masonry,  

 plain grid (6 VR) reinforced masonry,  

 plain grid (14 VR) reinforced masonry,  

 lozenge grid structure reinforced masonry,  
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 Re-entrant structure reinforced masonry.  

In each category, four samples were prepared. The weight of the structures used in this 

reinforcement are 489 g/m2 for plain grid 6VR & lozenge grid and 630 g/m2 for plain grid 

14VR & re-entrant structure. Masonry wall specimen during structure reinforcement is 

shown in Figure 7.7. After the reinforcement of the structures, the specimens were kept 

in the room environment around 45 days, prior to flexural testing. The reinforced masonry 

wall specimen shown in the Figure 7.8. 

 

Figure 7.6. Braided composite structures used for masonry wall reinforcement. (6VR – 

six vertical rods and 14VR – fourteen vertical rods). 

 

Figure 7.7. Structure reinforcement at one side of the masonry wall specimen. 
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Figure 7.8. Structure reinforced masonry wall specimen. 

7.3. Testing of auxetic structures reinforced samples 

7.3.1. Tensile testing of auxetic structures reinforced mortar 

Tensile testing of reinforced mortar specimens were tested in Universal tensile 

testing machine. The speed of the tensile test was kept as 0.5 mm/min. To avoid crack in 

the sample during fixing in the machine, new bottom clamp was designed and used. The 

test set-up is shown in the Figure 7.9. During testing, the LVDTs are placed at front and 

back to measure axial displacement. Also, photos were taken during testing to observe 

the crack pattern. 

 

Figure 7.9. Test set-up for tensile testing. 
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7.3.2. Flexural testing of auxetic structures reinforced masonry 

Three point flexural testing of structures strengthened masonry wall specimens 

were carried out in flexural testing machine. The applied flexural stress is 0.48 MPa/min 

(i.e. the velocity of the loading was 0.008 mm/sec). The LVDTs are placed over the 

sample at four places as shown in the Figure 7.10.  

  

Figure 7.10.Three point loading flexural test set-up. 

During testing the images were taken to observe the failure in the specimens. The 

flexural loads was applied opposite side of samples where there is no strengthening. The 

maximum flexural load and displacement of the specimen at maximum loading was noted 

and calculated the flexural stress (𝜎𝑓) using following formula, 

 

𝜎
𝑓= 

3𝐹𝐿

2𝑏𝑑2
        [7.1] 

 

Where, 

F = load at a given point on the load deflection curve, (N) 

L = support span, (mm) 

b = width of test beam, (mm) 

d = depth of tested beam, (mm) 
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7.4. Results and discussion 

7.4.1. Tensile behaviour of auxetic structures reinforced mortar 

The tensile behaviour of mortar reinforced specimens with basic auxetic structure 

(lozenge grid), modified auxetic structures (lozenge grid) (φ – 66° and 78°), and plain 

grid is shown in Figure 7.11. 

The tensile strength of the reinforced mortar is as follows: plain grid > Modified 

design 78 > Modified design 66 > basic design. The tensile behaviour of the reinforced 

mortar is as expected. Basic design consists of only undulation rods in its axial direction 

and it exhibits less maximum tensile load and modified designs are consists of straight 

rods in its axial direction, so exhibited higher tensile load compared to basic design.  The 

tensile behaviour of the modified design is based on its angle φ, i.e. higher the angle lower 

the undulation and vice-versa, so exhibits higher tensile load compared to lower angle φ. 

As plain grid doesn’t consists any undulations in its axial direction, it is exhibited highest 

tensile load compared to other reinforced specimens. Also, the crack level of the 

specimens depends up on the level of undulations in the axial rods. The crack level of 

reinforced mortar specimens are shown in Figure 7.12. 

 

 

Figure 7.11. (a) Tensile behaviour of auxetic structures (lozenge grid) and plain grid 

reinforced mortar, and (b) Magnified part of load-elongation curve at lower strain. 
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Figure 7.12. Crack level of reinforced mortar specimens at maximum tensile load. 

The similar trend was observed for the auxetic structures (based on re-entrant 

hexagon design) reinforced mortar specimens. The tensile and crack behaviour of the 

structure reinforced mortar specimens are shown in the Figure 7.13 and Figure 7.14, 

respectively. 

 

Figure 7.13. (a) Tensile behaviour of auxetic structures (re-entrant hexagon) and plain 

grid reinforced mortar, and (b) Magnified part of load-elongation curve at lower strain.  
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Figure 7.14. Crack level of reinforced mortar specimens at maximum tensile load. 

7.4.2. Flexural behaviour of auxetic structures reinforced masonry 

The flexural behaviour of the non-reinforced masonry and structures reinforced 

masonry are shown in the Figure 7.15 – 7.19. In these figures middle LVDT displacement 

is considered. 

 

Figure 7.15. Flexural behaviour of non-reinforced masonry specimens. 
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Figure 7. 16. Flexural behaviour of lozenge grid structure reinforced masonry 

specimens. 

 

 

Figure 7.17. Flexural behaviour of plain grid (6VR) reinforced masonry specimens. 
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Figure 7.18. Flexural behaviour re-entrant structures reinforced masonry specimens. 

 

Figure 7.19. Flexural behaviour of plain grid (14VR) reinforced masonry specimens. 

 

The results show that reinforced masonry specimens’ exhibits higher flexural load 

compared to non-reinforced masonry. The first flexural failure occurred at around 7 kN 

for non-reinforcement masonry, whereas for the reinforced masonry, first flexural failure 

happened in the range of 9.0 – 10.5 kN. 
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The flexural stress 𝜎𝑓 is calculated by using Eq. 7.1 and the values are given in 

the Table 7.2. The table shows that the flexural stress value for the plain grid reinforced 

masonry and auxetic structures reinforced masonry are close enough. This is evident that 

composite auxetic structure can be good replacement for composite plain grid. Compared 

to plain grid, auxetic structure has more advantages like it can be cover more area under 

loading, more displacement, and more energy absorption. 

Table 7.2. The average flexural stress value of each category of masonry specimen 

S. No. 
Specimen 

description 

Flexural stress 

(MPa) 

1 Non-reinforcement 0.68 

2 Lozenge grid RF 1.15 

3 Re-entrant RF 1.24 

4 Plain grid (6VR) RF 1.41 

5 Plain grid (14VR) RF 1.35 

 

The maximum flexural load, displacement at maximum load and energy 

absorption of the non-reinforced and reinforced masonry are given in the Table 7.3. The 

results show that the auxetic structures exhibit higher displacement and more energy 

absorption than plain grid reinforced masonry specimens. 

Table 7.3. Energy absorption of reinforced masonry specimens 

Specimen description 
Avg. peak 

load, kN 

Avg. 

displacement at 

peak load, mm 

Energy 

absorption, 

J 

Non-reinforced masonry 7.3 (9.7) 1.44 (11.6) 5.6 (5.7) 

Lozenge grid RF masonry 12.3 (6.1) 9.38 (29.2) 84.9 (22.6) 

Plain grid (6VR) RF masonry 15.2 (8.6) 6.87 (18.6) 77.5 (22.4) 

Re-entrant structure RF masonry 13.4 (15.2) 4.45 (14.5) 50.2 (20.8) 

Plain grid (14VR) RF masonry 14.4 (19.5) 4.11 (18.9) 47.6 (10.7) 

Note: Values of CV% are given inside brackets. 

The energy absorption of reinforced masonry was calculated as shown in the 

Figure 7.20. Area under the curve was calculated up to 80% of peak load [128, 129]. The 
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failure mode of the non-reinforced and reinforced masonry is shown in Figure 7.21. The 

figure shows that, all the specimens undergone the flexural failure mode.   

 

Figure 7.20. Energy absorption region of masonry reinforcements. 

 
Figure 7.21. Failure mode of non-reinforced and structures reinforced masonry 

specimens. 

The damage observations after the flexural testing of unreinforced and structure 

reinforced masonry samples are shown in the Figure 7.22, where it can be shown that the 

plain grid reinforced masonry specimens experienced less damage when compared to 
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auxetic structure reinforced masonry specimens. This is due to auxetic structures 

expansion in width wise direction. 

 

Figure 7.22. Damage observation of masonry specimens after flexural loading. 

7.5. Conclusion 

Auxetic structures (based on lozenge grid and re-entrant hexagon design) and 

plain grid structures produced from basalt fibre reinforced braided composites were 

reinforced into the mortar and studied their tensile behaviour. It is observed from the 

results that plain grid reinforced mortar specimens performed well and undergone less 

crack compared to auxetic structures reinforced mortar specimens. This is due to the 

width wise expansion of the auxetic structures during loading. In comparison between 

basic auxetic structure and modified auxetic structures reinforced mortar specimens 

experienced less cracks and this is due to modified design consist of straight rods in its 

loading direction. The presence of straight rods restrict transverse expansion, thus in turn 

decreases the level of cracks during loading. 

Modified auxetic structures (based on lozenge grid and re-entrant hexagon design) 

and plain grid structures produced from basalt fibre reinforced braided composites were 

reinforced externally on masonry wall specimen and tested under flexural loads to study 

their performance. The results are compared with non-reinforced masonry wall specimen. 
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The results show that the structures both auxetic and plain grid reinforced masonry wall 

specimens showed higher flexural strength (𝜎𝑓) when compared to non-reinforced 

masonry wall specimen. But, auxetic structures reinforced masonry exhibits slightly less 

flexural stress compared to plain grid reinforced masonry specimens. However, auxetic 

structures reinforced masonry wall specimens showed higher energy absorption 

compared to plain grid reinforced masonry wall specimens. This is due to the presence of 

undulation rods presents in the auxetic structures, which cause more displacement 

compared to plain grid. 
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Chapter 8 

 

Conclusions and Future Work 
 

 

 

 

 

 

 

8.1. Conclusions 

8.1.1. Experimental work 

In this research, first time, auxetic structures were developed from fibre reinforced 

braided composite rods. Auxetic materials possess superior mechanical properties 

compared to non-auxetic material due to negative Poisson’s ratio, i.e. material expands 

transversely during axial loading and shrinks while applying compressive loads. There 

are various auxetic structural designs reported in the literature (missing rib, chiral 

honeycomb, re-entrant honeycomb, double arrowhead, etc.). Out of many auxetic 

structural designs, two simple design, namely missing rib or lozenge grid and bow-tie or 

re-entrant hexagon have been chosen for the structure development. These two designs 

are simple and feasible to develop using braided composite rods. 

Initially the auxetic structures were developed and studied their Poisson’s ratio 

and tensile behaviour by image analysis technique. The objectives of developing these 

auxetic structures are to strengthen civil engineering structural elements and as 

replacement of conventional strengthening materials. Within this work, the primary 

auxetic structure based on auxetic structural design didn’t show enough tensile behaviour, 
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i.e. low strength at lower strain level, which is not appropriate to use for the strengthening 

purpose of civil structural elements. 

To over the shortcomings, the basic auxetic structural designs were modified with 

vertical straight rods along with undulation rods. This modification provided enough 

strength at lower strain and auxetic property. Also, the effect of structural parameters 

(angle and rib length) and material parameters (linear density of core fibre and fibre type) 

on auxetic and tensile behaviour of the structures studied in detailed manner. The result 

shows that, varying the structural parameters had significant effect of auxetic and tensile 

behaviours. However, the change of material parameters had little effect on auxetic 

behaviour, whereas the tensile behaviour is significant based on the type of fibre and 

linear density, i.e. higher stiffness and higher linear density exhibited higher tensile 

strength, vice-versa.  

To study the effectiveness of the developed auxetic structures, they are used as 

reinforcement into mortar and masonry wall and studied their tensile and flexural 

behaviour, respectively. The results were compared with non-reinforced and plain grid 

reinforced mortar and masonry wall. The results show that plain grid reinforced mortar 

performed well, i.e. exhibited higher tensile results and experienced less cracks under 

tensile loading. However, the auxetic structures reinforced masonry showed closer 

flexural stress value compared with plain grid reinforced masonry specimens. Also, the 

auxetic structures reinforced masonry exhibited higher ductility and energy absorption 

compared to plain grid reinforced masonry wall specimens. 

8.1.2. Analytical and numerical modelling 

To study the auxetic behaviour of the developed structures, suitable analytical 

formula either existed or newly derived were used and compared with experimental 

results. The analytical results show closer agreement with experimental results. Apart 

from analytical model, numerical modelling using FE code of DIANA was developed to 

study the tensile and auxetic behaviour. The modelling results compared with 

experimental results and closer agreement were achieved. 
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8.2. Future work 

Since there is very less information about composite auxetic structures and auxetic 

composites and their applications in civil engineering, some of the important work which 

can be carried out as future work is presented here, 

- The surface of braided rods (i.e. contour of braided rod surface) can be altered to 

improve their adhesion with masonry elements. The designing process could 

consider to change the different parameters of surface ribs of braided rod: height, 

thickness, spacing and inclination of the ribs. (See Figure 8.1) 

  
 

Figure 8.1. Example of yarns configuration in order to achieve different ribs 

configuration [130].  

- Varying the rib length of re-entrant hexagon design and study auxetic behaviour 

and tensile properties. 

- Development of analytical modelling to study tensile behaviour of developed 

auxetic structures based on missing rib or re-entrant hexagon design. This will be 

helpful to understand their tensile behaviour prior to experimental development 

of structures and give indirect benefits on time and cost. 

- Since, the auxetic structures reinforced masonry wall specimens performed well 

under flexural load (flexural stress is almost close to plain grid reinforced masonry 

and exhibited higher energy absorption), the auxetic structures can be used as 

reinforcement to the masonry and study their performance under impact load. This 

could be a better alternative for commercial grids. 

- In the literature, the route to develop an auxetic composite from technical fibres 

were reported and studied their mechanical behaviour (Poisson’s ratio, tensile 

modulus, fracture toughness, etc.) in detailed manner. These type of composites 

are exhibited moderate tensile modulus and good energy absorption under impact 
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loading. So, this type of auxetic composites should be developed from technical 

fibres (Kevlar, Basalt, Carbon, etc.) and applied to civil structural elements to 

study their effectiveness under impact load, flexural load, etc. This will be an 

effective way to enhance the properties of existing structural elements and good 

replacement of conventional fibre reinforced composite panels. 

- There are various routes to develop auxetic structures and auxetic materials like 

auxetic composite core reinforced sandwich panel, knitted auxetic fabric 

composite which produced from advanced technical fibres. These types of auxetic 

materials can be developed and used for strengthening of civil structural elements 

and study their performance under different loading condition (compressive load, 

seismic load, impact load, etc.). These novel auxetic composite materials may 

perform well and effective solution for many critical conditions like under blast 

load or seismic loading and best replacement for conventional composites. 
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