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Abstract

The massive traffic volumes and the heterogeneity of services in today’s networks urge

for flexible, yet simple measurement solutions to assist network management tasks, with-

out impairing network performance. To turn treatable tasks requiring traffic analysis,

sampling the traffic has become mandatory, triggering substantial research in the area.

In fact, multiple sampling techniques have been proposed to assist network engineering

tasks, each one targeting specific measurement goals and traffic scenarios. Despite that,

there is still a lack of an encompassing solution able to support the flexible deployment

of these techniques in production networks.

In this context, this research work proposes a modular traffic sampling architecture

able to foster the flexible design and deployment of efficient measurement strategies.

The architecture is composed of three layers i.e., management plane, control plane and

data plane covering key components to achieve versatile and lightweight measurements

in diverse traffic scenarios and measurement activities. The flexibility and modularity

in deploying different sampling strategies relies upon a novel taxonomy of sampling

techniques, in which, current and emerging techniques are identified regarding their

inner characteristics - granularity, selection trigger and selection scheme.

Following the proposed taxonomy, a sampling framework prototype has been de-

veloped and used as an experimental implementation of the proposed architecture,

providing a fair environment to assess and compare sampling techniques under distinct

measurement scenarios. Supported by the sampling framework, distinct techniques have

been evaluated regarding their performance in balancing the computational burden and

the accuracy in supporting traffic workload estimation and flow analysis. The results

have demonstrated the relevance and applicability of the proposed architecture, re-

vealing that a modular and configurable approach to sampling is a step forward for

improving sampling scope and efficiency.
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Resumo

Os grandes volumes de tráfego e a heterogeneidade de serviços nas redes atuais

requerem soluções de medição que sejam flexíveis e simples de modo a sustentar as

tarefas de gestão de redes sem afetar o desempenho das mesmas. Para tornar tratável

as tarefas que exigem análise de tráfego, tornou-se obrigatório recorrer a amostragem

do tráfego, motivando uma investigação substancial na área. Como consequência, várias

técnicas de amostragem foram propostas para auxiliar as tarefas de engenharia de redes,

cada uma orientada a satisfazer objetivos de medição e cenários de tráfego específicos.

Apesar disso, ainda não existe uma solução abrangente capaz de suportar a implantação

flexível destas técnicas em redes de produção.

Neste contexto, este trabalho propõe uma arquitetura modular de amostragem de

tráfego capaz de fomentar a concepção flexível e a implementação de estratégias efi-

cientes de medição de tráfego. A arquitetura é composta por três camadas, nomeada-

mente, camada de gestão, camada de controle e camada de dados, cobrindo os princi-

pais componentes para alcançar versatilidade e baixo custo computacional em variados

cenários de tráfego e atividades de medição. A flexibilidade e modularidade na imple-

mentação de diferentes técnicas de amostragem baseia-se numa nova taxonomia, na

qual técnicas atuais e emergentes são identificadas de acordo com suas características

internas - granularidade, trigger de seleção e esquema de seleção.

Seguindo a taxonomia proposta, um protótipo estruturando e agregando as dife-

rentes técnicas de amostragem foi desenvolvido e utilizado na implementação experi-

mental da arquitetura, permitindo avaliar e comparar as técnicas de amostragem em

diversos cenários de medição. Suportado pelo protótipo desenvolvido, distintas técni-

cas foram avaliadas quanto ao seu desempenho em equilibrar a carga computacional

e a acurácia na estimação do volume de tráfego e na análise de fluxos. Os resultados

demonstraram a relevância e aplicabilidade da arquitetura de amostragem proposta,

revelando que uma abordagem modular e configurável constitui um avanço no sentido

de melhorar a eficiência na amostragem de tráfego.
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Chapter 1

Introduction

The growth in size and heterogeneity of today’s communication networks has brought

huge challenges to network planning and management activities. The need for efficient

monitoring solutions, being crucial to assist service providers and network managers

in these activities, is further stressed when considering aspects such as service conver-

gence, mobility, virtualization and ubiquity, which are expected to coexist in a seamless

network environment.

One of the most used and versatile strategies designed to assist network monitoring

is traffic measurement. Traffic measurement techniques can be applied in real, emulated

or simulated networks and the Measurement Points (MPs) can be deployed directly in

the network nodes, in dedicated equipment or in general-purpose devices connected to

the network under analysis.

The massive traffic volume traversing high-capacity links, the distinct accuracy re-

quirements associated with service types or monitoring objectives to fulfill, sometimes

in a near real-time basis and requiring minimal interference in the network operation,

are the main challenges when designing a measurement methodology.

Traffic measurements can adopt active or passive methodologies. The active method-

ology resorts to the use of intrusive traffic by injecting probe packets into the network

for measurement purposes. Although generally more versatile and easy to deploy, this

method imposes caution with the traffic overhead in order to avoid disturbing the

network operation. Moreover, different activities might require distinct probe packet

features, which increase the risk of overloading the network with extra traffic.

Passive measurement methodologies adopt a non-intrusive approach, considering

only the real traffic of the network under analysis. These techniques typically use specific

devices or mechanisms embedded in network nodes. The major difficulty associated with

1



2 INTRODUCTION 1.1

the usage of passive measurements is the volume of traffic involved, resulting in high

resources requirements for processing, storage and transmission of data [1].

Aiming to cope with the tension between reducing the volume of data involved in

passive measurements and supplying sufficiently detailed information for the various

monitoring activities, three strategies are commonly employed - aggregation, filtering

and sampling [2].

Aggregation involves grouping related traffic by values in the packet header, such

as the same IP (Internet Protocol) source and destination addresses [3], or by temporal

distribution, such as all packets traversing the MP at a specific time interval. A common

usage of aggregation for providing compact data summaries is flow accounting, which

consists in the incremental collection of statistics about a group of packets that share

common properties [4]. Although effective in reducing the volume of data, this strategy

leads to a loss of visibility regarding all traffic.

Filtering uses a deterministic selection of packets based on the packet content, on

the treatment of the packet at the monitored node or on a function involving both of

them [1], discarding all packets in which the selection key does not match. In this way,

filtering is particularly useful for monitoring a subset of traffic of interest, once that

subset has been identified [2].

Sampling consists of selecting a subset of packets that will allow to estimate pa-

rameters about all traffic, with compatible degrees of accuracy, avoiding processing it

completely [5]. Sampling differs from aggregation and filtering as it is not required to

know the traffic features of interest in advance, thereby allowing its wide usage on mul-

tiple measurement tasks in presence of diverse traffic types. Therefore, packet sampling

has become mandatory for effective passive network measurements, especially in the

network core, reducing the amount of data to a manageable size [6].

Whilst the usage of sampling reduces the volume of traffic for analysis and improves

measurements versatility when compared with aggregation and filtering, the wide adop-

tion of sampling-based measurements still faces challenging aspects. In particular, (i)

choosing the best sampling technique toward the traffic characteristics or monitoring

goals; (ii) the accuracy in estimating the underlying metrics; and (iii) the impact of

processing and storage involved in traffic sampling processes as well as the transport of

the measured data, are open issues deserving further study.



1.1 MOTIVATION AND OBJECTIVES 3

1.1 Motivation and objectives

Despite passive packet sampling being an appropriate solution both to decrease the

massive volume of data processed, stored and transmitted when compared with measur-

ing all network traffic, and to reduce the interference in the network operation caused

by active measurements, this strategy retains some characteristics and constraints that

drive substantial research and a large number of new proposals.

As network traffic is heavily dynamic, estimating parameters about the network

accurately and frequently near real time becomes a non trivial task [7]. The sampling

technique chosen must be able to collect samples that represent the overall traffic be-

havior. However, a sample used to estimate a particular parameter correctly may not

be ideal for a different parameter or traffic type [2].

Packet sampling techniques are usually driven by schemes that rule packet capturing

at MPs: systematic techniques rely on a deterministic function based on the packet

position in time or in space into the incoming traffic; random techniques resort to a

probabilistic function in order to decide which packets will be selected to compose the

sample; and adaptive techniques introduce some intelligence aiming at selecting the

most relevant part of the traffic traversing the measurement point [6].

Based on the principles presented above, many recent works have proposed sampling

techniques and policies able to achieve better results regarding the accuracy in metric

estimation or the reduction of computational overhead for various measurement tasks.

However, most of these techniques usually address a unique network monitoring activity,

such as SLA (Service Level Agreement) compliance [7][8][9], QoS (Quality of Service)

parameters [9][10][11], anomaly detection [12][13] and others, as detailed in Chapter 2.

Despite the undeniable importance of traffic sampling to assist large scale passive

measurements and the performance differences of each approach when applied to dis-

tinct traffic types or measurement goals, most of the main tools able to perform packet

sampling (e.g., Cisco Netflow and sFlow) only support a small number of sampling

techniques, without covering relevant classic and new proposals. These limitations are

mainly related to the complexity in achieving an acceptable trade-off between provid-

ing several sampling techniques and the computational requirements involved in each

technique. In this way, this work aims to address a crucial question toward effective

passive measurements in today’s and future networks:
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How packet sampling measurement systems should be designed in order to

attend different monitoring objectives considering diverse traffic character-

istics and network scenarios?

The answer to this question also involves addressing fundamental aspects for the

ample adoption of packet sampling, namely: (i) compatibility with currently deployed

measurement systems; (ii) flexibility to accommodate new measurement goals and traffic

characteristics; and (iii) lightweight operation in order to minimize interference with the

normal network tasks. Hence,

the main objective of this work is to devise an encompassing, flexible and

lightweight traffic sampling architecture aiming at fostering the design and

deployment of efficient sampling strategies for diverse traffic scenarios and

measurement goals.

The efficiency of sampling strategies is mainly related to the ability to balance

accuracy in metric estimations and computational resources required.

To pursue this objective, this work is focused on understanding sampling techniques

through its constituent parts, rather than a closed unit, aiming to identify its spe-

cific characteristics, advantages and constraints. This will allow to guide the design of

sampling systems able to optimize their performance by exploiting the most suitable

features for a specific measurement purpose or traffic type.

A more detailed view of the problem to solve leads to the following objectives:

• survey existing techniques and tools for network and communication services mea-

surement based on packet sampling, identifying their main characteristics, advan-

tages and limitations;

• identify and classify the main sampling techniques regarding their inner charac-

teristics, providing thus a modular view of their components, and the performance

achieved in estimating metrics related to the measurement tasks they support;

• conceive and specify an encompassing sampling-based measurement architecture

able to drive the design of efficient measurement systems supported by a flexible

and modular structure;

• implement a prototype of the proposed architecture as a configurable framework

able to deploy multiple sampling techniques based on their previous modular

classification;
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• provide a proof-of-concept environment aiming at evaluating the effectiveness of

the proposed architecture and the trade-off regarding accuracy in metric esti-

mations, volume of data involved and computational requirements for various

sampling techniques in diverse network scenarios.

1.2 Research methodology

The research methodology to pursue the main objective of this work comprises three

well defined steps somehow evinced by the list of objectives defined above. Firstly, con-

sidering the main aspects related to traffic measurements supported by packet sam-

pling, relevant literature covering the major developments and methods is surveyed.

This bibliographic search and review allows a comprehensive analysis of the current

state-of-the-art in this area, grounding the proposal of a packet sampling taxonomy

able to describe current and emerging techniques in a modular and hierarchical struc-

ture. Secondly, a new sampling architecture is devised and its main subjacent entities

are specified in order to accomplish the goals related to compatibility, flexibility and

lightweight operation. Aiming at providing a proof-of-concept of the new proposal, a

prototype of the sampling architecture is implemented as a modular framework and

evaluated toward its applicability in supporting traffic measurements in diverse scenar-

ios efficiently. Performing tests in real traffic scenarios allows to assess the suitability of

distinct sampling strategies in manifold measurement tasks taking into account aspects

such as accuracy, volume of data involved and computational burden.

1.3 Summary of main contributions

Although a full discussion on this thesis outcomes is included in the concluding

chapter, this section provides a brief overview of its main contributions. Taking into

account the initial objectives defined above, these contributions are summarized as

follows:

• proposal of a new multiadaptive sampling technique able to improve network

measurements efficiency over distinct traffic conditions by self-adjusting the packet

sampling policy according to the ongoing network activity [14] [15] [16] [17];

• proposal of a taxonomy of sampling techniques providing a modular view of the

current approaches which can be explored both to adjust sampling configuration
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to specific measurement requirements and to enhance the performance of network

measurement systems [18] [19];

• proposal of an encompassing and flexible packet sampling architecture addressing

key components to foster the deployment of versatile and lightweight measurement

strategies in diverse traffic scenarios and measurement activities [18] [20];

• development of a sampling framework following a multilayer design in order to

sustain the modular deployment of current and forthcoming sampling techniques

[21] [22];

• fair comparative assessment of various sampling techniques and policies regarding

their computational weight (i.e., CPU load, memory consumption and volume of

data involved) [21], the accuracy in estimating traffic workload [20] and to support

flow analysis [23] [22].

1.4 Dissertation layout

This dissertation is structured in eight chapters reflecting the research work carried

out facing the objectives outlined in Section 1.1.

In the present Chapter 1 - Introduction - a first positioning of the reader in the area

of research is provided, highlighting current trends and evolution. Then, the motiva-

tion for this thesis is justified and the main objectives of the work are defined. The

main contributions to the research field are also summarized. The dissertation layout

is included here in order to provide a global view of the full document, regarding its

contents and organization.

In Chapter 2 - Packet Sampling for Network Measurements - is firstly introduced a

consistent terminology of the main concepts related to packet sampling. Then, an en-

compassing overview of the techniques currently used for packet sampling is presented,

detailing both standard specifications, widely deployed in measurement tools, and new

proposals, commonly designed to improve specific measurement goals. The chapter also

summarizes related work in which the performance and impact of packet sampling are

addressed.

In Chapter 3 - Multiadaptive Sampling Technique - is proposed a new self-adaptive

sampling technique based on linear prediction, which aims at reducing the computa-

tional weight in the network measurements without compromising estimation accuracy.

For this purpose, the packet selection process considers the levels of network activity,
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being configured to reduce the measurement impact when the network activity increases

and the measurement process tends to be heavier. The multiadaptive behavior of this

proposal is achieved considering both the sampling interval and the sample size as

adaptive parameters, bounded by thresholds that guarantee the representativeness of

samples in capturing network behavior.

In Chapter 4 - Taxonomy of Packet Sampling Techniques - a novel taxonomy is

proposed defining that sampling techniques can be classified into three well-defined

components according to the granularity, selection scheme and selection trigger in use.

Then each component is further divided into a set of approaches commonly followed

in existing sampling techniques. Describing these components in a modular and hierar-

chical structure allows to foster the flexible and simple deployment of a comprehensive

number of techniques in order to sustain the design of efficient measurement strategies.

The chapter also demonstrates the comprehensiveness of the proposal by describing

several existing techniques through the taxonomy.

In Chapter 5 - Sampling-Based Measurement Architecture - is presented and specified

a complete architecture of measurement systems based on the modular deployment

of sampling techniques. The architecture is composed by three layers, management

plane, control plane and data plane, covering all the components involved in traffic

measurements. Aspects such as mapping the measurement needs into the most suitable

sampling technique and operational parameters are discussed, including the decision on

the packet fields of interest, aggregation level and exporting format according to the

network scenario and measurement goals to fulfill.

In Chapter 6 - Sampling Framework Prototype - is detailed the technological aspects

and the development of a functional sampling framework used as a proof-of-concept of

the flexibility introduced by the sampling taxonomy and architecture. This framework

provides a fair environment to perform comparative assessments involving different sam-

pling techniques in diverse traffic scenarios. The chapter also presents an experimental

distributed sampling-based measurement system running in a large-scale network and

a complete example of the proposed architecture operation.

In Chapter 7 - Test Scenarios and Results - several test scenarios are introduced in

order to (i) demonstrate the versatility of the proposed architecture in providing a flex-

ible solution able to accommodate diverse sampling strategies and therefore, fostering

the development of efficient measurement strategies; (ii) evaluate the performance of

different sampling techniques when applied to activities usually supported by sampled

measurements, i.e., traffic workload and flow analysis. The performance is assessed com-

paring the accuracy in estimating related metrics and the computational requirements
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(i.e., CPU load, memory consumption and volume of data involved) in performing such

techniques.

In Chapter 8 - Conclusions - an overview of the present research work is presented,

concluding on to what extent the objectives defined initially have been accomplished.

This chapter also presents the main contributions of this thesis, providing future re-

search directions based on a critical analysis of the work carried out.



Chapter 2

Packet Sampling for Network

Measurements

The usage of packet sampling aiming at fostering network measurements is not a

recent research subject. The initial efforts addressing sampling techniques for statistical

analysis of computer networks were mainly focused on QoS of communication systems,

traffic accounting and characterization [24] [25] [26]. These early research works also

have produced methods to categorize the sampling techniques, starting from Amer

and Cassel [27] and further evolving to a framework standardized as a Request for

Comments (RFC) [1] by the Packet SAMPling (PSAMP) Working Group of the Internet

Engineering Task Force (IETF) [6].

Simultaneously with the development of high-speed network infrastructures and

the diversification of communication services, the usage of packet sampling has also

increased significantly, leading to the support of manifold tasks related to network

measurements. As illustrated in Figure 2.1, examples of these tasks include: network

management involving short, medium and long term planning and management of net-

work operation, maintenance and provisioning of network services [28][29][30][31]; traffic

engineering involving performance optimization, traffic characterization, traffic model-

ing and control [32][33][25][6][34]; performance evaluation of protocols and management

tools, network reliability and fault tolerance [35][36][9]; network security, including de-

tection of anomalies, intrusion, botnet and Distributed Denial of Service (DDoS) attacks

[37][38][39][40][41][42]; SLA compliance, where auditing tools may resort to network

sampling for measuring and report service levels [43] [44]; QoS control, aiming at mea-

suring parameters such as delay, jitter and packet loss [45][10][46][47]. Most of the above

cited techniques are conceived resorting to modifications and/or composition of basic

approaches that compose classical sampling techniques. These techniques are described

9
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in Section 2.2.

Figure 2.1: Measurement tasks supported by packet sampling

A large coverage of the related literature shows that some of the basic concepts

related to packet sampling are frequently presented in ambiguous way. To avoid incon-

sistencies, this chapter firstly presents, in Section 2.1, the terminology assumed through-

out this work. Section 2.2 presents the sampling technique categorization defined in [1].

These categories are further extended by the stratified techniques, in Section 2.3, and

adaptive techniques, in Section 2.4. Then, in Section 2.5, is presented an overview of

the practical application of packet sampling, the performance achieved in specific mea-

surement tasks and the availability of these techniques in current sampling tools.

2.1 Sampling terminology

Aiming at providing a consistent terminology of the main concepts related to packet

sampling, the most common terms are assumed throughout this work in accordance with

the following definitions.

• Sample - subset of network packets that are selected at the MP and then consid-

ered in the estimation of network parameters. This is also often referred as sample

event, which consists in an individual action of selection and capture of packets

from the stream under analysis;

• Sample size - number of packets or time interval in which all incoming packets

at the MP are selected and captured to compose a sample. The sample size is
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controlled by triggers, that are responsible for starting and finishing each sample

taking into account the packet position into the stream or its timestamp at the

MP;

• Interval between samples - number of packets or time interval in which all incom-

ing packets are ignored for measurement purposes. Likewise the sample size, the

manipulation of interval between samples also resorts to triggers.

Figure 2.2 illustrates the above concepts.

Figure 2.2: Basic sampling concepts

2.2 PSAMP - Packet SAMPling

The RFC 5475 [1] is a standard that describes techniques for sampling and filtering

IP packets for measurement purposes. Although it does not recommend any particular

implementation, the document provides a classification of these techniques according

their process of selecting packets by dividing the algorithms into two classes: content-

independent techniques and content-dependent techniques. The main difference between

these classes is the necessity of accessing the packet content in order to take selection

and capture decisions, which may impact on the computational resource requirements.

Here, the packet content corresponds to the packet header (of any TCP/IP layers)

and/or the packet payload.

2.2.1 Content-independent techniques

Inasmuch as these techniques do not inspect the packet content in order to rule the

sampling decisions, they control the sample triggering process considering the position

or the timestamp of the packet into the stream resorting to deterministic or (pseudo)

random functions. Within the deterministic techniques are the Systematic Count-based

and Systematic Time-based whereas the non-deterministic techniques encompass Ran-

dom n-out-of-N and Random Uniform Probabilistic.
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Systematic Count-based

In this technique, the process of ruling the starting point of a sample and its selec-

tion length (sample size) is driven by the spatial packet position (using packet counters)

following a deterministic function that confers a periodic behavior. A common deploy-

ment of this technique (illustrated in Figure 2.3) is the periodic selection of every k-th

packet of a stream. In this example, selecting every 5th packet, the sample size is equal

to 1 and the interval between samples is 4. Due to its simplicity and low resource re-

quirements, this technique has been widely deployed by network equipment vendors

and industry [48].

Figure 2.3: Systematic Count-based

Systematic Time-based

Likewise the systematic count-based, the systematic time-based technique also rules

the sample size and interval between samples resorting to a deterministic function.

However, in this case, the triggers are oriented to the arrival time of the packet at the

MP. For instance, the selection and capture process takes every incoming packet during

a specific time interval (sample size), ignoring every packet that reaches the MP during

the interval between samples, as illustrated in Figure 2.4. In this example, the sample

size is 100 milliseconds and the interval between samples is 200 milliseconds.

Figure 2.4: Systematic Time-based

Despite the relative simplicity of deployment, both systematic techniques face a risk

of leading to biased measurement results, as the predictability of the periodic sampling

enables deliberate manipulation or evasion [2].

Although RFC 5475 standard [1] only considers systematic techniques with samples

equally spaced, it is also stated that even if their functions are not periodic (e.g., the

interval between samples varies over the time), they are still considered as a systematic

technique. An example is the technique discussed in [2], in which the triggers that rule

the packet capture follow a Poisson distribution based on the timestamp of the first

packet observed.
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Random n-out-of-N

The random techniques aim to avoid the risk of biased samples by ruling the packet

selection and capture by a random process. The simplest and widely deployed mecha-

nism consists in capturing n packets from a sequential stream of N packets (n-out-of-N).

In this technique, a pseudorandom function generates n numbers between [1, N ], then

the packets that have a position equal to one of the random numbers are selected and

captured. Figure 2.5 illustrates an example where one packet is collected from every

five incoming packets. It is important to notice that in this approach, all the N packets

have the same probability p (with p = n/N) to be selected to compose the sample.

Figure 2.5: Random n-out-of-N

Random Uniform probabilistic

In the random uniform probabilistic technique, the decision for selecting packets

to compose a sample is in accordance with a predefined uniform probabilistic function

regardless the packet content. This means that all packets have the same probability

to be selected. A deployment example consists in a count-driven technique in which

the successive intervals between samples (with sample size equal to 1 packet) follow an

independent random variable with distribution of mean 1/p. Another uniform proba-

bilistic implementation referred in [1] corresponds to a time-driven triggered technique

where the interval between samples follows an exponential distribution.

2.2.2 Content-dependent techniques

This class of techniques involves the inspection of the packet content in order to drive

sampling decisions. The techniques defined in [1] are Random Non-uniform probabilistic,

Random Non-uniform Flow-state and Hash-based sampling.

Random Non-uniform probabilistic

In this technique, the packets do not have the same probability to be selected to

compose a sample. For this, the function may consider the packet content or part of it
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in order, for instance, to increase the chance of selecting packets that are rare but are

deemed important.

An example of this technique consists in selecting TCP packets containing the SYN

flag active with a higher probability [6]. Figure 2.6 illustrates this technique, in which the

packets with the SYN flag active are selected with probability 1/k and the remaining

packets are selected with probability 1/p. In this case, defining p > k increases the

probability of selecting packets from different flows.

Figure 2.6: Random Non-uniform

Although RFC 5475 [1] classifies this technique as content-dependent, the same doc-

ument also defines that the selection probability may be driven by the packet position,

which does not require the packet content inspection.

Random Non-uniform Flow-state

In the sampling techniques previously presented, each packet from the stream under

analysis is treated as an individual entity, with a particular chance to be selected for

a sample according to the sampling scheme being used. In these approaches, for mea-

surement tasks requiring traffic analysis based on flows, the packets are at first sampled

indistinctly for subsequent classification, usually resorting to a flow key (e.g., a 5-tuple

composed by fields of the packet header, namely source and destination IP addresses,

source and destination ports and type of protocol).

In this way, the Random Non-uniform Flow-state consists in ruling the packet se-

lection by a specified state of the flow the packet belongs to or by the state of other

flows being monitored. This involves classifying the incoming packet as belonging to a

particular flow during the selection process. Therefore, despite of the captured packets

are a sample of the total stream reaching the MP, this technique implies processing

all packets in order to identify the flow key, which require additional computational

resources. The standard also does not present any concrete method to define the flow

state, leaving this definition to be adjusted toward specific goals.
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Hash-based sampling

As mentioned before, the sampling and filtering techniques for IP packet selection

are described in [1]. A filtering process is a deterministic selection of packets based on

its content or treatment in a particular observation point. Although it usually involves

a previous knowledge of which properties will the filter be driven for, the statistical

properties of hash-based filtering allow it to be used as a random sampling emulator.

The hash-based selection consists in applying a hash function to the packet content, or

some portion of it, and then select all packets whose result falls into a defined range.

The decision on a hash function is widely addressed in [49] and must fulfill two

conditions: (i) be invariant along the path; (ii) be variable among packets, in the sense

that a small variation in the input packet (e.g., IP address) will cause large changes in

the hash output [2].

An example of sampling technique based on hash functions is presented in [29]

(i.e., Trajectory sampling). The technique uses the same hash function in different MPs

in order to collect the same set of packets in the entire domain. This enables the

reconstruction of the packet trajectories, thus assisting tasks that involve multipoint

metric estimation of the same packets, such as end-to-end delay.

2.3 Stratified techniques

In addition to the characterization of sampling, the RFC 5475 [1] also introduces

composite approaches, in which a sampling technique is defined by the application of

different combination of sampling schemes in sequence. Thus, the sampling process is

divided into multiple steps in order to increase the estimation accuracy of a specific

parameter using the same number or less packets than those that would result from

using a single scheme. One of these strategies is stratified sampling.

The basic idea behind stratified techniques is to group packets in strata according

to an attribute and then sampling packets into each strata [2]. In this way, the stratified

techniques require specifying classification rules for grouping the packets into subgroups

(that can be performed in multiple steps) and the sampling scheme that will be used

within the subgroups.

A deployment example is the uniform stratified random sampling technique, in which

M consecutive incoming packets are grouped in a window, in which N packets (with

N < M) are randomly sampled. Considering that the number of packets in each sub-

group is constant, the selection probability for each packet is equal. Although this
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approach is similar to that presented in Section 2.2.1 (i.e., random n-out-of-N), here

the packets may also be grouped by the arrival timestamps, as illustrated in Figure 2.7,

or any other filtering process.

Figure 2.7: Stratified sampling

The stratification reduces the variance of single packet statistics if the variance be-

tween subgroups is greater than the variance within a subgroup. For instance, if the

dividing characteristic is equal to the investigated characteristic, each element of the

subgroup would be a perfect representative of that characteristic [1]. In this way, the

stratification strategy (i.e., the subgroup selection, dimensioning and sample size) are

key aspects that impact on the performance of the technique. These aspects were inves-

tigated in [50], in which a non-uniform stratified random sampling is also introduced.

This technique uses dynamic strategies for the adjustment of stratification boundaries

applied to one-way delay measurements.

According to the outcomes in [50], although the stratified schemes can reduce sig-

nificantly the costs for the sampling process (i.e., the number of packets needed to

achieve a particular level of confidence) when compared with single sampling schemes,

the dynamic behavior only improves the accuracy if there are large changes of the trace

characteristics between subgroups, which imply that the usage of more sophisticated

methods does not necessarily lead to better results. This occurs due to the complexity of

defining efficient methods to predict those characteristics for the subsequent subgroup.

2.4 Adaptive techniques

Beyond the schemes presented in [1], a large number of sampling techniques are able

to adjust dynamically the selection of packets during the course of measurements. This

involves introducing some intelligence into the sampling algorithm in order to biasing the

capture towards packets carrying the most useful information for the specific measure-

ment purpose. There is no a guideline or limit for the amount of intelligence embedded

in the technique, nevertheless the solutions should keep the computational requirements

under an acceptable limit [6]. The regular deployment of adaptive techniques usually

resorts to controllers in order to rule the sampling policy toward a parameter observed

in the network. These controllers may resort to predictive or non-predictive models and
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some examples of methods employed are linear prediction, non-linear adjustment, fuzzy

logic or different statistical methods.

Regarding adaptive techniques, this doctoral work also introduces a new proposal

(detailed in Chapter 3) driven by a predictive controller in order reduce the amount

of data involved in the network measurements without compromising the estimation

accuracy.

2.4.1 Linear prediction method

The linear prediction method proposed in [28], inspired by the congestion control

protocol of TCP - Transmission Control Protocol, uses aspects observed in past samples

to predict the future traffic behavior and then adjusting the sampling frequency to a

suitable distribution in order to balance accuracy and computational overhead.

The main idea is to adjust the time interval between samples considering the level of

activity observed in the network. When an increase in the network activity is detected,

a shorter interval between samples is employed to measure the behavior of the network

with higher accuracy, otherwise, when less activity is detected, the interval between

samples is increased to reduce sampling overhead. The level of activity is assessed

comparing the traffic volume predicted with the real value measured [28].

The method [28] considers the traffic volume observed in the last N samples to

predict the traffic volume (xp) in the next sample resorting to the equation:

xp = x[N ] +
∆Tcurrent

N − 1

N−1
∑

i=1

(

x[i+ 1]− x[i]

t[i+ 1]− t[i]

)

(2.1)

where, x[i] is the traffic volume estimated in each previous sample i collected at the

time t[i], x[N ] is the traffic volume estimated in the most recent sample and ∆Tcurrent

is the time interval for the next sample schedule.

The predicted value xp is then compared with the actual value estimated through

the current sample. The comparison yields a rate of activity change m (presented in

Equation 2.2) that is further applied to a set of rules to adjust the sampling interval to

a new value ∆Tnext, which is then used to schedule the next sampling event.

m =

∣

∣

∣

∣

xp − x[N ]

sample− x[N ]

∣

∣

∣

∣

(2.2)

The result produced by Equation 2.2 will be a value near the unity when the pre-
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dicted behavior is close to the actual value. The value range is defined by mmin < 1 <

mmax, with mmin and mmax bounded experimentally according to the traffic type and

is interpreted as: (i) if m is below mmax, the volume of traffic is changing faster than

predicted, so the sampling interval should be decreased; (ii) if m is above mmax, the

traffic volume is changing more slowly than the prediction, so the sampling interval

can be increased. The detailed rules to define the next sample interval are presented in

Table 2.1 [28].

Table 2.1: Rules to define the ∆Tnext

value of m ∆Tnext

m < mmin ∆Tnext = m ∆Tcurrent

mmin ≤ m ≤ mmax ∆Tnext = ∆Tcurrent

m > mmax ∆Tnext = ∆Tcurrent + 1sec
m undefined ∆Tnext = 2 ∆Tcurrent

2.4.2 Non-linear method

For some measurement purposes, a large fraction of useful information is contained

in a small fraction of flows [13], for instance, in traffic accounting, the main target

is to catch elephant flows (i.e., flows of large size). The content-independent sampling

techniques (presented in Section 2.2.1), when applied to the aggregate traffic, lead to the

packets belonging to the large flows most likely to be sampled, being therefore sufficient

to achieve high accuracy for this purpose. However, this approach is not suitable for

measurement tasks in which different sizes of flows may be of importance, such as

network security applications, that require accurate estimation of mice flows (i.e., flows

of small size) [8], inasmuch as the flow-level traffic patterns often reveal anomalies in

the network [39] [41] [51].

In this way, the technique proposed in [8] aims at increasing the accuracy of the

overall traffic distribution by using an adaptive non-linear sampling method. The basic

idea consists in classifying packets into flows during the selection process, adjusting dy-

namically the sampling frequency of different flows individually according to the counter

value (flow size) of each flow. This is performed by individual an probabilistic sampling

process running on every flow. Unlike techniques that try to predict the flow size in

order to adjust the sampling frequency, e.g., resorting to a linear auto-regressive pre-

diction model or resorting to a linear prediction method, the usage of distinct functions

for different flows allows to eliminate predictive functions.

For every flow identified, the MP maintains a counter c with the number of sampled
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packets from that flow. Then, each new packet belonging to the flow will be sampled

following the function P (c) that rules the sampling of each flow reducing the frequency

with the increasing of c according to the equation:

P (c) =
1

f(c+ 1)− f(c)
(2.3)

where f(c), with c ≥ 0, is a sampling function to be selected following the conditions:

• f(c) is a real increasing convex function;

• f(0) = 0 and f(1) = 1;

• f(c) < f(c+ 1) ≥ bf(c) + 1 with b > 1 and c > 0.

Although the results demonstrate a significant improvement in estimation accuracy,

particularly for small-size flows, performing a different sampling frequency over different

flows in parallel may lead to a considerable computational overhead.

2.4.3 Fuzzy logic method

Following the same principle that rules the adaptive method presented in Section

2.4.1, in which the interval between samples is reduced when higher activity is detected

in the network and is increased when less activity is detected, the fuzzy logic method

avoids attempting to predict the exact value of future traffic volume by adjusting the

sampling frequency based on one or more premises and a single implication [28].

Unlike identifying network activity levels such as "high", "medium" and "low",

this technique mimics the decision process employed by human brain [52], producing

a sub-range of possible outputs, such as change-slight, change-low or change-medium.

For this, a controller receives the current interval between samples (∆Tcurrent) and the

difference of traffic volume estimated between the last two samples (∆X) as inputs.

Then interprets the values into one or more fuzzy states for each input (as presented

in Table 2.2). The mapping between numerical values from ∆Tcurrent and ∆X to the

fuzzy variables relies on previous experiences and may vary for different traffic scenarios,

requiring therefore a training period in which the optimal spread and boundaries of the

parameters could be ascertained.

The input states are then correlated yielding an output, also defined in terms of fuzzy

variables (Fout), that must be further mapped to numerical values used to schedule the

next sample event. As detailed in Table 2.3, two premises are correlated by using the
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Table 2.2: Fuzzy state inputs

∆X ∆Tcurrent

No-Change (NC) Small (S)
Change-Slight (CS) Small-Medium (SM)
Change-Low (CL) Medium (M)

Change-Medium (CM) Medium-Large (ML)
Change-High (CH) Large (L)

logic operator AND in order to provide a simple implication, that will be converted in

a nonfuzzy output following Equation 2.4.

The mapping of the Fout fuzzy state into a numerical value follows a tree steps process

using the correlation product method: (i) find the set of all rules that correspond to the

input states by considering all permutation of states; (ii) choose the minimum degree

value of the inputs among the matching rules; (iii) scale the shape of the function for

the Fout value of each rule by the minimum input value defined in the previous step.

This process is repeated for all the rules, the resulting scaled shapes of each function

are combined and then their center of mass is calculated using Equation 2.4, in which

z corresponds to the numerical value used for Fout, n is the number of rules combined,

Uj and Vj are the peak of the shape for the combined functions for x-axis and y-axis,

respectively [28].

z =

∑n

j=1
(Uj × Vj)

∑n

j=1
Vj

(2.4)

Despite the flexibility provided by the extensive sub-range of possible traffic scenar-

ios, the experimental process of mapping these levels according to the type of traffic,

and the necessity of storing them for future similar situations may lead to a excessive

complexity of deployment.

2.4.4 Statistical method

This technique was introduced in [46] and further enhanced in [53] with the aim

to optimize the sampling process considering the statistics of multiple parameters re-

lated to QoS metrics, i.e., delay, jitter, throughput and packet loss ratio. Basically, the

technique performs packet collection driven by the arrival time of the packet at the

measurement point. Each period of collection is called section (a sample according the

terminology presented in Section 2.1) and has a fixed size. Then the method adaptively

adjusts the time interval between two consecutive sampling sections (called pre- and
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Table 2.3: Rules for the fuzzy mapping

Rule ∆X ∆Tcurrent Fout

1 No-Change (NC) Small (S) Increase-high (IH)
2 No-Change (NC) Small-Medium (SM) Increase-high (IH)
3 No-Change (NC) Medium (M) Increase-Low (IL)
4 No-Change (NC) Medium-Large (ML) Increase-Low (IL)
5 No-Change (NC) Large (L) No-Change (NC)
6 Change-Slight (CS) Small (S) Increase-high (IH)
7 Change-Slight (CS) Small-Medium (SM) Increase-Low (IL)
8 Change-Slight (CS) Medium (M) No-Change (NC)
9 Change-Slight (CS) Medium-Large (ML) Decrease-Low (DL)
10 Change-Slight (CS) Large (L) Decrease-Low (DL)
11 Change-Low (CL) Small (S) Increase-Low (IL)
12 Change-Low (CL) Small-Medium (SM) No-Change (NC)
13 Change-Low (CL) Medium (M) Decrease-Low (DL)
14 Change-Low (CL) Medium-Large (ML) Decrease-High (DH)
15 Change-Low (CL) Large (L) No-Change (NC)
16 Change-Medium (CM) Small (S) Decrease-Low (DL)
17 Change-Medium (CM) Small-Medium (SM) Decrease-Low (DL)
18 Change-Medium (CM) Medium (M) Decrease-High (DH)
19 Change-Medium (CM) Medium-Large (ML) Decrease-High (DH)
20 Change-Medium (CM) Large (L) Decrease-High (DH)
21 Change-High (CH) Small (S) Decrease-Low (DL)
22 Change-High (CH) Small-Medium (SM) Decrease-High (DH)
23 Change-High (CH) Medium (M) Decrease-High (DH)
24 Change-High (CH) Medium-Large (ML) Decrease-High (DH)
25 Change-High (CH) Large (L) Decrease-High (DH)

post-sampling sections) increasing the interval when the overall statistic of the traffic

does not change for those two sections, and decreasing the interval when the overall

statistic of the traffic for the two sections differ significantly. The quantification of sta-

tistical changes is defined as a threshold value specified by the user, that must be related

to the parameter used to guide the method. The overall statistic (OS) is defined by the

equation [46],

OS = |(m̄1 − m̄2)/m̄1|+ |(md1 −md2)/md1|+ |(std1 − std2)/std1| (2.5)

where,

• m̄1 and m̄2 are the mean values of a traffic parameter (e.g., delay) being estimated

for the pre- and post-sampling sections, respectively;
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• md1 and md2 are the median values of the same parameter for the pre- and post-

sampling sections, respectively;

• std1 and std2 are the standard deviation values of the pre- and post-sampling

parameters, respectively.

The OS is then compared with the threshold defined by the user. If the OS value is

less than the threshold, the interval between samples (ISI) is updated using,

ISI = ISI + round(ISI/µ) (2.6)

where µ is a predefined value that controls the update magnitude.

Otherwise, if the OS value is greater than or equal to the threshold value, then ISI

is updated using,

ISI = ISI − round(ISI/µ) (2.7)

The advantages of this sampling method are easy implementation and fast response

to the variation of the input traffic. The algorithm output however is to some extent

sensitive to its initial parameter settings [46].

2.5 Packet sampling in practice

Beyond the vast number of new techniques, the diversification of communication ser-

vices and their underlying requirements have also fostered a large number of research

works focused on assessing the most suitable sampling technique for different measure-

ment tasks. Several of these studies are mainly devoted to analyze and enhance the

trade-off between sampling accuracy and overhead of the traditional techniques defined

in [1], which essentially intend to minimize information loss while reducing the volume

of collected data [13].

The notion that distinct sampling methods and their implementations represent

an additional source of variability for interpretation of measurements is expressed in

[25], where, after simulating various sampling approaches (also standardized in [1])

revealed that time-triggered techniques did not perform as well as packet-triggered when

estimating the distribution of packet size and packet interarrival times. This occurs due

to the burstiness in traffic patterns [54], in which the occurrence of many packets with

small interarrival times leads time-based techniques to more misses than a count-based.
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Nevertheless, comparing different count-based techniques (i.e., systematic and random)

the accuracy for the same parameters is very similar [2].

Furthermore, despite the probabilistic methods have been proposed aiming at im-

proving the accuracy in estimating traffic statistics, as demonstrated in [55] and [56],

they do not necessarily deliver such improvements facing deterministic approaches for

a large set of metrics related to traffic classification and characterization. Moreover,

for flow accounting, systematic sampling performs a little better [7] and for anomaly

detection, random sampling causes both a significant decrease in detection performance

and an increase in false negatives (i.e., a loss of detectability) [41].

Unlike metrics oriented to the estimation of aggregated traffic volume, count-based

techniques tend to produce more inaccurate estimations for flow oriented accounting

when compared with time-based techniques. As two back-to-back packets of a flow in

a stream will rarely be selected by spatial distributed sampling processes, usually only

few flows get enough packets captured to achieve sufficient accuracy for accounting [7].

This also affects the performance of applications that require the analysis of consecutive

packets, such as IDS [57], being therefore, time-based techniques more suitable for this

type of measurements.

In addition, some works have demonstrated that conducting sampling only to a

specific set of flows of interest can improve the estimation accuracy for tasks sensitive

to flow sizes [58]. For instance, while traffic accounting targets mainly flows of large

sizes [13], anomaly detection targets flows of small sizes [8].

When considering adaptive techniques, there is not a comprehensive comparative

study in the literature. As these techniques are usually proposed aiming at enhancing

the accuracy for a specific measurement goal, the comparative studies are generally

limited to evaluate their improvements regarding a small number of schemes described

in [1] (commonly the systematic count-based and random n-out-of-N). Typically, most

of these works claim that their adaptive techniques outperform the traditional schemes

within the scope in which they were proposed.

The lack of an encompassing study regarding the suitability of sampling techniques

for multiple measurement tasks is not only limited by the usual specificity of adaptive

techniques. It is also affected by the complexity of deploying them in current commercial

sampling tools (that only support few approaches), hampering thus a wide adoption

of features that make some techniques more efficient. This is evident in main sampling

tools commercially available such as Cisco Sampled Netflow and sFlow.
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Due to its large market share1, Cisco Sampled NetFlow is one of the most used sam-

pling tool, especially because it is embedded in many models of commercial routers and

switches. The tool is composed by two modules, not necessarily available in all devices.

The deterministic NetFlow module implements the systematic count-based technique

and the random sampled NetFlow module implements the random n-out-of-N (both pre-

sented in Section 2.2.1). In this way, this sampling-based tool only provides count-based

and content-independent techniques.

sFlow is an industry standard adopted by multi-vendor as the sampling technology

embedded within their switches and routers. It was proposed as an RFC (i.e., RFC

3176 [59]) that defines the sampling mechanisms implemented in an sFlow Agent for

monitoring traffic, the sFlow MIB - Management Information Base for controlling the

sFlow Agent, and the format of data used to forward sampled data to an external data

collector [59]. As Cisco Sampled NetFlow, sFlow provides two count-based techniques,

the systematic and random. However, the random technique works slightly different as

it generates a random number for each incoming packet, compares the random number

to a preset threshold and collects the packet whenever the random number is smaller

than the threshold value.

Both tools allow the combination of sampling and filtering in order to improve

measurement flexibility, for instance applying the sampling policy only to packets being

forwarded through a specific interface. However, they do not provide crucial sampling

strategies, such as time-based, relevant for activities related to anomaly detection, as

discussed before. Similar limitations are also present in different measurement tools and

network vendors, for instance tcpdump, Alcatel cFlow, Juniper J-flow and Endace NICs.

From the large coverage of related literature it is clear that the selection of a strategy

for packet sampling depends on the type of measurement task in which it will be applied,

therefore, there is not a single technique able to face all measurement goals. In this

way, a measurement system able to accommodate different sampling strategies, whether

standardized or not, aiming at providing high accuracy measurements while maintaining

the computational overhead under control is not only an open issue, but also highly

desirable.

1Source: IDC Worldwide Quarterly Server Tracker, 2014Q2, August 2014, Vendor Revenue Share
for top vendors. Revenue is cumulative 4 quarters (Q3CY13 - Q2CY14).
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2.6 Summary

This chapter has presented an encompassing overview of the current packet sam-

pling techniques. It has included techniques standardized through IETF RFC 5475 [1]

and techniques recently proposed, which frequently involve complex selection schemes,

such as adaptive techniques. In addition, the chapter went further in identifying and

discussing the applicability of sampling techniques in several measurement activities

and their availability in current measurement tools. The literature review has shown

that there is not a comprehensive comparative study addressing the vast number of

sampling techniques regarding their performance in satisfying the various measurement

objectives. However, it was possible to identify that, some of the less deployed tech-

niques tend to achieve better performance than the classical ones for various traffic

scenarios and measurement tasks. These observations sustain the need for analyzing

the sampling techniques through its constituent parts, rather than a closed unit. This

will allow to identify their common properties, which lead to the better performance,

and address eventual constraints within a narrower and simpler scope. This topic will be

covered in Chapter 4, after the presentation of a new Multiadaptive sampling technique

in Chapter 3. The proposed technique is presented in a dedicated chapter due to be a

contribution of this doctoral work.
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Chapter 3

Multiadaptive Sampling Technique

As discussed previously, adaptive sampling techniques aim at increasing the mea-

surement accuracy by driving packet selection through dynamic sampling policies tar-

geting packets of interest for achieving a specific monitoring goal. In addition, some

adaptive techniques also propose strategies to reduce the sampling overhead by reduc-

ing the volume of data processed, stored and transmitted.

The algorithms introduced in [28] and [46] (detailed in Section 2.4) basically adjust

the sampling frequency of time-triggered sampling schemes by varying the interval be-

tween samples according to the activity level observed in the network. The main idea

consists in reducing the interval between samples (increasing the sampling frequency)

when high-level network activity is identified or conversely, increasing the interval be-

tween samples (reducing the sampling frequency) when low-level activity is identified. In

this way, if the volume of traffic under measurement increases significantly, the volume

of packets captured by the sampling technique will also increase. This may cause serious

concerns, considering that sampling usually shares hardware resources with routing or

switching processes.

In this context, this chapter presents a new multiadaptive sampling technique (MuST)

[14] [15] [16] [17] based on linear prediction, aiming at reducing the amount of data in-

volved in the network measurements without compromising the estimation accuracy.

Therefore, the main objective is to reduce the measurement overhead and still assure

that sampled traffic reflects the statistical characteristics of the global traffic under

analysis. For this purpose, the traffic selection process considers the levels of network

activity, being configured to reduce the measurement impact when the network activity

increases or the measurement process tends to overload the measurement points. The

multiadaptive behavior of the proposed technique is achieved considering both the in-

terval between samples and the sample size as adaptive parameters, bounded by proper

27



28 MULTIADAPTIVE SAMPLING TECHNIQUE 3.1

thresholds to guarantee the representativeness of samples in capturing the network

behavior. The resulting gain achieved by MuST is discussed in Chapter 7.

3.1 Design goals

As mentioned, the multiadaptive sampling technique proposed aims at improving

the sampling reactivity and efficiency, considering both the interval between samples

and the sample size as adjustable parameters [15]. In this way, the present proposal

pursues the following design goals:

(i) the adaptive nature of the technique should be driven by simplicity of implemen-

tation and low consumption of resources;

(ii) the adaptive sampling process should be defined in order to minimize the impact

of sampling on the normal network operation while keeping high-accuracy levels.

Therefore, the technique should gauge the past and current network activity in

order to estimate adequate parameters to guide the traffic selection process.

The first goal motivates the adoption of a sampling approach based on linear predic-

tion, as proposed in [28]. In fact, as discussed in Section 2.4, the use of linear prediction

leads to lighter solutions when compared to fuzzy logic adaptive approaches. However,

in the adaptive process described in [28], the underlying processing overhead is still

significant as the whole network traffic is considered for the definition of the reference

parameter, regardless of packets belonging or not to a sample. In MuST, the technique

described in [28] is modified so that only packets belonging to previously collected

samples are taken into account to drive future sampling decisions, clearly reducing the

processing overhead.

To pursue the second goal, an adaptive sampling process is defined to react au-

tonomously and self-adapt to distinct network loads and traffic characteristics. In this

process, the sampling frequency is increased or decreased whenever there is a notice-

able increase or decrease in the network activity in order to allow detecting new traffic

patterns. As increasing the sampling frequency implies higher consumption of resources

(processing and storage), the sample size should be consequently reduced to mitigate

the overhead increase. To guarantee that a representative amount of data is obtained

toward capturing the network behavior, the adaptive parameters need to be properly

bounded by thresholds.
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The sampling frequency can be adjusted varying the interval between samples, re-

sorting to a linear prediction function for adapting the sampling frequency based on

[28]. The new predictive function is presented in Equation 3.1, whereas the set of rules

determining the change factor in the interval between samples are presented in Equation

3.2 and Table 3.1. This formulation is detailed in the following section.

As none of the techniques available so far present features for adjusting dynamically

the sample size, this work proposes a set of rules for varying the sample size according

to the level of network activity. These rules increase and decrease the sample size con-

sidering the observed network behavior. The dynamic variation in sample size complies

with the criteria presented in Table 3.2. This will also be detailed below.

3.2 Multiadaptive sampling technique description

MuST takes into account the last N samples to estimate the future value of the

reference parameter, which is then used to determine the next interval between samples

and the size of the next sample. Thus, for a sampler of order N , the expected value Xp

of the reference parameter for the next collected sample is defined as

Xp = XN +
∆TN

N − 1

N−1
∑

i=1

(∣

∣

∣

∣

Xi+1 −Xi

∆Ti

∣

∣

∣

∣

)

. (3.1)

In Equation 3.1, the variable X represents the values of the reference parameter of

the last N samples, being XN the value of the most recent sample. A second variable T

represents the intervals between samples, where each ∆Ti is the time elapsed between

the end of the sample Xi and the beginning of the sample Xi+1, i.e., ∆Ti = Ti+1 − Ti

for all 1 ≤ i ≤ N and N > 1.

3.2.1 Defining the interval between samples

When a new sample is collected, the corresponding value of the reference parameter

S is compared with the expected value Xp in order to determine a factor of change m.

Depending on the value of m, a set of rules is applied to define the sampling interval

∆TN+1, which will determine the start of the next sample. The factor m, obtained
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comparing Xp and S, is given by

m =

{

Xp

S
ifS 6= 0;

1 otherwise.
(3.2)

The fraction in Equation 3.2 returns a value close to 1 when the expected value Xp

is close to the current value of S, corresponding to a correct estimate. In this case, the

range of values for m is defined as varying between mmin = 1 − σ and mmax = 1 + σ,

i.e.,

1− σ < m < 1 + σ

where σ allows to adjust the degree of adaptiveness (or reactivity) in the estimation

process. As discussed in [28], considering a 10% variation in the reference parameter

(representing a variation in the network activity) has led to an adequate regulation in

presence of multiple traffic types. Therefore, these values are set as mmin = 0.9 and

mmax = 1.1 .

If m < mmin the predicted value of the reference parameter was underestimated,

indicating more network activity than expected. Thus, the interval between samples

is decreased according to m variation to achieve more accurate values in the following

predictions.

On the other hand, if m > mmax the value of the reference parameter was overes-

timated in the prediction, and the network activity is slowing down. In this case, the

interval between samples is exponentially increased in order to converge faster to its

maximum value, reducing the measurement overhead.

If the value of S is null, representing that no traffic has been captured, e.g., due to

a reduced network load or a temporary link failure, m assumes a unitary value, which

allows to keep the adaptive sampling parameters stable1. In this case, the current ∆TN

is assumed as the next interval between samples.

Table 3.1 lists the rules used to generate the next sampling interval ∆TN+1.

An additional threshold is defined to prevent ∆T from increasing indefinitely, thus

1Note that, Xp keeps incorporating S, becoming null after N samples with S = 0. This behavior is
adequate to resume properly the adaptive process when new traffic is detected. In practice, network
links tend to exhibit load as, at least, control traffic is crossing the links. Therefore, successive iterations
with S = 0 are likely due to link failure, which would be detected and handled at a higher network
management layer.
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Table 3.1: Rules to define the next interval between samples

current m next ∆T

m < mmin ∆TN+1 = m ∆TN

mmin ≤ m ≤ mmax ∆TN+1 = ∆TN

m > mmax ∆TN+1 = 2 ∆TN

guaranteeing a minimum number of samples to obtain representative data for new

predictions. Similarly, the maximum frequency of sampling is also limited so that the

sampling interval does not tend to zero, which would result in capturing all traffic.

These limits should weight and be adjusted according to the existing link capacity.

In the present study, similarly to [28], a minimum and a maximum interval between

samples of 0.1s and 8s, respectively, has shown adequate based on experimental tests

under diverse traffic scenarios.

Figure 3.1 illustrates the evolution of the interval between samples as a function of a

linear variation of the m factor. As shown, the reactivity is smoother when the network

activity increases, i.e., the next ∆T decreases proportionally to m when m < mmin.

Conversely, the reactivity is higher in presence of low network activity, i.e., the time

interval between samples varies exponentially when m > mmax.

Figure 3.1: Evolution of interval between samples according to m variation
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3.2.2 Defining the sample size

For adapting the sample size, the factor m is also considered as an indicator of

network activity. Table 3.2 presents the rules used to define the next sample size, where

∆SN represents the current sample size and ∆SN+1 the size of the next sample to be

collected.

According to Table 3.2, in moments of increased activity, the sample size is decreased

proportionally to m. This reduction in sample size, associated with the higher frequency

in the sampling process, aims at reducing the overhead at measurement points. In

presence of less network activity, the sample size is adjusted by a factor2 k, with k = 0.15

(see rational in Section 3.3.1). This allows to collect more data about the network in

less critical periods of its operation, in sparse sampling events.

Table 3.2: Rules to define the next sample size

current m next ∆S

m < mmin ∆SN+1 = m ∆SN

mmin ≤ m ≤ mmax ∆SN+1 = ∆SN

m > mmax ∆SN+1 = ∆SN + (k ∆SN)

Similarly to the definition of the time interval between samples, the variation of

sample sizes is also bounded. The imposed thresholds avoid small samples, which make

difficult estimating parameters statistically, as well as samples excessively large, closely

matching a total traffic capture. These limits also depend on the existing links capacity,

being here considered a minimum and maximum sample size of 0.1s and 2s, respectively.

Figure 3.2 shows the evolution of the sample size for a linear variation of the m factor.

For completeness, the pseudocode of MuST algorithm representing the overall sam-

pling operation is included in Appendix A. In addition, the flowchart presented in Figure

3.3 describes sequentially the multiadaptive operation.

3.3 Assessing variable parameters

Although the overall performance analysis of MuST is covered in Chapter 7, this

section presents experiments aiming at assessing the impact of tuning the factor k when

adapting the sample size and the order of prediction N . These studies are performed

2The parameter k was firstly introduced and experimentally tested in [46] with the aim of defining
the variation in the time interval between samples based on a set of comparative statistics between
adjacent samples. In the present proposal, the parameter k is considered as the changing factor in the
sample size, being defined to force an overhead reduction.
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Figure 3.2: Evolution of sample size according to m variation

evaluating the MuST performance for two distinct scenarios: one typically more reg-

ular (OC-48) and other with higher variability (SIGCOMM08). For each traffic type,

the analysis is focused on the cumulative volume of sampled data (in Mbytes), RME

(Relative Mean Error) of the estimated mean throughput and number of samples, for

different values of k and N .

Table 3.3 illustrates the characteristics of the real traffic traces used in the tests.

These traces were selected to provide a representative range of traffic scenarios to assess

the versatility of MuST.

Table 3.3: Traffic Scenarios

Traffic Label Characteristics Duration Available

SIGCOMM08 Captured during the SIGCOMM 2008
conference, including all the participants
communications through IEEE 802.11a
access points.

8 hours CRAWDAD [60]

OC-48 Captured passively in a backbone link
OC48 in a large ISP from the US West
Coast.

5 minutes CAIDA [61]

3.3.1 Impact of k

Regarding the impact of k when adapting the sample size, as the results illustrate

(see Figure 3.4), a k = 0.10 leads to the lowest volume in sampled data, however, it also



34 MULTIADAPTIVE SAMPLING TECHNIQUE 3.3

Define initial ∆S, 
∆T and order N 

Store first N 
samples

Capture the first N 
samples

Estimate reference 
parameter

Store X and T 
values

Estimate predicted 
value of Xp

Capture a new 
sample

Store the sample

Estimate reference 
parameter (S)

Define m factor

is m a defined 
value?

m = 1; 
∆SN+1=∆S  / ∆TN+1=∆T

m > mmax?
Less activity than predicted: 

∆SN+1 = ∆S + (k ∆S)  
∆TN+1 = 2∆T  

m < mmin?
More activity than predicted: 

∆SN+1 = m∆S  
∆TN+1 = m∆T 

Prediction confirmed 

∆SN+1 = ∆S  
∆TN+1 = ∆T 

End of 
measurements?

Figure 3.3: MuST - Operational flowchat

causes an increase in RME (one order of magnitude) in the presence of more variable

traffic. As shown in Figure 3.4 (b), with k = 0.10, the adaptive behavior of MuST is less

sensitive in capturing traffic variation. The results also show that a value of k = 0.15

presents a good compromise between the variables under study (data volume and RME)
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for both traffic types, although it does not lead to the smallest number of samples for

the values of k considered. The obtained differences for the number of samples are,

however, not significant, meaning that MuST is well-behaved for k = 0.15.
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Figure 3.4: Impact of k on MuST performance: Cumulative data volume (up); Number of
samples (down)

3.3.2 Impact of the order of prediction

Similarly to the study of k presented above, the following experiments aim at eval-

uating the impact of varying the order of prediction N on MuST performance. Figure

3.5 presents the results comparing the overhead and RME for OC-48 and SIGCOMM08

traces for distinct values of N . Notice that higher values of N correspond to configure the

adaptive traffic selection process with more information of past samples, i.e., including

more past memory. Generally, a larger past memory leads to less reactive mechanisms,

and shorter past memory improves the reactivity to short term traffic fluctuations. The

degree of this reactivity may affect the stability of sampling mechanisms.

According to the obtained results, an increase in N conducts to an overhead increase
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Figure 3.5: Impact of N on MuST performance: Cumulative data volume (up); Number of
samples (down)

regarding the volume of data collected, for all traffic types. However, for N = 5, it is clear

that collecting more data does not lead to higher accuracy in the throughput estimation

(see RME); this is particularly visible in Figure 3.5 (b). This means that lower reactivity

also reduces the ability to correctly measure bursty traffic. Nevertheless, when taking

N = 2, corresponding to the smallest overhead regarding the amount of sampled data,

it does not imply a gain in accuracy, as visible for OC-48 traffic. Considering the number

of samples, varying N does not lead to a linear distribution for all traffic types. This is

due to each particular traffic characteristics, which is inline with the adaptive behavior

of MuST when facing traffic fluctuations, described in Section 3.1.

Globally, the values obtained for RME are very low for all traffic scenarios. Therefore,

depending on the objective or usefulness of throughput estimation, the value of N can

be tuned to achieve an optimal compromise between overhead and efficiency.
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3.4 Summary

This chapter has presented a new multiadaptive sampling technique (MuST) aiming

at reducing the sampling overhead in network measurements. The technique relies in

a controller based on linear prediction, that drives the packet selection considering the

levels of network activity, being configured to reduce the measurement impact when

the network activity increases and the measurement process tends to overload the MPs.

The multiadaptive behavior of the proposed technique is achieved considering both

the interval between samples and the sample size as adaptive parameters, bounded by

proper thresholds to guarantee the measurement representativeness of samples. In addi-

tion, the operational parameters that rule the algorithm reactivity have been evaluated

regarding the overhead in the amount of data resulting from the sampling process for

real traffic scenarios. An extensive analysis of MuST performance in comparison with

different sampling techniques in diverse traffic scenarios and measurement activities is

presented in Chapter 7. Next chapter presents a taxonomy of sampling techniques able

to drive the modular deployment of efficient sampling strategies.
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Chapter 4

Taxonomy of Packet Sampling

Techniques

As previously discussed, an effective sampling-based measurement system must sup-

port distinct sampling techniques, inasmuch as the type of traffic and the measurement

goal to fulfill may affect directly the decision on the sampling technique to be used.

Although the RFC 5475 [1] provides insights into the deployment of complex sam-

pling techniques by the composition of different blocks of filtering and sampling schemes,

some techniques may become too complex, requiring the specification of an ad hoc de-

scription and its addition as a new scheme to the information model. The use of non

consolidate models may, however, introduce significant challenges, hampering the large

adoption of more appropriate techniques in measurement systems.

A large coverage of the related literature shows that most of the sampling tech-

niques, whether simple or complex, share a set of structural components, based on

standard schemes, or as new strategies, arranged orthogonally with classical schemes

or completely disjunct. In this way, describing these components in a modular and hi-

erarchical structure able to foster a flexible and simple deployment of a comprehensive

number of techniques represents a key role toward effective measurement systems based

on sampling. This will allow exploiting specific features suitable for reaching better ac-

curacy in each measurement purpose and traffic scenario.

With the aim to provide a common ground for current and forthcoming sampling

proposals, this chapter presents a taxonomy of sampling techniques [18]. This involves

identifying and classifying functional blocks of previously presented techniques in order

to support the design of sampling strategies adjusted to different measurement sce-

narios. In the classification criterion, a set of features related to sampling granularity,

39
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selection scheme and selection trigger are identified and proposed as the components

distinguishing current solutions. The main contribution of this taxonomy is the ability

to describe most of the current sampling techniques though the composition of, at least,

one approach from each component in a modular structure. This aims at fostering the

deployment and wide adoption of both classical and new sampling techniques within a

complete architecture of measurement systems, presented in Chapter 5.

4.1 Taxonomy proposal overview

The defined taxonomy fragments the sampling techniques into three well-defined

components according to the granularity, selection scheme and selection trigger in use.

Then each component is further divided into a set of approaches commonly followed in

both classic and recently proposed sampling techniques. An overview of the taxonomy

is illustrated in Figure 4.1.

• Granularity - identifies the atomicity of the element under analysis in the sampling

process: in a flow-level approach, the sampling process is only applied to packets

belonging to a flow or to a set of flows of interest; in a packet-level approach,

packets are eligible as single independent entities;

Figure 4.1: High-level view of sampling taxonomy
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• Selection scheme - identifies the function defining which traffic packets will be

selected and collected; this scheme may follow a deterministic, a random or an

adaptive function;

• Selection trigger - determines the spatial and temporal sample boundaries; it may

use a time-based approach, a count-based approach or an event-based approach.

These components are further detailed in the upcoming sections.

4.2 Granularity

This component identifies which segment of traffic is considered in the sampling

process and in the data reporting format. During the selection of packets, the sampler

may consider all traffic traversing a MP or just part of it, targeting specific flows of

interest. Generally, this decision depends on the network task (or measurement objective

to fulfill), the network parameters being monitored, and the available communication

and computational resources.

4.2.1 Flow-level sampling

According to RFC3697 [62], a flow is defined as a stream of packets sent by a

particular source to a unicast, anycast or multicast destination, which exhibits specific

properties or attributes in common. Traditionally, these properties (also called a flow

key) are identified based on five fields (5-tuple) of the packet header, namely source and

destination IP addresses, source and destination ports, and type of protocol. In addition,

RFC 2724 [63] and RFC 7011 [64] extend flow identification based on application layer

information, MPLS (Multiprotocol Label Switching) labels or fields derived from packet

treatment (e.g., next-hop IP address, etc.).

In terms of traffic sampling, the flow-level approach consists in applying the traffic

capture policy only to packets belonging to a flow or a set of flows of interest. This

involves classifying packets into flows before or during the sampling process [2]. Al-

though considering a subset of flows may reduce the volume of data captured, stored

and transmitted by the MP, this approach may increase the computational weight in-

sofar all incoming packets must be processed to identify which flow they belong to. It

also requires prior knowledge of which flows should be measured or some strategy to

decide automatically which flows should be sampled.
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Note that flow-level sampling is different from flow sampling (discussed in RFC 7014

[65]), that consists in capturing all packets that belong to a particular flow. Nevertheless,

the strategies used in selecting flows, presented in [65] (i.e., systematic and random),

also may be applied to flow-level sampling context. In addition, different strategies also

can target specific flows according to the measurement purpose. An example is the

method introduced in [66], called smart sampling, that addresses the correct estimation

of flow size distribution. These strategies are presented below already considering the

necessary adaptations toward flow-level sampling:

Deterministic flow selection resorts to a deterministic function in which a set of

flows are selected according to the number of flows arriving the MP or to a time

interval of observation. In the first case, the MP selects every N− th arriving flow

to be considered for sampling, independently of the traffic type. The selection of

a flow is then based on the first packet of a flow, in which every time a packet

belonging to a new flow arrives at the MP, a counter is increased. If the counter

is increased to a multiple of N , this flow will be considered for packet sampling.

In the second approach, the packets from every flow observed at the MP between

a time-based interval are elected to participate in the sampling process [65].

Random flow selection is based on a random process to select flows following a n-

out-of-N or a probabilistic scheme. In n-out-of-N, n flows are selected out of the

parent population, which consists of N incoming flows. It may involves generating

n different random numbers in the range [1,N ] and then selecting all flows with

arrival position equal to one of the random numbers. In probabilistic flow selection,

the decision of whether or not a flow is selected to participate in packet sampling

follows a predefined probability that may be uniform (i.e., with the same selection

probability for all flows) or non-uniform (i.e., where the selection probability can

vary for different flows). The probabilistic scheme implies that the number of

selected flows can vary [65].

Smart sampling aims to enhance the ability to identify accurately the distribution

of the traffic by controlling the flows that will participate in the sampling process

according to a threshold previously defined. For every incoming flow, the MP

maintains a counter with the size of the flow (in bytes or number of packets),

then flows of size greater than the threshold are always selected, while smaller

flows are selected with a probability proportional to their size [66].

As discussed in Section 2.5, the flow-level sampling approach enhances the estima-

tion accuracy for metrics related to tasks such as flow accounting and characterization.
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In addition, as a group of packets share the same features (i.e., flow key), it is possible

to aggregate flows and thereby reduce the storage and transmission requirements to a

manageable amount. In this way, flow-level sampling is expected to comply with IPFIX

- IP Flow Information Export (RFC5470 [67], RFC6183 [68]), a protocol that defines

an architecture for exporting the measured IP flow information from a MP (detailed in

Section 5.4.3).

4.2.2 Packet-level sampling

In this approach, incoming packets to the MP are considered single independent

entities. Conversely to flow-level sampling, at packet-level the packets do not need to

be previously classified into flows, which may reduce drastically the computational

requirements of processing every packet. Furthermore, collecting packets indistinctly

turns packet-level sampling into a flexible and appropriate solution to be used in general

purpose measurement tasks and aggregated estimations, in presence of diverse traffic

types.

On the other hand, packet-level sampling may be difficult to deploy over large and

high-speed networks, due to the challenges regarding the storage and transmission of

measured data in environments with many flows.

As regards the exporting of sampled packets, a protocol based on IPFIX informa-

tional model (RFC5102 [69]), modified to report on single packets rather than on flows,

is presented in RFC5474 [70]. This protocol defines mandatory contents for basic re-

ports and an extended version able to include all fields required in RFC5102 [69]. These

protocols are detailed in Section 5.4.3.

A strategy used by Cisco Sampled Netflow (presented in Section 2.5) aiming to

cope with data volume exporting issues consists in collecting packets indistinctly in a

first instance, for subsequent filtering or aggregation. Note that, although Netflow and

Sampled Netflow are flow-based tools (state information is maintained per flow), in

fact, the sampling selection scheme is packet-based, justifying its classification in this

approach.

4.3 Selection scheme

The selection scheme identifies the selection function that determines the pattern

under which packets will be selected and collected. This scheme can follow a systematic,
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a random or adaptive function.

4.3.1 Systematic sampling

In systematic sampling, the process of packet selection is ruled by a deterministic

function which imposes a fixed sampling frequency, independently of the packet contents

or treatment. In this scheme, only equally spaced traffic portions are collected, i.e.,

sampling triggers are periodic (see Section 4.4). The systematic count-based (used in

Cisco Sampled NetFlow) and systematic time-based techniques, introduced in [1] and

detailed in Section 2.2.1, are examples of this approach.

This approach is usually simple to develop and deploy, however, as discussed in

Chapter 2, there is an inherent risk of obtaining biased samples if the packets being

sampled exhibit a periodic structure which is related to the deterministic function.

This may lead to inaccurate measurement results due to the deterministic behavior of

sampling facing the variable nature of network traffic. Another potential drawback is

that systematic sampling is to some extent predictable and, hence, open to deliberate

manipulation [2].

4.3.2 Random Sampling

The random selection scheme aims to avoid biasing samples by ruling the sampling

frequency through a random process, usually resorting to a pseudorandom generator or

to a probabilistic function.

The pseudorandom approach tries to avoid predictability choosing values exponen-

tially distributed (for time-based trigger, discussed in Section 4.4.1) or geometrically

distributed (for count-based trigger, discussed in Section 4.4.2) [2]. A common strategy

following this principle is performed by inducing the random function generator to con-

verge to a required sampling rate, ensuring that the sampling frequency distribution is

limited by maximum and minimum values. The n-out-of-N technique presented in [1]

and used in Cisco Sampled NetFlow follows this approach, where n packets are ran-

domly selected from a traffic population of N packets, generating numbers in the range

[1, N ] and then selecting all packets that have the corresponding packet position. This

technique is detailed in Section 2.2.1.

As regards the probabilistic approach, the decision about the sampling frequency

follows a predefined probability density function. The probabilistic function can be

uniform, where all packets have an equal probability to be selected, or non-uniform,
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where the packets have different probability of selection. For instance, in [12] it is

introduced a sampling technique based on a probabilistic scheme for anomaly detection,

namely network scans, SYN flooding and worms. This technique divides time into strata

and then selects an incoming packet with a probability, which is a decreasing function

f of the predicted size of the flow the packet belongs to.

Random approaches are also difficult to deploy for estimating multipoint metrics

such as end-to-end delay, even in flow-level approaches, as the sampling processes run-

ning in MPs involved are not correlated, and there are no guarantees that samples will

be composed by the same packets [49].

4.3.3 Adaptive sampling

In this approach, the sampling technique is endowed with the ability to change the

selection of packets during the course of measurements. This flexibility aims to identify

the most important parts of a traffic stream according to the measurement needs or to

save network resources during critical periods of its operation.

Adaptive packet sampling usually resorts to controllers, that consist in modules

able to sense the network status by observing some parameter suitable to represent the

traffic dynamics. These controllers may be based on linear prediction, fuzzy logic or

other particular adaptive strategies and mechanisms (as detailed in Section 2.4) that

consider the traffic behavior, the packet content or the network status to rule sampling

pattern changes.

As discussed in Section 7.3, although the use of an adaptive strategy may suggest

higher consumption of resources, some adaptive techniques may introduce less compu-

tational weight, regarding CPU load and memory consumption, even when compared

with classical techniques [21].

4.4 Selection trigger

In network measurements based on sampling, only a subset of all packets traversing

MPs is selected and considered to estimate network metrics. To achieve this, a trigger

is defined to determine the start and the end of a sample, and consequently the interval

between samples. In this way, a selection trigger is classified as time-based, count-based

or event-based as described below.



46 TAXONOMY OF PACKET SAMPLING TECHNIQUES 4.4

4.4.1 Time-based

A time-based approach defines that the beginning and the end of a sample is de-

termined based on packet arrival timestamping. Its deployment consists of using a first

countdown timer within which all packets arriving at the MP are selected for the sam-

ple and a second countdown timer within which all incoming packets are ignored for

measurement purposes.

Considering the example in Section 2.2.1 (i.e., Figure 2.4), when the trigger fires the

beginning of a new sample, the MP waits for the first bit of the next incoming packet

and starts the collection. When the trigger fires the end of sampling, the MP continues

the collection until the last bit of the current packet and then interrupts the selection

process.

This may be combined with different approaches from granularity and selection

scheme components in order to compose different sampling techniques. For instance

the systematic count-based (presented in Section 2.2.1) resorts to a systematic selection

scheme in which the sample size and the interval between samples are set at the begin-

ning of the sampling process and remain invariant until the end. Another example is

the multiadaptive technique presented in Chapter 3, in which is proposed an adaptive

technique able to adjust both the sample size and interval between samples according

to the network activity aiming at reducing the computational requirements involved in

sampling processes [14].

In terms of performance, as discussed in Section 2.5, some studies have demon-

strated that time-based triggers are less robust than count-based (see Section 4.4.2)

when applied to traffic characterization [25], being affected by the bursty nature of net-

work traffic. However, they may be suitable for applications that require the analysis

of consecutive packets, such as IDS [57].

Traffic burstiness may also affect the volume of data involved in a time-based sam-

pling process, and hamper the adoption of strategies which define the optimal number

of samples beforehand (as it is difficult to anticipate the number of packets arriving

at the MP in each sampling interval). As discussed in Chapter 7, the amount of data

collected in time-based techniques is often higher than in count-based ones. However,

as there is no significant computational activity during the interval between samples,

such as packet counter increments, this approach may achieve a significant reduction in

the ratio of CPU load and memory usage per MByte collected and stored [21].
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4.4.2 Count-based

The count-based approach defines that the beginning and the end of a sample are

driven by the spatial position of the packet within the traffic stream, using counters

which are independent of the packet arrival timestamp.

An example of using this approach is presented in Figure 4.2, where a systematic

flow-level sampling with sample size equal to 1 and interval between samples equal to

4 (i.e., 1 packet out of every 5 incoming packets) is applied only to packets belonging

to flow f1. For this, the counter is decremented for each packet from flow f1 arriving

at the MP; when the counter reaches zero, a new sample starts, in this case collecting

only one packet.

Figure 4.2: Count-based

Considering measurements of aggregate traffic, count-based techniques allow antici-

pating which proportion of the traffic will be collected and stored. Thus, this approach

is suitable for environments with limited resources, or for applications where it is nec-

essary to determine the optimal number of samples for a specific accuracy, as discussed

in [71]. In this approach, every packet arriving at the MP must be processed to shift

the packet counter, therefore, the computational weight involved is directly related to

the total number of packets in the traffic under analysis [21].

4.4.3 Event-based

In this approach the decision on when a sample starts and ends takes into account

some particular event observed in the traffic being monitored. This event may be some

value in the packet contents, the treatment of the packet at the MP or a more complex

observation. The content-dependent schemes [1], detailed in Section 2.2.2, are examples

of sampling techniques classified as event-based.

The packet contents corresponds to the union of the packet header (which includes

link layer, network layer, and other encapsulation headers) and packet payload [1].

Sampling techniques based on this strategy may predefine some values of the packet

header and then, all packets in which these values match are selected for the sample.

This approach is usually called property match filtering [1].
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Hash-based techniques (presented in Section 2.2.2) are also considered event-based,

once the hash function is applied to the packet contents and then the packet is selected

if the hash value falls within a selection range. This approach is sometimes used to

emulate random sampling by selecting a proper range of hash values [1].

Although event-based sampling allows collecting a specific range of packets of inter-

est, as it involves processing all incoming packets to identify the event, it may increase

the overhead in the equipment.

4.5 Hybrid techniques

There are several techniques that combine approaches of the same taxonomy com-

ponent, usually from the selection trigger or selection scheme. These techniques aim at

enhancing traffic sampling, although the overlap increases the computational cost for

traffic measurement.

An example of a hybrid technique is the use of an event-based trigger that fires upon

observation of a packet with specified contents, after which any incoming packets within

the next t seconds are selected to compose the sample, using a time-based approach

[2]. This solution also may be deployed in conjunction with a count-based approach

by capturing the first n packets arriving at the MP after identifying the event. As

exemplified in Figure 4.3, the event is the first packet of a new flow observed in the

stream and the sample size is equal to 3. This strategy may be of interest for traffic

classification or security tasks.

Figure 4.3: Hybrid technique - event-based and count-based

4.6 Sampling techniques composition

Following the taxonomy presented above, it is easy to classify most of classical and

recent sampling techniques as well as to ground the definition of future proposals. Fig-

ure 4.4 exemplifies how the components defined in the taxonomy might be organized

to deploy a sampling technique. The resulting sampling structure can be linear or hy-

brid (detailed in Section 4.5) depending on how sampling approaches are elected per
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component.

Figure 4.4 (A) corresponds to a technique defined in [1] available in most deployed

sampling tools, e.g., Cisco NetFlow and sFlow. Although the technique represented

in Figure 4.4 (B) is also defined in [1], it is scarcely deployed in the current network

measurement panorama, even considering its importance for IDS [57]. The technique

represented in Figure 4.4 (C) illustrates the flexibility in deploying new sampling pro-

files. This technique might be used for monitoring a specific service and adapting the

sampling frequency in response to some event observed into its own traffic. Some tech-

niques able to be used in this context are presented in [13] [45].

Details about the relationship among the taxonomy components and their interac-

tions are discussed in Chapter 6.

Figure 4.4: Example of sampling technique composition

4.7 Comparative summary of sampling techniques

Table 4.1 presents a summary of the most used and referenced sampling techniques

classified according to the proposed taxonomy. This comparative study, along with in-

sights throughout this work, allows a clearer positioning of existing sampling proposals,

being both a research contribution in the area and a useful road map for deciding on

the most suitable sampling technique to use.
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Table 4.1: Taxonomy of sampling techniques

Sampling Proposals Granularity Selection scheme Selection trigger
Pkt Flow Sys Rnd Adp Cnt Time Event

Adaptive
√ √ √

linear prediction [28]
Adaptive non-linear

√ √ √

sampling [8]
Adaptive random

√ √ √

sampling [72]
Adaptive statistical

√ √ √

sampling [46]
Botnet-aware adaptive

√ √ √

sampling [37]
Distributed adaptive
sampling [45]

√ √ √

Flow statistics
√ √ √ √

trivial sampling [47]
Fuzzy regulator

√ √ √

adapt. sampling [73]
Hash-based

√ √ √

sampling [1]
Systematic

√ √ √

count-based [1]
Systematic

√ √ √ √

SYN sampling [6]
Systematic

√ √ √

time-based [1]
Modified FLC

√ √ √

sampling [74]
Multiadaptive

√ √ √

sampling [14]
Opportunistic

√ √ √

sampling [13]
Random

√ √ √

n-out-of-N [1]
Random

√ √ √

sampled NetFlow [48]
Resource conserving

√ √ √

sampling [9]
Sample and

√ √ √

hold [30]
Sampled

√ √ √

NetFlow [48]
sFlow [59]

√ √ √

4.8 Summary

Grounded by a comprehensive review of the classic and new strategies of packet

sampling, this chapter has defined a taxonomy of sampling techniques with the aim to

clarify sampling concepts and to provide a common ground for current and forthcoming
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research. In the classification criterion, a set of features related to sampling granularity,

selection scheme and selection trigger are identified and proposed as the main compo-

nents distinguishing current proposals. Then, each component is further divided into a

set of approaches commonly followed in both classic and recently proposed sampling

techniques. The proposed taxonomy allows a modular composition of sampling tech-

niques, sustaining the definition of flexible and encompassing measurement strategies

driven by packet sampling. The next chapter incorporates this classification scheme and

its underlying modules into the proposal of a measurement architecture based on traffic

sampling.
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Chapter 5

Sampling-Based Measurement

Architecture

As presented previously, the main objective of this work is to devise an encompass-

ing, flexible and lightweight traffic sampling architecture aiming at supporting efficient

sampling strategies adequate to diverse traffic scenarios and measurement activities.

Taking the proposed taxonomy as a key enabler for the modular design of multiple

sampling techniques, and thus complying with the specificities of each measurement

scenario, this chapter proposes a three-layer measurement architecture in order to ad-

dress the objective defined above. Each component of the architecture is described

considering the different strategies and technologies that compose the several stages of

a measurement process. A modular sampling framework prototype covering the main

architectural components proposed is further presented in Chapter 6.

5.1 Design goals

Aiming at accomplishing the general objectives pointed out in Chapter 1, the defini-

tion of an encompassing, flexible and lightweight architecture for network measurements

based on sampling addresses the following design goals:

• compatibility with current protocols and measurement tools in order to support

its deployment in current measurement systems;

• specification and deployment sustained by open and standard protocols;

• flexibility to support the introduction of new protocols and technologies related

to traffic sampling;

53
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• versatility and modularity to deploy current and emerging sampling techniques;

• capability to support mechanisms for balancing measurement accuracy and com-

putational weight in order to foster the design of efficient sampling strategies.

5.2 Architecture overview

The main components involved in the proposed sampling-based measurement archi-

tecture are arranged in three planes, as illustrated in Figure 5.1 and presented below:

Figure 5.1: Architecture description

• The management plane includes tasks deployed directly in MPs or in external

management entities. Based on requirements of each network task, measurement

needs are identified, the more suitable sampling technique is designated and one
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or more MPs are selected to participate in the sampling process. This also involves

identifying an information model able to define managed objects in the network

independently of specific implementations or protocols in use.

Apart from providing the corresponding configuration parameters to the control

plane, the management plane is also responsible for estimating the relevant metrics

using data reports sent by the control plane. The required processing may involve

results from single or multipoint measurements.

• A modular design of the control plane allows a flexible selection and configura-

tion of sampling techniques. Considering the taxonomy presented in Chapter 4,

the different approaches from each component can be arranged to compose the

sampling technique designated by the management plane as the more suitable for

a specific measurement scenario.

In the control plane, sampled packets received from the data plane are processed

and the relevant field contents are extracted according to the network task and

measurement needs. These values are then aggregated (both in time and space)

and exported following IETF IPFIX specifications (i.e., RFC6728 [75]).

• At data plane, traffic is collected from network interfaces (e.g., line cards or in-

terfaces of packet forwarding devices) by applying the sample rules defined in the

control plane. The unprocessed packets are then reported to the control plane to

be processed, simplifying the data plane.

5.3 Management plane

The main activities assigned to the management plane are: (i) map the measurement

needs related to a specific network task into the more suitable sampling technique and its

operational parameters; (ii) select and communicate with the MPs which will perform

packet sampling in order to set them up; (iii) process the measurement results and

provide a visualization component, when applicable, based on reports produced by the

control plane.

The functions that compose the management plane may be deployed directly into

the MP, sharing the same device and resources, or in an external entity, responsible for

coordinating one or more MPs according to measurement needs and constraints.
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5.3.1 From network task to measurement needs

The measurement needs are closely related to the network task to fulfill. This relation

usually guides the sampling process, defining aspects such as which portion of the packet

should be captured and exported, if the sampling should be performed considering all

incoming traffic or only specific flows, the temporal and spatial distribution of the packet

collection or the expected accuracy on metrics estimation.

Some network tasks, such as traffic accounting, only require few information from

the packet header, usually the key flow, the number of packets and number of bytes

traversing the MP during a certain time interval. These requirements tend to be less

impactful in terms of storage and bandwidth, as traffic may be aggregated into flows

efficiently before exporting. However, considering network tasks which resort to Deep

Packet Inspection (DPI), such as traffic classification and data analysis for security

issues, the MP must inspect and collect the packet payload in addition to the header.

This also involves exporting individual packets instead of aggregated summaries, which

may lead to a large volume of data related to measurements transmission.

Even for the same network task, the measurement needs may vary depending on

the expected accuracy in metric estimations, for instance, the accuracy in estimating

the traffic workload is affected by the sampling frequency, where a higher number of

captured packets lead to better estimation accuracy [71].

The relation between the network task and its measurement should drive directly

the decision of the sampling technique and the MPs to be used. Despite this mapping

being out of scope in this work, the next two sections present important aspects to be

considered and highlights possible strategies.

5.3.2 Sampling technique selection

As discussed in Section 2.5, although there is not an encompassing study address-

ing which sampling technique yields better results for each network task, it is possible

to identify that the results achieved by different works are clearly heterogeneous and,

sometimes, conflicting. Associating the measurement needs with the most efficient sam-

pling technique is particularly hard due to the heterogeneity of traffic scenarios and the

lack of a platform able to fairly compare all current techniques.

Nevertheless, the related literature (covered in Section 2.5) may be used as initial

input toward the decision on which technique shall be used in a specific scenario. More-

over, Chapter 7 will provide new insights on the performance of different techniques,
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which should be considered in this decision taking into account hardware features and

constraints of the MP.

Considering that the compatibility with current measurement tools is an important

design goal of this architecture, the choice of a sampling technique also must consider

the sampling availability of those tools. Other aspect to be considered is the possible

conflicting measurement needs from different network tasks performing sampling in the

same MP during a time interval. This aspect may be addressed resorting to a priority

system, in which the decision from the task with highest priority level prevails in the

MP, or configuring the most demanding technique (i.e., which captures the largest

amount of data) in order to accommodate the largest possible number of network tasks

efficiently.

Currently, due to the small number of sampling techniques available in measurement

tools, the selection of the technique and its operational parameters is usually a decision

of network managers. However, increasing the number of sampling techniques and at-

tributes used to compare them (e.g., computational weight) requires the development

of new automatic systems based on strategies adjusted to specific network scenarios.

In this way, a work currently in progress addresses strategies for automatic selection of

sampling techniques resorting to ontologies, in which the entities sampling technique and

network task are being semantically balanced regarding attributes such as measurement

needs, estimation accuracy, overhead and performance.

5.3.3 Measurement point selection

The network task and its underlying measurement shall also drive the selection of

the MPs that will participate in the sampling process, which may involve a single point,

a dual point (e.g., end-to-end delay) or a distributed multipoint strategy. Considering

the design goal that the measurement architecture should be compatible with exist-

ing measurement systems, the MP selected may also be a sampling tool embedded in

network devices (e.g., routers, switches and firewalls), NICs or a stand-alone device

set to perform packet sampling. Details about collecting packets from the network are

presented in Section 5.5.

In this way, the decision on which MPs will participate in the measurements takes

into account the position of the device in the network, the computational resources

available and the sampling techniques able to be deployed (for legacy tools). Figure

5.2 illustrates a network domain with five MPs available. As examples of the relation

between the network task and the MPs selection: (i) traffic accounting in this topology
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could involve only the MP-A (sampling the external link of the border router); (ii)

QoS multipoint metrics estimation, such as one-way-delay and jitter, would involve the

edge MPs, for instance MP-C and MP-E; (iii) security-oriented measurements would

probably require data sampled by all MPs.

Figure 5.2: Measurement point selection

There are many studies addressing the selection of the better network point to

perform each type of measurements [76] [77]. An appropriate strategy of selecting the

most suitable MP regarding the network task leads to more efficiency in the resources

usage and may reduce the events of conflicting configuration.

5.3.4 Information model

As described in RFC3444 [78], the main purpose of an information model is to

define managed objects at a conceptual level, independently of specific implementation

or protocol used to transport data. The level of abstractions depends on the modeling

needs, however, it should hide all protocol and implementation details in order to make

the overall design as clear as possible. In this way, the information model is defined

at management plane as a standardized way for encoding information related to the

sampling process (e.g., technique selected, sampling parameters and packet fields to be

collected), exporting and storage of the sampled data.

As result of the efforts toward the definition of an open protocol for flow export-

ing [64], the IETF IPFIX working group has also produced a standard defining an

information model (i.e., RFC7012 [79]) that was further extended to satisfy PSAMP
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requirements through RFC5477 [80]. Proposing an extended model was necessary due

to existing properties required in packet sampling reports that cannot be modeled using

the basic IPFIX information model.

The information model is composed by unique identifiers related to each information

element, that consists in an encoding-independent description of an attribute that may

appear in a measurement record. The information elements also have an associated type,

that indicates constraints on what it may contain as well as the valid encoding mech-

anisms [79]. The information element assignments are controlled by IANA - Internet

Assigned Numbers Authority which provides flexibility to introduce additional elements,

such as new techniques deployed following the taxonomy presented in Chapter 4.

Table 5.1 presents some elements defined by IANA. As an example, the element

selectorAlgorithm, identified as 304, corresponds to the sampling technique in use and

must be encoded as an unsigned32 (i.e., non-negative integer with 32 bits). A full list

of elements currently assigned can be consulted in [81].

Table 5.1: Example of IPFIX information elements.

Element ID Name Data type Data type semantics

1 octetDeltaCount unsigned64 deltaCounter
2 packetDeltaCount unsigned64 deltaCounter

304 selectorAlgorithm unsigned16 identifier
309 samplingSize unsigned32 quantity

5.3.5 Data model

Data models define managed objects at a lower level of abstraction, including im-

plementation aspects and protocol specifications, such as the rules that explain how

to map managed objects onto lower-level protocol constructs [78]. The definition of a

common data model is required to allow managing the entities in the sampling process.

In addition to the specific information model for packet sampling, the IETF IPFIX

working group has also proposed a standard that defines managed objects for monitoring

devices performing packet selection by sampling (i.e., RFC6727 [82]). The document

is in accordance with the Internet-Standard Management Framework [83], in which

managed objects are stored in a MIB and generally accessed through SNMP. The syntax

used to define objects in the MIB is called the Structure of Management Information

(SMI). Currently, the working group is defining a standard with a method for exporting

SNMP MIB variables using IPFIX messages [84].



60 SAMPLING-BASED MEASUREMENT ARCHITECTURE 5.4

There are other management models currently standardized as data models, for

instance the Policy Information Base (PIB) [85] and the Common Information Model

(CIM) Schemas [86]. However, the use of open standard models designed to support

packet sampling leads to a straightforward integration with current tools able to control

MPs and process the resulting sampled data reports.

To foster the compatibility with a large number of measurement applications, the

deployment of the proposed architecture is expected to include the capability to export

reports in XML - (Extensible Markup Language), due to its comprehensive support,

simplicity, generality and usability.

5.3.6 Processing and metrics evaluation

As discussed in Section 5.4, the packet sampling process yields different types of

reports that must be processed for further estimation of underlying metrics regarding

the network task. This is usually performed by a collector1, that may be an intermediate

entity responsible for verifying and distributing the reports to interested entities or an

application able to provide summarized measurement results.

Following IETF definitions [1], the collector receives a report stream by one or more

MPs. The report stream comprises two types of information: (i) packet reports - a

configurable subset of packet’s data regarding the measurement needs (e.g., packet

content); and (ii) report interpretation - a subsidiary information used for interpretation

of the packet reports (e.g., templates describing its structure and types). An example

of both report types is presented in Section 5.4.4 (Figure 5.4).

Supported by the definition of a consistent information model and data model, the

entities involved in sampling can process the reports and access the required traffic

information in order to estimate measurement metrics. This mechanism also allows the

compatibility with several monitoring applications designed for specific network tasks.

Strategies for metrics’ estimation toward a particular network task are beyond the

scope of this work, however, some methods related to traffic accounting, characterization

and classification are presented and discussed along Chapter 7.

1In this work, a collector consists in an entity or process capable of receiving an processing IPFIX
messages.
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5.4 Control plane

The control plane consists in the main component of the proposed architecture. It is

responsible for: (i) selecting and arranging the taxonomy approaches (see Chapter 4) in

order to deploy the sampling technique defined by the management plane and setting

its operational parameters; (ii) receiving raw packets collected by the data plane and

extract required information regarding the measurement needs; (iii) aggregating data

in order to reduce the storage and transmission impact; (iv) composing the appropriate

reports to be sent to the management plane.

5.4.1 Sampling technique configuration

Following the guidelines presented in Section 5.3.4, the MP receives the necessary

information in order to select and configure the sampling technique that will supply the

management plane according to the network task requirements. Table 5.2 shows exam-

ples of sampling techniques, their underlying operational parameters and the respective

information element identification according to the IANA scope assignments.

Table 5.2: Sampling technique identification example.

ID Sampling technique (selectorAlgorithm (304)) Parameters (ID)

1 Systematic count-based samplingPacketInterval (305)
samplingPacketSpace (306)

2 Systematic time-based samplingTimeInterval (307)
samplingTimeSpace (308)

3 Random n-out-of-N sampleSize (309)
samplePopulation (310)

101 Multiadaptive samplingTimeInterval (307)
samplingTimeSpace (308)

111 Flow-level adaptive linear prediction flowId (148)
samplingTimeInterval (307)
samplingTimeSpace (308)

As presented in Table 5.2, the sampling technique selected is identified by the infor-

mation element selectorAlgorithm, identified in the information model with the value

304 (detailed in Section 5.3.4). Each sampling technique has a set of well-know pa-

rameters (also defined in the information model), that must be passed along with the

technique identifier. Handling this information, the control plane starts an instance of

the technique with the respective operational parameters.

1As these techniques are not yet assigned by IANA, the examples use currently unassigned values,
avoiding conflicts with deployed tools.
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The internal process for deploying a sampling technique follows the structure of

the taxonomy proposed in Chapter 4. By selecting the appropriate approach from each

sampling component, the control plane arranges the respective blocks, configuring thus

the selected technique. This process requires well defined communication interfaces

among the sampling approaches, that are achieved designing the sampling framework

as a multilayer system in which a lower layer provides services to an upper layer, hiding

details about its operation. Packet capturing is performed resorting to an interface

with the data plane and its operational details are covered in Section 5.5. Figure 5.3

illustrates the conceptual design of the framework, while Section 6.2 presents the details

regarding its implementation.

Figure 5.3: Sampling framework - conceptual design

A work in progress related to this doctoral work, intends to extend the flexibility

introduced by the modular composition of sampling techniques through the recent de-

velopments in SDN (Software-Defined Networking) research field. The principle behind

SDN architecture is that the control and data plane of the network nodes are decou-

pled, with a centralized logic controller and view, abstracting the underlying network

infrastructure to applications. To support it, open interfaces between the devices in

the control plane and those in the data plane provide programmability of the network

behavior by external applications [87]. Although firstly oriented to packet switching,

network measurements have also emerged as one promising field for SDN [88]. In this
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way, the main idea is to exploit SDN flexibility in order to enable programmable mea-

surements and thus, allowing to introduce the sampling taxonomy principles into SDN

controllers.

5.4.2 Packet processing

As discussed in Section 5.5, in order to reduce the computational burden in the

data plane, the selected packets are received by the control plane in raw format, for

verification and processing.

The verification process allows to identify errors in the packet that may have oc-

curred during the handover from the capture interface to the upper plane of the net-

work stack. Error detection can be performed resorting to any available method, such

as checksum, parity bits or cyclic redundancy checking. As error correction is a compu-

tationally onerous process, if an error is found, than the packet is discarded.

Considering that packets are received in raw format, it is also necessary to map

the packet fields to the suitable data model in use by the measurement system. The

mapping process is supported by the information model in order to unify the elements

representation, allowing the correct interpretation and manipulation of the packet fields.

At the processing stage, all irrelevant fields to measurements are discarded, reducing

the amount of data received and processed by the upper modules, and consequently the

number of computation cycles, bandwidth and memory to process the sampled traffic.

5.4.3 Aggregation

During the sampling process, a subset of all packets traversing a monitored link is

selected and further transmitted to a collector or an application in order to estimate

relevant metrics for the network task. However, even with the reduction in the volume

of data promoted by sampling, some scenarios can still produce massive data amounts,

requiring significant storage resources and bandwidth to be distributed.

A solution to this issue is to summarize the collected data employing a combination

of sampling and aggregation. Thus, as mentioned before, aggregation leads to a loss in

data resolution for analysis. In this way, the usage and the level of aggregation must

also be aligned with measurement needs.

The strategy mostly used to summarize measurement data is to aggregate sampled

packets into flows according to some explicit or derived property, and computing ag-
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gregate byte and/or packet counts within each flow over successive time windows [89].

This method usually provides high accuracy when estimating metrics that only require

information from the packet header, such as for traffic accounting, flows distribution

and anomaly detection.

However, there is an increasing need for analyzing packet payloads (i.e., DPI) in

network tasks such as traffic classification and security analysis. In fact, the IANA

has been registering information elements describing objects related to the application

layer. In these scenarios, as packets are typically stored as individual entities, and

thus hampering data summarization, the aggregation module does not act on packets,

maintaining them in memory for future exporting.

Additionally to the measurement requirements, the differences regarding the perfor-

mance of transmission and storage resources must be taken into account (see Section

5.4.4). Some of these constraints can be handled resorting to an effective management

of the period in which the aggregation process stores the data before dispatching, which

evince the close relation between the aggregation module and the exporting module.

5.4.4 Exporting

After the selection and capture, the sampled packets are aggregated (when feasible)

and stored for exporting to a collector or an application that will estimate the required

parameters. The exporting process consists of three main elements: (i) the trigger for

dispatching data currently stored in the MP memory; (ii) the message structure and

types used to transmit the data; (iii) the transport protocol used in the data report

transmission.

Exporting trigger

Along the sampling process, the MP must satisfy one or more conditions defining

when the measured data stored in its memory should be transmitted. These conditions

are usually related with the aggregation strategy and measurement requirements.

Sampled traffic aggregated into flows is frequently maintained in memory until a

specific flow is considered to have terminated, after which, the information regarding

this specific flow is exported. The flow expiration may follow different methods: a natural

termination of a TCP flow when a packet with a FIN or RST flag set is captured; the

flow has been active for a specific period of time (usually within the range between

120 seconds to 30 minutes); or no packet belonging to a flow is captured during a
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specified period of time (usually between 15 seconds and 5 minutes) [90]. In addition to

predefined timeouts, resource constraints may require strategies in which the timeout

is dynamically adjusted in run-time.

Considering measurements involving the exporting of the packet payload, the meth-

ods explained above may not be sufficient, requiring alternative options in order to

optimize the exporting process. In this case, the MP may also use predefined timeouts

or a dynamic strategy based on the volume of packets stored in memory. Moreover, this

strategy is also suitable to trigger the exporting of both aggregate and single packet

entries in scenarios of full memory or in response to unexpected situations.

Message format

As discussed in Sections 5.3.4 and 5.3.5 respectively, the information model provides

the conceptual models to identify each element involved in a sampling process, while the

data model defines how to map them onto lower-level protocols. Furthermore, beyond

these definitions, the distribution of sampled data must be supported by well defined

message formats in order to ensure that the applications involved in measurements can

interpret correctly the information.

In this way, there are well defined protocols and tools able to handle with this

aspect, such as NetFlow, SiLK and IPFIX. Although these are not the only possible so-

lutions (reports using XML specifications are also frequently used), the IPFIX protocol

is the most adequate option to support the flexible way to deploy sampling techniques

proposed in this work.

In fact, there is a specific version of IPFIX specification (i.e., RFC5476 [91]) designed

to address the architectural differences between the original version (i.e., RFC7011 [64]),

focused on gathering and exporting IP traffic flow information, and the PSAMP exten-

sion, focused on exporting information of individual packets. Sampling-based reports

are therefore a special IPFIX record containing only a single packet.

Basically, the IPFIX message can be of two types: (i) template record, that contains

the layout description for data report interpretation; and (ii) data report, used for

carrying exported data records [90]. For each collected packet, a data report must be

created containing a header with a set of fields with fixed size (16 bytes), identifying

the protocol version number, message length, export timestamp and the observation

domain ID. After the header, one or more sets (i.e., one or more records), are defined

having an ID and variable fields.

Figure 5.4 presents a simplified example of a template record message and its corre-
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spondent data report, identifying that the packet, with 64 bytes, was collected through

systematic count-based sampling technique capturing 1 packet from every 100. All ele-

ments in a report are specified by the information model (see Section 5.3.4) and each

template has an unique ID, allowing that all entities involved in the measurements can

interpret the data reports following this template.

Usually the number of records in an IPFIX message is limited aiming at avoiding

IP fragmentation. In this way, the exporting module decides how many records will be

included in the message ensuring that the message size does not exceed the Maximum

Transmission Unit (MTU), excepting the cases in which information elements with

variable lengths exceed the link MTU [90].

(a) Template record (b) Data report

Figure 5.4: IPFIX messages - template and data.

Transport protocol

In addition to the message format, the exporting process must also select a transport

protocol to transmit the measurement reports. This decision may be taken regarding

the collector/application or MP restrictions. The usual candidates are UDP - User

Datagram Protocol, TCP - Transmission Control Protocol and SCTP - Stream Control

Transmission Protocol.

Due to the easy implementation (even in hardware) and minimal overhead, UDP is

the most implemented transport protocol for measurement data transmission. However,

possible drawbacks are: (i) the lack of congestion control may incur in significant loss

of messages, mainly in high-volume exports; (ii) as the protocol does not provide flow

control, the collectors and applications must use large socket buffers in order to handle

bursty reports; (iii) when exporting based on report templates, the exporting module
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must periodically resend templates to ensure that all involved entities have received

them and thus interpret correctly the data reports, which require mechanisms to handle

lost and duplicate messages [90].

Considering a sampling based scenario, in which losing one report may imply the loss

of all information regarding a flow, the congestion-awareness and reliability provided by

TCP turn it a better choice when compared to UDP. The primary problem with TCP

is that the receive window mechanism may limit the exporting process, forcing it to

maintain the messages in the transmission buffer, which increases the risk of discarding

packets that exceed the sender capacity.

This issue can be addressed resorting to SCTP that provides multiple streams per

collection allowing to separate logically the exported information simultaneously [92].

Furthermore, the sender capacity to cancel retransmission of unreceived segments after

a given timeout allows selective dropping of exported segments under high load, rather

than overloading buffers with pending retransmissions [90]. However, SCTP is currently

the least deployed of the three protocols mainly due to its difficulty to be implemented.

5.5 Data plane

At data plane, following the sampling rules defined in the control plane, packets are

collected from the network link for subsequent use. This section includes a description

of the technologies and mechanisms to perform packet capture, that may be deployed in

wired, wireless or virtual networks. Due to performance issues involved in reading pack-

ets from network links, mainly in high-capacity networks, the processes implemented

in this plane must be kept simple, avoiding processing overhead.

In wired networks, where most traffic measurements are performed, the MP imple-

ments an interface (also called capture device) in which it is possible reading and col-

lecting packets from the link being monitored. The capture interface can be positioned

in-line and in mirroring mode. While in in-line mode, the MP is directly connected to

the monitored link between two hosts, usually resorting to a network tap that duplicates

all observed traffic through passive splitting (on optical fiber links) or regeneration (in

electrical copper networks), in mirroring mode, the network device forwarding packets

can mirror packets from one or more ports to another port, in which the MP device is

attached.

In wireless networks, the MP may use any device with a compatible interface (usually

these devices can only capture packets at a single frequency at a given time [90]),
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however some of them can switch rapidly through all radio channels (channel hopping)

trying to improve traffic capturing, although there is no guarantee that all packets

are considered [93]. In virtual networks, the nature of the devices is similar to wired

networks, although in this case the capture interfaces are usually entirely deployed in

software.

Basically, before any packet pre-processing, packets must be read from the capture

interface, that may be a NIC or any other programable device implementing a compat-

ible network stack. After selecting which packets will compose the sampling, they are

collected and timestamped. Then, the packets are reported to the control plane to be

processed.

In addition to the device nature and location, the data plane also defines how

the control plane interacts with the network interface in which the packet capture

is performed. For this, MPs resort to libraries and Application Programming Interfaces

(APIs) in order to implement the packet collection. The main solutions currently avail-

able are using libpcap [94] or libtrace [95] for Linux and BSD-based operating systems,

and WinPack for Windows.

Considering that packets have to traverse several layers from the interface to the

library (which is located at the top of the operating system’s network stack), the overall

capture performance depends on the efficiency in handing over packets from the capture

device interface to the upper plane via the packet capture library. One of the various

strategies proposed to improve this process is using a memory mapping technique in

order to reduce the cost of copying packets from kernel-space to user-space through

Direct Memory Access (DMA) [90].

5.6 Distributed measurement systems

This section provides insights regarding strategies to deploy a distributed measure-

ment system based on the architecture presented above.

For networks with several MPs, configuring sampling techniques and exporting mea-

sured data may incur in some potential problems. Figure 5.5 presents a distributed

environment in which some of these problems can be evinced. In this illustration, three

different measurement tasks running in distinct points of the network require measure-

ment information from various MPs distributed through the network.

As discussed earlier in this chapter, each measurement task poses possibly distinct

measurement needs, which can be satisfied using the more suitable sampling technique
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available in the modular sampling framework (detailed in Chapter 6). Although con-

flicting measurement needs can be addressed resorting to a proper priority system or

configuring the most comprehensive technique (see Section 5.3.2), the tasks toward this

decision are still performed by the MP. This can be heavy in terms of computational

resource consumption, particularly in low power devices.

MP-A MP-C MP-DMP-B

  Measurement task 2 Measurement task 3Measurement task 1

Figure 5.5: Measurement exporting - unicast

Other potential drawback in the environment presented in Figure 5.5 is related

to exporting several copies of the same measurement report. Having defined which

sampling technique and parameters will be performed, each MP needs to export one

copy of each report to all applications or collectors involved in the measurement. Those

copies may overflow the MP buffer, leading to lose report messages, further impacting

on the overall performance of devices sharing exporting and capturing interfaces.

In order to handling with these potential problems, this work advocates the usage

of a central entity able to intermediate MP configuration and multicast dissemination

for attenuating the impact of message copies in the MP.

A distributed measurement system centrally controlled can be achieved introducing

an external entity able to mediate the MPs configuration and exporting destination.

This Central manager is therefore responsible for: (i) authenticating the applications

interested in measurement data; (ii) defining the priority of each measurement task;
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(iii) selecting and configuring the best sampling technique in each MP regarding the

measurement needs; and (iv) coordinating the report distribution in order to save re-

sources. Although a Central manager is in place, the respective services may still be

deployed in a distributed way, aiming at addressing scalability, security and reliability

issues.

Figure 5.6 illustrates a distributed measurement system based on the sampling

framework in presence of the central manager. Its general operation is presented below:

M
P

-A

M
P

-C

Measurement task 1 Measurement task 2

Central manager

M
P

-D

M
P

-B

MP configuration

Application request

Multicast group

Unicast delivery

Figure 5.6: Measurement exporting - multicast

• when an application performing a measurement task is interested in some mea-

surement results, it sends a request to the central manager specifying the identifi-

cation of the specific MP or group of MPs of interest, the most suitable sampling

technique and its underlying configuration parameters;

• if the selected MPs are not involved in any measurement process, the central

manager configures them with the indicated parameters and the unicast address

to which reports should be sent to. This scenario is represented in Figure 5.6 by

red arrows, in which the MPs A, B and C are exporting their results to a single

destination (i.e., Measurement task 1);
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• on the other hand, if the selected MPs are already supplying other measurement

tasks, the central manager firstly analyzes which task has the highest priority in

defining the measurement configuration parameters. Then, it sets all MPs with

the most priority parameters or with the more comprehensive approach, aiming

at satisfying the requirements from measurement tasks with equal priority;

• in addition, the central manager configures a multicast group and notifies all MPs

and applications. The applications use the multicast address to join the group

to which the measurement results will be sent, and the MPs use this address as

a destination of their results, without joining the group. This approach avoids

that one MP receives reports from other MP. This scenario is also represented in

Figure 5.6, in which the blue arrows correspond to a multicast group with the

MP D exporting its results to the Measurement tasks 1 and 2.

In this proposed approach, the central manager only coordinates the set up of the

entities (i.e., MPs and applications performing measurement tasks) involved in the

measurement process. After that the datagrams containing measurement reports are

directly delivered to the applications, without intervention from the central manager

until other application expresses interest in receiving the measurement results from a

MP under its control.

Resorting to multicast communications aim at attenuating the impact of report

copies on MP interfaces and reducing the total bandwidth consumed during the ex-

porting process. For networks in which IP multicast is not supported, alternatives such

as overlay multicast (multicast-over-unicast) or Explicit Multi-Unicast (Xcast) [96] can

be addressed to provide efficient group communications.

5.7 Summary

This chapter has presented an encompassing and modular measurement architecture

able to support the design and deployment of flexible sampling-based measurement

systems. The main components involved in the proposed sampling-based architecture

are arranged in three planes. The management plane includes tasks related to mapping

measurement needs into the more suitable sampling technique to be deployed in one

or more MP. Apart from providing the corresponding configuration parameters, the

management plane is also responsible for receiving sampled data, used to estimate the

relevant metrics according to the measurement task. The control plane, according to

the proposed taxonomy, supports the modular definition of classic and new sampling
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techniques and configurations, that can be adjusted to each traffic/service measurement

scenario. At this plane, the sampled packets are processed and the relevant fields content

are extracted according to the network task measurement needs. These values are then

aggregated (both in time and space) and exported. At data plane, traffic is collected

from network interfaces by applying the sample rules defined in the control plane. The

unprocessed packets are then reported to the control plane to be processed, simplifying

the data plane. In addition, a strategy for the deployment of a distributed measurement

system has been presented, including the entities involved. The implementation details

of a prototype based on the proposed architecture are presented in the next chapter.



Chapter 6

Sampling Framework Prototype

Attending to the main goal of providing an encompassing measurement system able

to foster the design and deployment of flexible sampling strategies, this chapter describes

the implementation of a sampling framework prototype including the main architectural

components described in Chapter 5 and their functional interactions.

The developed framework is then used as a proof-of-concept regarding the flexibility

introduced by the sampling taxonomy and as a fair environment to perform compar-

ative assessments involving different sampling techniques in diverse traffic scenarios.

This analysis aims at fostering the introduction of new sampling strategies adjusted to

specific measurement needs, optimizing thus traffic measurements.

6.1 Technological aspects

As discussed in Section 2.5, most of the current measurement tools able to perform

packet sampling only deliver a limited set of sampling techniques. They also do not

provide mechanisms able to support the integration of new proposals. Therefore, the

development of the sampling-based architecture’s core (i.e., the sampling framework),

must be sustained by open and well accepted technologies able to be easily deployed in

different MP architectures, reducing thus the dependency of proprietary solutions. This

design directive allows not only selecting the best sampling technique regarding specific

traffic scenarios and measurement needs, but it also enables the possibility to address

the most suitable hardware, avoiding the use of expensive and dedicated devices.

In this way, regarding the packet capture at MPs interfaces, the technology adopted

is libpcap [94], an open source and portable packet capture library widely used by
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the data networking community and available for most operating systems1. It is also

the core of several packet capture tools and traffic analyzers, such as tcpdump [97],

dsniff [98], snort [99] and ettercap [100], which assures a large support and research

addressing performance issues. In this regard, due to the simplicity of the data plane,

which is responsible only for packet capture and timestamping, the overall performance

depends upon MPs hardware and their operating system [90]. Furthermore, libpcap

output format (i.e., pcap) is widely supported by exporting systems, such as yaf [101]

which is compatible with the IPFIX standard.

Other advantage of using libpcap is that, although it was developed to be used along

with C and C++, there are various APIs that allow its use from several programming

languages, for instance, Perl, Python, Java, C# and Ruby. In this way, considering the

portability goal, the language elected for the framework prototyping is Java due to its

extensive support in different computer architectures, running in all of them from a

unique code compilation. In this study, the specific API used to control libpcap from

Java is JPCAP [102]. Despite the Java Virtual Machine (JVM) being usually associated

with low performance, there has been specific research in which the bytecode processing

is being improved toward efficient integration with libpcap [103].

Sustained by the flexibility and comprehensiveness of the technologies above men-

tioned, the developed sampling framework is currently deployed as an experimental

monitoring system. It is being applied into various network scenarios and measurement

tasks, running on different computer architectures, namely x86, x64 and ARM (detailed

in Section 6.3).

6.2 Framework structure description

The sampling framework is developed following the taxonomy presented in Chapter

4 and the relationship among its components. The framework design can be seen as

a multilayer system in which a lower layer provides services to an upper layer, hiding

details about its operation. The resulting framework allows to combine the sampling

components defined in the taxonomy, providing a flexible platform that can be applied

to online and offline measurement scenarios. In addition, the technologies supporting

its development and the preference for using standard protocols allow integrating the

framework in different measurement systems easily.

Figure 6.1 presents an integrated diagram of classes from which the implementation

1Windows uses a port of libpcap known as WinPcap.
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details of each taxonomy component and their underlying approaches are explained,

including the communication mechanisms.

Figure 6.1: Main classes in the sampling framework

6.2.1 Granularity component

As presented in Figure 6.1, the granularity component is deployed in a single class

and each of its different approaches correspond to a single method. This class is the

first mechanism above libpcap and works controlling which packets will be considered

for the next sampling steps.

The flowLevel method receives two parameters, namely the interfaceID and the

flowKey. The first parameter consists in an integer identifying the MP network interface

in which packet sampling will be performed. The list of available interfaces can be

consulted from the main class resorting to the method getInterfaces(). The parameter

flowKey identifies the flow or flows from which the packets will be sampled. Aiming at

providing flexibility in defining flows beyond the classic 5-tuple scheme, the parameter
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is defined as a String following the tcpdump filter syntax2.

Considering that in the packet-level approach all incoming packets are eligible for

sampling, the corresponding method, called packetLevel, only receives the interface iden-

tification as parameter i.e., interfaceID. Thus all packets are forwarded to the upper

layer of the framework, i.e., the selection trigger.

6.2.2 Selection trigger component

Similarly, the selection trigger component is also deployed in a single class (i.e.,

SelectionTrigger) with individual methods implementing each approach. Regarding its

operation, each method invocation starts a single sample collection. This allows to keep

the class unchanged when applied in different sampling techniques, such as in adap-

tive techniques, in which the sampling frequency might vary during the measurement

process.

As presented in Figure 6.1, the countBased method receives two parameters, i.e., the

intervalBetweenSamples and the sampleSize. These parameters correspond, respectively,

to the number of packets ignored for measurement purposes, therefore not collected,

and the number of packets collected to compose a sample.

The timeBased method receives similar parameters (i.e., intervalBetweenSamples

and sampleSize), however in this case they correspond to the timestamps (in millisec-

onds3) of the packets arrival at the MP. In this way, they are defined as long integers.

The eventBased method receives the parameter filter defined as a string that indi-

cates which packet fields must be matched in order to capture specific ranges of packets.

This parameter also follows the tcpdump filter syntax.

All the three methods implementing the selection trigger approaches return objects

of type packet. This object type corresponds to a single instance of a packet following the

pcap format. The selected packets are stored in a default location (i.e., /pkt_temp/),

resorting to the method writePacket(), for future aggregation and exporting. The class

also provides a constructor to define an alternative destination for the sampled packets

(i.e., path) and the time interval (i.e., timeOutFlush) between consecutive flushes. This

corresponds to a mechanism to avoid an external process trying to read the temporary

file while the framework is writing new sampled packets. In this way, different temporary

2A comprehensive coverage of the filter syntax can be found in
http://www.tcpdump.org/manpages/pcap-filter.7.html

3Depending on the computer architecture in which the MP is deployed, the timestamp precision
can be increased to microseconds.
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pcap files are created every timeOutFlush period, defined by default as five minutes. The

external processes can thus use this time to schedule the next operation cycle.

6.2.3 Selection scheme component

Considering that the selection scheme component corresponds to the main distin-

guishing feature among sampling techniques, involving possibly complex functions, each

approach in this component is implemented as an individual class. This enhances the

flexibility when deploying new techniques, as the methods within the selection trigger

and granularity components are kept invariable, as discussed before.

The systematic approach, as defined in RFC 5475 [1], comprises the simplest sam-

pling techniques and consists in successive invocations of the same method from the

selection trigger object using invariable parameters. In this way, in the Systematic class,

the method runSampling() selects the correspondent methods from the classes Selec-

tionTrigger and Granularity in order to compose a specific systematic technique.

The random approach includes a random generator method which may follow dif-

ferent probabilistic functions, as explained in Section 2.2. Considering that the portion

of the traffic collected varies in every sampling iteration, each invocation of the specific

selection trigger method receives different parameters. Note that the sample size does

not change, only its temporal or spatial position does. The method presented in the

Random class in Figure 6.1 corresponds to the random n-out-of-N technique, discussed

in Section 2.2.1, and is currently available in the sampling framework (see Section 6.3).

Different random functions can be introduced by developing new classes with the re-

spective mechanisms.

The adaptive approach is usually the most complex within the selection scheme

component as it requires monitoring a reference parameter (e.g., throughput) that will

guide the sampling adaptiveness. As discussed in Section 2.4, adaptive sampling tech-

niques also resort to a controller designed to analyze the reference parameter in order to

make decisions on the sampling policy. This is accomplished through specific method

invocations from the selection trigger object varying the sample distribution and/or

the sample size. The Adaptive class presented in Figure 6.1 shows the corresponding

methods that compose the multiadaptive technique, introduced in Chapter 3, in which

both the sample size and the interval between samples can change dynamically along

the sampling process.
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6.3 Experimental framework prototype

The current version of the framework provides a wide number of sampling tech-

niques, most of them unavailable in research or commercial tools. All the current

sampling techniques deployed in the framework are listed in Table 6.1. They can be

performed both in online and offline measurement scenarios. The offline mode consists

in applying the packet sampling to traffic previously collected by any application and

stored in pcap file format. In order to foster the introduction of new sampling strategies

and to provide a platform in which these strategies can be fairly assessed, the framework

source code is publicly available4.

Table 6.1: Sampling techniques available in the framework

Technique Granularity Selection trigger Selection scheme

Packet Flow Count Time Event Systematic Random Adaptive

SystC - Systematic Count-based ✦ ✦ ✦

SystC_F - Systematic Count-
based_Flow-level

✦ ✦ ✦

SystT - Systematic Time-based ✦ ✦ ✦

SystT_F - Systematic Time-
based_Flow-level

✦ ✦ ✦

SystEvt - Systematic Event-based ✦ ✦ ✦

SystEvt_F - Systematic Event-
based_Flow-level

✦ ✦ ✦

RandC - Uniform-Random
Count-based

✦ ✦ ✦

RandC_F - Uniform-Random
Count-based_Flow-level

✦ ✦ ✦

LP - Linear Prediction ✦ ✦ ✦

LP_F - Linear Prediction_Flow-
level

✦ ✦ ✦

MuST - Multiadaptive Sampling
Technique

✦ ✦ ✦

MuST_F - Multiadaptive Sam-
pling Technique_Flow-level

✦ ✦ ✦

The developed framework is currently supporting research work assessing the suit-

ability of the different sampling techniques when applied to various network measuring

tasks. The comparative evaluation study takes into account the measurement accuracy,

the volume of data involved and the computational weight. The corresponding results

are discussed in Chapter 7.

Figures 6.2 and 6.3 present screenshots of the framework local user interface showing

the sampling techniques currently available (Figure 6.2) and the list of the MP interfaces

4The framework and its source code are available for download at http://1drv.ms/1IggkCa as a
Raspbian image ready to be deployed.
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in which the packet sampling can be performed (Figure 6.3).

Figure 6.2: User interface - Sampling techniques available in the framework

Furthermore, aiming at reducing the overall costs involved in large scale network

monitoring, the framework is also being explored in an experimental and distributed low

cost measurement environment. In this way, the solution is deployed resorting to general

purpose low-cost single-board computers, i.e., Raspberry Pi Model B, running an ARM

processor at 700MHz and with 512MB RAM. This type of equipment is taking ground

in the network monitoring context, namely in large scale measurement architectures,

such as CAIDA (Center for Applied Internet data Analysis) Archipelago Project5.

The experimental environment is running at the Instituto Nacional de Estatística

(INE) network and consists of nine devices attached to the INE domain border routers

across the country with nominal bandwidth between 8Mbps and 500Mbps (detailed in

Figure 6.4). The tasks supported by the system comprise network monitoring, account-

ing and traffic classification. The distributed monitoring layout allows to overcome the

hardware constraints of Raspberry Pi devices for most links, since the mean throughput

in these links are usually within their capabilities. Whenever an excessive throughput

5Details regarding the Archipelago Project can be found in http://www.caida.org/projects/ark/
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Figure 6.3: User interface - Selecting network interface

cannot be accommodated, the low cost involved in this monitoring strategy allows to

include new devices or to split the traffic into redundant idle devices.

Due to the experimental nature of the measurement system, the collected packets

are not being automatically aggregated, which allows the usage of the same capture in

diverse measurement tasks. In this way, all collected packets are firstly stored in pcap

file format for future aggregation regarding the specific measurement needs.

Regarding the exporting process, the current version of the framework provides the

capability of exporting the measurement results in IPFIX format by connecting the

framework with a modified version of the application yaf. In the tailored version of

yaf was introduced features related to packet sampling, such as the identification of

the technique in use and its operational parameters. Aiming at achieving compatibility

with current monitoring applications, yaf was also adapted in order to support IPFIX

exports into XML format. Some of the measurement outcomes from this experimental

system sustain the comparative analysis detailed in Chapter 7.

6.4 A full operational example

As mentioned before, the system prototype is currently being used to support net-

work monitoring, traffic accounting and classification at the INE network. In this way,



6.4 A FULL OPERATIONAL EXAMPLE 81

Figure 6.4: INE experimental system

this section illustrates the operation of the various modules presented in the measure-

ment architecture (introduced in Chapter 5) when performing traffic accounting. The

example is structured following the sequence from the network task and its underlying

measurement needs to the packet selection rules being applied to the data plane. Then,

the process is exemplified from the unprocessed sampled packets to the visualization of

the measurement results.

This operational example includes the following steps:

1. Aiming to monitor the ISP (Internet Service Provider) compliance with the com-

mitted SLA, the INE network managers perform traffic accounting along various

periods of every workday. The measurement periods are distributed in order to

cover the different workloads daily supported by the network. To pursue this net-

work task, the measurement needs involve gathering information regarding the

volume of data (i.e., number of packets and volume of bytes) traversing each

monitored link. Thus, the main packet field of interest is the total length for IPv4
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(Internet Protocol version 4) packets or the payload length for IPv6 (Internet

Protocol version 6) packets;

2. Due to the nature of the task, measurements must be performed in border routers,

corresponding to nine MPs attached to external links distributed along the coun-

try, as illustrated in Figure 6.4;

3. Considering the outcomes detailed in Chapter 7, the sampling technique selected

is the Multiadaptive Sampling for links with higher capacity (i.e., Lisboa and

Porto) and Systematic Count-based for the remaining links. These decisions are

related to the computational burden of each technique facing MPs capacity;

4. As all the MPs support the sampling framework, the elected information model

is IPFIX due to its flexibility in supporting measurements based on sampling

as in RFC 5477 [80]. As presented previously (Section 5.3.4), the information

elements identifying the encoding mechanisms are ruled by IANA. Due to the

comprehensive support by the monitoring applications running at INE network,

the data model in use is XML, meaning that IPFIX messages are transmitted

using XML format.

For this example, the configuration template and underlying data messages sent

from the management plane to the control plane are illustrated in Figure 6.5. Fig-

ures 6.5(a) and 6.5(b) correspond to the configuration templates for the systematic

count-based technique and multiadaptive technique, respectively. Figures 6.5(c)

and 6.5(d) illustrate the corresponding data messages aiming at configuring the

respective technique and the exporting destination (i.e, 172.168.0.1). In addition,

Figure 6.6 presents an example of the IPFIX data message in XML format;

5. Resorting to IPFIX messages, the control plane of each MP can select and config-

ure the defined sampling technique. In this case, the MPs in Lisboa and Porto are

configured to perform MuST with an initial sample size equal to 200ms and sam-

ple size equal to 500ms. The remaining MPs are configured to perform Systematic

count-base technique with fixed sample size equal to 1 and interval between sam-

ples equal to 99;

6. As described in Section 5.5, at the data plane the framework resorts to libpcap

library to capture packets following the respective sampling technique policy. In

order to keep this architecture plane simple, the unprocessed packets (i.e., in pcap

format) are sent to the control plane for further processing;
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(a) Systematic count-based template (b) Multiadaptive template

(c) Systematic count-based data (d) Multiadaptive data

Figure 6.5: IPFIX templates and data messages for measurement point configuration.

Figure 6.6: IPFIX data message in XML format.

7. Although the current version of the framework does not support error verifica-

tion, at this point each received packet is processed in order to detect errors. The

packet processing module also gathers the packet fields of interest for the spe-

cific measurement goal, discarding all the remaining data. Relevant data is then

aggregated or directly transferred to the exporting module;

8. The process of data aggregation resorts to dynamic tables (also called cache tables)
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updated everytime a new packet is processed. Considering the requirements for

traffic accounting, the underlying table stores the information presented in Figure

6.7. The table maintains the timestamps6 of the first and the last packet captured,

the total number of packets captured in this period and the corresponding total

number of bytes. Note that the timestamp considered corresponds to the time of

packet capture by libpcap;

Figure 6.7: Aggregation table.

9. At the exporting module, the measured data (aggregated or not) is encapsulated

into IPFIX messages for transmission to the management plane. Figure 6.8(a)

illustrates the template for measurement exporting and Figure 6.8(b) illustrates

the correspondent data message. This message carries the aggregated information

related to the MP in Evora (i.e., ID = 7), performing the Systematic count-based

technique, in which 1 packet is captured for each 100 incoming packets;

(a) Exporting template (b) Exporting data

Figure 6.8: IPFIX templates and data messages for measurement exporting.

10. Resorting to the measured data embedded in IPFIX data messages, it is possible

estimating the metrics related to traffic accounting (discussed in Section 7.4). In

this experimental environment, the measurement results are stored in a database

for further verification of SLA compliance. However, they can also be assessed

through any visual application compatible with the IPFIX protocol.

6Using the epoch time, defined as the number of seconds elapsed since 00:00:00 Coordinated Uni-
versal Time (UTC), 1 January 1970. The precision also can be increased to the microseconds scale.
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6.5 Summary

This chapter has detailed the deployment of a sampling framework based on the

modular architecture previously introduced. The framework aims at providing a func-

tional tool to support the design of efficient measurement strategies. Aspects regarding

the computer architectures supported, libraries used in its deployment and the soft-

ware structure were also discussed, detailing the implementation of each component

presented in the sampling taxonomy. In addition, an experimental environment target-

ing a large scale network was presented, including a concrete example in which it is

possible to track each module of the measurement architecture and their relations. The

next chapter resorts to this framework to provide the proof-of-concept of the proposed

architecture regarding the main objectives of this work.
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Chapter 7

Test Scenarios and Results

Deciding for a specific sampling strategy requires a clear knowledge of each eligible

sampling technique capabilities and constraints regarding the measurement activities to

be accomplished. This includes understanding their effectiveness in providing accurate

estimations and assessing the computational burden involved in achieving such accuracy.

In order to overcome the lack of current commercial and research tools in provid-

ing an encompassing environment for comparative sampling analysis, the framework

presented in Chapter 6 has introduced the flexibility required for such purpose.

Thus, in this chapter, after detailing the main objectives and the general method-

ology adopted, multiple testing scenarios are devised in order to evaluate relevant and

heterogeneous sampling techniques. The debate focuses mostly on the comparative eval-

uation of the overhead in terms of volume of data and computational requirements and

the accuracy in estimating the traffic workload and flow distribution. Relevant aspects

regarding the challenges in performing network monitoring though packet sampling are

also covered.

7.1 Main objectives

The main objectives of evaluating different sampling techniques in presence of di-

verse traffic scenarios are twofold. In a first stage, the aim is to demonstrate the versa-

tility of the proposed sampling taxonomy in providing a flexible solution to accommo-

date diverse sampling strategies and, therefore, fostering the development of tailored

schemes. In a second stage, the sampling framework is used as a fair environment for

evaluating the performance of the different sampling techniques when addressing activi-

ties usually supported by sampled data, i.e., traffic workload and flow analysis. The per-

87
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formance is assessed comparing estimation accuracy and computational requirements

when applying the distinct techniques to the mentioned activities.

In order to meet these objectives, specific tasks are identified and listed below:

• deploy a set of sampling techniques comprising: (i) the most common techniques

currently available in research or commercial tools; (ii) standard techniques scarcely

offered by these tools; and (ii) techniques recently proposed;

• select traffic scenarios able to represent the real environment in which traffic

sampling is usually performed;

• conceive and implement a test environment able to fairly assess the computational

burden of the different sampling techniques. The computational resources mea-

sured consist of CPU load, memory usage and volume of data involved in each

sampling process;

• identify metrics commonly used in traffic measurements and deploy the underly-

ing estimation methods taking the sampled data inputs. The metrics are mostly

related to traffic workload and flow analysis, however several highlights regarding

different measurement tasks are also covered along the discussion.

7.2 General methodology of tests

Some aspects regarding the methodology used to accomplish the objectives defined

above are kept unchanged along all the test scenarios. These aspects are presented

in this section, while specific details (i.e., traffic scenarios and evaluation methods)

concerning each set of tests are presented in the respective sections.

The main unchanged aspect in the tests regards to the sampling techniques evalu-

ated, which were chosen in order to sustain a comprehensive analysis of the different

sampling mechanisms and their impact on metrics estimation.

In this way, the techniques evaluated include the main strategies defined in RFC5475

[1]. Two of them are widely deployed in current measurement tools, i.e., systematic

count-based and uniform random count-based, while the other, i.e., systematic time-

based, is scarcely deployed. In addition, two adaptive techniques are also evaluated, i.e.,

adaptive linear prediction [28] and multiadaptive sampling [14]. Relevant details regard-

ing each sampling technique are presented below and a summary of their nomenclature

and operational parameters is presented in Table 7.1.
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Systematic count-based (SystC) drives the packet selection through a determin-

istic and invariable function based on the packet position, using counters. This

technique, proposed in RFC5475 [1], corresponds to the most widely deployed

in current measurement tools able to perform packet sampling, such as Cisco

Sampled Netflow, sFlow and tcpdump.

Considering that the estimation accuracy and the computational resources con-

sumption of systematic techniques are empirically proportional to the sampling

frequency, the tests carried out assess the impact of distinct sampling frequencies.

As it is exemplified in Table 7.1, SystC 1/8 means that one packet is collected

over every eighth packets arriving at the MP. The configuration of SystC used in

comparative analysis among different techniques is 1/100, as suggested in [33].

Systematic time-based (SystT) the process of packet selection follows a determin-

istic function based on the packet arrival time at the MP. In this technique the

sample size and the time between samples are set at the beginning of measure-

ments and remain unchanged along the sampling process. Although this technique

is also proposed in RFC 5475 [1], it is scarcely available in current measurement

tools.

Similarly to SystC technique, SystT is also analyzed on several frequencies (pre-

sented in Table 7.1), where SystT 100/500 means that all packets arriving at the

MP along a period of 100ms are selected for a sample, followed by a time period

of 400ms where packets are ignored for measurement purposes. The chosen pa-

rameters also allow analysing the variation of SystT frequencies with the same

sampling ratio, i.e., 100/500, 200/1000 and 500/2500.

For SystT technique, the default sampling frequency when comparing the per-

formance of different techniques is 100/1000 as it led to the best results for the

analysis performed.

Random count-based (RandC) corresponds to the n-out-of-N random approach

introduced in RFC 5475 [1], widely deployed in measurement tools. It is a content-

independent technique in which n packets are randomly selected out of a parent

population of size N , with all N packets having the same probability to be selected

for the sample.

Following the suggestion in [33], when comparing RandC and with other tech-

niques, a frequency of 1/100 is used, in which one packet is randomly selected

from every 100 incoming packets at the MP. In other words each packet has a

1/100 probability to be selected.
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Adaptive linear prediction (LP) is a time-based technique that uses linear predic-

tion to identify changes in the network activity, adjusting the sampling frequency

accordingly while the sample size remains invariant [28]. Its basic operation con-

sists of increasing the sampling frequency, i.e., reducing the interval between sam-

ples, when more network activity than predicted is observed. Conversely, when

less network activity than predicted is observed, the interval between samples is

increased, reducing the sampling frequency and, consequently, the amount of data

involved in the sample process.

Within the comparative context, LP technique is configured with sample size

equal to 100ms and initial interval between samples equal to 200ms, as suggested

in [28].

Multiadaptive sampling (MuST) is a time-based technique (introduced in Chapter

4) that also resorts to linear prediction for identifying the level of network activity.

However, the multiadaptive technique considers both the interval between samples

and the sample size as adjustable parameters [14].

Apart from increasing the sampling frequency in periods of more activity than

predicted, the multiadaptive technique also reduces the sample size, avoiding the

overload of the MP in a critical period. Conversely, in periods of less activity

than predicted, in addition to sampling frequency reduction, the multiadaptive

sampling also increases the sample size in order to acquire more information about

the network without the risk of overloading the MP.

Due to the dynamic behavior of the sample size and interval between samples,

the operational parameters only rule the initial samples. In this case, the initial

parameters are set to 200ms and 500ms for the sample size and interval between

samples, respectively.

The general methodology of tests consists in applying the different sampling tech-

niques to real traffic scenarios in order to understand how the strategies behave con-

sidering the same conditions and evaluation criteria. To pursue this, all techniques are

submitted to real traffic traces previously collected representing distinct and relevant

traffic scenarios of operational networks. Thereafter, specific metrics are estimated and

statistically compared. Although the statistical parameters used are common in most

representative research works on packet sampling, this work extends the previous ones

by cross-checking results from sampling and total traffic (i.e., unsampled) and by ex-

tending the comparison to other techniques than systematic count-based.
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Table 7.1: Summary of the evaluated sampling techniques and corresponding parameters

Name Description Sampling frequency

SystC Systematic count-based 1 out of every 100 packets
SystC 1/8 Systematic count-based 1 out of every 8 packets
SystC 1/16 Systematic count-based 1 out of every 16 packets
SystC 1/32 Systematic count-based 1 out of every 32 packets
SystC 1/64 Systematic count-based 1 out of every 64 packets
SystC 1/128 Systematic count-based 1 out of every 128 packets
SystC 1/256 Systematic count-based 1 out of every 256 packets
SystT Systematic time-based 100ms out of 1000ms
SystT 100/500 Systematic time-based 100ms out of 500ms
SystT 200/500 Systematic time-based 200ms out of 500ms
SystT 200/1000 Systematic time-based 200ms out of 1000ms
SystT 500/1500 Systematic time-based 500ms out of 1500ms
SystT 500/2500 Systematic time-based 500ms out of 2500ms
SystT 500/3500 Systematic time-based 500ms out of 3500ms
RandC Uniform random count-

based
1 packet out of every 100 packets

LP Time-based adaptive lin-
ear prediction

fixed sample size equal to 100ms
and initial interval between sam-
ples equal to 200ms

MuST Time-based multiadap-
tive

initial sample size equal to 200ms
and initial interval between sam-
ples equal to 500ms

The following sections evaluate the sampling techniques regarding: (i) the compu-

tational weight related to the CPU load, memory usage and volume of data involved

in measurements; (ii) accuracy in estimating traffic workload; and (iii) accuracy in an-

alyzing traffic flows. Each scenario and the specific methodology of tests are detailed

along each section.

7.3 Evaluation of the computational weight

The computational weight of packet sampling techniques is analyzed regarding the

CPU load, the memory consumption and the volume of data involved in the sampling

process. For this, a set of real traffic traces with different loads is applied to the defined

packet sampling techniques, deployed in the same device.
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7.3.1 Methodology of tests

To perform the tests, the sampling framework presented in Section 6.3 was installed

in a general purpose low-cost single-board computer, i.e., Raspberry Pi Model B, run-

ning an ARM processor at 700MHz and 512MB RAM. The selected traces (detailed

below) are injected into this MP executing each technique individually, ensuring that

all techniques are evaluated under the same conditions.

Traffic scenarios

The traffic scenarios used to evaluate the computational weight correspond to three

workload periods (low, moderate and high) in the network backbone of the University

of Minho (UMinho) campus along a typical workday. Each trace corresponds to a ten

minutes long capture, classified considering the Mean Throughput (MTP) regarding the

capacity of the network interface, i.e., 100Mbps. Due to institution policies, only https

(Hyper Text Transfer Protocol Secure) traffic was collected, allowing to keep the privacy

of users data.

For the analysis of the volume of data involved in each sampling technique, traces

captured in a large Internet Service Provider (ISP) from the US West Coast, publicly

available at CAIDA are also used. These traces correspond to captures of approxi-

mately 5 minutes in a backbone link OC48 [61], which has a nominal throughput of

approximately 2.5 Gbps, and OC192 [104], with nominal throughput of approximately

10Gbps.

A summary of all traffic scenarios are presented in Table 7.2.

Table 7.2: Traffic scenarios

Workload scenario /
Feature

Description Number of packets Volume of data
(MBytes)

Mean throughput
(Mbps)

Low UMinho network 311159 112.04 3.68

Moderate UMinho network 1273068 712.99 25.42

High UMinho network 1718804 1063.16 65.61

OC48 CAIDA [61] 13575655 7320.62 975.97

OC192 CAIDA [104] 15335726 11585.69 1546.78

Comparative parameters

The computational weight of each sampling technique is analyzed in terms of hard-

ware resources usage and volume of sampling data stored (without aggregation). While
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resource usage may impact on the performance of the MP, data volume affects the

bandwidth required to export measurement data as well as the storage and processing

overhead [71].

The computational resources observed along the sampling process are:

• CPU load, corresponds to the time spent running non-kernel code measured using

vmstat1 [105]. This means that only the sampling processes are considered;

• Memory usage, also measured through vmstat, corresponds to the amount of active

memory in the MP. In this case, the analysis considers all memory used by the

MP due to the process of copying the selected packets from the kernel space to

the user space;

• Volume of data, corresponds to the sum of all packets collected by each sampling

technique, using the total length field within IP header;

• Relation between the volume of data collected and the computational burden in-

volved, assessed through %CPU
MByte

and %Memory

MByte
.

7.3.2 Evaluating systematic techniques

Considering that the computational resources consumption of systematic techniques

is intuitively proportional to the sampling frequency (as higher sampling frequencies

lead to more packets captured), Figure 7.1 shows the difference of the mean computa-

tional consumption for distinct sampling frequencies when applied to the high workload

scenario.

Essentially, Figure 7.1 confirms the relation between sampling frequency and com-

putational weight, although the CPU load presents a higher variation than memory

usage across the different frequencies for both systematic approaches. In more detail,

SystC technique (Figure 7.1(a)) exhibits a smoother variation of computational weight

as the sampling frequency decreases, suggesting a stable minimum demand in terms of

resources for low frequencies.

For SystT (Figure 7.1(b)), besides the relation with the sampling frequency, the

computational weight varies for different frequencies with the same sampling ratio,

i.e., 100/500, 200/1000 and 500/2500. This occurs as the stochastic behavior of the

traffic varies the proportion of the traffic that will be collected through the sampling.

1A computer monitoring tool able to collect information about the operating system activity on a
near real-time basis [105].
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Figure 7.1: Systematic techniques comparison - High workload

Therefore, as depicted in Figure 7.1(b), SystT leads to distinct volume of data collected,

and consequently different computational requirements by each sampling frequency,

even with the same temporal ratio.

In addition, Figure 7.1 also demonstrates the relation between sampling frequency

and volume of data processed and stored by the systematic techniques. As observed

for CPU and memory consumption, SystC presents a proportional relation between the

frequency and data amount. However, although SystC is more widely used in current

measurement tools than SystT, the second one requires less computational resources

when considering an equivalent volume of sampled data. For instance, the sampling

frequencies of SystC 1/8 and SystT 500/3500, collect around 30% of all traffic in the
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high workload scenario. In this case, the SystC requires, in average, around 30% of CPU

and 77% of memory, while the SystT requires around 25% of CPU and 43% of memory.

Furthermore, this behavior is also observed for all traffic scenarios.

Table 7.3 extends the results of the mean resource consumption of systematic tech-

niques for all traffic scenarios, confirming the higher variance of CPU load when facing

memory consumption for all techniques and scenarios. Moreover, it is possible to observe

a stabilization of memory consumption (around 15%) for SystC in lower frequencies.

This indicates the lower demand of this technique in Raspberry Pi MPs. Analysing the

MP active processes, it is also observed that the higher variation in the CPU load is

mainly related to the operational system process of copying more selected packets from

the kernel space to the user space.

Table 7.3: Systematic technique comparison - computational weight

Frequency High Moderate Low

Memory CPU Memory CPU Memory CPU

SystC 1/8 29.48% 76.92% 26.33% 42.47% 17.05% 11.89%

SystC 1/16 22.12% 51.92% 20.45% 27.80% 16.16% 6.1%

SystC 1/32 18.65% 33.93% 17.86% 16.47% 15.73% 5.53%

SystC 1/64 16.93% 22.14% 16.66% 12.66% 15.53% 5.21%

SystC 1/128 16.18% 12.50% 15.99% 8.25% 15.28% 2.75%

SystC 1/256 15.71% 10.88% 15.67% 5.52% 15.21% 2.57%

SystT 100/500 21.90% 31.33% 22.71% 28.05% 22.30% 26.89%

SystT 100/1000 19.22% 20.12% 19.36% 17.95% 19.26% 14.55%

SystT 200/500 27.00% 49.00% 30.85% 47.33% 26.46% 38.60%

SystT 200/1000 20.91% 31.00% 23.34% 27.27% 22.41% 23.82%

SystT 500/1500 24.65% 43.00% 22.92% 40.82% 26.10% 33.21%

SystT 500/2500 21.58% 30.78% 22.30% 28.80% 22.83% 21.71%

SystT 500/3500 19.67% 26.00% 21.50% 20.27% 20.77% 18.42%

7.3.3 Comparing different techniques

Regarding the comparative analysis of all sampling techniques, Figure 7.2 presents

the evolution of CPU load along the sampling process for the high workload scenario.

As shown, the LP technique clearly demands more CPU resources than the other tech-

niques. This occurs because this technique requires processing all packets to analyze

the variation of traffic activity based on accumulated data, even packets not collected.

Conversely, the MuST technique requires the lowest CPU usage, confirming its main

goal and ability to reduce the resource consumption during high activity periods [14].

This aspect is particularly relevant for high-load, high-speed networks.
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The complete comparison of the average CPU load is presented in Table 7.4. As

shown, SystC and RandC techniques outperform MuST for low workload scenarios.

This is due to the impact of the adaptive process on self-adjusting facing workload

variations and also to the largest number of packets collected by MuST in periods of

low activity. In addition, the difference in CPU load of count-based techniques (SystC

and RandC), for the same sampling frequency, results from the additional cost of the

random function in RandC, suggesting that the more complex the random function is

the more significant this difference will be.

Figure 7.2: CPU load - High workload

Figure 7.3 illustrates the memory usage by each sampling technique along the sam-

pling process of the high workload scenario, in which the SystT technique requires the

highest amount of memory from the MP. This is also observed for all traffic scenarios

considered, as detailed in Table 7.4, and it is directly related to the highest number of

captured packets and consequently the highest volume of data collected by this tech-

nique.

For the high workload scenario (detailed in Figure 7.3), the SystC technique de-

mands the lowest memory amount, although none technique has incurred in a signifi-

cant resource consumption, as observed in the CPU load analysis for the LP technique.

Regarding MuST, Table 7.4 also ratifies its ability to reduce the memory consumption

during high activity periods, as previously observed in the CPU load analysis.

Regarding the volume of data collected and stored along the sampling process for
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Figure 7.3: Memory usage - High workload

Table 7.4: Average use of computational resources - all traffic scenarios

Technique High Moderate Low

Memory CPU Memory CPU Memory CPU

SystC 16.42% 14.92% 16.22% 10.80% 15.37% 5.03%

SystT 18.22% 20.12% 19.36% 17.95% 19.26% 14.55%

RandC 17.30% 18.26% 16.87% 16.86% 16.31% 5.50%

LP 17.18% 97.27% 17.61% 96.68% 16.55% 27.35%

MuST 16.22% 10.76% 16.94% 10.72% 17.13% 8.82%

the three workload scenarios, the graphics in Figure 7.4 illustrate the total number

of packets collected by each technique (Figure 7.4(a)) and the corresponding volume

of data in MBytes (Figure 7.4(b)). As shown, the count-based techniques use less re-

sources when comparing to all time-based techniques under analysis. At this point,

it is important to observe that count-based techniques allow a previous definition of

the proportion of the total traffic that will be collected (in number of packets). This

makes these techniques more suitable for MPs with storage limitations or for reducing

the impact of measurement data traversing the network during the sampling exporting

process.

For time-based techniques, MuST also achieves the best results in the data vol-

ume analysis. This also confirms the performance improvement in reducing resource

requirements for all traffic scenarios, as illustrated in Figure 7.4.

Although the previous analysis yields a fair comparison among different techniques
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Figure 7.4: Comparative data volume

regarding their computational requirements, it is also important to understand how the

consumption of resources is related among techniques. In this way, Table 7.5 extends the

previous analysis by assessing the ratio of CPU load per Mbyte collected and memory

consumption per Mbyte collected.

As presented in Table 7.5, although with higher consumption of storage resources,

SysT and MuST techniques achieve a better relationship between the volume of data

collected and the computational cost involved. This means that these techniques are

more efficient regarding the computational burden. This may be an advantage for net-

work activities in which more information about the traffic improves the results in

measurement accuracy (e.g., traffic classification and intrusion detection). This relation

can also help on defining the most demanding technique, a concept used to decide on a

sampling strategy (discussed in Section 5.3.2).

Table 7.5: Computational resource per Mbyte collected

Technique High Moderate Low
%Memory
MByte

%CPU
MByte

%Memory
MByte

%CPU
MByte

%Memory
MByte

%CPU
MByte

SystC 1.63 1.40 2.52 1.51 13.36 4.37

SystT 0.16 0.20 0.27 0.25 1.76 1.33

RandC 1.73 1.73 2.34 2.36 14.82 5.00

LP 0.32 1.71 0.40 2.24 2.05 3.38

MuST 0.72 0.45 0.81 0.48 4.59 2.36

Aiming at extending the comparative discussion regarding the data amount involved

in each sampling technique, Figure 7.5 presents the percentage (regarding the unsam-

pled trace) of the number of packets and volume of data for traces captured in high
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capacity links, i.e., OC48 in Figure 7.5(a) and OC192 in Figure 7.5(b).

Taking into account the unpredictable sampled data in time-based approaches,

MuST has remained the most efficient technique regarding this selection trigger group.

The results also show a close relation between the two parameters (i.e., number of pack-

ets and volume of data) for all traffic scenarios and sampling techniques, in which the

percentage of packets collected corresponds approximately to the percentage of Mbytes

collected. For instance, in trace OC48, SystC has captured 1% of the original packets

corresponding to 1.2% of the total data amount in Mbytes.
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Figure 7.5: Comparative data volume - traces from CAIDA

The outcome from the computational weight analysis has demonstrated that, de-

spite the extensive deployment of count-based techniques in current measurement tools,

time-based techniques SystT and MuST achieve a better relationship between volume

of sampled data and computational resource usage. In the overall packet sampling pro-

cess, the CPU is a more demanded resource than memory, also exhibiting a higher

consumption variation. Considering the volume of data involved in sampling and con-

sequently in exporting, among the time-based techniques, MuST achieves better results

regardless of the traffic scenario.

Although the present study considers a specific test environment regarding the MP

capabilities, the obtained results bring a valuable comparative insight among existing

sampling techniques. The present contribution is therefore a step forward in providing a

better understanding the overhead associated with traffic sampling techniques regarding

their deployment in real scenarios, helping in the adoption of more efficient measurement

strategies.
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7.4 Estimating traffic workload

Despite the importance of reducing the consumption of computational resources

associated with packet sampling, a sampling technique must still be able to represent the

network behavior accurately. Several monitoring activities and management decisions

are performed resorting to the measurement of the traffic behavior, usually observing

the link utilization. Thus, this section analyzes and compares each sampling technique

ability in providing accurate estimations regarding the traffic workload, which consists

in the most common parameter to assess network behavior.

7.4.1 Methodology of tests

The methodology adopted in these comparative tests consists in submitting real

traffic from different network scenarios to all sampling techniques and then assessing

metrics related to traffic workload, e.g., mean throughput and instantaneous throughput.

This comparative approach considers the accuracy of the sampling estimations regarding

the unsampled traffic, instead of comparing just one sampling technique with the others.

Traffic scenarios

Aiming at complementing the computational weight evaluation with the analysis

of the correctness in estimating traffic behavior, the first comparative assessment uses

the same traffic scenarios of previous tests (i.e., captures from the University of Minho

network in low, moderate and high workload scenarios).

The public traces from ISP backbones (i.e., OC48 [61] and OC192 [104]) available

at CAIDA are also used to extend the discussion to high-speed networks.

A summary of the used traffic scenarios is presented in Table 7.6.

Table 7.6: Traffic scenarios

Traffic scenario Description Mean throughput (Mbps) Mean packet size (Bytes)

Low UMinho network 3.68 377.58

Moderate UMinho network 25.42 587.26

High UMinho network 65.61 648.59

OC48 CAIDA [61] 975.97 565.44

OC192 CAIDA [104] 1546.78 792.16
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Comparative parameters

In this assessment, each sampling technique is analyzed regarding its ability in pro-

ducing measurement data able to represent the overall traffic behavior. A common way

to achieve this goal is estimating throughput, measuring the amount of sampled data

in a time interval. Thereby, the accuracy in estimating the temporal traffic behavior is

analyzed through instantaneous throughput, i.e., the throughput constantly estimated

along the measurement process, and mean throughput, i.e., the total estimated load

during the full sampling process.

Considering that in traffic sampling only a subset of total network packets is cap-

tured and considered for measurement purposes, estimating the traffic throughput must

consider the unselected packets. The most common method to estimate the mean

throughput from sampled data resorts to the statistical extrapolation based on the

proportional number of unsampled packets, as detailed in Equation 7.1 [71].

X̄ =
(
∑n

i=1Xi) ∗ Sp

∆T
(7.1)

where,

X̄ is the estimated mean throughput;

Xi is the size of the ith sampled packet;

Sp is the statistical sampling proportion defined by Sp =
m
n
, with m as the total number

of arriving packets and n the total number of sampled packets;

∆T is the period of observation in seconds.

Following Equation 7.1, the mean throughput is estimated taking ∆T equal to the

total period of the sampling process, while in the instantaneous throughput ∆T is

defined according to the time interval of each sample2. This information can be obtained

from the exported measurement data into IPFIX messages and may be accumulated

due the aggregation process.

The accuracy in estimating traffic workload is assessed through Relative Mean Error

(RME), which expresses the relative error of the estimated mean throughput regarding

the mean throughput of the unsampled traffic, as detailed in Equation 7.2 [46].

RME =

∣

∣X̄u − X̄e

∣

∣

X̄u

(7.2)

2For count-based techniques with sample size equal to 1, the instantaneous throughput considers
∆T equal to 100ms.
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where,

X̄u is the mean throughput of the unsampled traffic;

X̄e is the estimated mean throughput after each sampling process.

Furthermore, the mean packet size and complementary descriptive statistics to mea-

sure the variability of packet time series, i.e., the ratio between peak and average packet

size, are also analyzed.

Understanding the sampling impact on these workload dimensions (i.e., mean and

instantaneous throughput) aims to provide inputs in different time scales activities. Ca-

pacity planning and topology changes, upgrade of new routers and links, and evaluation

of network and protocols design may resort to measurements along periods from hours

to months. Conversely, monitoring DDoS attacks, serious congestion and routers or link

failures require measurements performed near real-time.

7.4.2 Evaluating systematic techniques

Similarly to the computational weight evaluation, systematic techniques were firstly

analyzed considering different sampling frequencies. Table 7.7 presents the estimated

mean throughput of the three workload scenarios from the University of Minho network

and the two backbone traces from CAIDA.

The results in Table 7.7 show that, despite the significant variation in the com-

putational requirements across the various frequencies of SystC, the estimated mean

throughput does not vary significantly, as demonstrated by the low and similar RME.

These results suggest that, for activities such as accounting, saving resources by col-

lecting less packets does not lead to less accurate measurements. For OC48 and OC192

traces, the reduction in stored and transmitted data can be even more significative.

Changing the frequency in SystT leads to a more variable accuracy in mean through-

put estimations, as demonstrated by the variation of RME in Table 7.7. In this case,

unlike SystC, reducing the sampling frequency of SystT implies less accurate estima-

tions. This is mainly due to the higher interval in which no packets are collected from

the network, missing thus, significative periods of network activity.

Pondering SystC and SystT results, despite the overall higher RME in SystT esti-

mations, the difference between their computational burden allied to the measurement

goals can be decisive in choosing one of them and their respective frequency. A rele-

vant situation in which this balance may be crucial is presented in Section 7.5, where
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Table 7.7: Systematic technique comparison - mean throughput

Frequency High Moderate Low OC48 OC192

Mbps RME Mbps RME Mbps RME Mbps RME Mbps RME

Unsampled 65.61 - 25.42 - 3.68 - 975.97 - 1534.78 -

SystC 1/8 65.60 0.0002 25.38 0.0013 3.69 0.0028 976.40 0.0004 1534.97 0.0001

SystC 1/16 65.69 0.0011 25.57 0.0059 3.71 0.0070 976.84 0.0009 1535.13 0.0002

SystC 1/32 65.73 0.0018 25.55 0.0049 3.69 0.0028 975.69 0.0002 1536.26 0.0009

SystC 1/64 65.99 0.0057 25.51 0.0034 3.69 0.0028 975.34 0.0006 1535.29 0.0003

SystC 1/128 65.41 0.0030 25.60 0.0072 3.69 0.0028 980.65 0.0048 1535.91 0.0007

SystC 1/256 65.24 0.0056 25.56 0.0053 3.88 0.0540 979.46 0.0035 1535.69 0.0005

SystT 100/500 64.27 0.0205 25.09 0.0128 3.52 0.0429 975.56 0.0004 1538.01 0.0021

SystT 100/1000 63.07 0.0388 24.65 0.0302 3.51 0.0460 978.43 0.0025 1534.52 0.0001

SystT 200/500 64.57 0.0159 25.31 0.0044 3.57 0.0305 975.72 0.0002 1535.31 0.0003

SystT 200/1000 64.13 0.0226 25.05 0.0146 3.54 0.0374 977.08 0.0011 1530.21 0.0029

SystT 500/1500 62.51 0.0473 22.19 0.1270 3.51 0.0450 1100.52 0.1276 1447.66 0.0567

SystT 500/2500 70.33 0.0718 20.53 0.1921 3.19 0.1326 1183.89 0.2130 1443.91 0.0592

SystT 500/3500 53.25 0.1884 18.88 0.2571 3.22 0.1247 1099.46 0.1265 1762.35 0.1482

sampling techniques are evaluated regarding their accuracy in flow measurements.

Although varying the frequency of systematic techniques does not lead to signifi-

cant variation in the mean throughput accuracy, when considering the instantaneous

throughput, the difference becomes more noticeable. Figure 7.6 presents the dispersion

of the SystC estimations for the high workload scenario, where each point corresponds

to an 100ms observation period and the values closer to the reference line indicate a

lower estimation error. The graphics show that increasing the sampling frequency from

SystC 1/8 (Figure 7.6(a)) to SystC 1/256 (Figure 7.6(c)) produce more inaccurate in-

stantaneous throughput estimations. This is also observed for all traffic scenarios and

demonstrates that the need for long term or short term workload assessments, must

also guide the sampling frequency decision.

7.4.3 Evaluating different techniques

Considering the comparative analysis of different techniques, Table 7.8 presents

the mean throughput estimated after each sampling process. In general, for all traffic

scenarios, the RME is low (less than 5%). The exception is the LP technique, with a

relative error above 10% for almost all scenarios under consideration. In this regard,

the comparison between the remaining time-based and count-based techniques also does

not show significant variation, indicating that the lower performance of LP is related

to its adaptive selection scheme. The mean throughput analysis of different sampling
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Figure 7.6: Dispersion of estimated throughput of high workload - SystC

techniques is particularly useful to guide measurement strategies for activities such as

traffic engineering, accounting and SLA compliance, as measurements over large time

intervals are considered.

Analyzing the packet size distribution, Table 7.8 shows that all techniques achieve

accurate estimations of mean packet size, where the low workload scenario presents

the less accurate results. The ratio between peak and average packet size, a descriptive

statistic to measure the variability of packet time series, for identifying burstiness,

also ratifies the accuracy of all techniques estimation. In this case, the low workload

scenario exhibits the highest variability, while OC192 exhibits the less variable traffic

along the measurement process, features correctly identified by the sampling techniques.

For both metrics, count-based techniques (SystC and RandC) have presented more

accurate results, followed by MuST, which improved the results obtained by time-based

techniques.

Despite the overall better results achieved by count-based techniques when estimat-

ing the mean throughput, the distribution of the instantaneous throughput estimation

does not present the same tendency. In fact, adaptive techniques (i.e., LP and MuST)

are more stable for all traffic scenarios, providing high accuracy for short-time mea-
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Table 7.8: Overall traffic behavior - all sampling techniques

Parameter/Scenario Total SystC SystT RandC LP MuST

High workload

Mean throughput (Mbps) 65.61 65.51 63.07 65.07 58.18 64.73

RME - 0.0016 0.0388 0.0082 0.1132 0.0134

Mean packet size (Bytes) 648.59 647.95 633.33 643.15 635.49 652.36

Peak-to-average 2.33 2.33 2.39 2.35 2.38 2.32

Moderate workload

Mean throughput (Mbps) 25.42 25.17 24.65 25.40 21.97 26.28

RME - 0.0097 0.0302 0.0008 0.1355 0.0338

Mean packet size (Bytes) 587.26 586.90 579.42 586.53 589.38 587.82

Peak-to-average 2.57 2.57 2.61 2.58 2.56 2.57

Low workload

Mean throughput (Mbps) 3.68 3.77 3.51 3.62 3.47 3.71

RME - 0.0253 0.0460 0.0155 0.056 0.0091

Mean packet size (Bytes) 377.58 387.87 375.65 371.39 390.32 386.70

Peak-to-average 4.00 3.90 4.03 4.07 3.87 3.91

OC48

Mean throughput (Mbps) 975.97 979.38 978.43 979.92 1085.12 985.29

RME - 0.0035 0.0025 0.004 0.1118 0.0095

Mean packet size (Bytes) 565.44 567.31 566.84 567.94 561.71 566.18

Peak-to-average 3.67 3.58 3.66 3.65 3.69 3.66

OC192

Mean throughput (Mbps) 1534.78 1535.57 1534.52 1537.07 1308.13 1515.29

RME - 0.0005 0.0001 0.0014 0.1476 0.0126

Mean packet size (Bytes) 626.50 627.14 626.91 627.42 623.98 617.54

Peak-to-average 1.89 1.89 1.89 1.90 1.85 1.90

surement intervals. This analysis is illustrated in Figure 7.7 (for the moderate workload

trace), corroborating the measurement improvement promoted by adaptive algorithms

that rule the sampling selection considering the network activity variation. In this case,

comparing both adaptive techniques, MuST (Figure 7.7(e)), outperforms LP (Figure

7.7(d)) providing an overall better result.

The outcome from the workload analysis has demonstrated that long-term and short-

term measurements are better supported by different sampling techniques. While count-

based techniques provide accurate estimations over long periods of network observation,

the evaluated adaptive techniques are more indicated for measurements supporting near

real-time activities.
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Figure 7.7: Dispersion of estimated throughput - Moderate workload

7.5 Analyzing traffic flows through sampling

Apart from the workload analysis, the importance of traffic characterization for

planning and managing effectively today’s networks is undeniable. Associating network

traffic with the corresponding applications and studying flows’ characteristics allows

gathering valuable information about network usage and, hence, devising solutions able

to accommodate applications’ requirements. In this context, the main objective of this

section is to assess the applicability and performance of sampling techniques for traffic

flow analysis. This involves analyzing the accuracy of statistics resulting from sampling
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techniques in capturing the characteristics of traffic flows crossing a network.

7.5.1 Methodology of tests

In order to assess the traffic sampling impact on flow analysis, the methodology of

tests consists in applying different sampling techniques to real traffic scenarios, evaluat-

ing the estimation accuracy of common flow parameters. Similarly to previous sections,

this study also extends the analysis to flow classification for different sampling frequen-

cies of systematic techniques. The following subsections detail the traffic scenarios and

the flow parameters used in the comparative study.

Traffic scenarios

The data used to evaluate sampling accuracy consists of four traffic traces collected

from experimental distributed measurement system deployed in the INE network (pre-

sented in Section 6.3), in which multiple services are provided, such as videoconference,

VoIP, distributed databases, private cloud, ftp, etc.

Each trace corresponds to a twenty minutes capture in different workload periods

illustrating scenarios in which flow analysis is commonly used. The traffic traces are then

handled as an aggregate, reflecting a continuous and heterogeneous network activity

period of 252,087 individual unidirectional flows, comprising nearly 3 million packets.

Comparative parameters

For comparing the ability of distinct sampling techniques in assisting network flow

analysis correctly, several flow parameters are considered, namely: (i) the amount of

flows identified; (ii) the percentage of heavy-hitter (HH) flows identified, where the

notion of heavy hitter refers to 20% of the largest flows in terms of size (number of

packets) [106]; (iii) the utilization share at transport level; (iv) the utilization share at

application level; and, (v) the accuracy of load estimations for the identified flows.

Considering that when flow characterization is based on sampling only a subset

of the packets is available, estimating the underlying metrics involves the usage of

statistical estimators to overcome missing data. In particular, the load estimation of

each flow is an additional challenge as it needs to be often inferred from a small number

of collected packets. Following the discussion in [71] and the notation in Table 7.9, the

specific estimators in this comparative work are as follows:
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• Flow Mean Packet Size (X̄f): the average of sampled packet sizes from flow f .

X̄f =

∑nf

i=1Xi

nf

(7.3)

• Estimated Flow Size (Sf): the estimated number of packets in flow f .

Sf = N ∗ nf

ns

(7.4)

• Estimated Flow Load (Lf): the estimated byte count of flow f .

Lf = Sf ∗ X̄f (7.5)

Table 7.9: Notation

Xi the size of the ith sampled packet of flow f
nf number of sampled packets of flow f
ns total number of sampled packets
N estimated total number of packets (ns/sampling_frequency)

Regarding the estimated flow load, this work applies an innovative way to assess ac-

curacy by resorting to a nonparametric method to estimate the density distribution of

load estimation (i.e., KDE - Kernel Density Estimation method) and thereby fostering

the discussion on the estimation bias when applying each sampling technique. Each dis-

tribution corresponds to a nonparametric probability density function estimated using

the Kernel method and a Gaussian smoothing scale. This method consists in drawing

a continuous and smooth density distribution, weighted by the distance from a central

value (the Kernel), where the population is inferred from a finite number of observa-

tions. In this context, as defined in [107], let (Lf1, ..., Lfn) be the estimated load of

all identified flows (n) for which the density p is under evaluation. The shape of this

function using the kernel estimator is given by:

p̂bw(Lf ) =
1

n

n
∑

i=1

K(
Lf − Lfi

bw
), (7.6)

where K() is the kernel scaled by a Gaussian function, and bw is a smoothing parameter

called bandwidth which defines the variance of the kernel in order to concentrate the

density distribution within a specific interval. This interval is defined using the standard

deviation of the smooth kernel when considering both unsampled traffic and traffic

resulting from all sampling techniques.

When useful, the present study includes the Mean Square Error (MSE) of the esti-

mated values, which is commonly used to evaluate the accuracy of estimators [71]. Note
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that, the evaluation of flow classification methodologies and tools is beyond the scope of

this work, which resorts to a port-based classification technique for distinguishing flows.

A work in progress within the research group is assessing the performance of sampling

techniques in traffic classification based on DPI.

7.5.2 Identifying existing flows and heavy hitters

Intuitively, the sampling frequency is directly proportional to the estimation accu-

racy, as increasing the collected traffic results in a larger dataset for statistical analysis.

While this may be true for analysis carried out using the same sampling technique,

when the sampling selection changes, the trade-off between overhead and accuracy may

differ significantly. Even within the same technique, studying this trade-off may bring

useful information for reducing the amount of traffic collected and processed.

Considering the evaluation of SystC at different frequencies, the results in Table

7.10 confirm that decreasing the number of sampled packets leads to a decrease in the

number of flows identified. As illustrated in Figure 7.8(a), while SystC 1/8 identifies

40% of existing flows, SystC 1/256 only detects 2,3% of flows. However, reducing the

sampling frequency does not impact significantly on the accuracy in identifying the

heavy-hitter flows. For instance, despite SystC 1/256 manipulates only 6% of the traffic

processed by the technique SystC 1/16, the accuracy of heavy hitters identification

is almost equivalent. This performance analysis is useful to guide activities in which

accounting for heavy flows is relevant.

Table 7.10: Identifying flows - comparative analysis

# Sampled packets # Distinct flows % Heavy hitters

SystC 1/8 373124 101168 40%

SystC 1/16 186562 61022 33%

SystC 1/32 93280 35523 33%

SystC 1/64 46639 19854 34%

SystC 1/128 23319 10891 36%

SystC 1/256 11665 5889 32%

SystC 29849 13652 33%

SystT 296579 44590 30%

RandC 29849 13577 33%

LP 196007 30186 30%

MuST 156382 21009 33%

Regarding the different sampling techniques, a larger number of sampled packets also

implies a larger number of flows identified, as illustrated in Table 7.10. Nevertheless,
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count-based techniques are more efficient as, for the same proportion of sampled packets,

the percentage of identified flows is significantly higher. This is visible when comparing

the results of SystC 1/8 and SystT in Figures 7.8(a) and (b), respectively. This is due

to the distinct packet selection policies in use, as the process of packet selection in

count-based techniques increases the probability of capturing distinct flows, contrarily

to time-based techniques in which packets are selected sequentially.
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Figure 7.8: Identifying flows - comparative analysis

Complementing the analysis of the accuracy in the number of flows identified, Figure

7.9 provides highlights regarding the flows’ duration. The box plot graphic describes

the distribution of the number of active flows observed in each sampling process in

intervals of 1 second. As shown, time-based techniques maintain a more accurate view

of existing flows along the time, although the large number of unsampled flows still

affects significantly the instantaneous flow detection.

7.5.3 Utilization share at transport and application level

Even considering the reduced number of identified flows, the applicability of sam-

pling in flow analysis may be useful for providing a realistic snapshot of the mix of

protocols and applications in the network. To verify this argument, the sampling ac-
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Figure 7.9: Statistics on the number of active flows

curacy analysis was extended to the context of traffic classification (both at transport

and application level).

As presented in Figure 7.10 and 7.11, all sampling techniques and frequencies pro-

vide fairly accurate estimations of the most significant transport protocols in use (TCP,

UDP). Regarding the analysis at transport level, the reduction on the number of sam-

pled packets promoted by a lower sampling frequency of SystC does not affect accuracy,

as presented in Figure 7.10. However, considering the application level, the estimated

distribution is significantly affected, resulting in an overestimation of http traffic.

Figure 7.10: Analysis at application and transport level - SystC
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Although changing the sampling technique also maintains the accuracy in classifying

the transport protocol, the classification of applications presents more variability for the

different techniques. As shown in Figure 7.11 and quantified in Table 7.11, in which the

different techniques accuracy is assessed through MSE, time-based techniques lead to

a more realistic distribution of the application share, with LP and MuST providing a

slightly more accurate result. Globally, the results evince that an adequate yet small

fraction of network traffic is able to provide a useful panoramic view of the protocolar

mix of network flows.

Figure 7.11: Analysis at application and transport level - comparative techniques

Table 7.11: MSE - Traffic Classification

SystC SystT RandC LP MuST

Transport level 0.68 0.23 0.68 0.18 0.29

Application level 0.32 0.15 0.31 0.10 0.07

7.5.4 Load estimation

Attending to the formulation in Section 7.5.1, the results in Figure 7.12 show the

distribution of the estimated flow load Lf (in logarithmic scale) when applying the dif-

ferent sampling techniques. The resulting graphics demonstrate the ability to represent

the load distribution of all flows identified in the traffic trace, instead of only the more

significant ones. This analysis plays a key role for traffic characterization and resource

management activities.

The results show that time-based techniques achieve a distribution closer to the

real flow behavior (unsampled case in Figure 7.12 (a)) when compared with the count-
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based approaches (Figures 7.12 (b) and (d)), due to their more accurate load estima-

tions of individual flows. This is observed through the better adjustment on the x-axis,

meaning that the load estimations are closer to the real values. This suggests that a

positive aspect (sparse packet selection) in flow identification becomes a drawback of

the count-based techniques in flow dimensioning, since the current heuristics for flow

load estimation consist in linear extrapolation proportional to the sampling frequency.

This implies that a lower sampling frequency leads to overestimation of the flow load,

deforming the density distribution to the right, and also concentrating the trend of

load estimations (as detailed in Figure 7.12 (g) and (h), for two sampling frequencies

of SystC technique), which evinces statistical loss of accuracy. This may interfere with

network tasks in which the classification of small flows are of particular interest, such

as intrusion detection and DDoS attacks.

Conversely, once time-based techniques select successive packets, the bursty behavior

of flows tends to be better identified and dimensioned (when occurs into the sample

size interval), resulting in more accurate flow load distributions, as presented in Figures

7.12(c), (e) and (f).

Table 7.12 includes statistics (mean, standard deviation and mode) to complement

the above flow load analysis for the sampling techniques under study. As shown, the

average flow load, the dispersion and the mode of the load estimations corroborate

the behavior depicted in Figure 7.12. For the systematic count-based technique, as

the sampling frequency decreases, the overestimation and concentration tendency is

stressed.

Table 7.12: Flow load statistical description

Mean Standard deviation Mode

Unsampled 6.08 1.48 4.18

SystC 1/8 7.26 1.40 6.26

SystC 1/16 7.91 1.39 6.89

SystC 1/32 8.61 1.38 7.62

SystC 1/64 9.34 1.37 8.33

SystC 1/128 10.06 1.37 9.03

SystC 1/256 10.79 1.38 9.73

SystC 9.78 1.36 8.79

SystT 8.04 1.47 4.49

RandC 9.78 1.37 8.79

LP 8.40 1.50 6.82

MuST 8.74 1.54 6.58
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Figure 7.12: Density of flow load estimation

7.6 Concluding remarks

Although the present evaluation study considers a limited set of possible measure-

ment activities, the obtained results bring a valuable comparative insight among existing

sampling techniques. The present contribution is therefore a step forward in providing a

better understanding of traffic sampling techniques suitability and overhead regarding

their deployment in real scenarios.

The results showed that despite the extensive deployment of systematic and ran-

dom count-based techniques in current measurement tools, the adaptive and systematic

time-based techniques can outperform them in some important aspects, such as the re-

lationship between the volume of sampled data and computational resource usage (i.e.,

CPU load and memory consumption), as well as flow identification and dimensioning.

The lack of a conclusive best sampling technique (in terms of overall performance),

even considering a small set of measurement goals, ratifies the central purpose of this

work. The performed analysis also demonstrated that, for some measurement goals, its
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is possible to reduce the amount of data involved in the network measurements without

compromising the estimation accuracy. This confirms the framework versatility and

potential in fostering the tuning and deployment of network measurement systems,

revealing that a modular and configurable approach to sampling is a step forward for

improving sampling scope and efficiency.

7.7 Summary

Demonstrating the versatility of the proposed sampling taxonomy in providing a

flexible solution able to accommodate diverse sampling strategies, this chapter has pre-

sented a set of tests addressing the comparative performance of the main sampling tech-

niques currently used in network measurement tools, i.e., systematic count-based and

uniform random count-based. In addition, other standard technique scarcely deployed

i.e., systematic time-based and two adaptive techniques were also evaluated, i.e., adap-

tive linear prediction and multiadaptive sampling. The techniques were comparatively

assessed regarding their computational weight (i.e., CPU load, memory consumption

and volume of data involved in the sampling process) and their accuracy in two activities

usually supported by sampled measurements, i.e., traffic workload and flow analysis.

The overall results have shown that different sampling approaches achieve heteroge-

neous performance in distinct measurement activities, which ratifies the proposal of a

modular and flexible sampling framework sustained by an encompassing taxonomy of

sampling techniques. In addition, the chapter has also demonstrated the effectiveness of

the proposed sampling technique (i.e., MuST), outperforming conventional techniques

in important aspects, such as the lower requirement of CPU and memory, as well as

the higher accuracy in estimating flow dimension distribution.
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Chapter 8

Conclusions

This chapter provides a concluding review of the present research work. At first,

an assessment is carried out regarding to what extent the objectives outlined initially

have been fulfilled, then the main contributions of the thesis are presented and debated.

Finally, possible future research directions are pointed out.

8.1 Summary

The paradigm of having everyone and everything connected in an ubiquitous way

poses huge challenges to today’s networks due to the massive traffic volume involved

and heterogeneity of the services provided. To turn treatable all network tasks requiring

traffic analysis, traffic sampling has become a mandatory solution as only a subset of the

packets traversing network devices is elected for analysis. A survey provided in Chapter

2 has demonstrated a large number of sampling techniques being proposed in last years

aiming at achieving high-accuracy measurements in several network management tasks.

However, despite the substantial research work in the area, the literature shows that

there is not a single technique able to satisfy efficiently all measurement goals for diverse

network scenarios, nor a flexible way to adapt sampling to specific measurement needs.

This context has motivated the present research work, being its main objective defined

as

devising an encompassing, flexible and lightweight traffic sampling architec-

ture aiming at fostering the design and deployment of efficient sampling

strategies for diverse traffic scenarios and measurement goals

117
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This has led to the design of a new multilayer sampling architecture based on a

proposed sampling taxonomy able to sustain the modular deployment of sampling tech-

niques. In the classification criterion, a set of features related to sampling granularity,

selection scheme and selection trigger were identified and proposed as the main compo-

nents distinguishing current and possibly forthcoming techniques.

Resorting to an experimental prototype, a set of proof-of-concept scenarios has

demonstrated the potential of the proposed architecture in fostering the research and

design of efficient sampling strategies.

8.2 Reviewing objectives and results

Considering the main objectives of this work and the identification of the relevant

interrelated areas involved in conceiving an encompassing, flexible and lightweight sam-

pling architecture, a set of objectives was formulated in Chapter 1. These objectives

are here revisited and the main results obtained from their fulfillment are highlighted.

(i) To survey methods and tools for network and communication services

measurement supported by packet sampling

This objective concerns to the bibliographic review surveying current main sam-

pling techniques, the measurement tasks to which are oriented, its underlying metrics

and performance achieved in those tasks. Having provided a consistent terminology of

the main concepts related to packet sampling, the survey carried out in Chapter 2 has

presented firstly the main standardized packet sampling schemes defined in RFC 5475

[1]. Then, the new proposals resulting from modifications and/or composition of basic

approaches or entirely oriented to specific measurement goals were identified and clas-

sified. Considering specific tasks, these new proposals frequently outperform the main

strategies (i.e., systematic count-based and random count-based) currently available in

research and commercial measurement tools. The large coverage of the related litera-

ture has also shown the lack of an encompassing study regarding the suitability of the

available sampling techniques regarding multiple measurement tasks. This is mainly due

to the complexity in deploying the vast number of techniques in current measurement

tools. The analysis carried out under this objective has grounded the motivation for

the present research study, pointing out the main strategic directions to follow toward

a new multilayer sampling architecture. In addition, fostered by the literature review,

a new Multiadaptive sampling technique was proposed, having as its main characteris-
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tic, the ability to self-adjust the sampling policy and thus reducing the computational

overhead without compromising the measurement accuracy.

(ii) To propose a comprehensive model for flexible deployment of current

and forthcoming sampling techniques

After identifying that most of the sampling techniques, whether simple or complex,

share a set of structural components, these components are described in Chapter 4

through a hierarchical taxonomy. The defined taxonomy fragments the sampling tech-

niques into three well-defined components according to the granularity, selection scheme

and selection trigger in use. Then each component is further divided into a set of ap-

proaches from which both classic and recently proposed techniques can be described by

the combination of, at least, one approach of each component. This structure sustains

the modular and flexible deployment of a comprehensive number of techniques in order

to exploit specific features aiming at improving the balance between accuracy and com-

putational overhead in different measurement and traffic scenarios. The chapter ends

presenting a classification summary of the main surveyed techniques according to the

proposed taxonomy, confirming its suitability in providing a comprehensive and flexible

model for sampling techniques deployment.

(iii) To conceive and specify a sampling-based architecture able to accom-

modate the proposed taxonomy and the several systems involved in network

and communication services measurements

The achievement of this objective, addressed in Chapter 5, resulted in the definition

and specification of an encompassing measurement architecture able to suit the fol-

lowing design goals: (i) compatibility with current protocols and measurement tools in

order to support its deployment in current measurement systems; (ii) specification and

deployment sustained by open and standard protocols; (iii) flexibility to support the in-

troduction of new protocols and technologies related to traffic sampling; (iv) versatility

to deploy modularly current and forthcoming sampling techniques; and (v) capability

to support mechanisms for balancing measurement accuracy and computational weight

in order to foster the design of efficient sampling strategies. The architecture is com-

posed by three layers (i.e., management plane, control plane and data plane) covering

all the components involved in traffic measurements and their underlying interactions.

In addition, the architecture specification also covered aspects related to mapping the

measurement needs into the most suitable sampling technique. Aspects such as the
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sampling frequency, the decision on the packet fields of interest, the level of aggregation

and the exporting format according to the network scenario and measurement goals to

fulfill are also discussed.

(iv) To implement a prototype of the proposed architecture

This objective is a natural step that precedes the validation of the sampling architec-

ture. The use of a prototype allows a comprehensive evaluation of the ability in design-

ing sampling strategies through a modular and flexible structure. Accomplishing this

objective, addressed in Chapter 6, led to the identification and discussion of the main

implementation aspects concerning the computational architecture and the development

of a functional sampling framework based on the proposed taxonomy. This framework

provides a fair environment in which several sampling techniques can be comparatively

assessed aiming at designing efficient measurement strategies for diverse traffic scenar-

ios. The discussion ends presenting an experimental distributed measurement system

running in a large-scale network and a complete demonstration of performing network

traffic accounting through the proposed architecture.

(v) To provide a proof-of-concept environment aiming at evaluating the

effectiveness of the proposed architecture

The proof-of-concept of the proposed sampling architecture had as main target to

demonstrate the versatility of the proposed sampling taxonomy in providing a flexible

solution able to accommodate diverse sampling strategies. A second objective was to

elaborate a fair comparative evaluation of different sampling techniques when applied

to activities usually supported by sampling. The performance was assessed considering

the accuracy in metric estimation of the related activities (i.e., traffic workload and flow

analysis) and the computational requirements (i.e., CPU load, memory consumption

and volume of data involved) in performing such techniques. The corresponding results,

covered in Chapter 7, were obtained resorting to real traffic scenarios and reported the

performance of different sampling approaches when applied to distinct measurement

tasks. Considering that some of the less deployed techniques in current measurement

tools can improve significantly the measurement efficiency in various network conditions,

the results have also demonstrated the framework versatility and potential in fostering

the deployment and tuning of network measurement systems, which ratifies the central

purpose of this work.
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8.3 Main contributions

Taking into account the initial objectives and obtained results, the main contribu-

tions of this work are summarized below.

• Proposal of a new multiadaptive sampling technique - A new multiadaptive tech-

nique able to self-adjust the packet sampling policy according to the observed

traffic activity has been devised [14] [15] [16] [17]. Its main innovation consists in

the ability to reduce resource requirements in periods of higher network activi-

ties without compromising estimation accuracy. The technique is based on linear

prediction of future network activity and its multiadaptive property is achieved

considering both the interval between samples and the sample size as adaptive

parameters. Both adjustable parameters are bounded by appropriate thresholds

in order to guarantee the representativeness of samples in capturing the network

behavior. The outcome of the proof-of-concept has evinced the effectiveness of

the proposal, outperforming the conventional techniques, mainly in saving re-

sources (i.e., CPU and memory) in high workload scenarios. The technique has

also demonstrated high accuracy in estimating most of the metrics under analysis,

with significant improvement in dimensioning individual flows from the aggregated

traffic;

• Proposal of a taxonomy of packet sampling techniques - Although the classic sam-

pling techniques were previously classified through RFC 5475 [1], the document

does not cover recent advances in packet sampling introduced by new proposals

(e.g., adaptive techniques). In this way, the conceived taxonomy [18] [19] de-

scribes current sampling techniques through its constituent parts, rather than a

closed unit, allowing to identify their common properties and address eventual

constraints within a narrower and simpler scope. In the classification criterion,

a set of features related to sampling granularity, selection scheme and selection

trigger are identified and proposed as the main components distinguishing cur-

rent proposals. Then, each component is further divided into a set of approaches.

Following the taxonomy structure it is possible to drive a modular deployment of

most sampling techniques through the combination of proper approaches. Beyond

the comprehensiveness in classifying the current sampling techniques, this model

allows the design of sampling strategies able to exploit specific features that lead

to better performance for each measurement purpose and traffic scenario;

• Proposal of an encompassing, flexible and lightweight packet sampling architecture

- Supported by the flexibility introduced by the proposed taxonomy, a sampling-
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based measurement architecture has been devised [18] [20]. The architecture is

composed of three layers (i.e., management plane, control plane and data plane)

covering all the elements involved in traffic measurements. Each layer is modu-

larly designed aiming at supporting the required compatibility with several mea-

surement protocols and tools. The modular structure also provides flexibility to

accommodate mechanisms able to enhance the overall performance in current and

forthcoming measurement goals. In this way, all the architectural components were

presented along with the different strategies and technologies that compose the

several stages of a measurement process. Thus, the main contribution of the archi-

tecture specification relies on the completeness in addressing aspects regarding:

(i) the identification of the most suitable sampling technique and measurement

point toward a specific measurement goal and traffic scenario; (ii) the modular

deployment of sampling techniques; (iii) the support of several related proto-

cols and technologies; (iv) the lightweight packet capturing; (v) the strategies for

aggregation and exporting sampled data; (vi) processing and estimation of mea-

surement metrics; and (vii) strategies supporting the deployment of a distributed

measurement system;

• Development of a sampling framework - A functional sampling framework able

to deploy different techniques following the taxonomy structure has been imple-

mented [21] [22]. This framework provides a fair environment in which different

sampling techniques can be comparatively assessed in order to identify the most

suitable for each measurement goal and traffic scenario. This is a fundamental

aspect in order to support the design of efficient measurement strategies based

on packet sampling. The developed framework also demonstrates the lightweight

feature of the proposed architecture through its current deployment in low cost

and low power devices (i.e., Raspberry Pi), being used to performing large scale

network monitoring (at INE network);

• Provide a fair comparative analysis regarding the performance of different tech-

niques in diverse traffic scenarios - Supported by the developed framework, a set

of comparative analyses of the computational weight and achieved accuracy in

activities usually assisted by packet sampling has been carried out [20] [21] [22]

[23]. These tests have provided valuable outcomes in order to guide the selection

of the most suitable sampling technique for traffic workload and classification

activities. The results, detailed in Chapter 7, have mainly demonstrated that de-

spite the extensive deployment of systematic and random count-based techniques

in current measurement tools, some recent techniques usually outperform them
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in several scenarios without additional overhead. For instance, the multiadaptive

and systematic time-based techniques achieved a better relationship between the

volume of sampled data and the computational resources (i.e., CPU and mem-

ory) required. These techniques have also improved the estimation accuracy in

flow identification and dimensioning.

8.4 Topics of future work

From the analysis carried out along this work, several topics have been identified as

deserving further research. The following list comprises topics which may improve or

extend particular aspects of the proposed solution.

• Having demonstrated the ability to implement several sampling techniques, future

work intends to drive extensive and systematic comparative analysis toward each

measurement task supported by packet sampling (identified in Chapter 2). The

aim is to provide reliable inputs in order to select the most suitable technique for

specific scenarios and measurement goals. Considering that most measurement

tools are not tailored for sampled data inputs, it will also require efforts in tuning

the methods for the underlying metrics’ estimation;

• Even understanding the expected performance of each sampling technique when

applied to various measurement goals and traffic scenarios, deciding for a specific

strategy is still a challenging task. As discussed along with Chapter 5, this decision

also involves: (i) the sampling techniques available at each MP; (ii) the resource

requirements the technique imposes facing the MP device architecture; (iii) con-

flicting measurement needs from different network tasks performing sampling in

the same MP; and (iv) definition of the MPs that will participate in the sampling

process. In this way, future work will consider developing an automatic system

able to balance all these aspects in order to drive the mapping of the measurement

needs into the sampling technique and measurement point. This mechanism will

be sustained by formal definition of the measurement and sampling entities (and

their attributes) resorting to an ontology currently under development. The usage

of ontologies will provide flexibility in balancing the dynamic nature of concepts

such as measurement needs, estimated accuracy, overhead and performance.

• Due to the difficulty in deploying innovative components introduced by the defined

architecture in current measurement tools, future work intends to explore SDN

features in order to endow these systems with the proposed capabilities. The main
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idea consists in taking advantage of the SDN device programability to implement

the modular configuration of sampling techniques defined along this work. To

pursue this, a set of counters (e.g., temporal counters and packet counters) and

actions (e.g., explicit packet dispatch to the controller) specified in OpenFlow

[108] will be systematically arranged toward packet sampling. This strategy does

not require any modification in current SDN devices, which is in accordance with

the design goal of keeping the data plane simple, avoiding processing overhead.

The remaining modules defined in the architecture can thus be deployed in general

or dedicate measurement SDN controllers, depending on the measurement goals

and available resources.

• Despite the efforts in taking the proposed sampling architecture to SDN enable

devices, it is also objective of future work to evolve the framework prototype to

a complete standalone tool. Following the overall design goals and architecture

specification, it is expected to obtain a tool easy to be deployed in general purpose

devices, improving the effectiveness of the network measurements with low asso-

ciated costs. This will also involve the development of an API in order to sustain

the easy composition of new sampling techniques and a plug-in based system to

support the addition of new architectural modules.

8.5 Final considerations

The present research work was mainly focused on fostering the efficiency of network

measurements through the development of a modular architecture for flexible deploy-

ment of packet sampling strategies. Although there is a lack of a study identifying the

best sampling approach for each measurement goal and traffic scenario, the coverage

of the literature and the outcomes from this work have clearly demonstrated the need

for a manifold solution. In this way, the resultant architecture, sustained by a modu-

lar taxonomy of sampling techniques, provides a valuable contribution to the research

field. The topics pointed out as future work, aiming at promoting the solution to cur-

rent and forthcoming measurement environments, reveal interesting research directions

remaining ahead.



Appendix A

MuST Algorithm

This appendix includes the pseudocode for Algorithm 1, which allows to predict

the reference parameter, and for Algorithm 2, which represents the overall sampler

operation. This algorithm allows to determine the new sample size and interval between

samples, attending to the predicted reference parameter.

input : X - Reference parameter vector
∆T - Current time interval between samples
T - Times vector

output: forecast - Reference parameter prediction

1 for i← 1 to order − 1 do
2 sum← sum+ abs((X[i+ 1]−X[i])/T [i]);
3 end
4 forecast← X[order] + ((∆T/(order − 1)) ∗ sum;
5 return (forecast);

Algorithm 1: Pseudocode for the reference parameter predictor
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input : ∆Tcurrent - Initial interval between samples
∆Scurrent - Initial sample size

output: Sampled traffic

1 begin
2 for i← 1 to order do
3 newSample(∆Tcurrent, ∆Scurrent); /* new sample capture */ ;
4 X[i] ← referenceParameter(); /* stores ref. par. of last sample */ ;
5 T [i] ← ∆Tcurrent; /* kept unchanged */

6 end
7 repeat
8 /* Predictor() corresponds to Algorithm 1 */ ;
9 Xp ← Predictor(X, ∆T , T );

10 newSample (∆Tcurrent,∆Scurrent);
11 S ← referenceParameter();
12 m← 1;
13 if S then
14 m← Xp/S
15 end
16 case [m < mmin] /* underestimation */
17 ∆Tnext ← m ∗∆Tcurrent;
18 ∆Snext ← m ∗∆Scurrent;
19 case [mmin ≤ m ≤ mmax] /* correct estimation*/
20 ∆Tnext ← ∆Tcurrent;
21 ∆Snext ← ∆Scurrent;
22 case [m > mmax] /* overestimation */
23 ∆Tnext ← 2 ∗∆Tcurrent; k=0.15;
24 ∆Snext ← (1 + k) ∗∆Scurrent;
25 /* Interval Between Samples thresholds (sec) */
26 if ∆Tnext < MinIBS then
27 ∆Tnext ←MinIBS ;
28 end
29 if ∆Tnext > MaxIBS then
30 ∆Tnext ←MaxIBS;
31 end
32 /* Sampling Size thresholds (sec) */
33 if ∆Snext < MinSS then
34 ∆Snext ←MinSS;
35 end
36 if ∆Snext > MaxSS then
37 ∆Snext ←MaxSS;
38 end
39 ∆Tcurrent ← ∆Tnext; ∆Scurrent ← ∆Snext;
40 updateVectors(∆Tcurrent, S); /* update vectors T and X */

41 until endOfSampling ;

42 end

Algorithm 2: Multiadaptive technique pseudocode
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